Master of Science in the field of PHYSICS

Incubating talent pool of well-versed cadres in physics

Apply for entry in September 2023
IS THE PROGRAMME FOR YOU

- An innovative and well-designed MSc programme that strengthens students’ background to cope with ever-evolving challenges
- Stresses a balanced and flexible approach, with a strong focus on catering to the academic and career aspiration of students, developing their own specialty in subject knowledge and technical skills

What the Programme Covers

- Provides a flexible yet solid education on theories, techniques and frontier developments in different subfields in physics including the following fields of specialisation:
 - astrophysics
 - computational physics
 - device and nanophysics
 - photonics and quantum information
 - condensed matter physics

World-class Rankings of HKU

- Quacquarelli Symonds (QS) World Rankings 2023
 - #21 World Rankings 2023
 - #3 Asia Rankings 2023

- Times Higher Education (THE) World Rankings 2022
 - #30 World Rankings 2022
 - #4 Asia Rankings 2022

- Eminent Subject Ranking
 - QS World University Rankings by Subject 2022:
 - #67 Physics & Astronomy

- Top-notch Scientists in the Faculty
 - Clarivate Analytics’ Essential Science Indicators 2021
 - 18% of our professoriate staff are the world’s top 1% scholars

Why this Programme

- Why this Programme
- Where will this Programme Lead You
- Who should Take this Programme
- Transferable skills
- Career development
- Host

Tuition fees

Composition fee: HK$180,000\(^a\) (subject to approval)
Students are required to pay Caution Money (HK$350, refundable on graduation subject to no claims being made) and Graduation Fee (HK$350)

Programme duration

Full-time: 1 year

Study load

Credits: 60 credits
Learning hours: about 1,200 hours (including 180 hours for project and 300 - 360 contact hours)

Class schedule

Teaching could be on weekdays or weekday evenings, with occasional concentrated teaching during weekends

Medium of Instruction

English

Assessment

Mostly coursework and written examination

\(^a\)The fee shall generally be payable in 2 instalments over 1 year

Where will this Programme Lead You

- Transferable skills
 - The problem-solving skills, in particular with quantitative and analytical techniques, bode well for all graduates with a formal physics training

- Career development
 - Master degree holders in physics with advanced preparation in mathematics, laboratory skills, and programming are highly valued by many employers, allowing these graduates to enter the job market through multiple channels
 - Prepares quality physicists for the high-technology workplace

Host

- Department of Physics

The Department of Physics conducts research at the cutting edge of fundamental and applied physics. The overarching research vision of the Department is to become locally pre-eminent, leading in Asia, and globally competitive in selected sub-fields of research. Our researchers engage in frontier research in the fields of Astronomy and Astrophysics; Computational Physics; Theoretical and Experimental Condensed Matter Physics; Materials Sciences; Nuclear and Particle Physics; Photonics and Quantum Information. We also incorporate advanced research in teaching and offer a number of postgraduate projects to nurture well-versed individuals.

Who should Take this Programme

- Students who intend to pursue another master or doctoral degree in a wide range of science or engineering disciplines in the future
- Students who would like to enhance their competitiveness in high-tech industry

Hear from experts in the field

- Professor Robert J JOYNT
 - The University of Wisconsin-Madison

- Professor Fuchun ZHANG
 - Director and Chair Professor, Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences

"The fundamental conception of the programme is sound. The proposal is innovative. Physics departments around the world are just now realising that they have an opportunity, perhaps even a duty, to provide MSc graduates that are specifically trained for quick entry into the workforce rather than MSc graduates that will continue to the PhD."

