
First Order Algorithms for Optimization and Zeroth-order Opti-
mization

Yuchen Lou 1, Hanqin Cai2, Daniel McKenzie2 and Wotao Yin2

1Department of Mathematics, The University of Hong Kong; 2 Department of Mathematics, University of California, Los Angeles

1 Introduction
Zeroth-order optimization, also known as derivative-free or black-box optimization, appears in a wide range of ap-
plications where either the objective function is implicit or its gradient is impossible or too expensive to compute.
This type of optimization has a wide range of application in the area of machine learning, for instance the adversarial
attacks on neural network.

In this project, we improved the existing algorithm ZORO [3], which is also raised by our group before, to Block-
ZORO, in order to better deal with high dimensional regularized zeroth-order optimization problems:

min
x∈Rd

F (x) := f (x) + r(x) (1)

where r(x) is an explicit proximable function that enforces constraints and encodes the solution’s structure, and f (x)
is accessible through a noisy zeroth order oracle:

Ef (x) = f (x) + ξ (2)

where ξ is the unknown oracle noise. When we call the oracle with an input x, it returns Ef (x) in which ξ may or
may not change every time.

The complexities of zeroth-order methods are measured in the number of oracle queries needed to achieve a target
accuracy. Both Block-ZORO and ZORO reduce such complexities by exploiting the fact that most gradients (i.e.,
those in the set {∇f (x) : x ∈ Rd}) are often compressible, meaning that the sorted sizes of their components decay
like a polynomial (See Figure 2)!

ZORO’s main iteration is based on the proximal-gradient method but uses an approximate gradient ĝk that is es-
timated from multiple (noisy) samples of f near xk. The estimation uses randomized finite differences and com-
pressed sensing, which will be discussed in details in Section 2.

Block-ZORO improves ZORO in terms of storage and running time complexity, which are both significant in ex-
tremely large scale problems. We replace the full random sensing matrix in ZORO to a block diagonal sensing
matrix with circulant property in each block, and apply the block coordinate gradient descent [9] to ZORO to
generate the Block-ZORO, to achieve better storage and speed. Additionally, we prove the sublinear convergence
of Block-ZORO for smooth convex objective function f (x).

To illustrate the performance of Block-ZORO, we apply the algorithm to solve the adversarial attack problem on
neural networks. To better cope with the compressibility assumption on the gradients, we discover that attacking on
frequency domain (e.g. wavelet domain) can provide high-quality attack images with nearly imperceptible noises.

2 Summary on ZORO
In this section we briefly review the algorithm ZORO from [3]. ZORO is basically a proximal-gradient descent
scheme but without the access of exact gradient information. Below is the brief version of ZORO, which eliminates
several tricky improvements on adaptive query radius and opportunistic sampling. For those who are interested in the
full version, please refer to [3].
Algorithm 1: Zeroth Order Regularized Optimization Method (ZORO) - brief version
for k = 0 : K do

Sample some oracles around xk;
ĝk ←Gradient Estimation(xk, s, δ, {zi}mi=1);
xk+1← proxαr(xk − αĝk);

end
It’s obvious that main difficulty is how we estimate the gradient gk accurately and efficiently, with the access only

to oracle queries Ef (xk). Quite intuitively, we combine the ideas of random sampling and finite difference to ap-
proximate the gradient. In ZORO, we used the Rademacher random vectors zi (i.e., (zi)j = ±1 with equal probability
for all i, j) as the sampling direction. Typically, the finite difference can be calculated along each coordinate from 1
to d:

yi =
1√
d

Ef (x + δzi)− Ef (x)
δ

(3)

To reduce the queries as many as possible, the punchline of ZORO is to implement compressed sensing[5], which
means, by assuming that the gradient is compressible (or approximately sparse) with parameter s, instead of going
through all d coordinates, we only needsm = O(s log(d)) finite differences to get a high accuracy gradient estimation.
Definition 2.1. The gradient is compressible (or approximately sparse) if

∃p ∈ (0, 1) s.t., |∇f (x)|(i) ≤ i−1/p‖∇f (x)‖2.

