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Abstract
In this research, we studied stability
of helical equilibria of an isotropic
Kirchhoff elastic rod with clamped
ends and with drift in general curved
space. We proved that three of five
control parameters thoroughly de-
termine helical stability. We then
proved that every helix is stable only
at finite length, and derived a scal-
ing relationship which helps to com-
pute and visualize the boundary be-
tween stable and unstable helices in
both spherical space and hyperbolic
space.

Problem Formulation
The configuration of an inextensible and unshearable rod of length L in general curved space is described as a function r : [0, L] → S where
S ∈ {R3,S3,H3} and control function R from [0, L] to some Lie groups. For example, in Euclidean space, it is mapped to SO(3), which is the set
of three-dimensional rotation matrices. Coordinate-free formulation of the problem gives us a uniform expression of the control problem in the
following way:

minimize
q,u

∫ L

0

1

2

(
c1u

2
1 + c2u

2
2 + c3u

2
3

)
ds

subject to q′ = q ζε(u), q(0) = I4×4, q(L) = qf .

(1)

Here, the functional is the elastic energy of the isotropic elastic rod, and c > 0 describes its torsional and bending stiffness. By assuming the rod
to be uniform, we restrict c to be constant. Further, u stands for twisting strain and bending strain in helices. We impose clamped boundary
conditions on the rod, and q is a coordinate-free formulation of helices, which reserves complete information in them. ζε(u) is a 4× 4 matrix. Its
leading principle submatrix of order 3 is û with the mapˆ: R3 → so(3) satisfying a× b = âb for all a, b ∈ R3. It’s zero elsewhere except ζε(1, 4) = 1
and ζε(4, 1) = ε. Different ε corresponds to different curved space. Particularly, ε = 1 corresponds to curves on S3 and q(t) is an element of the Lie
group SO(4), while ε = −1 corresponds to curves on H3 and q(t) is an element of the Lie group SO(1, 3). Setting ε = 0 recovers the case R3, with
q(t) being an element of the special Euclidean group SE(3) [1][2]. Our project aims to study optimality of helices with constant control.

Methodology
If (p, u) is a local minimum of the problem, by
applying Pontryagin Maximum Principle, there exist
function µ such that

µ′1 = µ2u3 − µ3u2 µ′4 = µ5u3 − µ6u2

µ′2 = µ3u1 − µ1u3 + µ6 µ′5 = µ6u1 − µ4u3 + εµ3

µ′3 = µ1u2 − µ2u1 − µ5 µ′6 = µ4u2 − µ5u1 − εµ2,
(2)

the functions u and µ are related by u1 = µ1/c, and
ui = µi for i = 2, 3.
On the other hand, by Jacobi Conjugate Point Test,
consider differential equations related to F , G, and
H as

M ′ = FM J ′ = GM + HJ, (3)

where

F =



0 c32µ3 c32µ2 0 0 0
c13µ3 0 c13µ1 0 0 1
c21µ2 c21µ1 0 0 −1 0

0 −c−1
2 µ6 c−1

3 µ5 0 u3 −u2

c−1
1 µ6 0 ε− c−1

3 µ4 −u3 0 u1

−c−1
1 µ5 c

−1
2 µ4 − ε 0 u2 −u1 0


G = diag(c−1

1 , c−1
2 , c−1

3 , 0, 0, 0)

H =



0 u3 −u2 0 0 0
−u3 0 u1 0 0 ε
u2 −u1 0 0 −ε 0
0 0 0 0 u3 −u2

0 0 1 −u3 0 u1

0 −1 0 u2 −u1 0


.

where we have used notation cij = c−1
i − c−1

j .
If a solution to the Hamiltonian equations equipped
with original problems and the above differential
equations satisfies det(J(t)) 6= 0 for all t ∈ [0, L],
then that solution is a local minimum of the opti-
mal control problem. Otherwise, it is not a local
minimum of the optimal control problem.
In fact, two control parameters curvature κ and
torsion τ are functions of µ:

κ =
√
µ2

2 + µ2
3 τ = µ1 −

µ2µ5 + µ3µ6

µ2
2 + µ2

3

.

We want to study optimal configuration of helices
with constant control, and we ask problems like -
how do curvature κ and torsion τ change the op-
timality of helices? Is there any other parameters
that determine the configuration or optimality of
helices?

Main Results

In our study we mainly focus on case of c2 = c3 = 1. We denote
c1 as c, which is the ratio of torsional to bending stiffness in this
scenerio. In fact, other cases follow exactly the same idea.
(i). Expression of µ:
If κ > 0 and τ ∈ R, a1 ∈ R, and φ0 ∈ [0, 2π) are given. Define

a2 = κcos(φ0), a3 = κsin(φ0), a4 = τ (a1 − τ ) + ε,

a5 = a2(a1 − τ ), a6 = a3(a1 − τ )
(4)

Then the solution of 2 with µ(0) = a is given by

µ1 = a1, µ4 = τ (a1 − τ ) + ε,

µ2 = κcos(γt + φ0), µ5 = µ2(a1 − τ ),

µ3 = κsin(γt + φ0), µ6 = µ3(a1 − τ ).

