## BSc

## Syllabuses and Regulations

## 2021-2022

Faculty of Science The University of Hong Kong

## General Information

## SClENCE

This booklet includes information on:
>BSc Degree curriculum and graduation requirements
> List of courses and descriptions
A full list of Science courses and descriptions include information on course code, title, credit value, contents, semester offered, teaching and learning activities, assessment methods and grade descriptors.
> Majors \& Minors
Details of the Science Majors and Minors available for students.
> Degree regulations
Rules that cover curriculum requirements and progression in curriculum, selection of courses, assessment, advanced standing, grading system and degree honours classification.

## > Teaching weeks

Teaching weeks show the dates of semesters, University holidays, revision and examination periods.

Further Information detailing instructions on the selection of courses, grading, graduation requirements, honours classification, application for advanced standing and exemption, etc, can be found in the Handbook for BSc Students available at http://www.scifac.hku.hk/ug/current

Updates on BSc Syllabuses and Regulations can be found at http://webapp.science.hku.hk/sr4/servlet/enquiry

## CONTENTS

SECTION I BSc Degree Curriculum and Graduation Requirements ..... 1-5
SECTION I Capstone Requirement for Science Students ..... 6
SECTION III Credit Unit Statement of BSc Degree Curriculum ..... 7-8
SECTION IV List of BSc Courses and English and Chinese language ..... 9-85 courses on offer in 2021-2022 and 2022-2023
SECTION V Equivalency of HKDSE and other qualifications ..... 86
SECTION VI Science Majors 2021-2022 ..... 87-498
List of Science Majors ..... 87
Major in Astronomy ..... 88
Major in Biochemistry. ..... 100
Major in Biological Sciences ..... 120
Major in Biological Sciences (Intensive) ..... 140
Major in Chemistry ..... 150
Major in Chemistry (Intensive) ..... 170
Major in Decision Analytics ..... 184
Major in Earth System Science. ..... 204
Major in Ecology \& Biodiversity. ..... 224
Major in Ecology \& Biodiversity (Intensive) ..... 244
Major in Environmental Science ..... 259
Major in Food \& Nutritional Science ..... 279
Major in Geology ..... 306
Major in Geology (Intensive). ..... 326
Major in Mathematics ..... 340
Major in Mathematics (Intensive) ..... 360
Major in Mathematics / Physics. ..... 372
Major in Molecular Biology \& Biotechnology ..... 390
Major in Molecular Biology \& Biotechnology (Intensive) ..... 410
Major in Physics. ..... 424
Major in Physics (Intensive) ..... 446
Major in Risk Management ..... 459
Major in Statistics. ..... 479
SECTION VII Science Minors 2021-2022 ..... 499-720
List of Science Minors ..... 499
Minor in Actuarial Studies. ..... 500
Minor in Astronomy. ..... 510
Minor in Biochemistry. ..... 520
Minor in Chemistry ..... 530
Minor in Computational \& Financial Mathematics. ..... 550
Minor in Earth Sciences. ..... 560
Minor in Ecology \& Biodiversity. ..... 570
Minor in Environmental Science ..... 580
Minor in Food \& Nutritional Science. ..... 591
Minor in Marine Biology ..... 608
Minor in Mathematics. ..... 618
Minor in Molecular Biology \& Biotechnology ..... 638
Minor in Operations Research \& Mathematical Programming ..... 648
Minor in Physics. ..... 657
Minor in Plant Science ..... 677
Minor in Risk Management ..... 687
Minor in Science Entrepreneurship ..... 697
Minor in Statistics ..... 703
SECTION VIII Students taking double Majors, Major-Minor or double Minors ..... 721 with overlapping course requirements
Double Counting of Courses in Double Majors, Major-Minor or Double Minors. ..... 721
SECTION IX Course Descriptions ..... 725-1075
Biomedical Sciences ..... 725
Biological Sciences ..... 735
English ..... 831
Chemistry ..... 834
Chinese ..... 874
Earth Sciences ..... 875
Mathematics ..... 914
Physics ..... 957
Science Faculty ..... 1005
Statistics \& Actuarial Science ..... 1016
SECTION X Degree Regulations ..... 1076-1121
Regulations for the Degree of Bachelor of Science ..... 1076
Regulations for First Degree Curricula ..... 1092
SECTION XI Teaching Weeks ..... 1122


## BSc Degree Curriculum and

## Graduation Requirements



## SECTION I BSc Degree Curriculum and Graduation Requirements

## 1. A BSc Degree Curriculum

The Faculty of Science offers a number of Science majors leading to the award of a BSc degree.
All students admitted to the first year of the 6901 BSc programme in the academic year of 2021-2022 and thereafter are required to complete at least one Science major out of the 14 regular or 7 intensive Science majors as your primary major for the award of the BSc degree. In addition to the primary Science major, students may take a second major or a minor in a Science or non-Science discipline. Students should note that some non-Science majors and minors may require students to have achieved a minimum academic result before they are allowed to enroll in them.

## (a) A typical BSc curriculum

To complete the BSc degree curriculum, you have to pass at least 240 credits, equivalent to 406 -credit courses, normally spread over 4-years of full-time study. A BSc curriculum typically comprises:
(i) UG5:

- 2 English courses and 1 Chinese course for university language requirements (18 credits)
- 6 common core courses in 4 Areas of Inquiry ( 36 credits)
(ii) For regular Science major:
- 16 courses for the regular Science major including 2 Science Foundation courses, Disciplinary courses and capstone course (96 credits)
- A choice of 15 courses as elective courses, or to fulfill the requirements of a minor or a second major (90 credits)
OR
For intensive Science major (applicable to 2015-16 intake and thereafter):
- 24 - 25 courses for the intensive Science major including 2 Science Foundation courses, Disciplinary courses and capstone course(s) (144-150 credits)
- A choice of 6-7 courses as elective courses, or to fulfill the requirements of a minor (36-42 credits)

Curriculum requirements ( 240 credits)

| Option A   <br> Students taking one <br> regular Science <br> major Option B <br> Students taking one <br> regular Science <br> major and one minor Option C <br> Students taking <br> double majors <br> (one regular <br> Science major and <br> a 2 2nd major (a <br> regular Science <br> major or a non- <br> Science major)) <br> 2 Science Foundation courses (SCNC1111+ \& SCNC1112@ , taken in Year 1),   <br> 13 Disciplinary courses   <br> and 1 Capstone course   |
| :---: | :---: | :---: |


| Option D | Option E |
| :---: | :---: |
| Students taking an <br> intensive Science <br> major | Students taking an <br> intensive Science |
| major and a minor |  |

$+$

| Common Core Courses: 36 credits ${ }^{\#}$ |
| :---: |
| 6 courses in 4 Areas of Inquiry |
| (at least 1 and not more than 2 courses from each Aol) |

$+$
Language Courses: 18 credits
English: 12 credits [ 6 credits in Core University English (CAES1000 ${ }^{\triangle}$, taken in Year 1) and 6 credits in English in the Discipline (CAES9820, taken in Year 2)] Chinese: 6 credits (CSCI9001 ${ }^{\text {\# }}$, taken in Year 3)


## Notes:

[^0]- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

It is optional for them to take the course SCNC1111. Those who do not take this course should take a 6-credit disciplinary elective course of the science major in lieu.
@ Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112:

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis

It is optional for them to take the course SCNC1112. Those who do not take this course should take a 6-credit disciplinary elective course of the science major in lieu.
\# Student must select at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits. Common Core courses should be completed normally within the first three years of study.
$\triangle$ Students who have been admitted to Year 1 in 2018-19 (and thereafter) and have achieved any one of the following qualifications are exempted from this requirement, and Core University English is optional. Those who do not take this course should take a 6-credit elective course in lieu:

- Level 5 or above in English Language in the HKDSE
- holder of a Bachelor's degree from an English-medium university
- achieved Grade A or above in English Language GCE Advanced Level (AL) / Advanced Subsidiary Level (ASL)
- achieved an overall IELTS score of no less than 7 AND with all sub-scores no less than 6.5 on the Reading, Speaking, Listening and Writing Tests
- achieved an overall TOEFL Internet-based test score of no less than 94 AND no less than a 24 on the writing, a 20 on the speaking, a 20 on the listening, AND a 19 on the reading sections
- achieved in International Baccalaureate (IB) Grade 4 or above in English A1/ English Language A/ English A: Literature/ English A: Language and Literature (HL); or Grade 5 or above in English B/ English Language B(HL); or Grade 5 or above in English A1/ English Language A/ English A: Literature/ English A: Language and Literature (SL)
- achieved Grade 4 or above on the Advanced Placement (AP) English Language/ English Language and Composition/ English Literature and Composition Test
- achieved a NEW Scholastic Aptitude Test (SAT) score of 35 or above on both the Writing \& Language Test and Reading Test (from 2016)
- achieved Grade B or above in H1 General Paper at the Singapore GCE A-level
- achieved Grade A or better in English language at Malaysia SPM examination
- achieved Grade A2 or better in Malaysia UEC-Senior English Language
- attained merit (3 points) or above in each set of credits in New Zealand NCEA Literacy (10 credits made up of 5 credits in reading and 5 credits in writing)
- achieved a score of $95 \%$ or better in English at All India Senior School Certificate Examination / Higher School Certificate
- achieved a final score of $90 \%$ or better in English at Grade 12 Canadian high school curriculum
- achieved Grade B or better in English Language at Sri Lanka Ordinary examination
- achieved a score of 90 or better in English in the Russian Unified State Exam (Единый государственный экзамен, ЕГЭ, Yediniy gosudarstvenniy ekzamen, EGE)
- Academic Speaking and Writing test conducted by CAES for students who have not taken any of the above tests
$>$ When applying to take the Academic Speaking and Writing Test, students should provide evidence to the home Faculty and the CAES1000 Course Coordinator that they were admitted to HKU using qualifications other than those included in the above list.
$>$ Applicants are required to show the evidence of those other qualifications to the assessor on the day of the Academic Speaking and Writing Test.
> If any applicants failed to provide any evidence that they were admitted to HKU using qualifications other than those included in the above list provided by CAES, the CAES assessor has the rights not to allow the applicant to take the test.
\# To satisfy the Chinese language enhancement requirement, students are required to successfully complete the 6-credit Faculty-specific Chinese language enhancement course, except for:
(a) Putonghua-speaking students who should take CUND9002 (Practical Chinese and Hong Kong Society) or CUND9003 (Cantonese for Non-Cantonese Speaking Students). They may take the course in Year 1 or 2 if they so wish; and
(b) students who have not studied Chinese language during their secondary education or who have not attained the requisite level of competence in the Chinese language to take the Chinese language enhancement course should write to the Board of the Faculty to apply to be exempted from the Chinese language requirement, and
(i) take a 6-credit Cantonese or Putonghua language course offered by the School of Chinese especially for international and exchange students; OR
(ii) take an elective course in lieu.
$\wedge$ Credit requirement for different majors or minors may vary.
* Students having a second major in Science are allowed to double-count the two Science Foundation Courses. The 12 credits can be made up by selecting any courses.


## (b) Common Core Curriculum

The Common Core Curriculum is designed to provide key common learning experience for all HKU students and to broaden their horizons beyond their chosen disciplinary fields of study. It focuses on issues that have been, and continue to be, of deeply profound significance to mankind, the core intellectual skills that all HKU undergraduates should acquire and the core values that they should uphold. The Common Core Curriculum is divided into four Areas of Inquiry (Aols): (1) Scientific and Technological and Big Data; (2) Arts and Humanities; (3) Global Issues; (4) China: Culture, State and Society. Students have to pass 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits. Common Core courses should be completed normally within the first three years of the BSc study and cannot be extra taken as free electives.

