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IntroductionAbstract

The localization and translation of mRNAs within
subcellular domains of neurons such as axons is
crucial to supply proteins in the right time at the right
place. These proteins have various functions ranging
from axonal growth, regeneration, maintenance,
repair as well as a platform for retrograde signaling.
In this Review, we elucidate the mRNA genes, which
are found in the axonal compartment of different
organisms. We also summarize the improved
methodologies, such as physical isolation of axons
from the cell body, RNA detection methods and
imaging techniques that uncover the complexity of
axon transcriptome and how it is regulated.
Furthermore, we matched the listed genes with its
respective homologs in C. elegans. This will provide
useful information for the future development of
approaches to visualize axonal mRNA transport in live
animals. Such a tool will be useful to reveal novel
roles of locally synthesized proteins in injury
responses and neurological diseases.

Materials & Methodology
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Conclusion
Axonally synthesized proteins are crucial for temporally-sensitive events in development, such as axonal growth, survival, plasticity and injury response, to name a few. The transport of mRNA to the axons is cost and time effective,
providing a local renewable source of proteins. Just as one would not assemble the furniture and transport the bulky, completed piece cross country, so too does neuron prefer to produce proteins locally in axons when required.

Future studies could incorporate both omics strategies with gene-specific approaches to further identify axonally transported genes. New tools to image the mRNA transport in live animals along with enhanced spatial and temporal
resolution will be useful to advance our understanding in intra-axonal protein synthesis.

Objective:
1) List the axonally transported and translated mRNA genes
2) Illustrate recent experimental advances used to visualize the mRNA localization
3) Highlight the functions of the axonally transported mRNA genes, the mechanisms and signals for

regulation of mRNA transport and translation.
4) Match these genes with their respective homologs in Caenorhabditis elegans.c

Results and Discussion
Table 1. Preview of mRNA genes localized and expressed in axons, their functions and C. elegans homologs.

Functions of Axonally Transported Genes
Axonal growth
Axonal survival/ maintenance
Axonal path finding
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Type of Organism and Neuronal Type

Methodology

Signal/ Regulator

Function

UniProt

• mRNA sequence in 
FASTA format

WormBase

• Homologs in C. 
elegans

• 70 mRNA genes found to be transported to the axon.

• Organisms: Majority on mouse or rat models, post-mortem central nervous system

tissues from amyotrophic lateral sclerosis (ALS) patients (Homo sapiens) [6],

chicken[7-9], Xenopus laevis [10-13] and Aplysia [14], Lymnaea stagnalis [15],

and C. elegans [16].

• Neuronal Type: Retinal ganglion, dorsal root ganglion, hippocampal neurons, and

touch neurons.

• Methodologies: microfluidic chambers or Campenot culture, Reverse

Transcriptase-quantitative Polymerase Chain Reaction (RT-qPCR), Western

Blotting analysis, fluorescence in situ hybridization (FISH), immunoprecipitation,

Fluorescence Recovery After Photobleaching (FRAP), metabolic labeling method

such as Click-iT L-azidohomoalanine (AHA)[17, 18] , RNA-Sequencing, Axon-

Translating Ribosome Affinity Purification (Axon-TRAP) and Puromycylation-

Proximity Ligation Assay (Puro-PLA) [3].

• 3’ untranslated regions (UTR) of the mRNAs[14, 19-21], 5’ UTR-localization motifs

[22, 23], RNA binding proteins (e.g. ZBP1 binds to β-actin mRNA[24]), and

microRNA (microRNA-338 regulates the COX IV mRNA levels) [25] Treatments:

nerve growth factors, netrin, brain-derived neurotrophic and neurotrophin-3

stimulate axonal protein synthesis [7, 8, 17, 21, 26-32].

• Function of axonally transported mRNA: Axonal growth [15, 22, 26, 30, 31, 33-

39], axonal regeneration[15, 16, 26, 27, 40-48], axonal guidance and pathfinding

[7, 8, 10, 13, 14, 23, 49-53] as well as branching [8, 28, 54, 55], to support

survival and maintenance by promoting mitochondrial functions [9, 11, 12, 15,

17, 18, 20, 21, 25, 29, 32, 45, 56-60], a platform for retrograde signaling [32, 61],

result in analgesia [62, 63] or hyperalgesia [64, 65], mutations (loss or gain of

function) result in neurological diseases [6, 66] (e.g. Annexin A2[6] and SOD1

genes are implicated in patients with ALS, while SP22 and Uch-L1 genes are

linked to Parkinson’s Disease [26]).

PubMed Database

5 Review Articles

“Axonal 
transcription”

“Axonal 
Translation” 

“Axonal Local 
Protein Synthesis”

“Axonal mRNA 
transport” “Axonal 

mRNA 
Localization”

Neuronal Morphology:
• Highly polarized cells, composed of a cell body

from which cytoplasm emanate to form a single
axon and multiple dendrites.

• Distal axon must respond to stimuli at short time
scales to fulfill demands for new proteins.

• mRNA localization and on-site protein synthesis to
provide subcellular functions.


