Cool and luminous transients from mass-losing binary stars

Ondrej Pejcha, Brian Metzger & Kengo Tomida

Princeton University, USA

We study transients produced by equatorial disk-like outflows from catastrophically mass-losing binary stars with an asymptotic velocity and energy deposition rate near the inner edge which are proportional to the binary escape velocity. As a test case, we present the first smoothed-particle radiation-hydrodynamics calculations of the mass loss from the outer Lagrange point with realistic equation of state and opacities. The mass-losing binary outflows produce luminosities reaching up to 106 LSun and the effective temperatures are between 500 and 6000 K. Dust readily forms in the outflow, potentially in a catastrophic global cooling transition. The appearance of the transient is viewing angle-dependent due to vastly different optical depths parallel and perpendicular to the binary plane. The predicted peak luminosities, timescales, and effective temperatures of mass-losing binaries are compatible with those of many of the class of recently-discovered red transients such as V838 Mon and V1309 Sco.

Last update: