
Name: Du Zhixu

University No.: 3035446758

Supervisor: Prof. kangwook Lee (oversea); Prof. Michael K. Ng (domestic)

Undergraduate Research Fellowship Programme (URFP) 2020-21

− Summer Research Internship

Learning Invariant Information in Machine Learning
Du Zhixu Supervisor: Prof. Kangwook Lee (UW Madison);

Prof. Michael K. Ng (HKU)

Department of Mathematics

Abstract
Disentangling domain invariant information has been extensively adopted in domain

adaptation in computer vision. It is widely believed that this invariant information will

help deep neuron networks to generalize well on different domain. In order to

understand whether neural networks memorize this information or they learn how to

extract generalizable features, we studied the memorization capacity of neural networks,

which serves as an upper bound for generalization error. We investigated two

established tight bound of two-layer neural networks[1] and three-layer neuron

networks[2], implemented them numerically and measured their norm.

Reference list:

[1] Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2016). Understanding deep learning

requires rethinking generalization. arXiv preprint arXiv:1611.03530.

[2] Yun, C., Sra, S., & Jadbabaie, A. (2019). Small ReLU networks are powerful memorizers: a tight

analysis of memorization capacity. In Advances in Neural Information Processing Systems (pp.

15558-15569).

Introduction
A deep neuron network (See Figure 1) can be seen as a composition function. Several

neurons are contained in each layer serving as computational units. Neurons in different

layers are connected by a weight matrix, a bias vector and an activation function

𝜎:ℝ ⟶ ℝ applying component-wisely, which maps the vector form ℝ𝑛𝑙 to ℝ𝑛𝑙+1 .

Consider the network in Figure 1, which is a three-layer neural network. Let 𝑥 ∈ ℝ2 be

the input value, 𝑊1 ∈ ℝ2×2 and 𝑏1 ∈ ℝ2 represent weights and biases connecting layer1

and layer 2, respectively. Then computation form layer 1 to layer 2 can be represented

by 𝜎 𝑊1𝑥 + 𝑏1 ∈ ℝ2, where 𝜎 is an activation function. Similarly, the output of this

network can be written as:

𝑓𝜃 𝑥 = 𝑊3𝜎 𝑊2𝜎 𝑊1𝑥 + 𝑏1 + 𝑏2 + 𝑏3 ∈ ℝ2

where 𝜃 includes all parameters. Also, it can be regarded as:

𝑓𝜃 𝑥 = 𝑓3 ∘ 𝑓2 ∘ 𝑓1(𝑥)
The capability of a network is influenced by the number of layers and the number of

neurons in each layer. The function ReLU (𝜎 𝑥 = ቊ
𝑥 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 ≤ 0

) is a general choice for

activation function. In a network, we can optimize those parameters by minimizing a

loss function ℒ 𝑥; 𝜃 using gradient descent and its variations.

The memorization capacity of a network is defined as the size of the largest dataset that

the network can memorize, i.e. we are going to find 𝜃 s.t. 𝑓𝜃 𝑥 = 𝑦, for any 𝑥, 𝑦 ∈ 𝐷.
Due to floating point error, we can not obtain this 𝜃 by traditional deep learning training

techniques. Therefore, we need to explicitly construct weights 𝜃. [1] and [2] constructed

the weights for two-layer neural networks and three-layer neural networks, respectively.

Besides, [1] points out the relationship between generalization performance and

memorization capacity: memorization capacity is proportional to an upper bound of

generalization error. The underlying idea behind these proof is to assign each data point

an unique activation pattern. For each neuron, if its activation function produces an non-

trivial value (e.g 𝜎 𝑥 𝑓𝑜𝑟 𝑥 > 0), we say that this neuron is activated, and otherwise,

we say it is deactivated (e.g 𝜎 𝑥 𝑓𝑜𝑟 ≤ 0). When each data point goes through a

network, it will activate some neurons and deactivate others. We call this pattern as

activation pattern.