## 2. BSc Graduation Requirements and Honours Classification

## (a) Award of a BSc degree

For students admitted to the first year in 2014-15 or before, and students admitted directly in the third year in 2016-17 or before:

To be eligible for the award of the degree of Bachelor of Science, students must fulfill the following requirements:
(i) Satisfied the requirements in UG5 of the Regulations for First Degree Curricula*;
(ii) Passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the major programme of the BSc degree curriculum.
\# UG5 specifies that students have to successfully complete:
(a) 12 credits in English language enhancement, including 6 credits in Core University English ${ }^{1}$ (i.e. CAES1000) and 6 credits in an English in the Discipline course ${ }^{2}$ (i.e. CAES9820 Academic English for Science Students);
(b) 6 credits in Chinese language enhancement ${ }^{3}$ (i.e. CSCI9001 Practical Chinese for Science Students);
(c) 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry ${ }^{4}$ with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits; and
(d) a capstone experience as specified in the syllabuses of the degree curriculum.

For students admitted to the first year in 2015-16, 2016-17 and 2017-18, students admitted directly to the second year in 2017-18 and 2018-19, and students admitted directly to the third year in 2017-18, 2018-19 and 2019-2020:

To be eligible for the award of the degree of Bachelor of Science, students must fulfill the following requirements:
(i) Satisfied the requirements in UG5 of the Regulations for First Degree Curricula";
(ii) Passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the regular major programme, or 144 credits (or a higher credit requirement by the accredited bodies) of the prescribed course in the intensive major programme, of the BSc degree curriculum.
\# UG5 specifies that students have to successfully complete:
(a) 12 credits in English language enhancement, including 6 credits in Core University English ${ }^{1}$ (i.e. CAES1000) and 6 credits in an English in the Discipline course ${ }^{2}$ (i.e. CAES9820 Academic English for Science Students);
(b) 6 credits in Chinese language enhancement ${ }^{3}$ (i.e. CSCI9001 Practical Chinese for Science Students);
(c) 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry ${ }^{4}$ with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits; and
(d) a capstone experience as specified in the syllabuses of the degree curriculum.

## For students admitted to the first year in 2018-19 and thereafter, and students admitted directly to the second year in 2019-20 and thereafter:

To be eligible for the award of the degree of Bachelor of Science, students must fulfill the following requirements:
(i) Satisfied the requirements in UG5 of the Regulations for First Degree Curricula";
(ii) Passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the regular major programme, or 144 credits (or a higher credit requirement by the accredited bodies) of the prescribed course in the intensive major programme, of the BSc degree curriculum.
\# UG5 specifies that students have to successfully complete:
(a) 12 credits in English language enhancement, including 6 credits in Core University English ${ }^{1}$ (i.e. CAES1000) and 6 credits in an English in the Discipline course ${ }^{2}$ (i.e. CAES9820 Academic English for Science Students OR CAES9821 Professional and Technical Communication for Mathematical Sciences);
(b) 6 credits in Chinese language enhancement ${ }^{3}$ (i.e. CSCI9001 Practical Chinese for Science Students);
(c) 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry ${ }^{4}$ with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits; and
(d) a capstone experience as specified in the syllabuses of the degree curriculum.

## (b) Honours Classification

For students admitted to the first year in 2016-17 or before, students admitted directly to the second year in 2017-18, and students admitted directly to the third year in 2018-19 or before:
Classification of honours are calculated using the cumulative grade point average CGPA as below:

> CGPA range

First Class Honours
$3.60-4.30$
Second Class Honours Division I
$3.00-3.59$
Second Class Honours Division II
$2.40-2.99$
Third Class Honours
$1.70-2.39$
Pass
1.00-1.69

For students admitted to the first year in 2017-18 and thereafter, students admitted directly to the second year in 2018-19 and thereafter, and students admitted directly to the third year in 2019-2020 and thereafter:

Classification of honours are calculated using the graduation grade point average GGPA* as below:

|  | CGPA range |
| :--- | ---: |
| First Class Honours | $3.60-4.30$ |
| Second Class Honours Division I | $3.00-3.59$ |
| Second Class Honours Division II | $2.40-2.99$ |
| Third Class Honours | $1.70-2.39$ |
| Pass | $1.00-1.69$ |

* For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core courses with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.

Credits granted for advanced standing in recognition of studies completed successfully before admission to the curriculum and credits transfer in recognition of studies completed on exchange during candidature at HKU are not included in the calculation of GPA.

[^1]${ }^{2}$ (a) To satisfy the English in the Discipline (ED) requirement, candidates who have passed the ED course for a Major but subsequently change that Major are required to pass the ED course for the new Major, or either of the double Majors finally declared upon graduation irrespective of whether the second Major is offered within or outside of the candidates' home Faculty.
(b) Candidates declaring double Majors can, if they fail in the ED course for one of the Majors, either (i) re-take and successfully complete that failed ED course, or (ii) successfully complete the ED course for the other Major, irrespective of whether the Major is offered within or outside of the candidates' home Faculty.
(c) Candidates who undertake studies in double Majors or double degrees are not required to take a second ED course but may be advised by the Faculty to do so.
${ }^{3}$ Candidates who have not studied Chinese language during their secondary education may be exempted from this requirement and should take a 6-credit elective course in lieu, see Regulation UG6.

## Capstone Requirement for

## Science Students

## SECTION II Capstone Requirement for Science Students

Capstone experience is an integral part of the major programme which focuses on integration and application of knowledge and skills gained in the early years of study. The capstone course carries a minimum of 6 credits and students must complete this for fulfillment of the graduation requirements. Capstone course is normally taken in the senior years (year 3 or 4 ) of study. The earliest that a student is allowed to take a capstone course is their year 3 study. The capstone courses in each Science major may be different but a range of courses (e.g. research project, seminar, field work, internship and capstone project) is offered to suit individual student's needs and interests. The following courses are currently recognized as capstone courses in the different majors:

| BSc - Major | Recognized Capstone Courses |
| :---: | :---: |
| 1. Biochemistry | 1. BIOC3999 Directed studies in biochemistry (6) <br> 2. BIOC4966 Biochemistry internship (6) <br> 3. BIOC4999 Biochemistry project (12) |
| 2a. Biological Sciences | 1. BIOL3994 Directed studies in biological sciences (6) <br> 2. BIOL4964 Biological sciences internship (6) <br> 3. BIOL4994 Biological sciences project (12)  |
| 2b. Biological Sciences (Intensive) | 1. BIOL4994 Biological sciences project (12) |
| 3a. Chemistry | 1. CHEM3999 Directed studies in chemistry (6) <br> 2. CHEM4910 Chemistry literacy and research (6) <br> 3. CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia (6) <br> 4. CHEM4966 Chemistry internship (6) <br> 5. CHEM4999 Chemistry project (12) |
| 3b. Chemistry (Intensive) | 1. CHEM3999 Directed studies in chemistry (6) <br> 2. CHEM4966 Chemistry internship (6) <br> 3. CHEM4999 Chemistry project (12) |
| 4. Decision Analytics <br> 5. Risk Management <br> 6. Statistics | 1. STAT3799 Directed studies in statistics (6) <br> 2. STAT4710 Capstone experience for statistics undergraduates (6) <br> 3. STAT4766 Statistics internship (6) <br> 4. STAT4799 Statistics project (12) |
| 7. Earth System Science | 1. EASC4911 Earth system: contemporary issues (6) |
| 8a. Ecology \& Biodiversity | 1. BIOL4991 Ecology \& biodiversity project (12) |
| 8b. Ecology \& Biodiversity | 1. BIOL3991 Directed studies in ecology \& biodiversity (6) <br> 2. BIOL4911 Conservation science in practice (6) <br> 3. BIOL4991 Ecology \& biodiversity project (12) |
| 9. Environmental Science | 1. ENVS3999 Directed studies in environmental science (6) <br> 2. ENVS4966 Environmental science internship (6) <br> 3. ENVS4999 Environmental science project (12) |
| 10. Food \& Nutritional Science | 1. BIOL3992 Directed studies in food \& nutritional science (6) <br> 2. BIOL4922 Food product development and evaluation (6) <br> 3. BIOL4962 Food \& nutritional science internship (6) <br> 4. BIOL4992 Food \& nutritional science project (12) |
| 11. Geology Geology (Intensive) | 1. EASC4955 Integrated field studies (6) |
| 12. Mathematics Mathematics (Intensive) | 1. MATH3999 Directed studies in mathematics (6) <br> 2. MATH4910 Senior mathematics seminar (6) <br> 3. MATH4911 Mathematics capstone project (6) <br> 4. MATH4966 Mathematics internship (6) <br> 5. MATH4999 Mathematics project (12) |
| 13. Mathematics / Physics | 1. MATH3999 Directed studies in mathematics (6) <br> 2. MATH4910 Senior mathematics seminar (6) <br> 3. MATH4911 Mathematics capstone project (6) <br> 4. MATH4966 Mathematics internship (6) <br> 5. MATH4999 Mathematics project (12) <br> 6. PHYS3999 Directed studies in physics (6) <br> 7. PHYS4966 Physics internship (6) <br> 8. PHYS4999 Physics project (12) |
| 14. Molecular Biology \& Biotechnology | 1. BIOL3993 Directed studies in molecular biology \& biotechnology (6) <br> 2. BIOL4963 Molecular biology \& biotechnology internship (6) <br> 3. BIOL4993 Molecular biology \& biotechnology project (12) |
| 15. Astronomy <br> 16. Physics Physics (Intensive) | 1. PHYS3999 <br> 2. PHYSected studies in physics (6) <br> 3. PHYS4966 Physics internship (6) |

## Credit Unit Statement of

## $\underset{\underbrace{}}{Z}$

[

## BSc Degree Curriculum



## 1. General guideline for contact hours requirement in the BSc Degree Curriculum

(a) A 6-credit course has around 120-180 total study hours, including contact hours, study time, assignment and assessment.
(b) About $30 \%$ of the total study hours are actual contact hours in the form of a class, e.g. lecture hours.
(c) A 6-credit course has around 36 to 45 lecture hours.
(d) For lecture-based courses, normally there will be tutorial/discussion sessions.
(e) For courses employing a non-lecture or lab-based approach, e.g. field camp, IT-based or project-based courses, students are expected to devote about 120-180 hours for a 6-credit course and 240-360 hours for a 12-credit course.

