Master of Science in the field of SPACE SCIENCE
Establishing opportunities to pursue space exploration goals and employment

Apply now for entry in September 2021
Modern Space Science is a highly multi-disciplinary field that encompasses a broad range of sub-disciplines, from astrophysics, to aerospace engineering, electronics, remote sensing, and space exploration.

According to a Morgan Stanley Report published in 2017, the revenue generated by the global space industry is estimated to increase to US$1.4 trillion in 2040, up from US$350 billion in 2016.

China has recently been investing heavily in Space Science, launching 39 satellites in 2018 alone, over twice as many as in 2017 and more than any other country in the world.

Given its status as a global metropolis, its strong international links, and its location in the Greater Bay Area, Hong Kong is ideally placed to capitalise on the growth of China in Space Science.

Key partners in Mainland China (Zhejiang University, Nanjing University, Chinese Academy of Sciences) and Europe (Padova-CISAS, Italy).

This taught postgraduate programme, offered by Department of Physics, with contributions from Departments of Earth Sciences, Statistics & Actuarial Science and Electrical & Electronic Engineering, taps into our strengths in high-energy astrophysics, planetary sciences, statistics, and engineering, while leveraging our connections with elite mainland and global partners.

World-class Rankings of HKU

<table>
<thead>
<tr>
<th>Rank</th>
<th>Ranking</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>QS</td>
<td>Physics & Astronomy</td>
</tr>
<tr>
<td>35</td>
<td>THE</td>
<td>Physics & Astronomy</td>
</tr>
<tr>
<td>66</td>
<td>Eminent Subject</td>
<td>Physics & Astronomy</td>
</tr>
</tbody>
</table>

Top-notch Scientists in the Faculty

16.5% of our professoriate staff are the world’s Top 1% scholars.

Highly multi-disciplinary degree, covering broad areas of science, engineering, and data science related to space

Strong focus on Chinese space science programme

Talks by elite guest lecturers

Internship opportunities in top space science research labs

Transferable skills

- Equip students with knowledge in space science
- Focus on integrating the latest developments and practical applications in this interdisciplinary field
- Help students with skills necessary for space science research and work in the space industry

Internships

- We have negotiated internship opportunities with some of our key partners
- These internships can be tailored to individual circumstances and may take place between semesters, or during the summer (after the second semester)
- Local internship partners include positions at HKU and through the Orion Astropreneur Space Academy (Hong Kong) platform
- Likely international internship partners include Beijing Institute of Space Mechanics and Electricity (BISME), the Shanghai Academy of Space Flight Technology (SAST), the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences (CSU, CAS), Nanjing University, Zhejiang University, and Padova-CISAS (Italy).

Career development

- Our MSc will provide a solid foundation to enter this exciting field, covering the essence of the frontiers in hardware, software and data analysis
- Promising employment opportunities in the public and private sectors, in China and worldwide

Scholarships*

- A limited number of scholarships available for candidates with outstanding academic record and financial hardship.

*Subject to approval

Tuition fees

Composition fee: HK$210,000

Students are required to pay Caution Money (HK$350, refundable on graduation subject to no claims being made) and Graduation Fee (HK$350).

Programme duration

Full-time: 1 year
Part-time: 2 years

Study load

Credits: 60 credits
Learning hours: 1,300 - 1,500 hours (including 150 hours for project and 300 - 360 contact hours)

Class schedule

- Teaching takes place mainly on weekday evenings and Saturdays

Medium of Instruction

English

Assessment

- Mainly written coursework and/or examination
- Capstone project on a topic of the student’s interest

The fee shall generally be payable in 2 instalments over 1 year for full-time and 4 instalments over 2 years for part-time.

Space lovers who would like to pursue a career related to space science.

Researchers who would like to establish links with Mainland China and international space research institutes and participate in large-scale space research projects.

Professionals who would like to build links with the growing space ecosystem in Mainland China and internationally.

Entrepreneurs who would like to tap into the tremendous opportunities arising from the growing space economy.
WHAT YOU WILL LEARN

Elective Courses

- **SPSC7002 Small satellite design**
 Small satellites (sometimes referred to as microsatellites, CubeSats, etc.) are becoming increasingly popular. Once proposed mainly for educational purposes, due to their low cost and shorter development time scales, these days many such satellites are being proposed and launched with a range of cutting-edge scientific goals. Microsatellites make full use of the latest achievements in basic technologies such as modern microelectronics, micro mechanics, and advanced materials. This course covers the practical aspects of designing a small satellite, based on the principle of purchasing “off-the-shelf” components, and benefitting from “open source” solutions to many of the technical challenges. Topics include: science instruments and payloads, satellite subsystems, ground networks, space science data and software, ground networks, launchers, and operations.