"This TPG programme is of great academic merits, and addresses the need of society in Hong Kong and the Greater Bay Area. The programme provides a flexible but solid education for bachelor graduates of a broad spectrum to learn theoretical and experimental skills and techniques related to frontier developments in physics. This will in turn strengthen students’ ability to better meet the ever-changing high-tech world. The basic skills and applied sciences highlighted by the programme are attractive to bachelor graduates with backgrounds in physics, mathematics, chemistry, as well as engineering. Many high tech companies prefer to recruiting graduates with such a master degree of science, for their flexibility to meet industry’s own needs. The programme adopts a balanced and flexible approach to provide an excellent one-year full-time education in physics. It is favourably comparable to the best such programmes in the world. The Physics Department at HKU is academically strong, which ensures the programme credible."
Course Descriptions

Master of Science in the field of Physics

Programme structure

<table>
<thead>
<tr>
<th>Design of curriculum (60 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory courses (9 credits)</td>
<td></td>
</tr>
<tr>
<td>PHYS8201 Basic research methods in physical science (6 credits)</td>
<td></td>
</tr>
<tr>
<td>PHYS8970 Physics seminar (3 credits)</td>
<td></td>
</tr>
<tr>
<td>Disciplinary elective courses (42 credits)</td>
<td></td>
</tr>
<tr>
<td>Take at least 42 credits from Lists A and B with at least 18 credits must be chosen from List A:</td>
<td></td>
</tr>
</tbody>
</table>

List A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS8150</td>
<td>Computational physics and its contemporary applications</td>
<td>6</td>
</tr>
<tr>
<td>PHYS8351</td>
<td>Graduate quantum mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS8450</td>
<td>Graduate electromagnetic field theory</td>
<td>6</td>
</tr>
<tr>
<td>PHYS8550</td>
<td>Graduate statistical mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS8701</td>
<td>Physics experimental techniques</td>
<td>6</td>
</tr>
</tbody>
</table>

List B

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS8352</td>
<td>Quantum information</td>
<td>6</td>
</tr>
<tr>
<td>PHYS8551</td>
<td>Topics in solid state physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS8552</td>
<td>Condensed matter physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS8654</td>
<td>General relativity</td>
<td>6</td>
</tr>
<tr>
<td>PHYS8656</td>
<td>Topics in astrophysics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS8710</td>
<td>Nanoparticles (6 credits)</td>
<td></td>
</tr>
<tr>
<td>PHYS8711</td>
<td>Device physics (6 credits)</td>
<td></td>
</tr>
<tr>
<td>PHYS8750</td>
<td>Topics in particle physics (6 credits)</td>
<td></td>
</tr>
<tr>
<td>PHYS8852</td>
<td>Photonics and metamaterials (6 credits)</td>
<td></td>
</tr>
<tr>
<td>SPSC7007</td>
<td>Data analysis in space science (6 credits)</td>
<td></td>
</tr>
<tr>
<td>SPSC7014</td>
<td>Big Data, AI and Machine Learning in Space Science (6 credits)</td>
<td></td>
</tr>
</tbody>
</table>

Capstone requirement (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS8971</td>
<td>Capstone project</td>
<td>9</td>
</tr>
</tbody>
</table>

Remarks

The programme structure will be reviewed from time to time and is subject to change.

Compulsory Courses

PHYS8201 Basic research methods in physical science

This course introduces basic research methods commonly used in various sub-fields in physics. It comprises of four modules, each introduces commonly used research methods in physics. Students are required to take two out of the four modules. They are 1. Astrophysical techniques: Commonly used techniques and packages in astrophysical data gathering and data analysis are introduced. 2. Computational physics and modelling techniques: Commonly used computational physics and physical modelling methods are introduced. 3. Experimental physics techniques: Commonly used experimental physics apparatus and techniques are introduced. 4. Theoretical physics: Commonly used techniques in mathematical and theoretical physics are introduced.

PHYS8970 Physics seminar

This course aims to initiate students into research culture and to develop a capacity for communication with an audience of varied backgrounds. Students are required to attend and take part in a specified number of seminars organised by the Department of Physics to expose themselves to various topics of contemporary physics research and to learn the technique of professional physics presentation. Students are also required to give an oral presentation, normally on materials related to their Capstone Project.

Disciplinary Elective Courses

PHYS8150 Computational physics and its contemporary applications

This course shows the power of computational approach to solving physics and related problems, which is complimentary to the traditional experimental and theoretical approaches. Students are expected to spend a significant fraction of time in actual programming. Topics include: Introduction to computational physics; ordinary differential equation for classical physical problems; partial differential equation for classical and quantum problems; matrix method and exactly diagonalisation for classical and quantum problems; Monte Carlo methods for statistical physics and quantum many-body physics; numerical methods for phase transitions and machine learning approaches to physics problems.