## 2. Credit Unit Statement of the BSc Degree Curriculum

The BSc degree curriculum consists of six major types of courses based on the learning activities. The majority of courses in the programmes are 6 credits. Examples of the contact hours requirements for the six categories of courses are described as follows.
(a) Lecture-based courses (6 credits)

Contact hours for 6-credit course: 36 hours of lectures and 12 hours of tutorial/discussion These courses are taught predominantly by lectures and tutorials. Assessment is by a combination of examination ( $0-80 \%$ ) and continuous assessment ( $20-100 \%$ ). Continuous assessment tasks include written assignments (totaling no more than 8,000 words) such as essays and project reports, and oral presentations. Details of the assessment tasks can be found in the description of individual courses.
(b) Lecture with laboratory component courses (6 credits)

Contact hours for 6 -credit course: 24 hours of lectures, 24 hours of laboratory and 6 hours of tutorial
These courses are taught by a combination of lectures and laboratory/practical sessions. Assessment is by a combination of examination ( $0-70 \%$ ) and continuous assessment (30$100 \%$ ). Continuous assessment tasks include written assignments (totaling no more than 8,000 words) such as essays, laboratory reports, and project reports, and oral presentations. Details of the assessment tasks can be found in the description of individual courses.
(c) Laboratory and Workshop courses (6 credits)

Contact hours: 48 hours of laboratory or workshop and 12 hours of tutorial
These courses aim at enriching the student's research skills and encourage group work through hands-on activities in which science research is introduced. Students are expected to spend an additional 100 hours on self-study, preparation work for the laboratory, and writing reports. Continuous assessment tasks (100\%) include written assignments (totaling no more than 8,000 words) such as laboratory report for each experiment (normally no more than 10 experiments) and essays. Details of the assessment tasks can be found in the description of individual courses.
(d) Project-based courses (6 and 12 credits)

These courses aim at providing students with an opportunity to pursue their own research interest under the supervision of a teacher. The teacher normally meets with the student weekly to discuss project progress. Assessment task is normally through research reports or a dissertation (totaling no more than 10,000 words for a 6 -credit course and 20,000 words for a 12-credit course). Oral presentation will form part of the assessment. Details of the assessment tasks can be found in the description of individual courses.
(e) Field camps (6 credits)

Contact hours: at least 72 hours in the field
These courses aim at giving practical experience in a variety of contexts. Fieldwork may be conducted locally or overseas during reading week or summer. Fieldwork courses have a small number of lecture hours but are predominately practical in nature. Assessment tasks (100\%) normally include the following outputs (totaling no more than 8,000 words): field
assignments and reports (normally no more than 10 field assignments). Details of the assessment tasks can be found in the description of individual courses.
(f) Internship (6 credits)

Students have to undertake at least 160 hours of internship work Internships aim to offer students the opportunity to gain work experience related to their major of study. The teacher meets with the student regularly to discuss work progress. Students have to undertake at least 160 hours of internship work arranged formally. Assessment tasks $(100 \%)$ normally include the following outputs: a written report of no more than 2000 words and feedback from the internship supervisor and an oral presentation on students' internship experience. Details of the assessment tasks can be found in the description of individual courses.
3. The types of courses in the $\mathbf{1 4}$ Science Majors and $\mathbf{1 8}$ Science Minors are as follows:

| Majors/Minors | Type of Courses |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lecture- <br> based | Lecture with <br> laboratory <br> component |  <br> Workshop | Project- <br> based | Field <br> camps | Internship |
| Actuarial Studies (Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Astronomy (Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Biochemistry (Major \& Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Biological Sciences <br> (Intensive Major \& Major) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Chemistry <br> (Intensive Major, Major \& Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Computational \& Financial <br> Mathematics (Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Decision Analytics (Major) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Earth Sciences (Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Earth System Science (Major) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Ecology \& Biodiversity <br> (Intensive Major, Major \& Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Environmental Science <br> (Major \& Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Food \& Nutritional Science <br> (Major \& Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Geology (Intensive Major \& Major) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Marine Biology (Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Mathematics <br> (Intensive Major, Major \& Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| Molecular Biology \& Biotechnology <br> (Intensive Major, Major \& Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
|  <br> Mathematical Programming (Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| Physics <br> (Intensive Major, Major \& Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| Plant Science (Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Risk Management (Major \& Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Science Entrepreneurship (Minor) | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Statistics (Major \& Minor) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
|  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |

The above different categories of courses follow the unified Credit Unit Statement of the BSc curriculum.

## List of BSc Courses and English and

Chinese language courses on offer in 2021-2022 and 2022-2023


| Course Code | Title | Credit | Pre-requisite | Available in |  | $\begin{aligned} & \text { Semester } \\ & \text { offered in } \\ & 2021 \end{aligned}$ $-2022$ | $\begin{aligned} & \text { Exam. } \\ & \text { neld } \\ & \text { held } \\ & \text { 2021 } \\ & -2022 \end{aligned}$ | Quota | Course Coordinator | Major / Minor(The Major/Minor that this course appears as.) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{array}{\|c\|c\|c\|c\|c\|} \hline 2021 \\ -2022 \end{array}$ | $\begin{array}{\|c\|c\|c\|c\|c\|} \hline 2022 \\ -2023 \end{array}$ | $\begin{array}{\|l\|} \hline 0=\text { year long } \\ 1=1 \text { st sem } \\ 2=2 n d \text { sem } \\ \mathrm{S}=\text { Summer } \end{array}$ |  |  |  | Disciplinary Core Course | Disciplinary Elective | Capstone Disciplinary Core Course | Capstone Disciplinary Elective |
| School of Biomedical Sciences |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BIOC1600 | Perspectives in biochemistry | 6 | Level 3 or above in HKDSE Biology, Chemistry, or Combined Science with Biology or Chemistry component, or equivalent <br> Not for students who have passed in BIOL1110, or have already enrolled in this course | Y | Y | 1 | Dec | --- | Prof J Tanner, Biomedical Sciences | Major in Biochemistry (2014) | Major in Biochemistry (2021,2020,2019,2018, 2017,2016,2015); Minor in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOC2600 | Basic biochemistry | 6 | Pass in BIOC1600 or BIOL1110 or ENGG1207 or BMED1207; and Not for students who have passed in BIOL2220 or MEDE2301 or BMED2301, or have already enrolled in these courses. | Y | Y | 1 | Dec | 300 | Dr. M Kotaka, Biomedical Sciences | Major in Biochemistry <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Biological <br> Sciences <br> (2021,2020,2019,2018, <br> 2017,2016,2015); <br> Major in Biological <br> Sciences (Intensive) <br> (2021,2020,2019,2018, <br>  <br> Nutritional Science <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Molecular <br>  <br> Biotechnology <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Molecular <br>  <br> Biotechnology <br> (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016,2015) | Minor in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Molecular Biology \& Biotechnology (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOC3601 | Basic metabolism | 6 | Pass in BIOC2600 or BIOL2220 or MEDE2301 or BMED2301 | Y | Y | 1 | Dec | 80 | Dr N S Wong, Biomedical Sciences | Major in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014) | Minor in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOC3604 | Essential techniques in biochemistry and molecular biology | 6 | Pass in BIOC2600 or BIOL2220 or BMED2301 or MEDE2301 | Y | Y | 2 | May | 70 | Dr K M Yao, Biomedical Sciences | Major in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014) | Minor in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOC3605 | Sequence bioinformatics | 6 | Pass in BIOC2600 or BIOL2220 or BBMS2003 or BBMS2007 or MEDE2301 or BMED2301 | Y | Y | 2 | May | 80 | Dr B C W Wong, Biomedical Sciences |  | Major in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOC3606 | Molecular medicine | 6 | Pass in BIOC2600 or BIOL2220 or MEDE2301 or BMED2301 | Y | Y | 2 | May | 50 | Prof D Y Jin, Biomedical Sciences |  | Major in Biochemistry $(2021,2020,2019,2018$, 2017,2016,2015,2014); Major in Food \& Nutritional Science Minor in Biochemistry $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |  |  |
| B10C3999 | Directed studies in biochemistry | 6 | Pass in at least 24 credits of advanced level (level 3 or 4 ) disciplinary | Y | Y | 1, 2, S | No exam | 36 | Dr A C Koon (Sem 1); Dr B H B Yuen (Sem 2 |  |  |  | Major in Biochemistry (2021,2020,2019,2018, |

[^2]|  |  |  | core/elective courses in Biochemistry Major including BIOC2600 or BIOL2220 and BIOL3401. <br> This capstone course is for Biochemistry Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. |  |  |  |  |  | \& Summer), Biomedical Sciences |  |  | \|2017,2016,2015,2014) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIOC4610 | Advanced biochemistry | 6 | Pass in BIOC3601 or BIOL3401 or BIOL3402 or BIOL3404 | Y | Y | 1 | Dec | 70 | Dr K M Yao, Biomedical Sciences | Major in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014) | Minor in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| BIOC4611 | Advanced biochemistry II | 6 | Pass in BIOC3601; and BIOL3404 or CHEM2441; and <br> Pass in BIOC4610, or already enrolled in this course | N | N | --- | --- | 50 | Prof D Chan, Biomedical Sciences |  |  |  |
| BIOC4612 | Molecular biology of the gene | 6 | Pass in BIOC3601 or BIOL3401 or BIOL3402 or BIOL3404 or BBMS2007 | Y | Y | 2 | May | 50 | Prof K S E Cheah, Biomedical Sciences |  | Major in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| BIOC4613 | Advanced techniques in biochemistry \& molecular biology | 6 | Pass in BIOC3604 | Y | Y | 1 | Dec | 70 | Prof D Chan, <br> Biomedical Sciences | Major in Biochemistry $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ 2017,2016,2015,2014) | Minor in Biochemistry $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ 2017,2016,2015,2014) |  |
| BIOC4966 | Biochemistry internship | 6 | Pass in at least 24 credits of advanced level (level 3 or 4 ) disciplinary core/elective courses in Biochemistry Major including BIOC3604. This capstone course is for Biochemistry Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 1,2, S | No exam | 20 | Dr A C Koon (Sem 1); Dr Dr B H B Yuen (Sem 2 \& Summer), Biomedical Sciences |  |  | Major in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |
| BIOC4999 | Biochemistry project | 12 | Pass in at least 24 credits of advanced level (level 3 or 4 ) disciplinary core/elective courses in Biochemistry Major including 4 of the following 5 courses: BIOL3401, BIOC3601, <br> BIOC3604, BIOC4610 and BIOC4613. BIOC4610 and BIOC4613 can be taken concurrently with this course. This capstone course is for Biochemistry Major students only. This capstone course is ONLY opened to students who are in year 3 or above in the Biochemistry Major program. | Y | Y | 0 | No exam | 25 | Dr N S Wong, Biomedical Sciences |  |  | Major in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |
| School of Biological Sciences |  |  |  |  |  |  |  |  |  |  |  |  |
| BIOL1110 | From molecules to cells | 6 | Not for students who have passed in BIOC1600, or have already enrolled in this course. <br> Students who wish to take this course are expected to have taken HKDSE Biology and/or Chemistry or equivalent. For students without HKDSE Chemistry, they are encouraged to take CHEM1041 concurrently or before. <br> Not for students having taken any level 2 (or above) Biomedical Sciences (BBMS) or Biochemistry (BIOC) or Bachelor of Medicine and Bachelor of Surgery (MBBS) course. Students | Y | Y | 1, 2 | Dec, May | 382 | Dr G Y W Chan, Biological Sciences | Major in Biochemistry <br> (2014); Major in <br> Biological Sciences <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Biological <br> Sciences (Intensive) <br> (2021,2020,2019,2018, <br> 2017); Major in <br> Ecology \& iodiversity <br> (2021,2020,2019,2018, <br> $2017,2016,2015,2014)$; <br>  <br> Biodiversity (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016,2015); <br>  | Major in Biochemistry (2021,2020,2019,2018, 2017,2016,2015); <br> Minor in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Molecular Biology \& Biotechnology (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Plant Science $(2021,2020,2019,2018$, |  |