- **SPSC7005 Space science entrepreneurship**
 No longer driven entirely by governmental institutions, developments in frontier space science in modern times also receive boosts from academia, corporations and entrepreneurs alike. Businesses like SpaceX, Blue Origin, or Virgin Galactic are not only capturing people’s imagination, but also proving that space provides big business opportunities. This course will cover the basics of designing, launching, and running a business, with a special emphasis on how ventures can be started for the burgeoning space industry.

- **SPSC7006 Small satellite design**
 This course introduces concepts of data analysis in space science. Techniques ranging from traditional statistical methods to recent machine learning algorithms will be introduced. Applications of these techniques in space science will be the focus in this course for students to understand how they are actually deployed in solving practical problems in space science.

- **SPSC7007 Data analysis in space science**
 Artificial Intelligence (AI), Machine Learning and Big Data analytics are interdependent disciplines that are increasingly influential in the real world under the broad umbrella of data science. They have found widespread applications in all branches of science and technology and have direct application in space and satellite technologies. This course introduces the basics of all these areas. Data analytics is the science of analysing raw data to make conclusions, a particular challenge in the Big data era, while Machine Learning (ML) is a technique enabling computers to learn without being explicitly programmed and is part of the broader concept of Artificial Intelligence. Key concepts across these fields will be explored including practical processes, techniques and algorithms. There will be a focus on real-world examples with specific emphasis on applications in space and planetary sciences. The course will also cover some ML software packages in Python and R. Examples in all areas will be drawn from fields such as astrophysics, particle physics and complex systems, including rare source identification from vast data, training sets, smart classification, time series, imaging and spectral analyses.

- **SPSC7009 Introduction to planetary science**
 We live in a golden age of planetary science, with new missions being proposed at an unprecedented rate by all the major space agencies. This course provides a modern understanding of the properties of our Solar System and planetary systems around other stars and of the physical, chemical, and geological processes that govern their motion and properties. Special attention will be paid to how our knowledge has been enriched by recent discoveries from space missions such as Cassini and Kepler.

- **SPSC7011 Introduction to space plasma physics**
 Most of space is filled with plasma, the fourth state of matter where freely moving charges from ionised gas interact with (and generate) electric and magnetic fields, leading to a complicated set of phenomena. This course provides an introduction to the field, covering such topics as plasma characteristics, electromagnetic waves in cold plasmas, collision theory, magnetohydrodynamics (MHD), force-free magnetic-field configurations, stochastic processes, and interaction of particles and waves. It emphasises some of the applications of plasma physics in the fields of geophysics and astrophysics.

- **SPSC7014 Big data, AI and machine learning in space science**
 Our modern lifestyles rely on satellite technology which can be severely affected by the Earth’s local particle environment. Much of this is due to the influence of the Sun, which emits large quantities of radiation and charged particles that interact with the Earth’s magnetic field. This course covers the fundamentals of space weather, from its origins, to its effects, and forecasting.

- **SPSC7016 Overview of space astrophysics**
 Most of space is filled with plasma, the fourth state of matter where freely moving charges from ionised gas interact with (and generate) electric and magnetic fields, leading to a complicated set of phenomena. This course provides an introduction to the field, covering such topics as plasma characteristics, electromagnetic waves in cold plasmas, collision theory, magnetohydrodynamics (MHD), force-free magnetic-field configurations, stochastic processes, and interaction of particles and waves. It emphasises some of the applications of plasma physics in the fields of geophysics and astrophysics.

Core Courses

- **SPSC7002 Introduction to space weather**
 Our modern lifestyles rely on satellite technology which can be severely affected by the Earth’s local particle environment. Much of this is due to the influence of the Sun, which emits large quantities of radiation and charged particles that interact with the Earth’s magnetic field. This course covers the fundamentals of space weather, from its origins, to its effects, and forecasting.

