Learning Visual Representation via Neural Architecture Search

➢ Watch Only Once (WOO) for video action detection.
 • We propose an end-to-end framework for video action detection, which directly produces the bounding boxes and action classes simultaneously, given a video clip as input. Our framework does not need an independent person detector.
 • We propose a spatial-and-temporal embedding, and an embedding interaction mechanism, which improve discriminative ness of the features for action classification. A spatial-temporal fusion module is further proposed to aggregate features from spatial and temporal dimensions.
 • Extensive experiments on AVA and JHMDB demonstrate that the performance of WOO could outperform or on par with previous well-established and complicated two-stage action detectors, while still reducing up to 16.7% FLOPs.

➢ New Neural Network Design.
 • We propose a new MLP-like operator, Cycle FullyConnected Layer (Cycle FC), which is a generic, plug-and-play replacement of Spatial FC, enabling MLP like models to work in a scenario where input scales are flexible. Moreover, Cycle FC has a linear computational complexity to input resolution, while the complexity of Spatial FC is quadratic.
 • With Cycle FC, we build a family of MLP-like architectures, learning pyramid feature representation for dense prediction tasks. To our knowledge, CycleMLP provides the first comprehensive baselines for both detection and segmentation tasks.
 • We conduct extensive experiments on ImageNet classification, COCO object instance detection, and segmentation, and ADE20K semantic segmentation. The experimental results demonstrate that CycleMLP outperforms existing MLP-like models. Furthermore, CycleMLP is comparable to and sometimes better than CNNs and Transformers on dense predictions.

➢ Progress.

<table>
<thead>
<tr>
<th>Date</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021.08.01</td>
<td>Propose a self-supervised representation learning algorithm in videos</td>
</tr>
<tr>
<td>2021.10.30</td>
<td>Propose a NAS algorithm to recognize actions in videos</td>
</tr>
<tr>
<td>2021.11.01</td>
<td></td>
</tr>
<tr>
<td>2022.03.31</td>
<td></td>
</tr>
</tbody>
</table>

➢ Research outputs.

1. Patent IPO1101 一种基于端到端训练测试的动作检测算法，Ping Luo, Shoufa Chen, Lan Ma
2. Patent IPO1102 一种端到端的视频时序动作提名生成算法，Ping Luo, Jiannan Wu, Jiajun Shen

Table 3 The accuracy-FLOPs tradeoff of CycleMLP consistently outperforms existing MLP-like models under a wide range of FLOPs, which we attribute to the effectiveness of our Cycle FC.