|  |  |  |  |  |  |  |  |  |  |  | Biological Sciences (Intensive) <br> (2019,2018,2017); <br> Major in Molecular <br>  <br> Biotechnology (Intensive) <br> (2019,2018,2017,2016, <br> 2015); Minor in Plant <br> Science <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIOL3108 | Microbial physiology | 6 | Pass in BIOC2600 or BIOL2103 or BIOC3604 | N | N | --- | --- | 50 | Dr A Yan, Biological Sciences |  | Major in Biological <br> Sciences $(2015,2014)$ |  |  |
| BIOL3109 | Environmental microbiology | 6 | Pass in BIOL2103 | N | N | --- | --- | 40 | TCB, Biological Sciences |  | Major in Biological Sciences $(2021,2020,2019,2018$, $2017,2016,2015,2014) ;$ Major in Biological Sciences (Intensive) (2021,2020,2019,2018, $2017) ;$ Major in Ecology \& Biodiversity (2016,2015,2014); Major in Environmental Science $(2021,2020,2019,2018$, $2017,2016,2015)$ |  |  |
| BIOL3110 | Environmental toxicology | 6 | Pass in BIOL2103 or CHEM3141 or ENVS3042 | N | N | --- | --- | 60 | TBC, Biological Sciences |  | Major in Biological <br> Sciences (2015,2014); <br> Major in Environmental <br> Science <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Minor in Environmental <br> Science <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |  |
| BIOL3201 | Food chemistry | 6 | Pass in BIOC2600 or BIOL2103 or BIOL2220 or MEDE2301; and NOT for students who have passed in BIOL2101. This course is only for students admitted in 2016-2017 or before. | N | N | --- | --- | 60 | Dr J C Y Lee, Biological Sciences | Major in Food \& Nutritional Science (2016,2015,2014) | Minor in Food \& Nutritional Science (2016,2015,2014) |  |  |
| BIOL3202 | Nutritional biochemistry | 6 | Pass in BIOC2600 or BIOL2220 or MEDE2301 | Y | Y | 1 | Dec | 100 | Dr C B Chan, Biological Sciences | Major in Food \& Nutritional Science $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ | Major in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Biochemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOL3203 | Food microbiology | 6 | Pass in BIOC2600 or BIOL2220 or MEDE2301 | Y | Y | 2 | No exam | 140 | Dr H S El-Nezami, Biological Sciences | Major in Food \& Nutritional Science $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ | Major in Biological <br> Sciences <br> (2021,2020,2019,2018, <br> 2017,2016); Major in <br> Biological Sciences (Intensive) <br> (2021,2020,2019,2018, 2017); Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOL3204 | Nutrition and the life cycle | 6 | Pass in BIOL2220 or BIOC2600 | Y | Y | 2 | No exam | 50 | Dr J C Y Louie, |  | Major in Food \& |  |  |


|  |  |  | or BIOL3202 |  |  |  |  |  | Biological Sciences |  | Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIOL3205 | Human physiology | 6 | Pass in BIOC2600 or BIOL2103 or BIOL2220 or MEDE2301 | Y | Y | 1 | Dec | 135 | Dr W Y Lui, Biological Sciences |  | Major in Biological Sciences (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Biological Sciences (Intensive) (2021,2020,2019,2018, 2017); Major in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Molecular Biology \& Biotechnology (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOL3206 | Clinical nutrition | 6 | Pass in BIOL3202 or BIOL3203 or BIOL3204 or BIOL3205 | N | N | --- | --- | 70 | Dr J M F Wan, Biological Sciences |  | Major in Food \& Nutritional Science (2018,2017,2016,2015, 2014); Minor in Food \& Nutritional Science (2018,2017,2016,2015, 2014) |  |  |
| BIOL3207 | Principles of toxicology | 6 | Pass in BIOC2600 or BIOL2220 or BIOL3205 or MEDE2301 | Y | Y | 2 | No exam | 80 | Dr H S El-Nezami, Biological Sciences |  | Major in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOL3208 | Food safety and quality management | 6 | Pass in BIOL3201 or BIOL3203 | N | N | --- | --- | 45 | Dr O Habimana, Biological Sciences |  | Major in Food \& Nutritional Science (2016,2015,2014); Minor in Food \& Nutritional Science (2016,2015,2014) |  |  |
| BIOL3209 | Food and nutrient analysis | 6 | Pass in BIOL2101 <br> Not for students who have passed in CHEM3242 | Y | Y | 1 | No exam | 80 | Dr J C Y Lee, Biological Sciences | Major in Food \& Nutritional Science $(2018,2017)$ | Major in Food \& Nutritional Science (2021,2020,2019,2016, 2015,2014); Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOL3210 | Grain production and utilization | 6 | Pass in any level 2 BIOL course | N | N | --- | --- | 40 | Prof H Corke, Biological Sciences |  | Major in Food \& Nutritional Science (2016,2015,2014); Minor in Food \& Nutritional Science (2016,2015,2014); Minor in Plant Science (2021,2020,2019,2018, |  |  |




|  |  |  |  |  |  |  |  |  |  |  | Biodiversity (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Ecology \& Biodiversity (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Plant Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIOL3318 | Experimental intertidal ecology | 6 | Pass in BIOL2102 or BIOL3301 | Y | N | 2 | May | 20 | Prof G A Williams, Biological Sciences |  | Major in Ecology \& Biodiversity <br> (2021,2020,2019,2018, 2017,2016,2015,2014); <br> Major in Ecology \& Biodiversity (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Ecology \& Biodiversity (2021,2020,2019,2018, 2017,2016,2015,2014); <br> Minor in Marine Biology <br> (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOL3319 | Tropical terrestrial ecology | 6 | Pass in BIOL1309 and BIOL2306 | Y | Y | 2 | May | 30 | Dr B Guenard, Biological Sciences | Major in Ecology \& Biodiversity (2021,2020,2019,2018, 2017); Major in Ecology \& Biodiversity (Intensive) (2021,2020,2019,2018, 2017,2016,2015) | Major in Biological <br> Sciences <br> (2021,2020,2019) <br> Major in Biological <br> Sciences (Intensive) (2021,2020,2019,201 <br> 2017); Major in <br> Ecology \& Biodiversity (2016,2015,2014); <br>  <br> Biodiversity <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |  |
| BIOL3320 | The biology of marine mammals | 6 | Pass in BIOL2306 | N | N | --- | --- | 30 | , Biological Sciences |  | Major in Ecology \& Biodiversity (2016,2015,2014); Minor in Ecology \& Biodiversity (2016,2015,2014); Minor in Marine Biology (2016,2015,2014) |  |  |
| BIOL3322 | Marine invertebrate zoology | 6 | Pass in BIOL2306 | N | N | --- | --- | 30 | Dr S Cannicci, Biological Sciences |  | Major in Ecology \& Biodiversity <br> (2021,2020,2019,2018, 2017,2016,2015,2014); <br> Major in Ecology \& Biodiversity (Intensive) (2021,2020,2019,2018, 2017,2016,2015); <br> Minor in Marine Biology (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOL3328 | Nearshore marine and estuarine ecology | 6 | Pass in BIOL2306 or BIOL3301 | N | Y | --- | -- | 10 | Prof. G.A. Williams, Biological Sciences |  | Major in Ecology \& Biodiversity <br> (2021,2020,2019,2018, 2017,2016,2015,2014); <br>  <br> Biodiversity (Intensive) |  |  |




|  |  |  |  |  |  |  |  |  |  | Molecular Biology \& Biotechnology (2021,2020,2019,2018, 2017,2016,2015,2014); <br>  <br> Biotechnology (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Plant Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIOL3409 | Business aspects of biotechnology | 6 | Pass in any level 3 BIOL or BIOC or BBMS course; NOT for students who have passed in BIOL2409. <br> This course is only for students admitted in 2017-2018 or before. | N | N | --- | --- | 40 | Dr W B L Lim, Biological Sciences | Major in Biological <br> Sciences (2015,2014); <br> Major in Molecular <br>  <br> Biotechnology <br> (2017,2016,2015,2014) <br> Minor in Molecular <br>  <br> Biotechnology <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |
| BIOL3419 | Insect ecology: the little things that run the world | 6 | Pass in BIOL1309 and BIOL2306 | N | Y | --- | --- | 25 | Dr B Guenard, Biological Sciences | Major in Biological <br> Sciences <br> (2018,2017,2016); <br> Major in Ecology \& Biodiversity <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br>  <br> Biodiversity (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016,2015); <br>  <br> Biodiversity <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |
| BIOL3501 | Evolution | 6 | Pass in BIOL2306 | N | N | --- | --- | 50 | Dr M Sun, Biological Sciences | Major in Biological Sciences (2018,2017,2016) |  |
| BIOL3502 | Conservation genetics | 6 | Pass in BIOL2306 or BIOL3303 or BIOL3408 | N | N | --- | --- | 50 | Dr M Sun, Biological Sciences |  |  |
| BIOL3503 | Endocrinology: human physiology II | 6 | Pass in BIOL2103 | Y | Y | 2 | May | 60 | Dr C B Chan, Biological Sciences | Major in Biological Sciences (2021,2020,2019,2018, 2017,2016); Major in Biological Sciences (Intensive) (2021,2020,2019,2018, 2017) |  |
| BIOL3505 | Oyster aquaculture and restoration | 6 | Pass in BIOL2103 or BIOL2306 or BIOL3301 or BIOL3303 | N | N | --- | --- | 20 | Dr T Vengatesen, Biological Sciences | Major in Ecology \& Biodiversity <br> (2016,2015,2014) |  |
| BIOL3506 | Evolutionary biology | 6 | Pass in BIOL2306 <br> Not for students who have passed in BIOL3501 | Y | Y | 1 | Dec | 50 | C Schunter, Biological Sciences | Major in Biological Sciences <br> (2021,2020,2019,2018, <br> 2017,2016); Major in Biological Sciences (Intensive) (2021,2020,2019,2018, 2017); Major in Ecology \& Biodiversity (2021,2020,2019,2018, |  |


|  |  |  |  |  |  |  |  |  |  |  | 2017,2016,2015); <br> Major in Ecology \& Biodiversity (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Ecology \& Biodiversity $(2021,2020,2019,2018$, $2017,2016,2015)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIOL3508 | Microbial physiology and biotechnology | 6 | Pass in BIOL2103 or BIOL2220 or BIOC2600 or BIOC3604; <br> Not for students who have passed in BIOL3108; and <br> Not for students who have passed in BIOL4402. | Y | Y | 2 | May | 60 | Dr A Yan, Biological Sciences | Major in Molecular Biology \& Biotechnology (2017,2016,2015,2014) | Major in Biological <br> Sciences <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Biologica <br> Sciences (Intensive) <br> (2021,2020,2019,2018, <br> 2017); Major in <br>  <br> Biotechnology <br> (2021,2020,2019,2018) <br> ; Major in Molecular <br>  <br> Biotechnology <br> (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016,2015); <br> Minor in Molecular <br>  <br> Biotechnology <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |  |
| BIOL3606 | Diet and disease | 6 | Pass in BIOL2220 or BIOC2600 or BIOL3202 or BIOL3203 or BIOL3204 or BIOL3205 <br> Not for students who have passed in BIOL3206 | Y | Y | 2 | No exam | 70 | Dr J C Y Lee, Biological Sciences |  | Major in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOL3608 | Food commodities | 6 | Pass in BIOL2101 <br> Not for students who have passed in BIOL3210; <br> Not for students who have passed in BIOL4207; and <br> Not for students who have passed in BIOL4208. | Y | Y | 2 | May | 30 | Dr L Zhang, Biological Sciences |  | Major in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| BIOL3951 | Ecology \& biodiversity field course | 6 | Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Ecology \& Biodiversity Major. <br> This capstone course is for Ecology \& Biodiversity Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. | N | N | --- | --- | 20 | Dr L Karczmarski, Biological Sciences |  |  |  | Major in Ecology \& Biodiversity $(2015,2014)$ |
| BIOL3991 | Directed studies in ecology \& biodiversity | 6 | Pass in at least 24 credits of advanced level disciplinary core / elective courses in the Ecology \& Biodiversity Major / Ecology \& Biodiversity (Intensive) Major. This capstone course is for Ecology \& Biodiversity Major / Ecology \& Biodiversity (Intensive) Major students only. <br> The earliest that a student is allowed to | Y | Y | 1,2 | No exam | --- | Dr S W Y Sin, Biological Sciences |  |  |  | Major in Ecology \& Biodiversity (2018,2017,2016,2015, $2014 ;$ ) Major in Ecology \& Biodiversity (Intensive) $(2021,2020,2019,2018$, $2017,2016,2015)$ |


