Using Knowledge Graphs for Long-Tail Keyword Query Recommendation in Video Search

PI: Reynold C.K. Cheng
(Professor in Department of Computer Science, Associate Dean of Faculty of Engineering, Email: ckcheng@cs.hku.hk)

Background & Objectives

- Background: Most current recommendation algorithms are based on the Heterogeneous Information Network (HIN). HIN extracts semantic and structural information using meta-paths, which are manually specified. (VLDB11, WWW19)
- Objectives: Develop a meta-path automatic searching framework to enhance recommendation performance.

Methodology

- RMS: Reinforcement Learning (RL)-based Meta-path Selection Framework.
 - State: The encoding of current meta-path set.
 - Action: A relation in current HIN.
 - Policy: Decision model based on Multi-Layer Perceptron.
 - Reward: The performance improvement after using new meta-path set.

- HRec: A meta-path-based recommendation model
 - Apply HAN [WWW19] in recommendation tasks.
 - Apply Neighbor Sampling during training to prevent out of memory.

Experiments

- Comparison of RMS and Baselines (Random and Greedy)
 - Integrate RMS into existing meta-path-based recommenders (HERec, MRec).
 - Results show RMS can always find better meta-paths than baseline methods.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>Strategy</th>
<th>HR1</th>
<th>HR3</th>
<th>NDCG10</th>
<th>NDCG50</th>
<th>NDCG20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yelp</td>
<td>HRec</td>
<td>Greedy</td>
<td>0.0849</td>
<td>0.0977</td>
<td>0.1960</td>
<td>0.1871</td>
<td>0.1945</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random</td>
<td>0.0589</td>
<td>0.1381</td>
<td>0.2163</td>
<td>0.2055</td>
<td>0.2145</td>
</tr>
<tr>
<td></td>
<td>HERec</td>
<td>Greedy</td>
<td>0.0349</td>
<td>0.0733</td>
<td>0.1872</td>
<td>0.1528</td>
<td>0.1352</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random</td>
<td>0.0557</td>
<td>0.1495</td>
<td>0.2361</td>
<td>0.2013</td>
<td>0.1878</td>
</tr>
<tr>
<td></td>
<td>MRec</td>
<td>Greedy</td>
<td>0.0534</td>
<td>0.1202</td>
<td>0.2008</td>
<td>0.1871</td>
<td>0.1768</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random</td>
<td>0.0548</td>
<td>0.1234</td>
<td>0.2154</td>
<td>0.1964</td>
<td>0.2145</td>
</tr>
</tbody>
</table>

Comparison of RMS-HRec and existing recommendation models.

- RMS-HRec outperforms all the existing methods.

Current Work

- We are now constructing a HIN for movie data and using the latest HIN data cleaning methods [IJCAI’19] to obtain a qualified movie HIN.
- Next, we will use RMS-HRec in this HIN.

References