PHYS8351 Graduate quantum mechanics

This course introduces postgraduates to the theory and advanced techniques in quantum mechanics, and their applications to selected topics in condensed matter physics. The course covers the following topics: Dirac notation; quantum dynamics; the second quantisation; symmetry and conservation laws; permutation symmetry and identical particles; perturbation and scattering theory; introduction of relativistic quantum mechanics.

PHYS8450 Graduate electromagnetic field theory

The aim of this course is to provide students with the advanced level of comprehension on the theory of classic electromagnetic field, enabling them to master key analytical tools for solving real physics problems. This course introduces and discusses the following topics: Boundary-value problems in electrostatics and Green’s Function method; electrostatics of media; magnetostatics; Maxwell’s equations and conservation laws; gauge transformations; electromagnetic waves and wave guides.

PHYS8550 Graduate statistical mechanics

This course covers advanced topics in equilibrium statistical physics. Topics include: Ensemble theory; theory of simple gases, ideal Bose systems, ideal Fermi systems; statistical mechanics of interacting systems; statistical field theory; some topics in the theory of phase transition may be selected.

PHYS8701 Physics experimental techniques

This course provides a detailed account of some common experimental techniques in physics research. It introduces the basic working principles, the operational knowhow, and the strength and limitations of the techniques. It will discuss and train students of the following techniques:

1. Noise and Data Analysis
2. Computer grid
3. Raman spectroscopy and photoluminescence (PL)
4. Temporal characterisation of ultrashort laser pulses
topics will also be discussed. Topics include: Crystal structures and symmetry; the reciprocal lattice and X-ray diffraction; lattice vibration and thermal properties; free electron of metals; band structures and Bloch theory; nearly free electrons and tight binding model; semiclassical model of electron dynamics; Boltzmann equation; transport and optical properties of metals and semiconductors; interaction and collective excitations. If time permits, magnetism and superconductivity will also be covered.

PHYS8552 Condensed matter physics
This course introduces many-body physics in quantum matter. Systems consisting of many particles (bosons or fermions) display novel collective phenomena that individual particles do not have, for example, ferromagnetism and superfluidity. It aims to introduce students the general principles behind these phenomena, such as elementary excitations, spontaneous symmetry breaking, and topological phases of matter, etc. Theoretical language useful in the interpretation of experiments, such as linear response theory and response functions, will be discussed. This course will focus on the phenomena of emergent many-body states that require not only the effect of quantum statistics but also that of inter-particle interaction.

Examples include: Ferro-magnetism, Fermi liquid, superfluidity, superconductivity, and the quantum Hall states. Some general themes related to these quantum states, such as elementary excitation, Ginzburg-Landau description, spontaneous symmetry breaking, and topological phases of matter will be discussed. This course is intended for both experimentalists and theorists. While there are no official prerequisites, students who would like to take this course are assumed to have sufficient knowledge on quantum mechanics and statistical mechanics.

PHYS8654 General relativity
This course serves as a graduate level introduction to general relativity. It provides conceptual skills and analytical tools necessary for astrophysical and cosmological applications of the theory. Topics include: The principle of equivalence; inertial observers in a curved space-time; vectors and tensors; parallel transport and covariant differentiation; the Riemann tensor; the stress-energy tensor; the Einstein gravitational field equations; the Schwarzschild solution; black holes; gravitational waves detected by LIGO, and Freidmann equation.

PHYS8656 Topics in astrophysics
This course covers high energy processes, basic theory of stellar structure and evolution, and introduction to compact objects. It follows a vigorous mathematical treatment that stresses the underlying physical processes. Topics include: Radiation mechanisms; stellar structure equations; polytropic model; elementary stellar radiation processes; simple stellar nuclear processes; stellar formation; late stage of stellar evolution; supernova explosion; compact stellar; cosmic rays; if time permits, additional selected topics will be covered.