|  |  |  | take this capstone course is their year 3 study. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIOL3992 | Directed studies in food \& nutritional science | 6 | Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Food \& Nutritional Science Major. <br> This capstone course is for Food \& Nutritional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 1,2 | No exam | --- | Dr J C Y Louie, Biological Sciences |  | Major in Food \& Nutritional Science $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |
| BIOL3993 | Directed studies in Molecular biology \& biotechnology | 6 | Pass in at least 24 credits of advanced level disciplinary core / elective courses in the Molecular Biology \& Biotechnology Major. <br> This capstone course is for Molecular Biology \& Biotechnology Major students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 1,2 | No exam | --- | Dr A Yan, Biological Sciences |  | Major in Molecular <br>  <br> Biotechnology <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |
| BIOL3994 | Directed studies in biological sciences | 6 | Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Biological Sciences Major. <br> This capstone course is for Biological Sciences Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 1,2 | No exam | --- | Dr J Wu, Biological Sciences |  | Major in Biological <br> Sciences <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |
| BIOL4201 | Public health nutrition | 6 | PASS in BIOL3202 | Y | Y | 2 | No exam | 90 | Dr J C Y Louie, Biological Sciences | Major in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014); <br> Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| BIOL4202 | Nutrition and sports performance | 6 | Pass in BIOL3202 | N | Y | --- | --- | 20 | TBC, Biological Sciences | Major in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014); <br> Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| BIOL4204 | Diet, brain function and behavior | 6 | Pass in BIOL3204, or already enrolled in this course | N | N | --- | --- | 30 | Dr E T S Li, Biological Sciences | Major in Food \& Nutritional Science (2016,2015,2014); Minor in Food \& Nutritional Science (2019,2018,2017,2016, 2015,2014) |  |
| BIOL4205 | Food technology | 6 | Pass in BIOL3209 | Y | Y | 2 | No exam | 30 | Dr J C Y Lee, Biological Sciences | Major in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| BIOL4207 | Meat and dairy sciences | 6 | Pass in BIOL3201 | N | N | --- | --- | 50 | Prof P S Shah, | Major in Food \& |  |




|  |  |  |  |  |  |  |  |  |  | \|2017,2016,2015) | 2017,2016,2015,2014); <br> Minor in Food \& Nutritional Science (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Molecular Biology \& Biotechnology (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Plant Science $(2021,2020,2019,2018$, 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIOL4415 | Healthcare biotechnology | 6 | Pass in BIOL3401 | Y | Y | 2 | May | 70 | Dr G Y W Chan, Biological Sciences |  <br> Major in Molecular <br>  <br> Biotechnology <br> (2021,2020,2019,2018, <br> $2017,2016,2015,2014) ;$ <br> Major in Molecular <br>  <br> Biotechnology <br> (Intensive) <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015)$ | Minor in Molecular <br>  <br> Biotechnology <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| BIOL4416 | Stem cells and regenerative biology | 6 | Pass in BIOC3601 or BIOC3604 or BIOL3211 or BIOL3401 or BIOL3402 or BIOL3403 or BIOL3404 or BIOL3408 | N | Y | --- | --- | 40 | Dr K W Y Yuen, Biological Sciences |  | Major in Biological <br> Sciences (Intensive) (2021,2020,2019,2018, 2017); Major in Molecular Biology \& Biotechnology (2021,2020,2019,2018, 2017,2016,2015,2014); Biology \& Biotechnology (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in M Biology \& Biotechnology $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |  |  |
| BIOL4417 | 'Omics' and systems biology | 6 | Pass in BIOC3601 or BIOC3604 or BIOL3211 or BIOL3401 or BIOL3402 or BIOL3403 or BIOL3404 or BIOL3408 | Y | Y | 2 | May | 40 | Dr J W Zhang, Biological Sciences |  <br> Major in Molecular <br>  <br> Biotechnology <br> (Intensive) <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015)$ | Major in Biochemistry <br> (2021,2020,2019,2018, <br> $2017,2016,2015,2014) ;$ <br> Major in Biological <br> Sciences (Intensive) <br> (2021,2020,2019,2018, <br> 2017); Major in <br>  <br> Boiotechology <br> (2021,2020,2019,2018, <br> $2017,2016,2015,2014) ;$ <br> Minor in Biochemistry <br> (2021,2020,2019,2014, <br> 2017,2016,2015,2014); <br> Minor in Molecular <br>  <br> Biotechnology <br> (2021,2020,2019,2018, <br> $2017,2016,2015,2014)$ |  |  |
| BIOL4451 | Cetacean behaviour, ecology and conservation: field research experience | 6 | Pass in at least one of the following courses: BIOL3101, BIOL3301, BIOL3313 or BIOL3320. This experiential field course is primarily for Ecology \& Biodiversity Major | N | N | --- | --- | 12 | , Biological Sciences |  | Major in Ecology \& Biodiversity (2016,2015,2014) |  |  |


|  |  |  | students. <br> The earliest that a student is allowed to take this experiential course is their year 3 study; and because it is conducted in early June, this course is best suited for year 3 students. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIOL4501 | Molecular phylogenetics and evolution | 6 | Pass in BIOL3401 or BIOL3408 | N | N | --- | --- | 25 | TBC, Biological Sciences |  |  |
| BIOL4505 | Oyster aquaculture: business and technology | 6 | Pass in BIOL3109 or BIOL3203 or BIOL3301 or BIOL3303 or ENVS3004 or ENVS3313; <br> and Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Ecology and Biodiversity Major or Environmental Science Major or Biological Science Major. Not for students who have passed in BIOL3505 | N | Y | --- | --- | 20 | Dr T Vengatesen, Biological Sciences | Major in Ecology \& Biodiversity (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Ecology \& Biodiversity (Intensive) (2021,2020,2019,2018, 2017,2016,2015) |  |
| BIOL4861 | Ecology \& biodiversity internship | 6 | Pass in at least 24 credits of advanced level disciplinary core / elective courses in the Ecology and Biodiversity Major. This course is for Ecology \& Biodiversity Major students only. The earliest that a student is allowed to take this course is their Year 3. | Y | Y | 1, 2, S | No exam | --- | Dr T Vengatesen, Biological Sciences |  <br> Biodiversity <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |
| BIOL4911 | Conservation science in practice | 6 | Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or <br>  <br>  <br> Biodiversity (Intensive) Major including BIOL3303. <br> This capstone course is for Ecology \& Biodiversity Major / Ecology \& Biodiversity (Intensive) Major students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | N | N | --- | --- | 9 | TBC, Biological Sciences |  | Major in Ecology \& Biodiversity (2018,2017,2016,2015, 2014); Major in Ecology \& Biodiversity (Intensive) $(2021,2020,2019,2018$, $2017,2016,2015)$ |
| BIOL4912 | Sensory evaluation of food | 6 | Pass in BIOL3201; and <br> Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Food \& Nutrional Science Major. <br> This capstone course is for Food \& Nutrional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. | N | N | --- | --- | 15 | Dr J C Y Lee, Biological Sciences |  | Major in Food \& Nutritional Science (2016,2015,2014) |
| BIOL4913 | Advanced practicum on food and nutrient analysis | 6 | Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) included BIOL3207 and / or BIOL3209 in the Food \& Nutrional Science Major. <br> This capstone course is for Food \& Nutrional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. | N | N | --- | --- | 8 | Dr J C Y Lee, Biological Sciences |  | Major in Food \& Nutritional Science (2018,2017,2016,2015, 2014) |
| BIOL4921 | Animal behaviour and behavioural ecology: field course | 6 | Pass in BIOL3101; and Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or | N | N | --- | --- | 15 | Biological Sciences |  | Major in Ecology \& Biodiversity (2016,2015,2014) |



List of BSc Courses

|  |  |  | BIOL4XXX) in the Food \& Nutritional Science Major; and Cumulative GPA of 3.0 or above. This capstone course is for Food \& Nutritional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. |  |  |  |  |  |  |  |  |  | \|2017,2016,2015,2014) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIOL4993 | Molecular biology \& biotechnology project | 12 | Pass in at least 24 credits of advanced level disciplinary core / elective courses in the Molecular Biology \& Biotechnology Major / Molecular Biology \& Biotechnology Major (Intensive); and Cumulative GPA of 3.0 or above. This capstone course is for Molecular Biology \& Biotechnology Major / Molecular Biology \& Biotechnology Major (Intensive) students only. The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 0 | No exam | --- | Dr A Yan, Biological Sciences |  |  | Major in Molecular <br>  <br> Biotechnology <br> (Intensive) <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015)$ | Major in Molecular <br>  <br> Biotechnology <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |
| BIOL4994 | Biological sciences project | 12 | Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Biological Sciences Major; and <br> Cumulative GPA of 3.0 or above. This capstone course is for Biological Sciences Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 0 | No exam | --- | Dr C Schunter, Biological Sciences |  |  | Major in Biological Sciences (Intensive) (2021,2020,2019,2018, 2017) |  <br> Major in Biological <br> Sciences <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |
| ENVS1301 | Environmental life science | 6 | NIL | Y | Y | 2 | May | 60 | Dr T Vengatesen, Biological Sciences |  | Major in Environmental <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014) ;$ <br> Minor in Environmental <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014) ;$ <br> Minor in Marine <br> Biology <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| ENVS2001 | Methods in environmental science | 6 | Pass in BIOL1309 or EASC1401 or ENVS1301 or ENVS1401 | Y | Y | 1 | No exam | 42 | Dr M Yasuhara, Biological Sciences | Major in Environmental <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ | Minor in Environmental <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| ENVS2002 | Environmental data analysis | 6 | Pass in BIOL1309 or EASC1401 or ENVS1301 or ENVS1401 | Y | Y | 2 | May | 65 | Dr T C Bonebrake, Biological Sciences |  <br> Biodiversity <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014) ;$ <br>  <br> Biodiversity (Intensive) <br> (2021,2020,2019,2018, <br> $2017,2016,2015) ;$ <br> Major in Environmental <br> Science <br> (2021,2020,2019,2018, <br> $2017,2016,2015,2014)$ | Minor in Environmental Science $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |  |  |
| ENVS3004 | Environment, society and economics | 6 | Pass in one of the following courses: CHEM2041, EASC2404, ENVS2001 or ENVS2002 | Y | Y | 1 | Dec | --- | Dr C Dingle, Biological Sciences | Major in Environmental Science (2021,2020,2019,2018, $2017,2016,2015,2014) ;$ Minor in Environmental |  |  |  |


