
Here (2𝑁!)" is the total number of possible configurations (operator
strings) under a given expansion order 𝑛. 𝑎 𝑝 = 0,1,2 stands for the
type of the operators at operator string position 𝑝. 1 stands for the
diagonal operator and 2 represents the off-diagonal operator. We insert
𝐻# = 𝟏, the unit operator into the strings to make sure each string has a
fixed length. For an expansion order 𝑛, the expansion is exact. In
practice, we need to truncate the order to a finite cut-off 𝑀. Now for a
specific operator string, the weight of this configuration is,
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This research is about the entanglement entropy, a smoking gun for
quantum critical phenomena. The QMC algorithm, stochastic series
expansion (SSE) is used to probe the Rényi entropy of the Heisenberg
model by constructing the so-called ‘Qiu-Ku’ manifold. Two different
calculation schemes are presented. One is to monitor the transition
between two ensembles, an independent one and a ‘glued’ one. Another
is a non-equilibrium measurement in which the entanglement region
grows gradually. It is shown that both result obtain satisfactory results
and the non-equilibrium measurement cures the large systematic error
when the entangled region is large.

Abstract

Stochastic Series Expansion

Computing the Rényi Entropy Results

Conclusion
To conclude, in this research we have developed two
algorithms to compute the Rényi entropy via SSE, one
involves the ratio of the transition probabilities between two
ensembles with different trace topologies and another
involves a non-equilibrium measurement. From the Fig. 1, 2,
3, both algorithms can compute the 2nd order Rényi entropy
for the 1-d Heisenberg chain accurately. The zigzag and
symmetric behavior of the Rényi entropy is clearly revealed
via QMC simulations. Comparing two algorithms, the
equilibrium one is more efficient in computing small systems.
However, large systematic errors occurs when the entangled
region becomes large, e.g., 𝑙! = 14, 15 . Non-equilibrium
methods cure this problem with the compensation of the
computing time.
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𝐻$ is the diagonal operator and 𝐻% is the off-diagonal operator. The
partition function is Taylor expanded. It is nothing but the summation of
weights in the enlarged configuration space {𝜎, 𝑛},

𝑊 𝜎, 𝑆C = ( )0 " C.4 !
C!

𝛼 ∏A*C
+ 𝐻B A ,) A 𝛼 . 

The matrix element 𝛼 ∏&'(
$ 𝐻) & ,! & 𝛼 is easy to compute. For the

isotropic Heisenberg model, each non-zero element equals to ½. With
the weight, we can introduce the update scheme and perform the Monte
Carlo sampling.
1. Diagonal update: We consider to insert a diagonal operator at bond

𝑏 if there was a unit operator before with 𝑃B([0,0]A → 1, 𝑏]A =

𝑚𝑖𝑛 ,!0⋅ 3 A-+ 2%,! 3 A
C.4

, 1 . We consider to remove a diagonal
operator at bond 𝑏 is there was a diagonal operator before with
𝑃B([1, 𝑏]A → 0,0]A = 𝑚𝑖𝑛 (C.4-+)

,!0 3 A-+ 2%,! 3 A
, 1 .

2. Loop update: Construct closed loops. When encountering an
operator, it switches or goes straight with some probabilities. If a
loop switches at an operator, the type of the operator changes. All
the spins visited by the loop are flipped.

With the reduced density matrix 𝜌+ = Tr,|𝛹⟩⟨𝛹|, the Rényi entropy
for the subsystem A is defined as

𝑆E
3 = −

ln Tr 𝜌F3

1 − 𝛼

where 𝛼 is the order of the Rényi entropy.

The starting point to write the Rényi entropy as ratio of two partition
functions, 𝑆3 = GH I&
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. Here 𝑍- = [Tr 𝑒./0 ]- is the

ordinary partition function for 𝛼 replicas of the system, while 𝑍+
(-) is a

modified partition function for replicas which are ‘glued’ together in the
region 𝐴.

With this topology, we can estimate 𝑅+
(-) by K∅→&

K&→∅
and thus,  
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(a) 𝑃∅→+ is determined by performing all the simulations in the
independent ensemble and monitor whether the configurations meet
the periodic criterion for the glued ensemble, 𝑛E = 𝑚E . Thus,

𝑃∅→+ =
5!""# $%&"' ()*#")*+,
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(b) 𝑃+→∅ is determined by performing all the simulations in the glued
ensemble and counting the number of configurations which satisfy
periodic condition in the independent ensemble, 𝑛E = 𝑛′E and
𝑚E = 𝑚′E simultaneously. Similarly, 𝑃+→∅ is estimated by

𝑃+→∅ =
5!""# *,'"-",'",# ()*#")*+,

5#+# (6 .

Non-equilibrium Measurement
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We parametrize the partition function 𝑍+
(-) with a parameter 𝜆 ∈ [0, 1],

such that 𝑍+
- 𝜆 = 0 = 𝑍+'∅

- and 𝑍+
- 𝜆 = 1 = 𝑍+

- . This is done by
defining

𝐷 represents all the possible subsets of 𝐴 including the empty set ∅ and
𝐴 itself. Let 𝑔E(𝜆, 𝑁L) = 𝜆,.(1 − 𝜆),&.,. and the Rényi entropy is
estimated by computing the work along the non-equilibrium path in
which 𝜆 is adjusted smoothly from 0 to 1:
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By the Jarzynski’s equality, which tells that the Rényi entropy can be
computed as
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Now the task is to compute and add all the increments
𝜕ln 𝑔+(𝜆(𝑡), 𝑁=(𝑡)) along the interval 𝜆 ∈ 0,1 . One can compute that
the increment equals to

Δln𝑔E 𝜆, 𝑁S = 𝑁E − 𝑁S 𝑡< ln
1 − 𝜆 𝑡<-+
1 − 𝜆 𝑡<

+ 𝑁L 𝑡< ln
𝜆 𝑡<-+
𝜆 𝑡<

.

Therefore, we can write the estimator for the Rényi entropy concisely as:
>.
(0)

>.2∅
(0) = ∏&'(

$ ?. @ A!45 ,56 A!
?. @ A! ,56 A!

. 

Figure 1: 2nd order Rényi entropy for 1-d Heisenberg chain of 𝑙B = 4

Figure 2: 2nd order Rényi entropy for 1-d Heisenberg chain of 𝑙B = 8

Figure 3: 2nd order Rényi entropy for 1-d Heisenberg chain of 𝑙B = 16