In this case, we can have the finite difference to be

yi =
1√
m

Ef (x + δzi)− Ef (x)
δ

(4)

and by Taylor expansion, the gradient estimation is equivalent to the sparse recovery problem in compressed sensing:

ĝ = arg min
v∈Rd

‖Zv − y‖2 s.t., ‖v‖0 ≤ s (5)

where y = [y1, · · · , ym]T and Z ∈ Rm×d is the sensing matrix whose i−th row is 1√
m
zTi . The problem (5) can be

easily solved by existing algorithm CoSaMP, because the matrix Z is a sub-Gaussian matrix satisfying the Restricted
Isometry Property (RIP) in compressed sensing theory [1]. Therefore, we have the following algorithm for gradient
estimation:
Algorithm 2: Gradient Estimation
Input: x: current point; s: gradient sparsity level; δ: query radius; {zi}mi=1: sample directions
m← b1s log(d/s) where b1 is some selected constant;
for i = 1 : m do

yi← (Ef (x + δzi)− Ef (x))/(
√
mδ)

end
y← [y1, · · · , ym]T ; Z ← 1/

√
m[z1, · · · , zm]T ;

ĝ ≈ argmin‖v‖0≤s ‖Zv − y‖2 by CoSaMP;

3 Improvements by Block-ZORO

3.1 Better Storage with Block Diagonal Sensing Matrix
In the developing field of machine learning, optimization algorithms which can solve large-scale problems are of
great need. In many tasks of computer vision, large-scale data need to be handled, while the memory of computers
is usually quite limited. With such motivation, we improve ZORO so that it requires much less memory. The major
improvement is by considering special forms of the sensing matrix Z. We replace the Rademacher random matrix Z
in ZORO algorithm to a random block diagonal sensing matrix B, with circulant blocks Bi:

Z → B :=

B1 0 · · · 0
0 B2

.
... 0
0 · · · 0 BJ

 ∈ Rm×d, where Bi =

bn bn−1 · · · · · · b1
b1 bn bn−1
b2 b1
... bn bn−1

bn−1 · · · b2 b1 bn

 (6)

where J denotes the number of blocks and Bi are circulant blocks generated from a Rademacher random vector.
Since B is mostly sparse, we only need to store the information of sub-matrices B1, · · · , BJ . Furthermore, we can
let B1, · · · , BJ to be identical for a even better memory by storing only B1. And since we also let Bi to be circulant,
only one particular column of Bi (which is Rademancher) is needed to store. However, there is a trade-off that the
sampling number m needs to be larger [6][7], in order to satisfy the RIP for high quality recovery of (5):

m = O(Js log2(d)) (7)

3.2 Better Time complexity with Block Coordinate Descent
Thanks to the diagonal block structure raised in the previous subsection, the sparse recovery problem using the sens-
ing matrix B can be written in the form of the sum of subproblems (where v = (v(1)T · · · v(j)T · · · v(J)T)T):

min
v∈Rd

‖Bv − y‖22 =
J∑
j=1

min
v(j)∈Rd/J

‖B(j)v(j) − y(j)‖22 (8)

We show that when d, s are large enough compared to J , the sparsity can be treated as almost equally distributed
among all blocks. Thus the subproblem for each block becomes

ĝ(j) = argminv(j)∈Rd/J

{
‖B(j)v(j) − y(j)‖2 subject to: ‖v(j)‖0 ≤ s/J

}
(9)

Therefore, we can apply the idea of block coordinate gradient descent with inexact gradient [9] to ZORO quite
intuitively from the splitting above. This means in each GD iteration, we only update by the gradient of one block
ĝ(j) (here we abuse the notation ĝ(j) to be d−dimension with the rest to be zeros):

xk+1 = proxαr(xk − αĝ
(j)
k) (10)

Since this improvement greatly reduces the dimension in each iteration by order J , the overall time com-
plexity is reduced with exp(J). Therefore we can now develop the algorithm Block-ZORO as follows:
Algorithm 3: Block-ZORO
Input: x0: initial point; s: gradient sparsity level; α: step size; δ: query radius; J : number of blocks
m← b1s log(d/s) where b1 is some selected constant;
for i = 1 : m/J do

Generate Rademacher random vector zi.
end
for k = 0 : K do

Randomly select a block j;

ĝ
(j)
k ←Gradient Estimation(x(j)k , s/J, δ, {zi}

m/J
i=1);

xk+1← proxαr(xk − αĝ
(j)
k);

end

Figure 1: Comparasion of ZORO and Block-ZORO

3.3 Convergence Results of Block-ZORO
We assume that the objective function f is convex, Lipschitz differentiable, smooth, and the function evaluation
Ef (x) is noisy in the following theorem.