|  |  |  |  |  |  |  |  |  |  | Science <br> (2021,2020,2019,2018 <br> 2017,2016,2015,2014 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ENVS3019 | Urban ecology | 6 | Pass in BIOL2306 or ENVS2001 or ENVS2002 | Y | N | 1 | Dec | 75 | Dr T C Bonebrake, <br> Biological Sciences |  | Major in Ecology \& Biodiversity (2021,2020,2019,2018 Major in Ecology \& Biodiversity (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Major in Science (2021,2020,2019,2018, 2017,2016,2015,2014) Science $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |  |  |
| ENVS3020 | Global change ecology | 6 | Pass in BIOL2306 or ENVS2001 or ENVS2002 | N | Y | -- | -- | 65 | $\begin{array}{\|l\|} \hline \text { Dr C Dingle, Biological } \\ \text { Sciences } \end{array}$ |  | Major in Ecology \& Biodiversity (2021,2020,2019,2018, Major in Ecology \& Biodiversity (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Major in Science (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Environmental Science $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |  |  |
| ENVS3022 | Environmental science field course | 6 | Pass in ENVS2001 or Either pass in ENVS2002 or concurrently enrolled in ENVS2002 | N | Y | -- | -- | 10 | Dr M Yasuhara, Biological Sciences |  | Major in Environmental Science (2021,2020,2019,2018 2017,2016,2015) |  |  |
| ENVS3028 | Coastal Sustainability | 6 | Pass in BIOL2306 or BIOL3301 or BIOL3305 or BIOL3318 or ENVS2001 or ENVS2002 or EASC3020 | N | Y | -- | -- | 8 | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { Dr T Vengatesen, } \\ \text { Biological Sciences } \end{array} \end{array}$ |  | Major in Environmental Science (2021,2020,2019,2018 2017,2016,2015) |  |  |
| ENVS3202 | Plant physiology and climate change | 6 | Pass in BIOL2306 or ENVS2001 or ENVS2002 or EASC2404. <br> Priority will be given to students majoring in Environmental Science, Biological Science, and Earth System Science. | Y | Y | 1 | Dec | 40 | Dr J Wu, Biological Sciences |  | Major in Biological Sciences <br> (2011,2020,2019,2018, 2017,2016); Major in (Intensive) <br> (2021,2020,2019,2018, 2017); Major in (2021,2020,2019,2018 2017,2016,2015); Major in Molecular Biology \& Biotechnology (Intensive) 2017,2016): Minor in, Environmental Science (2021,2020) |  |  |
| ENVS3401 | Understanding tropical ecosystems in a changing world | 6 | Pass in ENVS2001 or ENVS2002 or BIOL2306 | N | Y | -- | -- | 20 | Dr A L Ashton, Biological Sciences |  | Major in Environmental Science (2021,2020,2019,2018, |  |  |








|  |  |  | CHEM3441, or already enrolled in this course; <br> NOT for students who have passed CHEM3441A in semester 1, 2015-16, or CHEM3441 in or before 2014-2015 (for students admitted in 2014-15 or before) Pass in CHEM2441 or CHEM2442 or CHEM2443; and Pass in CHEM3441 or CHEM3442, or already enrolled in any of these two courses (for students admitted in 2015-16 or thereafter) |  |  |  |  |  | Chemistry | $\begin{aligned} & (2021,2020,2019,2018, \\ & 2017,2016,2015) ; \\ & \text { Major in Chemistry } \\ & \text { (Intensive) } \\ & (2021,2020,2019,2018, \\ & 2017,2016,2015) \end{aligned}$ | (2014); Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CHEM3445 | Integrated laboratory | 6 | Pass in CHEM3443 or already enrolled in this course | Y | Y | s | No exam | 20 | Dr A M Y Yuen, Chemistry | Major in Chemistry (Intensive) $(2021,2020,2019,2018$, $2017,2016,2015)$ | Major in Chemistry <br> (2014); Minor in <br> Chemistry <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |
| CHEM3541 | Physical chemistry: Introduction to quantum chemistry | 6 | Pass in CHEM2541 | Y | Y | 1 | Dec | 100 | Dr C Y Yam, Chemistry | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Chemistry (Intensive) (2021,2020,2019,2018, 2017,2016,2015) | Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| CHEM3542 | Physical chemistry: statistical thermodynamics and kinetics theory | 6 | Pass in CHEM2541 | Y | Y | 2 | May | 50 | Dr. J Yang, Chemistry | Major in Chemistry <br> (Intensive) <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015)$ | Major in Chemistry (2014); Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| CHEM3999 | Directed studies in chemistry | 6 | Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major including a pass in CHEM2341 or CHEM2441 or CHEM2442 or CHEM2541 or CHEM3146. <br> This capstone course is for Chemistry Major/ Chemistry Major (Intensive) students only. <br> This course is designed for third year students who would like to take an early experience on research. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 1,2 | No exam | --- | Prof D L Phillips, Chemistry |  | Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Chemistry (Intensive) (2021,2020,2019,2018, 2017,2016,2015) |
| CHEM4142 | Symmetry, group theory and applications | 6 | Pass in CHEM3341 | Y | Y | 1 | Dec | 60 | Dr E C M Tse, Chemistry | Major in Chemistry (Intensive) $(2021,2020,2019,2018$, $2017,2016,2015)$ | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| CHEM4143 | Interfacial science and technology | 6 | Pass in CHEM3143 or CHEM3541 or CHEM3542 | N | Y | --- | -- | 50 | Prof G K Y Chan, Chemistry |  | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Chemistry (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| CHEM4144 | Advanced materials | 6 | Pass in CHEM3143 | Y | Y | 2 | May | 30 | DrECMTse, Chemistry | Major in Chemistry <br> (Intensive) <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015)$ | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Chemistry (2021,2020,2019,2018, |  |


|  |  |  |  |  |  |  |  |  |  |  | 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CHEM4145 | Medicinal chemistry | 6 | Pass in CHEM3441 or CHEM3442; and Not for students who have passed in BPHM3133, or already enrolled in this course. | Y | Y | 2 | May | 40 | Dr Y Li, Chemistry |  | Major in Biochemistry $(2021,2020,2019,2018$, $2017,2016,2015,2014) ;$ Major in Chemistry $(2021,2020,2019,2018$, $2017,2016,2015,2014) ;$ Major in Chemistry (Intensive) $(2021,2020,2019,2018$, $2017,2016,2015) ;$ Minor in Chemistry $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |  |  |
| CHEM4147 | Supramolecular chemistry | 6 | Pass in CHEM3341 and CHEM3441 | Y | Y | 2 | May | 40 | Dr H Y Au-Yeung, Chemistry |  | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Chemistry (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| CHEM4148 | Frontiers in Modern Chemical Science | 6 | Pass in CHEM3341 and CHEM3441. | Y | Y | 2 | May | 60 | Prof X D Li, Chemistry |  | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Chemistry (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| CHEM4241 | Modern chemical instrumentation and applications | 6 | Pass in CHEM3241 | Y | Y | 1 | Dec | 50 | Dr I K Chu, Chemistry | Major in Chemistry (Intensive) $(2021,2020,2019,2018$, $2017,2016,2015)$ | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Chemistry $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ 2017,2016,2015,2014) |  |  |
| CHEM4242 | Analytical chemistry | 6 | Pass in CHEM3241 or CHEM3242 | Y | Y | 2 | May | 50 | Dr K K H Ng, Chemistry |  | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Chemistry (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| CHEM4341 | Advanced inorganic chemistry | 6 | Pass in CHEM3341 | Y | Y | 1 | Dec | 50 | Prof C M Che, Chemistry |  | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Chemistry (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| CHEM4342 | Organometallic chemistry | 6 | Pass in CHEM3341 | Y | Y | 1 | Dec | 40 | Dr. J Z Liu, Chemistry |  | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Chemistry (Intensive) |  |  |



|  |  |  |  |  |  |  |  |  |  | 2017,2016,2015,2014); <br> Major in Chemistry (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CHEM4910 | Chemistry literacy and research | 6 | Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major including CHEM3241, and CHEM3341, and CHEM3441, and CHEM3541. <br> This capstone course is for Chemistry Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 2 | No exam | --- | Prof X D Li, Chemistry | Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) |
| CHEM4911 | Capstone experience for chemistry undergraduates: HKUtopia | 6 | Students are expected to have satisfactorily completed all introductory chemistry disciplinary core courses and at least 24 credits of advanced level disciplinary core/elective chemistry courses in the Chemistry Major. Students who are interested in taking the course should contact the course coordinator for application in April May. Late application may not be considered. <br> This capstone course is for Chemistry Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | s | No exam | --- | Dr A P L Tong, Chemistry | Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) | Major in Chemistry <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |
| CHEM4966 | Chemistry internship | 6 | Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major. <br> This capstone course is for Chemistry Major/ Chemistry Major (Intensive) students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 1, 2, S | No exam | --- | Dr H Y Au-Yeung, Chemistry | Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Chemistry (Intensive) (2021,2020,2019,2018, 2017,2016,2015) |
| CHEM4999 | Chemistry project | 12 | Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major including CHEM3241, and CHEM3341, and CHEM3441, and CHEM3541. <br> This capstone course is for Chemistry Major/ Chemistry Major (Intensive) students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 0 | No exam | --- | Dr J Y Tang, Chemistry | Minor in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014) | Major in Chemistry (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Chemistry (Intensive) (2021,2020,2019,2018, 2017,2016,2015) |
| School of C | inese |  |  |  |  |  |  |  |  |  |  |
| CSC19001 | Practical Chinese for science students | 6 | NIL | Y | Y | 1,2 | Dec, May | --- | Mr K W Wong, Chinese |  |  |
| Department | f Earth Sciences |  |  |  |  |  |  |  |  |  |  |
| EASC1020 | Introduction to climate science | 6 | NIL | Y | Y | 2 | May | --- | Prof Z H Liu, Earth Sciences | Major in Environmental Science (2021,2020,2019,2018, |  |