Figure 1

Memorization capacity of two-layer neural networks
Consider a two-layer neural network with ReLU activation function with 𝑛 neurons in

layer 2 and 1 neuron in layer 3:

𝑓𝜃 = 𝑊2𝜎 𝑊1𝑥 − 𝒃𝟏
Consider a dataset 𝐷 = (𝑥𝑖 , 𝑦𝑖) 𝑖=1

𝑛 , where 𝑦𝑖 ∈ ℝ. We first project the input 𝑥 ∈ ℝ𝑑 to

ℝ by a randomly generated vector 𝒂 ∈ ℝ𝑑 ∼ 𝑁(0, 𝐼𝑑). Since the projection vector is

randomly generated following Gaussian distribution, the probability that two data point

is projected to the same real number is 0. We select this 𝑊1 = 𝒂, 𝒂, … , 𝒂 𝑻 ∈ ℝ𝒏×𝒅 as

the weight vector for layer 1. WLOG, we get

𝒂𝑇𝑥1 < 𝒂𝑇𝑥2 < ⋯ < 𝒂𝑇𝑥𝑛
We select 𝒃1 such that

𝑏1 < 𝒂𝑇𝑥1 < 𝑏2 < 𝒂𝑇𝑥2 < ⋯ < 𝑏𝑛 < 𝒂𝑇𝑥𝑛
Then we obtain the following matrix indicating activation pattern after plug in all 𝑛 data

points

𝐴 =

𝒎𝒂𝒙{𝒂𝑇𝑥1 − 𝑏1, 0} 0

𝒎𝒂𝒙{𝒂𝑇𝑥2 − 𝑏1, 0} 𝒎𝒂𝒙{𝒂𝑇𝑥2 − 𝑏2, 0}
⋯

0
0

⋮ ⋱ ⋮
𝒎𝒂𝒙{𝒂𝑇𝑥𝑛 − 𝑏1, 0} 𝒎𝒂𝒙{𝒂𝑇𝑥𝑛 − 𝑏2, 0} ⋯ 𝒎𝒂𝒙{𝒂𝑇𝑥𝑛 − 𝑏𝑛, 0}

It is easy to see that 𝐴 is invertible, hence we select 𝑊2 = 𝐴−1𝒚. 𝐴 is an 𝑛 × 𝑛 matrix,

each row represent the activation pattern for one data point while each column indicates

the activation pattern for one neuron w.r.t. all data points. We can see from the matrix

that the 𝑖-th data point is activated by 1,2, … , 𝑖-th neuron, which guarantees that each

data point will obtain a unique activation pattern. However, note that, it is not

guaranteed that any activation pattern can achieve memorization.

Memorization capacity of three-layer neural networks
Consider a two layer neural network with hard-tanh activation function

𝜎 𝑥 = ቐ
−1 𝑥 ≤ −1
𝑥 𝑥 ∈ (−1,1]
1 𝑥 > 1

with 𝑝 neurons in layer 2, 𝑞 neurons in layer 3 and 1 neuron in layer 4

𝑓𝜃 = 𝑊3𝜎 𝑊2𝜎 𝑊1𝑥 + 𝑏1 + 𝑏2 + 𝑏3

For convenience, let 𝑧𝑙 𝑥 = 𝑊𝑙𝑎𝑙−1 𝑥 + 𝑏𝑙 and 𝑎𝑙 𝑥 = 𝜎(𝑧𝑙(𝑥)), where 𝑎0 𝑥 =
𝑥 . Consider a dataset 𝐷 = (𝑥𝑖 , 𝑦𝑖) 𝑖=1

𝑛 , where 𝑦𝑖 ∈ ℝ and 𝑥𝑖 ∈ ℝ𝑑 . The idea of

construction is to assign a unique activation pattern for each data point. For the network

of our interest, we have 𝑝𝑞 different activation patterns, hence let 𝑛 = 𝑝𝑞 . For

illustration of idea, let’s consider a special case with 𝑝 = 𝑞 = 4, and in total 16 data

points. A natural assignment is shown in Figure 2. Therefore, our first step is to

construct weights and biases of the first layer such that the activation pattern is the same

as shown in Figure 2. We wish to separate these 16 data points into 4 groups (in general

𝑝 groups). Like before, 𝑢 is a randomly generated vector following some distributions,

hence 𝑢𝑇𝑥𝑖 = 𝑢𝑇𝑥𝑗 has probability 0. WLOG, we have

𝑢𝑇𝑥1 < 𝑢𝑇𝑥2 < ⋯ < 𝑢𝑇𝑥𝑛
Denote 𝑐𝑖 = 𝑢𝑇𝑥𝑖 and 𝑐0 = 𝑐1 − 𝛿, 𝑐𝑛+1 = 𝑐𝑛 + 𝛿 where 𝛿 > 0.