Theorem 3.1 (Main Theorem on Noisy Block-ZORO). Choose an initial point x0 ∈ Rd and let {xk}k≥0 be the
random iterates generated by Block-ZORO applied to minimizing f . Assume that the probability of choosing each
block at each iteration is identical among all blocks (i.e., 1/C). Also assume 16τσH

c1L
< 1 where c1 = 2‖x0−x∗‖22. Let

L1, · · · , LC be the corresponding Lipschitz constant for each blocks, and let L = mini∈[1,···C]Li. Choose confidence

level 0 < ρ < 1, error tolerance ε satisfying c1
2

√
16τσH
c1ρL

< ε and ε < f (x0)− f∗. If the iteration number K satisfies

K =
c1

ε− u
+
c1
ε
log

(
ε− 4τσHc1

εL

ερ− 4τσHc1
εL

)
+ 2 ≈ O(1

ε
)

where u = c1
2

√
16τσH
c1L

, then P(f (xK)− f∗ ≤ ε) ≥ 1−O(ρ + (s/d)O(s)).

Proof. Please refer to [3] and [2].

4 Sparse Adversarial Wavelet Attack by Block-ZORO
To verify the efficiency of Block-ZORO on a large-scale problem, we implement it to the adversarial attack problems
on neural network. We attack the image classification CNN model Inception-V3 [8] from Google on the ImageNet
[4]. We use the Carlini and Wagner (CW) Attack lost function as the objective, and a control term on box constraints.

To better fulfill the assumption of compressible gradients, we discover that by attacking on the frequency domain
of the images, the gradients are more likely to be compressible (see figure 2 below). This is also intuitive from the
sense of the different significance of low-pass filters and high-pass filters. In the results showed below, we attack on
the wavelet domain, which is an important transform that is frequently used in JPEG image compression.

The table below shows our algorithm outperforms other recent proposed blackbox optimization algorithms on ad-
versarial attack. And Figure 3 & 4 give untargeted and targeted attack samples respectively, with the noise scaled by
10 times.

Figure 2: compressible gradients & Attack successful rate

Figure 3: Untargeted attack with 10 times scaled noise. Label: ”Rhodesian ridgeback” to ”whippet”

Figure 4: Targeted attack with 10 times scaled noise. Label: ”Rhodesian ridgeback” to ”pizza”

References
[1] R. Baraniuk et al. “A simple proof of the restricted isometry property for random matrices”. In: Constructive

Approximation 28.3 (2008), pp. 253–263.
[2] H. Cai et al. “Sparse Adversarial Wavelet Attacks using a zeroth-order block gradient descent”. In: To be uploaded

(2020).
[3] H. Cai et al. “Zeroth-Order Regularized Optimization (ZORO): Approximately Sparse Gradients and Adaptive

Sampling”. In: arXiv preprint arXiv:2003.13001 (2020).
[4] J. Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE conference on computer

vision and pattern recognition. Ieee. 2009, pp. 248–255.
[5] D. L. Donoho. “Compressed sensing”. In: IEEE Transactions on information theory 52.4 (2006), pp. 1289–1306.
[6] A. Eftekhari et al. “The restricted isometry property for random block diagonal matrices”. In: Applied and Com-

putational Harmonic Analysis 38.1 (2015), pp. 1–31.
[7] S. Mendelson, H. Rauhut, R. Ward, et al. “Improved bounds for sparse recovery from subsampled random con-

volutions”. In: The Annals of Applied Probability 28.6 (2018), pp. 3491–3527.
[8] C. Szegedy et al. “Rethinking the inception architecture for computer vision”. In: Proceedings of the IEEE con-

ference on computer vision and pattern recognition. 2016, pp. 2818–2826.
[9] R. Tappenden, P. Richtárik, and J. Gondzio. “Inexact coordinate descent: complexity and preconditioning”. In:

Journal of Optimization Theory and Applications 170.1 (2016), pp. 144–176.