|  |  |  |  |  |  |  |  |  |  |  | Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASC2406 | Geochemistry | 6 | Pass in EASC1402 | Y | Y | 2 | May | --- | $\begin{aligned} & \text { Dr S H Li, Earth } \\ & \text { Sciences } \end{aligned}$ | Major in Geology (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Geology (Intensive) (2021,2020,2019,2018, 2017,2016,2015) |  |  |  |
| EASC2407 | Mineralogy | 6 | Pass in EASC1402 | Y | Y | 1 | Dec | 30 | Prof M F Zhou, Earth Sciences | Major in Geology $(2021,2020,2019,2018$, $2017,2016,2015,2014) ;$ Major in Geology (Intensive) $(2021,2020,2019,2018$, $2017,2016,2015)$ |  |  |  |
| EASC2408 | Planetary geology | 6 | Pass in EASC1401 or EASC1402 or PHYS1650 | Y | Y | 2 | May | --- | Dr M H Lee, Earth Sciences | Major in Astronomy $(2017,2016,2015,2014)$ | Major in Geology (Intensive) <br> (2021,2020,2019,2018, 2017,2016,2015); Minor in Astronomy (2021,2020,2019,2018) |  |  |
| EASC2409 | Regional field studies | 6 | Pass in EASC1401 or EASC1402; and consent of course coordinator | Y | Y | 0 | No exam | 10 | $\begin{array}{\|l} \text { Dr J R Ali, Earth } \\ \text { Sciences } \end{array}$ | Major in Geology <br> (lntensive) <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015)$ |  |  |  |
| EASC2410 | Data analysis and modeling in earth sciences | 6 | Pass in EASC1401 | Y | Y | 1 | No exam | --- | Dr B Zhang, Earth Sciences | Major in Earth System <br> Science <br> $(2021,2020,2019,2018$, <br> $2017)$ |  |  |  |
| EASC2411 | Introduction to the Earth-Life system | 6 | Pass in EASC1401 <br> Not for students who have passed in EASC1406 | Y | Y | 2 | No exam | --- | Dr Y Li, Earth Sciences | Major in Earth System <br> Science <br> (2021,2020,2019,2018, <br> 2017) | Major in Earth System Science $(2016,2015)$ |  |  |
| EASC3020 | Global change: anthropogenic impacts | 6 | Pass in EASC2404 or ENVS2001 | N | Y | --- | --- | --- | Prof Z H Liu, Earth Sciences |  | Major in Earth System Science (2021,2020,2019,2018, 2017); Major in Environmental Science $(2021,2020,2019,2018$, $2017,2016,2015,2014) ;$ Major in Geology (Intensive) (2021,2020,2019,2018, $2017,2016,2015) ;$ Minor in Earth Sciences (2021,2020,2019,2018, $2017,2016,2015,2014) ;$ Minor in Environmental Science (2021,2020,2019,2018, $2017,2016,2015,2014)$ |  |  |
| EASC3402 | Petrology | 6 | Pass in EASC2407 | Y | Y | 2 | May | --- | Prof G Zhao, Earth Sciences | Major in Geology (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Geology (Intensive) (2021,2020,2019,2018, 2017,2016,2015) | Minor in Earth <br> Sciences <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| EASC3403 | Sedimentary environments | 6 | Pass in EASC2402 or EASC3402 | Y | Y | 2 | May | --- | Dr N R McKenzie, Earth Sciences | Major in Geology (2021,2020,2019,2018, 2017,2016,2015,2014); | Major in Earth System Science <br> (2021,2020,2019,2018, |  |  |




|  |  |  |  |  |  |  |  |  |  |  | Minor in Earth Sciences (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASC3417 | Earth through time | 6 | Pass in EASC3403 | Y | Y | 1 | Dec | --- | Dr S C Chang, Earth Sciences | Major in Geology <br> (Intensive) <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015)$ | Major in Earth System <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014) ;$ <br> Major in Geology <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014) ;$ <br> Minor in Earth <br> Sciences <br> (2021,2020,2019,2018, <br> $2017,2016,2015,2014)$ |  |  |
| EASC3418 | Coasts and coastal change | 6 | Pass in EASC2401 and EASC2402 OR Pass in ENVS2001 | Y | Y | 2 | May | --- | Dr N Khan, Earth Sciences |  | Major in Earth System <br> Science <br> $(2021,2020,2019,2018$, <br> $2017)$ |  |  |
| EASC3419 | Earth System Science Field Studies | 6 | Pass one of the following 2000-level courses: <br> EASC2402 or ENVS2001 or GEOG2137 Or upon special arrangement with the course coordinator | Y | Y | S | TBC | 15 | Dr Jed O Kaplan, Earth Sciences |  | Major in Earth System Science (2021,2020,2019,2018, 2017); Major in Environmental Science (2021,2020,2019,2018, 2017,2016,2015) |  |  |
| EASC3999 | Directed studies in earth sciences | 6 | Pass in at least 24 credits of advanced level (level 3 or 4 ) disciplinary core/elective courses in the Geology or Earth System Science Majors; and Cumulative GPA of 2.5 or above. This course is not a capstone course and students cannot use this course to fulfill the capstone requirement of the Earth System Science and Geology Majors. <br> The earliest that a student is allowed to take this course is their year 3 study. | Y | Y | 0 | No exam | --- | Prof Z H Liu, Earth Sciences |  | Major in Earth System Science (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Geology (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Geology (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Earth Sciences (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| EASC4403 | Biogeochemical cycles | 6 | Pass in EASC3403 or EASC3416 or ENVS3313 | Y | Y | 1 | Dec | --- | Dr Y Li, Earth Sciences | Major in Earth System Science $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ | Major in Geology <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Geology <br> (Intensive) <br> (2021,2020,2019,2018, 2017,2016,2015); <br> Minor in Earth <br> Sciences <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |  |
| EASC4406 | Earth dynamics \& global tectonics | 6 | Pass in EASC3403 or EASC3404 or EASC3408 or EASC3409 | Y | Y | 2 | May | --- | Prof G Zhao, Earth Sciences | Major in Geology (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Geology (Intensive) (2021,2020,2019,2018, 2017,2016,2015) | Minor in Earth <br> Sciences <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| EASC4407 | Regional geology | 6 | Pass in EASC3402; and (EASC3403 or EASC3404) | Y | Y | 1 | No exam | 40 | Dr A A G Webb, Earth Sciences | Major in Geology (Intensive) $(2021,2020,2019,2018$, $2017,2016,2015)$ | Major in Geology <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Minor in Earth <br> Sciences <br> (2021,2020,2019,2018, |  |  |

List of BSc Courses

|  |  |  |  |  |  |  |  |  |  |  | 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASC4408 | Special topics in earth sciences | 6 | Pass in any EASC3XXX or EASC4XXX course | N | N | --- | --- | 30 | Dr M H Lee, Earth Sciences |  | Major in Earth System <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014) ;$ <br> Major in Geology <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014) ;$ <br> Major in Geology <br> (Intensive) <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015) ;$ <br> Minor in Earth <br> Sciences <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| EASC4911 | Earth system: contemporary issues | 6 | Pass in at least 24 credits of advanced level (level 3 or 4 ) disciplinary core/elective courses in the Earth System Science Major including at least two of the following courses: <br> EASC3410, EASC3415 or ENVS3313. This capstone course is for Earth System Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 2 | No exam | --- | Dr S C Chang, Earth Sciences |  | Major in Geology <br> (Intensive) <br> (2021,2020,2019,2018, <br> $2017,2016,2015) ;$ <br> Minor in Earth <br> Sciences <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ | Major in Earth System Science $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |  |
| EASC4955 | Integrated field studies | 6 | Pass in at least 24 credits of advanced level (level 3 or 4 ) disciplinary core/elective courses in the Geology Major / Geology Major (Intensive). This must include either a PASS in, or student must be already enrolled in EASC3403, EASC3404 and EASC3409. This capstone course is for Geology Major/ Geology Major (Intensive) students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 2 | No exam | 35 | Dr J A King, Earth Sciences |  | Minor in Earth Sciences (2021,2020,2019,2018, 2017,2016,2015,2014) | Major in Geology (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Geology (Intensive) (2021,2020,2019,2018, 2017,2016,2015) |  |
| EASC4966 | Earth sciences internship | 6 | Pass in at least 24 credits of advanced level (level 3 or 4 ) disciplinary core/elective courses in the Geology or Earth System Science Majors. <br> This course is not a capstone course and students cannot use this course to fulfill the capstone requirement of the Earth System Science and Geology Majors. <br> The earliest that a student is allowed to take this course is their year 3 study. | Y | Y | 1, 2, S | No exam | --- | Dr M C Cheung, Earth Sciences |  | Major in Geology <br> (Intensive) <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015) ;$ <br> Minor in Earth <br> Sciences <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| EASC4999 | Earth sciences project | 12 | Pass in at least 24 credits of advanced level (level 3 or 4 ) disciplinary core/elective courses in the Geology or Earth System Science Majors; and Cumulative GPA of 2.7 or above. This course is not a capstone course and students cannot use this course to fulfill the capstone requirement of the Earth System Science and Geology Majors. <br> The earliest that a student is allowed to take this course is their year 3 study. | Y | Y | 0 | No exam | --- | Prof Z H Liu, Earth Sciences | Major in Geology (Intensive) $(2021,2020,2019,2018$, $2017,2016,2015)$ | Major in Earth System <br> Science <br> $(2021,2020,2019,2018$, <br> $201,2016,2015,2014) ;$ <br> Major in Geology <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014) ;$ <br> Minor in Earth <br> Sciences <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| ENVS1401 | Introduction to environmental science | 6 | NIL | Y | Y | 1 | No exam | --- | Dr C Not, Earth Sciences | Major in Environmental Science |  |  |  |


|  |  |  |  |  |  |  |  |  |  | (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Environmental Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ENVS2020 | Biogeochemistry of the environment | 6 |  | N | N | --- | --- |  |  |  |  |  |
| ENVS3007 | Natural hazards and mitigation | 6 | Pass in EASC2404 or ENVS2001 or ENVS2002 | Y | N | 1 | Dec | --- | Dr N S KHAN, Earth Sciences |  | Major in Earth System Science (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Environmental Science (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Geology (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Geology (Intensive) (2021,2020,2019,2018, 2017,2016,2015); <br> Minor in Environmental Science (2021,2020,2019,2018 2017,2016,2015,2014) |  |
| ENVS3042 | Pollution | 6 | Pass in EASC2401 or CHEM2241 or BIOL2103 or ENVS2001 | Y | Y | 1 | Dec | 50 | Dr X Luo, Earth Sciences |  | Major in Environmental Science (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Environmental Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| ENVS3313 | Environmental oceanography | 6 | Pass in BIOL2306 or EASC2404 or ENVS2001 or ENVS2002 | Y | Y | 2 | No exam | --- | Dr C Not, Earth Sciences | Minor in Marine <br> Biology <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ | Major in Earth System Science (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Environmental Science (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Geology (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Minor in Environmental Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| ENVS3999 | Directed studies in environmental science | 6 | Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Environmental Science Major. <br> This capstone course is for Environmental Science Major students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 1,2 | No exam | - | Dr C Dingle, Biological Sciences |  |  | Major in Environmental <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |
| ENVS4955 | Environmental science in practice | 6 | Pass in at least 12 credits of advanced level (level 3 or 4 ) disciplinary core/elective courses in Environmental Science Major. | N | N | --- | --- | 8 | Dr M Yasuhara, Biological Sciences |  |  | $\begin{array}{\|l\|} \hline \text { Major in Environmental } \\ \text { Science (2014) } \end{array}$ |
| ENVS4966 | Environmental science internship | 6 | Pass in at least 24 credits of advanced | Y | Y | 1, 2, S | No exam | --- | Dr C Dingle, Biological |  |  | Major in Environmental |