PHYS8750 Nanophysics
This course is designed to deliver fundamental concepts and principles of nano physics to fresh postgraduate students, mostly focusing on the transport properties of the low-dimensional electronic systems under external electric and/or magnetic fields. It will cover various topics in nano physics, such as zero-, one-, and two-dimensional electronic gas systems, quantum dots, graphene and 2D materials, semiconductor heterostructures, quantum Hall effects, Coulomb blockade effects, single electron effects, field effect transistors, phase-coherent interference effects, and more. While most discussions will be made based on experimental findings, the basics of the relevant theories will also be covered using the tight-binding model, basic quantum mechanics, and Landauer-Büttiker formula. The principles and applications of nano fabrication and low-temperature measurement techniques will also be discussed.

PHYS8751 Device physics
The growth in the past 70 years of modern electronics industry has had great impact on society and everyday life, the foundation of which rests upon the semiconductor physics and devices. This course aims at presenting a comprehensive introductory account of the physics and operational principles of some selected and yet classic semiconductor devices, microelectronic and optoelectronic. A brief introduction on the processing technology of the devices will also be given. The course is primarily designed for postgraduates but can be of interest to senior undergraduates in physics.
Course Descriptions

Course Descriptions

electrical and electronic engineering and materials science. Students are assumed to have acquired some basic knowledge of quantum mechanics, statistical mechanics, and solid state physics, though a review of the physics of semiconductors will be given in the beginning of the course. This course begins by giving a review of solid state physics, particularly of the physics of semiconductors. It is then followed by discussions of the fundamentals and practical aspects of PN-junctions and rectifying diodes, amplifying and switching devices like bipolar and field-effect transistors (e.g. MOSFET), light-emitting and detection devices such as LEDs, laser diodes, and photodetectors. It will end by a brief discussion of special devices, e.g., charge-couple device (CCD), negative conductance microwave device (e.g. Tunnel and Gunn diodes) and also integrated circuits.

PHYS8852 Photonics and metamaterials

In the last two decades, tremendous progress has been made in the manipulation of light propagation using structured photonic media - metamaterials, with negative refraction, super-imaging and invisibility cloaking as the most well-known examples. These new discoveries are paving ways towards many potential applications of photonic structures, including imaging, display, holography and information processing. This course aims at providing the fundamental understanding of the interaction of light with structured media whose unit cells are much smaller than the wavelength of light, and the design and functionalities of various metamaterial based photonic devices. The course text is primarily designed for senior undergraduate students and postgraduate students and requires some knowledge on electromagnetism and optics. On the other hand, it will also be of interest to graduate students since it includes some most recent results in the field of metamaterials and nanophotonics. Topics include: Modeling of interaction of light with periodic structures, gratings, photonic crystals; coupled mode theory; interaction of light with metals, covering both propagating and localized surface plasmon polaritons; effective-medium description of the unconventional electromagnetic properties of metamaterials, such as negative permeability and negative refraction, zero refraction index, hyperbolic metamaterials, chirality and bi-anisotropy; design of the unit cells of the metamaterials based on plasmonic structures for achieving various electromagnetic properties and functionalities; transformation optics and invisibility cloaks; metamaterial devices, including super-imaging lenses, meta-lenses, metasurface holography etc.; nonlinear optical properties of metamaterials and metasurfaces; photonic systems with Parity-time symmetry; metamaterial approach for designing the topological properties for light.

SPSC7007 Data analysis in space science

This course introduces concepts of data analysis in space science. Techniques ranging from traditional statistical methods to recent machine learning algorithms will be introduced. Applications of these techniques in space science will be the focus in this course for students to understand how they are actually deployed in solving practical problems in space science.

SPSC7014 Big data, AI and machine learning in space science

Artificial Intelligence (AI), Machine Learning and Big Data analytics are interdependent disciplines that are increasingly influential in the real world under the broad umbrella of data science. They have found widespread applications in all branches of science and technology and have direct application in space and satellite technologies. This course introduces the basics of all these areas. Data analytics is the science of analysing raw data to make conclusions, a particular challenge in the Big data era, while Machine Learning (ML) is a technique enabling computers to learn without being explicitly programmed and is part of the broader concept of Artificial Intelligence. Key concepts across these fields will be explored including practical processes, techniques and algorithms. There will be a focus on real-world examples with specific emphasis on applications in space and planetary sciences. The course will also cover some ML software packages in Python and R. Examples in all areas will be drawn from fields such as
WHAT YOU WILL LEARN

Programme Highlights
astrophysics, particle physics and complex systems, including rare source identification from vast data, training sets, smart classification, time series, imaging and spectral analyses.

