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Solving general high-dimensional partial differential

equations (PDEs) has been a long-standing challenge in

numerical analysis and computation. To instantiate the

derivation of the weak adversarial network method, we first

consider the following second-order elliptic PDE with

either Dirichlet’s or Neumann’s boundary conditions on

arbitrary domain ,

(*)

in Ω with the boundary condition of:

For the example like above equation, we will see that the

method developed in this research can be directly applied

to general high-dimensional PDEs, including both linear

and nonlinear ones.

PDEs are prevalent and have extensive applications in

science, engineering, economics, and finance. The most

popular standard approaches to calculate numerical

solutions of PDEs include finite difference and finite

element methods (FEM). These methods discretize the time

interval [0, T ] and the domain Ω using mesh grids or

triangulations, create simple basis functions on the mesh,

convert a continuous PDE into its discrete counterpart, and

finally solve the resulting system of basis coefficients to

obtain numerical approximations of the true solution.

Solving high-dimensional partial differential equations has

always been a challenging problem in the field of scientific

computing. There are many widely used traditional numerical

methods for PDEs like finite difference method, finite

element method, and spectral method. However, traditional

numerical methods all face the problem of “Curse of

dimensionality” when solving high-dimensional PDEs, where

they suffer from slow computation, instability, and inaccuracy.

In this research, we mainly investigate a group of newly

proposed numerical methods based on deep neural networks

that can overcome the “Curse of dimensionality”. This group

of methods for non-parametric PDEs includes Physical-

informed Neural Networks (PINNs), Deep Ritz Method

(DRM), Deep Galerkin Method (DGM), and Weak

Adversarial Network (WAN). Among these deep learning

based numerical methods, we make a thorough investigation

on WAN which is based on the Generative Adversarial

Network. And with a lightning-fast python code

implementation, we successfully establish the Weak

Adversarial Network and did a lot of numerical experiments

on both linear high-dimensional PDEs and nonlinear ones. We

also compare the performance of our weak adversarial

network model with deep ritz method and physical-informed

neural network and find that our model outperforms these two

models in terms of running time. Apart from solving the high-

dimensional PDEs, we also explore some improvements on

the algorithms of solving min-max problem (i.e., the saddle

point problem). The success of this research not only

construct a complete python code for Weak Adversarial

Network, but also accumulates essential data to advance the

understanding of the performance and algorithms of weak

adversarial network.

Abstract

Introduction

Although these methods have been significantly advanced in

the past decades and are able to handle rather complicated

and highly oscillating problems, they suffer the so-called

“curse of dimensionality” since the number of mesh points

increases exponentially fast with respect to the problem

dimension d. Hence, they quickly become computationally

intractable for high dimensional problem in practice. As a

consequence, these numerical methods are rarely useful for

general high-dimensional PDEs, e.g., d ≥ 4, especially when

a sufficiently high-resolution solution is needed and/or the

domain Ω is irregular.

Facing the challenge, our goal is to provide a computational

feasible alternative approach to solve general high-

dimensional PDEs defined on arbitrarily shaped domains.

More specifically, using the weak formulation of PDEs, we

parameterize the weak solution and the test function as the

primal and adversarial neural networks respectively, and

train them in an unsupervised form where only the

evaluations of these networks (and their gradients) on some

sampled collocation points in the interior and boundary of

the domain are needed. Our approach retains the continuum

nature of PDEs for which partial derivatives can be carried

out directly without any spatial discretization and is fast and

stable in solving general high-dimensional PDEs. Moreover,

our method is completely mesh-free and can be applied to

PDEs defined on arbitrarily shaped domains, without

suffering the issue of the curse of dimensionality.

Methodology

To solve the equation in the form of *, we multiply both

side with test function phi(x) and integration by part to get:

Observe that the operator norm for A[u] is defined as:

and we can further write as:

Here we can clearly see that the problem of getting the

weak solution of the equation has become a min-max

problem (saddle point problem), thus we consider using

Generative Adversarial Network to solve this problem.

Note that the inside point loss function after taking log will

be:

And the boundary point loss function will be:

Thus, we can write the total loss function for our problem:

where alpha is a parameter we can choose.

Finally, we can write out the algorithm for solving the high-

dimensional PDEs according to the equation show above.

And during the training, we update theta and phi

alternatively, which is the same trick we use in the training

of GAN.

Experiments

Consider the problem,

where we have

Activation function ELU

Exact Value

Predict Value

Exact - Predict

Conclusion

To conclude, in this research we have developed a complete

python code to achieve the goal of combining weak solution

with adversarial networks to solve high-dimensional partial

differential equations. After observing the similarity of the

loss function of the operator norm of the weak solution

form and the loss function of the Generative Adversarial

Network, we successfully use the training technique for

GAN to get the solution to our target PDE. And we also

further investigate some connections between the saddle

point problem and the PDE solving problem. Some

improvement on the saddle point problem algorithms can

also advance our PDE solving model. And this need some

future work to explore.
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