- **SPSC7003 Remote sensing in space science**
 This course introduces the theory behind, and the many practical applications of remote sensing, focusing on applications of satellite-based detectors to monitor the Earth’s environment. The course covers the physical principles of remote sensing, including the various spectral signatures in the different parts of the electromagnetic spectrum. Students will learn about the different sensor technologies, and how to characterise and quantify their performance.

- **SPSC7004 Radiation detection and measurement**
 This course provides an overview of various ways we detect radiation to make physical measurements in space science. It covers the fundamentals of radiation interactions and properties of radiation detectors, including some of the most commonly used ones in contemporary science missions.

- **SPSC7005 Space science entrepreneurship**
 No longer driven entirely by governmental institutions, developments in frontier space science in modern times also receive boosts from academia, corporations and entrepreneurs alike. Businesses like SpaceX, Blue Origin, or Virgin Galactic are not only capturing people’s imagination, but also proving that space provides big business opportunities. This course will cover the basics of designing, launching, and running a business, with a special emphasis on how ventures can be started for the burgeoning space industry.

- **SPSC7006 Small satellite design**
 Small satellites (sometimes referred to as microsatellites, CubeSats, etc.) are becoming increasingly popular. Once proposed mainly for educational purposes, due to their low cost and shorter development time scales, these days many such satellites are being proposed and launched with a range of cutting-edge scientific goals. Microsatellites make full use of the latest achievements in basic technologies such as modern microelectronics, micro mechanics, and advanced materials. This course covers the practical aspects of designing a small satellite, based on the principle of purchasing “off-the-shelf” components, and benefitting from “open source” solutions to many of the technical challenges. Topics include: science instruments and payloads, satellite subsystems, ground networks, space science data and software, ground networks, launchers, and operations.

- **SPSC7011 Introduction to space plasma physics**
 Most of space is filled with plasma, the fourth state of matter where freely moving charges from ionised gas interact with (and generate) electric and magnetic fields, leading to a complicated set of phenomena. This course provides an introduction to the field, covering such topics as plasma characteristics, electromagnetic waves in cold plasmas, collision theory, magnetohydrodynamics (MHD), force-free magnetic-field configurations, stochastic processes, and interaction of particles and waves. It emphasises some of the applications of plasma physics in the fields of geophysics and astrophysics.

- **SPSC7014 Big data, AI and machine learning in space science**
 Artificial Intelligence (AI), Machine Learning and Big Data analytics are interdependent disciplines that are increasingly influential in the real world under the broad umbrella of data science. They have found widespread applications in all branches of science and technology and have direct application in space and satellite technologies. This course introduces the basics of all these areas. Data analytics is the science of analysing raw data to make conclusions, a particular challenge in the Big data era, while Machine Learning (ML) is a technique enabling computers to learn without being explicitly programmed and is part of the broader concept of Artificial Intelligence. Key concepts across these fields will be explored including practical processes, techniques and algorithms. There will be a focus on real-world examples with specific emphasis on applications in space and planetary sciences. The course will also cover some ML software packages in Python and R. Examples in all areas will be drawn from fields such as astrophysics, particle physics and complex systems, including rare source identification from vast data, training sets, smart classification, time series, imaging and spectral analyses.

- **SPSC7016 Overview of space astrophysics**
 While astrophysics from space was historically proposed to cover those parts of the electromagnetic spectrum not visible from earth such as X-rays and gamma rays, almost every part of the spectrum can benefit from space observations, removing the obstacles posed by our atmosphere. Some of the most iconic astrophysical images have been produced by the Hubble Space telescope, a relatively modest (in size) instrument which has made some stunning discoveries over the course of its 30-year lifetime. This course provides an overview of past, present, and future astrophysical space missions, including their major science goals and achievements, and the technologies that made them possible.
WHAT YOU WILL LEARN

ELEC6008 Pattern recognition and machine learning
This course aims at providing fundamental knowledge on the principles and techniques of pattern recognition and machine learning. Specifically, the course covers the following topics: Bayes decision theory; parametric and non-parametric methods; linear discriminant functions; unsupervised learning and clustering; feature extraction; neural networks; context-dependent classification; case studies. Pre-requisite: A good background in linear algebra, programming experience. Mutually exclusive with: COMP7504 Pattern recognition and applications.