(5)

with constant curvature κ and torsion τ .
For now on, we denote a1 as ω, since this parameter is related to
twisting of helices. Now it seems the stability is related to five
parameters c,φ0, ω, κ, τ .
(ii). Optimality is independent of φ0:
To reduce φ0, by coordinate transformation

J̃(s) = K(s)J(s) M̃(s) = K(s)M(s) (6)

where K(s) =

[
K0 O3×3

O3×3 K0

]
, K0 =

1 0 0
0 cos(θ(s)) sin(θ(s))
0 −sin(θ(s)) cos(θ(s))

.

and θ(s) = γs + φ0. Then,

J̃ ′(s) = H̃J̃ + G̃M̃, M̃ ′(s) = F̃ M̃ , (7)

Since det(K(s)) = 1 for all s ∈ [0, L], conjugate points are in-
variant under the coordinate transformation.[5] Also, H̃ ,F̃ and
G̃ is independent of φ0, we conclude that conjugate points are
independent of the parameter φ0. Then we can assume that
φ0 = 0 without loss of generality.
(iii). Optimality is independent of c:
We observed that, if J̃(0) = 06×6 and M̃(0) = I6×6. If M̃(0)
is changed from I6×6 to R, then the resulting solution is given
by J̃R and M̃R. Therefore, if we pick a different initial con-
dition M̃(0), the conjugate point test of J̃ will not be affected.
We proved that, for every choice of initial condition M̃(0), only
the first column of J̃(t) is dependent on c, therefore, we want
to pick an invertible initial condition M̃(0) such that, the first

column of of J̃(t) is of the form
[
g(c) 0 0 0 0 0

]t
, where g(c)

is some function of c. By solving odes, we find that the first
column of M̃(t) equals to

[
1 0 −κ

ct τ κ (τ − ω)κct
]t

, therefore

we need to pick M̃(0) = I6×6 +
[
0 0 0 τ κ 0

]′ × [1 0 0 0 0 0
]

Then J̃ =

[
t
c J̃12

J̃21 J̃22

]
where J̃22 is a 5 × 5 matrix without c.

det(J̃(t)) = t
cdet(J̃22(t)). We can see from this that c does not

affect the conjugate point test.
(iv). Finite stable length:

Now for every constant control κ, τ and ω, we want to prove
that the helices become unstable at finite length, or equivalently,
we have finite minimum conjugate time. For Jordan Normal

form of A =

[
F̃ O6×6

G̃ H̃

]
, there are two Jordan blocks with the

form ±(−(a1 − 2τ )2 − κ2), which are odd dimensional Jordan
blocks with pure imaginary eigenvalue, applying results in [3], the
minimal conjugate time is always finite.
(v). Scaling property:
It is really difficult to determine each minimum conjugate time
for every constant control. Instead, we try to find some scaling
property to help us simplify the calculation. Given κ ∈ R+ and
ε, τ, ω ∈ R, let Sc(κ, τ, ω, ε) denote the first conjugate time.
We have:

Sc(λκ, λτ, λω, λ
2ε) =

1

λ
Sc(κ, τ, ω, ε)

Particularly, this means that for ε = 0, every array through the
origin will intersect the boundary at most once. We set the final
length L = 1. Then in κ− τ − ω space, for every arrow starting
from zero pointing to positive κ axis, it hits the boundary between
the optimal and non-optimal shape exactly once. However, when
ε 6= 0, there are four parameters changing in the scaling property,
including ε, and is difficult to visualize the results. Also, in these
cases, each arrow may hits the boundary more than once,[4] and
we want to find the smallest one. We can set ω = 0 or τ = 0
respectively, to see how does the minimum conjugate time behave
at ε = ±1. Results are as follow:

Our final step is trying to plot the surface of tconj = 1 in the
case of ε = ±1 (That is, find the boundary point between optimal
and non-optimal with final length equal to 1). It turns out, the
difference of surface for tconj = 1 between ε = 0 and ε = ±1 is
extremely small - for each array, the scaling is between 0.95 to
1.05, as we can see, all these surfaces look similar. They are of
the following shape:

Conclusion
In our project, we studied the optimality of helices. In 3D, we have
shown that the stiffness parameter c does not affect the conjugate
point test, and every helices with constant control have finite minimum
conjugate time. We found that the surface for tconj = 1 is similar in all
three different curved spaces. In our future work, we may study other
geometric optimal control problem with ε 6= 0 or ±1. Acknowledgement:
Finally, I would like to say thanks to Dr. Andy Borum who gives us a
lot of help and guidance throughout this summer.
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