Capstone Requirement
PHYS8971 Capstone project
This capstone course provides students with the opportunity to study a specific research-type problem by themselves, either theoretical, experimental or numerical, under the supervision of an academic staff using the knowledge the student gained in their entire MSc study. For theoretical and numerical projects: Students will receive training in research literature reading and reviewing, and make investigation which is close to research work in nature, under the supervision of a staff member. Students may need to perform some original calculations, to fill in mathematical gaps of some sophisticated derivations, or a combination of both. For numerical projects, students also need to use computers to find numerical or simulation results. For experimental projects: Students will carry out experiments in research labs under the supervision of a staff member. Students will receive a comprehensive training in advanced experimental techniques, including preparation of samples, determination of physical properties, measurement of small signals obscured by noise, laser, high-vacuum and low-temperature techniques and so on. Wide reading of the relevant scientific literature and originality in experimental design are expected. It is expected that most of the projects would involve team work.

Pre-requisites: Pass or already enrolled in PHYS8201 and PHYS8970.

YOUR PROGRAMME EXPERTS

Programme Director
Professor Xiaodong CUI
BS USTC; PhD Ariz State

Other Programme Committee Members
Dr Kai Ming LEE (Co-Programme Director) BSc, HKU; PhD Caltech
Professor Hoi Fung CHAU BSc, PhD HKU, M IEEE, F Inst P
Dr Yanjun TU BSc USTC, PhD U Penn

Other Academic staff
Professor Gang CHEN BSc, MPhil, PhD UCSI
Dr Judy Fung Kiu CHOW BSc HKUST, PhD Stanford
Dr Jane Lixin DAI BSc(Eng), MSc(Eng), PhD Beograd
Professor Aleksandra B DJURIŠIĆ BSc, PhD POSTECH
Dr Dong-Keun KI BS CUHK, MS Michigan State
Dr Jenny Hiu Ching LEE BSc, MPhil PhD HKU, CPsys, M IEEE, F Inst P
Dr Francis Chi Chung LING BA Cantab, MS PhD Caltech, FAPS, FOSA
Professor Hoi Kwong LO BA Cantab, MS PhD Caltech, FAPS, FOSA
Dr Tran Trung LUU BSc HKU, MSc KAIST, PhD LMU
Dr Stephen Chi Ying NG BSc USTC, PhD Uni Stuttgart
Dr Jason Chun Shing PUN BSc, MPhil PhD HKU, CPsys, M IEEE, F Inst P
Professor Shunqing SHEN BA, MS, PhD Harvard
Professor Wenyuan WANG BSc, MSc PhD Budan
Professor Zidan WANG BSc USTC, PhD Brown
Professor Shuang ZHANG BSc USTC, PhD Brown

More course information at: https://www.scifac.hku.hk/prospective/tpg/Physics
Admissions

Requirements

◊ A Bachelor’s degree with Honours or above (equivalent qualification) in a relevant Science subject (e.g. Physics, Astronomy, Earth Sciences, Mathematics) or an Engineering discipline
◊ Prior knowledge in university-level electromagnetism, quantum mechanics and thermodynamics, university-level linear algebra and multi-variable calculus, basic statistics, and some computer programming experience (e.g. coding in C++, Mathematica, Matlab or Python)
◊ Shall pass a qualifying examination if deemed necessary
◊ Fulfil the University Entrance Requirements

How to apply

Application deadlines:
Non-local applicants: 12:00 noon (GMT +8), May 12, 2023 (extended)
Local applicants: 12:00 noon (GMT +8), June 30, 2023

Online application:
admissions.hku.hk/tpg

Expected graduation time for normal course of studies
Winter (November / December 2024)

Further Information

Programme details
bit.ly/3s6F9Q9

Enquiries
Department of Physics
Tel: (852) 2859 2361 Email: mscphy@hku.hk

Faculty of Science
(852) 3917 5287
scitpg@hku.hk
www.scifac.hku.hk/