ELEC6026 Digital signal processing
This course provides an introduction to the fundamental concepts of digital signal processing including a wide variety of topics such as discrete-time linear time invariant systems, sampling theorem, z-transform, discrete-time/discrete Fourier transform, and digital filter design. Furthermore, the course will also discuss in detail about other advanced topics in digital signal processing such as multidimensional signals and systems, random processes and applications, and adaptive signal processing.

ELEC6065 Data compression
This course provides an introduction to the state-of-the-art compression techniques for typical media including files, digital images, videos and audios. Specifically, the course will discuss in detail about the coding and quantisation techniques commonly used for images, videos and audios. Finally, the course will cover basic concept and terminologies of common image, video and audio standards.

ELEC6100 Digital communications
This course aims at enabling the fundamental understanding of the digital communication systems. After an overview on basic probability and random processes, the course will cover the modulation and demodulation. Then, performance analyses under additive white Gaussian noise channel and fading channel are examined. This is followed by topics on spatial diversity and channel equalisation. Mutually exclusive with: ELEC6014 and ELEC6045.

STAT7102 Advanced statistical modelling
This course introduces modern methods for constructing and evaluating statistical models and their implementation using popular computing software, such as R or Python. It will cover both the underlying principles of each modelling approach and the model estimation procedures. Topics from: (i) Linear regression models; (ii) Generalised linear models; (iii) Model selection and regularisation; (iv) Kernel and local polynomial regression; selection of smoothing parameters; (v) Generalised additive models; (vi) Hidden Markov models and Bayesian networks.

Co-Programme Director
Dr Pablo Saz PARKINSON
BS Columbia; MS, PhD Stanford

Other Academic Staff
The University of Hong Kong (HKU)
Professor S C CHAN (EE)
BSc (Eng), PhD HK, MIEEE
Professor Kwong Lam CHAN (PHYS)
BA Berkeley, PhD Princeton
Dr Stephen W K CHEUNG (PHYS)
BS Wisconsin, MS, PhD U Virginia
Dr Simon K C CHEUNG (NAAS)
BSc HK, MSc AU, PhD CUHK
Dr Y K CHUNG (NAAS)
BSc, Phil CUHK, PhD HK
Dr Alex Po LEUNG (PHYS)
BSc CityU, MPhil HKU, PhD Queen Mary London
Dr Greggi LI (PHYS)
BA, MBA, MA, Dr Eng, FHKID; CISA
Dr Stephen NG (PHYS)
BS, MPhil HK, PhD Stanford
Dr Meng SU (PHYS)
BA Phys/Astro PKU; PhD Harvard
Dr Y C WU (EE)
BEng, MPhil HK; PhD Texas A&M
Dr Binczheng ZHANG (DES)
BE, MS ZJU; PhD Dartmouth

Zhejiang University (ZJU)
Professor Guiquan WANG
BE, Dr Eng ZJU

Nanjing University (NJU)
Dr Zhilin LI
BS, MS NJU, PhD UMass
Dr Chuang LI
PhD NJU

Others
Professor Denis BASTIERI (Padova/Guangzhou)
MSc, PhD Padua
Dr Marcos LOPEZ-CANIEGO (Aurora Technology for ESA)
BS, MS Autonoma Madrid; PhD Cantabria
Dr Massimiliano RAZZANO (Pisa)
BS, MS, PhD Pisa

Programme Director
Dr Jason PUN
BA, BSc Roeh; MA, PhD Harv

Capstone Requirement
SPSC7031 Space science final project
Students must carry out a research project in any aspect of space science under the guidance of a faculty member from the MSc in Space Science programme. Students are encouraged to approach faculty members in their areas of interest as soon as possible, in order to choose an appropriate project. Students may either propose a topic of interest, participate in any existing projects of the faculty member, or else they will be assigned a project after consultation with the course coordinator. An oral presentation is required and a written report must be submitted.

More course information at:
https://www.astfac.hku.hk/prospective/mpi/SpaceScience
Admissions

Requirements

A bachelor’s degree in a relevant Science subject (e.g. Physics, Astronomy, Earth Sciences) or an Engineering discipline (e.g. Aerospace, Electrical, Mechanical).

How to apply

Application opens in March, 2021

Deadline for local and non-local applicants:

Full-time & Part-time, 12:00 noon, June 30, 2021 (GMT +8)

Online application

aal.hku.hk/tpg

Further Information

Programme details

Enquiries

Department of Physics
Tel: (852) 2859 2361 Email: mspace@hku.hk