Summer Research Fellowship (SRF)/ Overseas Research Fellowship (ORF) 2020 for Science Students

Poster No.: D8

Name: Sayeeda Urbana

University No.: 3035591072

Student's Major: Environmental Science

The Variability of Si/Ca Ratios in Ostracod Shells

Abstract

This project attempted to study the variability of Si/Ca in ostracod shells compared to other trace-elements like magnesium, strontium, sodium etc, which act as paleo-proxies to help understand past paleoenvironmental conditions (like temperatures and salinity).

Materials & Methods

I prepared and cleaned over 100 samples of ostracods collected from various

Introduction

Through analysing the shell chemistry as magnesium and strontium calcium ratios of ostracods, we can eventually reconstruct past environmental conditions like water temperature and salinity (Rodriguez et al. 2019). It is ideal to use ostracods for "long-term" quantitative paleoecological analyses" because of their high abundance and excellent fossil record (Hong 2016). Preservation, instars and inter-species variability seem to affect the element/calcium ratios (E/Ca) of ostracod shells.

areas and sites in Hong Kong. Two species of ostracods were used -Sinocytheridea impressa (SC) and Neomonoceratina delicate (NM).

collected. It is a nice well-preserved one, given its transparence and clear

translucent.

An adult NM ostracod shell. Not very

well-preserved, as it is more opaque

and cloudy.

An adult SC ostracod shell. It is less well-preserved, given its opacity and unclear borders.

Since we do not have data of concentration for Mg, Ca or Sr in Hong Kong waters (but we can make estimations considering the concentration of sea water and freshwater), the objective was to study how the water concentration of silica affects the shell concentration of Si. Using the relative change of Si in ostracod shells in comparison to the other traceelements - mostly Mg, Sr and Na, I aimed to explore if preservation, instars and interspecies affect Si/Ca and therefore its potential as paleoenvironmental proxy.

The 45 sediment monitoring stations in the open waters of Hong Kong in 2018

well-preserved, as it is cloudy with less defined borders.

A juvenile NM ostracod shell. This is better preserved than the previous, but still cloudy.

Methodology: Cleaning ostracods via Sonication

- 1. Prepare and clean petri dish with milli-Q water before placing ostracod shell on dish
- 2. Insert methanol on dish with cleaned pipette tips (clean these first)
- 3. Using a fine tiny brush, brush away any visible dirt (if unable, note down shells whose dirt weren't removable)
- 4. After cleaning, put shells in micro-vials, then insert methanol in vial via pipette tip
- Sonicate 5.
- 6. Remove methanol from vial with new clean pipette tips after

Analysis at the ICP-MS

After the cleaning methods were implemented on the shells, their chemistry needed to be analysed plasma inductively couple using mass spectrometer (ICP-MS). This is used for the chemical analysis and measurement of single shells. Before this was done, the ostracod shells were transferred from their micro-vials to test tubes filled with 2% nitric acid solution, where they dissolved.

Consequently, the shells were weighed through a balance, with their weights all noted down

Sampl e	Tube 1 /g (~5ml)	Tube 2 /g (~2ml)	Tube 3 /g (~15ml)
CP01	12.5577	9.3177	23.0773
CP02	12.2032	9.4746	21.6408
CP03	12.5400	9.6290	21.8263
CP04	12.4648	10.3770	22.451
CP05	12.6765	9.5624	22.3690
CP06	-	-	-
CP07	12.0304	10.0249	23.1630
CP08	12.1443	9.0018	21.6675

Sample	Tube 1 /g (~5ml)	Tube 2 /g (~2ml)	Tube 3 /g (~15ml)					
CP09	11.8232	9.6460	21.6985					
CP10	11.9135	9.9553	22.0210					
CP11	12.6605	9.4240	22.4478					
CP12	13.5158	9.0877	22.0283					
CP13	13.0267	9.5586	22.5029					
CP14	11.7258	9.3853	22.0528					
CP15	12.6780	8.9801	21.8676					
CP16	12.4863	9.0934	22.1244					
Sample	Tube 1 (~5ml)	Tube 2 (~2ml)	Tube 3 (~15ml)					
Sample CP17	Tube 1 (~5ml) 13.0590	Tube 2 (~2ml) 10.2362	Tube 3 (~15ml) 21.6835					
CP17	13.0590	10.2362	21.6835					
CP17 CP18	13.0590 12.0623	10.2362 9.0132	21.6835 21.5915					
CP17 CP18 CP19	13.0590 12.0623 12.4998	10.2362 9.0132 9.3665	21.6835 21.5915 21.4219					
CP17 CP18 CP19 CP20	13.0590 12.0623 12.4998 13.5541	10.2362 9.0132 9.3665 9.5591	21.6835 21.5915 21.4219 22.2402					
CP17 CP18 CP19 CP20 CP21	13.059012.062312.499813.554111.5911	10.2362 9.0132 9.3665 9.5591 9.3261	21.6835 21.5915 21.4219 22.2402 22.2397					
CP17 CP18 CP19 CP20 CP21 CP22	 13.0590 12.0623 12.4998 13.5541 11.5911 12.0660 	10.2362 9.0132 9.3665 9.5591 9.3261 9.7430	21.6835 21.5915 21.4219 22.2402 22.2397 21.9037					

sonification.

Methodology: Cleaning ostracods via Bleach

- 1. Following the sonication, insert bleach into micro-vials and leave the shells overnight
- 2. Next day, note down how long the shells were dissolving in bleach overnight
- 3. Remove bleach via more cleaned pipette tips
- 4. Rinse the shells using milli-Q. Rinse twice
- 5. During the second rinse, use new set of pipette tips for each
 - vial 1 tip for 1 vial (to add and remove Milli q)

(shown right on the table). Then finally, I could					
bring them over to the ICP-MS and measure with					
		С			
the administration of my supervisor.		С			
Unfortunately due to COVID-19 restraints, I was					
					only able to weigh out 24 samples of my cleaned
shells.					

References

Environmental Protection Department of Hong Kong. (2018). Marine Water Quality in Hong Kong in 2018. https://www.epd.gov.hk/epd/sites/default/files/epd/english/environmentinhk/water/hkwqrc/files/waterquality/annual-report/marinereport2018.pdf

Hong, Y. (2016). Hong Kong shallow marine benthic ecosystem history: conservation paleoecology approach based on microfossil ostracods. The University of Hong Kong, Hong Kong SAR, China

L.R. Roberts, J.A. Holmes, M.J. Leng, H.J. Sloane, D.J. Horne (2018). Effects of cleaning methods upon preservation of stable isotopes and trace elements in shells of Cyprideis torosa. Quaternary Science Reviews Volume 189, Pages 197-209.

Passlow, V. (1997). Quaternary ostracods as palaeoceanographic indicators: a case study off southern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, *131*(3-4), 315-325. <u>https://doi.org/10.1016/s0031-0182(97)00009-6</u>

Rodriguez M., De Baere B., François R., Yasuhara M. & Not C. (2019). Trace element distribution in marine shells of ostracods. Copernicus GmbH.