We select the weights in the following way:

𝑊𝑗,:
1 =

4

𝑐𝑗𝑞 + 𝑐𝑗𝑞+1 − 𝑐𝑗𝑞−𝑞 − 𝑐𝑗𝑞−𝑞+1
𝑢𝑇

𝑏𝑗
1 = −

𝑐𝑗𝑞 + 𝑐𝑗𝑞+1 + 𝑐𝑗𝑞−𝑞 + 𝑐𝑗𝑞−𝑞+1

𝑐𝑗𝑞 + 𝑐𝑗𝑞+1 − 𝑐𝑗𝑞−𝑞 − 𝑐𝑗𝑞−𝑞+1

⇒ 𝑧𝑗
1 𝑥𝑖 =

4𝑢𝑇𝑥𝑖 − (𝑐𝑗𝑞 + 𝑐𝑗𝑞+1 + 𝑐𝑗𝑞−𝑞 + 𝑐𝑗𝑞−𝑞+1)

𝑐𝑗𝑞 + 𝑐𝑗𝑞+1 − 𝑐𝑗𝑞−𝑞 − 𝑐𝑗𝑞−𝑞+1
where 𝑊𝑗,:

1 is the 𝑗-th row of matrix 𝑊1. An illustration is shown in Figure 3, with which

it is easy to see that this construction achieves our goal.

1
2
3
4

5-8
9-12
13-16

5
6
7
8

9-12
13-16

9
10
11
12

13-16

13
14
15
16

1-4
5-8
9-12

1-4

1-4
5-8

1
5
9
13

2
6
10
14

3
7
11
15

4
8
12
16

Figure 2

Figure 3

Then we group the 𝑘-th data point in each group of first layer as a new group for second

layer’s activation. Then we have in order to memorize all data points, weights in second

layer must satisfy following linear system of equations

𝑀
𝑊𝑘,:

2 𝑇

𝑏𝑘
2

=

𝑎1
1(𝑥𝑖𝑘,1) −1

1 𝑎2
1(𝑥𝑖𝑘,2)

⋯
−1 1
−1 1

⋮ ⋱ ⋮
1 1
1 1

⋯
−1 1

𝑎𝑝
1(𝑥𝑖𝑘,𝑝) 1

𝑊𝑘,:
2 𝑇

𝑏𝑘
2

=

𝑦𝑖𝑘,1
𝑦𝑖𝑘,2
⋮

𝑦𝑖𝑘,𝑝−1
𝑦𝑖𝑘,𝑝

It is easy to see that 𝑀 is of full row rank which guarantees the system has a solution.

Besides, there exist an 𝜈 such that 𝜈1, … , 𝜈𝑝 are not all zero, in particular, 𝜈𝑜𝑑𝑑 > 0,

𝜈𝑒𝑣𝑒𝑛 < 0 for 1 to 𝑝 and 𝑀𝜈 = 0. We can rewrite 𝑧𝑘
2 𝑥𝑖 = σ𝑙=1

𝑝
𝑊𝑘,𝑙

2 𝑎𝑙
1(𝑥𝑖) + 𝑏𝑘

2 as

𝑧𝑘
2 𝑥𝑖 = 𝑦𝑖𝑘,𝑗 +𝑊𝑘,𝑗𝑖

2 𝑎𝑗𝑖
1 𝑥𝑖 − 𝑎𝑗𝑖

1 𝑥𝑖𝑘,𝑗𝑖
since the system must have a solution,

denoted as 𝜇. In order to achieve the activation pattern shown in Figure 2, we take

𝑊𝑘,:
2 𝑇

𝑏𝑘
2

= 𝜇 + 𝛼𝜈 where 𝜈𝑜𝑑𝑑 > 0, 𝜈𝑒𝑣𝑒𝑛 < 0 and 𝑀𝜈 = 0 and pick 𝛼 large enough that

if 𝑥𝑖 is not the 𝑘-th datapoint for any group, then 𝑧𝑘
2 𝑥𝑖 ∈ −1,1 𝐶 . Then the activation

pattern is shown in Figure 4. For the final output layer, we simply take the summation of

all neurons. Then for data point from pink group, there will be a +1 offset, and for data

points from blue group there is a −1 offset. Hence,

Figure 4

we need one more neuron for de-noising purpose. Its

activation pattern is shown in Figure 5. By consider a

group of ghost data points, we can achieve this

purpose. Specifically, consider 𝑧𝑞+1
2 𝑥𝑖 = 0 +

𝑊𝑞+1,𝑗𝑖
2 𝑎𝑗𝑖

1 𝑥𝑖 − 𝑎𝑗𝑖
1 𝑥𝑖𝑗𝑖𝑞

+ 𝜖 .
5,6,7,8
13,14,15,16

1,2,3,4
9,10,11,12

Figure 5