|  |  |  | level (level 3 or 4 ) disciplinary <br> core/elective courses in Environmental <br> Science Major. <br> This capstone course is for Environmental Science Major students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. |  |  |  |  |  | Sciences |  |  | Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$$\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ENVS4999 | Environmental science project | 12 | Pass in at least 24 credits of advanced level (level 3 or 4 ) disciplinary core/elective courses in Environmental Science Major; and <br> This capstone course is for Environmental Science Major students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 0 | No exam | --- | Dr C Dingle, Biological Sciences |  |  | Major in Environmental Science $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |
| Department of Mathematics |  |  |  |  |  |  |  |  |  |  |  |  |
| MATH1009 | Basic mathematics for business and economics | 6 | NIL <br> The course has no pre-requisite, but students are expected to have already achieved Level 2 or above in HKDSE Mathematics or equivalent. Not for students who have passed MATH1011 or MATH1013, or have already enrolled in these courses. <br> This course is exclusively for nonScience and non-Engineering students (i.e. not for students from the Faculty of Science or Engineering). | Y | Y | 1,2 | Dec, May | 540 | Dr Y M Chan (1st sem); Dr K H Law (2nd sem), Mathematics |  |  |  |
| MATH1011 | University mathematics I | 6 | Not for students: (a) with Level 2 or above in M1 or M2 of HKDSE Math or equivalent; (b) have passed or already enrolled in any of following courses: MATH1009, 1013, 1821, 1851, PHYS1150, CHEM1044, level 2 or above math courses; (c) have passed MATH1853. | Y | Y | 1,2 | Dec, May | 400 | Dr H Y Zhang, Mathematics |  | Major in Chemistry (Intensive) <br> (2021,2020,2019,2018, 2017,2016,2015); <br> Major in Molecular <br>  <br> Biotechnology <br> (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016,2015) |  |
| MATH1013 | University mathematics II | 6 | Level 2 or above in Module 1, or Module 2 of HKDSE Mathematics or equivalent, or <br> Pass in MATH1009 or MATH1011; and Not for students who have passed MATH1821, or (MATH1851 and MATH1853), or have already enrolled in this course. | Y | Y | 1,2 | Dec, May | 500 | Dr C W Wong, Mathematics |  | Major in Chemistry (Intensive) (2021,2020,2019,2018, 2017,2016,2015); <br>  <br> Biotechnology (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Major in Physics (Intensive) (2021,2020,2019,2018, 2017,2016); Minor in Actuarial Studies (2021,2020,2019,2018, 2017,2016,2015,2014) |  |


|  |  |  |  |  |  |  |  |  |  | Minor in Computational <br> \& Financial <br> Mathematics <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$; <br> Minor in Mathematics <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014) ;$ <br> Minor in Operations <br>  <br> Mathematical <br> Programming <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATH1641 | Mathematical laboratory and modeling | 6 | NIL | Y | N | 1 | Dec | 30 | Dr B Kane, Mathematics |  |  |  |
| MATH1821 | Mathematical methods for actuarial science I | 6 | Level 4 or above in HKDSE Mathematics plus Module 1, or Level 4 or above in HKDSE Mathematics plus Module 2, or equivalent; and Not for students who have passed MATH1013 or (MATH1851 and MATH1853), or have already enrolled in these courses. <br> For BSc(ActuarSc) students only. | Y | Y | 1 | Dec | --- | Dr C W Wong, Mathematics | BSc in Actuarial Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| MATH1851 | Calculus and ordinary differential equations | 6 | Level 2 or above in Module 1, or Module 2 of HKDSE Mathematics or equivalent, or Pass in MATH1011. <br> (This course is exclusively for Engineering students.) | Y | Y | 1,2 | Dec, May | 700 | Prof Y K Lau (1st sem); Dr X Zhang (2nd sem), Mathematics |  |  |  |
| MATH1853 | Linear algebra, probability and statistics | 6 | Level 2 or above in Module 1, or Module 2 of HKDSE Mathematics or equivalent, or Pass in MATH1011, or take MATH1011 and MATH1853 concurrently in the same semester. (This course is exclusively for Engineering students.) | Y | Y | 1,2 | Dec, May | 700 | Prof G Han, Mathematics |  |  |  |
| MATH2012 | Fundamental concepts of mathematics | 6 | Pass in MATH1013 or MATH1821 or (MATH1851 and MATH1853). Students with good grades in HKDSE Math Module 1 or Math Module 2 (or other equivalent qualifications) and have strong interests in math may also apply for taking this course concurrently with its prerequisites courses (subject to the approval from Course Selection Advisors). | Y | Y | 1,2 | Dec, May | --- | Dr Y M Chan, Mathematics | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics (Intensive) (2021,2020,2019,2018, 2017,2016) | Minor in Computational <br> \& Financial <br> Mathematics <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015) ;$ <br> Minor in Mathematics <br> (2021,2020,2019,2018, <br> $2017,2016,2015) ;$ <br> Minor in Operations <br>  <br> Mathematical <br> Programming <br> (2021,2020,2019,2018, <br> $2017,2016,2015)$ |  |
| MATH2014 | Multivariable calculus and linear algebra | 6 | Pass in MATH1013 or (MATH1851 and MATH1853). <br> Not for students who have passed MATH2822 or [(MATH2101 or MATH2102) and MATH2211], or have already enrolled in these courses. | Y | Y | 1,2 | Dec, May | --- | Dr H Y Zhang, Mathematics | Bachelor of Arts and Sciences in Applied Artificial Intelligence (2021,2020,2019); Major in Decision Analytics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Risk Management (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Statistics | Minor in Computational \& Financial Mathematics (2021,2020,2019,2018, 2017,2016,2015); <br> Minor in Mathematics (2021,2020,2019,2018, 2017,2016,2015); <br> Minor in Operations <br>  <br> Mathematical <br> Programming <br> (2021,2020,2019,2018, |  |



| MATH3002 | Mathematics seminar | 6 | Pass in MATH2012, MATH2101, MATH2211 and MATH2241 Subject to approval by the Department. | Y | Y | 2 | No exam | 12 | Prof T W Ng; Dr C Y Hui, Mathematics | Major in Mathematics <br> (Intensive) <br> $(2021,2020,2019,2018$, <br> $2017,2016)$ | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics/Physics (2017,2016,2015,2014) ; Minor in Mathematics $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATH3301 | Algebra I | 6 | Pass in MATH2101 | Y | Y | 1 | Dec | - | Prof Y K Lau, Mathematics | Major in Mathematics (2014); Major in Mathematics (Intensive) (2021,2020,2019,2018, 2017,2016); Major in Mathematics/Physics $(2017,2016,2015,2014)$ | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015); Minor in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| MATH3303 | Matrix theory and its applications | 6 | Pass in MATH2101 and MATH2102 | N | N | --- | --- | --- | Dr Y M Chan, Mathematics |  | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics/Physics (2017,2016,2015,2014) ; Minor in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| MATH3304 | Introduction to number theory | 6 | Pass in MATH2101 and MATH2211 | Y | Y | 2 | May | --- | Dr B Kane, Mathematics |  | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics/Physics $(2017,2016,2015,2014)$ ; Minor in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| MATH3401 | Analysis I | 6 | Pass in MATH2211 | Y | Y | 1 | Dec | --- | Prof M K P Ng, Mathematics | Major in Mathematics (2021,2020,2019,2018, $2017,2016,2015,2014) ;$ Maior in Mathematics (Intensive) (2021,2020,2019,2018, $2017,2016) ;$ Major in Mathematics (2017 Phsics (2016,2015,2014) | Minor in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| MATH3403 | Functions of a complex variable | 6 | Pass in MATH2211 and MATH2241 | Y | Y | 2 | May | --- | Dr K K Wong, Mathematics | Major in Mathematics <br> (2014); Major in <br> Mathematics <br> (Intensive) <br> $(2021,2020,2019,2018$, <br> $2017,2016)$ | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015); Major in Mathematics/Physics $(2017,2016,2015,2014)$ ; Minor in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| MATH3405 | Differential equations | 6 | Pass in (MATH2101 and MATH2211) or MATH2014 or (MATH1821 and MATH2822) | Y | Y | 2 | May | --- | Dr H Y Zhang, Mathematics | Major in Mathematics (Intensive) $(2021,2020,2019,2018$, $2017,2016)$ | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics/Physics (2017,2016,2015,2014) ; Minor in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Operations Research \& Mathematical |  |  |




|  |  |  |  |  |  |  |  |  |  |  | 2017,2016,2015,2014); <br> Minor in Operations <br>  <br> Mrogramming <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATH3906 | Financial calculus | 6 | Pass in (MATH2101 and MATH2211) or MATH2014 or (MATH1821 and MATH2822) or STAT2601 | Y | Y | ${ }^{2}$ | May | -- | Dr G Li, Mathematics | Minor in Computational \& Financial Mathematics $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |  |  |  |
| MATH3911 | Game theory and strategy | 6 | Pass in (MATH2101 and MATH2211) or (MATH1821 and MATH2822) | Y | Y | 2 | May | -- | Dr K H Law, Mathematics |  |  |  |  |
| MATH3943 | Network models in operations research | 6 | Pass in (MATH2101 and MATH2211) or MATH2014. | Y | N | 1 | Dec | -- | Dr. K H Law, Mathematics |  |  |  |  |


|  |  |  |  |  |  |  |  |  |  |  | Mathematics/Physics (2017,2016,2015,2014) ; Minor in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Operations Research \& Mathematical Programming (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATH3999 | Directed studies in mathematics | 6 | This capstone course is for Mathematics / Mathematics (Intensive), and Mathematics/Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study. Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX or MATH7XXX) in the Mathematics/ Mathematics (Intensive), and Mathematics/Physics Majors; and subject to approval by the Department. | Y | Y | 1,2 | No exam | --- | Prof X Yuan, Mathematics |  |  | Major in Mathematics (2021,2020,2019,2018, $2017,2016,2015,2014) ;$ Maior in Mathematics (Intensive) (2021,2020,2019,2018, $2017,2016) ;$ Major in Mathematics/Pyssics (2017,2016,2015,2014) |
| MATH4302 | Algebra II | 6 | Pass in MATH2102 and MATH3301 | Y | Y | 2 | May | --- | Prof J H Lu, Mathematics |  | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics (Intensive) (2021,2020,2019,2018, 2017,2016); Major in Mathematics/Physics (2017,2016,2015,2014) Minor in Mathematics $(2021,2020,2019,2018$, 2017,2016,2015,2014) |  |
| MATH4402 | Analysis II | 6 | Pass in MATH3401 | N | Y | --- | --- | --- | Dr Y M Chan, Mathematics |  | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics (Intensive) (2021,2020,2019,2018, 2017,2016); Major in Mathematics/Physics (2017,2016,2015,2014) Minor in Mathematics (2021,2020,2019,2018 2017,2016,2015,2014) |  |
| MATH4404 | Functional analysis | 6 | Pass in MATH2101, MATH2102, MATH2211, MATH2241 and MATH3401 | Y | Y | 2 | May | --- | Dr C W Wong, Mathematics | Major in Mathematics (Intensive) $(2021,2020,2019,2018$, $2017,2016)$ | Major in Mathematics <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014) ;$ <br> Major in <br> Mathematics/Physics <br> $(2017,2016,2015,2014)$ <br> $;$ Minor in Mathematics <br> (2021,2020,2019,2018, <br> $2017,2016,2015,2014)$ |  |
| MATH4406 | Introduction to partial differential equations | 6 | Pass in MATH2101, MATH2102, <br> MATH2241; and <br> Pass in MATH3405, or already enrolled in this course. | Y | Y | 1 | Dec | -- | Dr T K Wong, Mathematics | Major in Mathematics (Intensive) $(2021,2020,2019,2018$, $2017,2016)$ | Major in Mathematics <br> (2021,2020,2019,2018, <br> $2017,2016,2015,2014) ;$ <br> Maior in <br> Mathematics/Physics <br> (2017,2016,2015,2014) <br> $;$ Minor in Mathematics <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |



|  |  |  |  |  |  |  |  |  |  | Computational \& Financial Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Mathematics (2021,2020,2019,2018, Minor in Operations Research \& Mathematical Programming (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATH4910 | Senior mathematics seminar | 6 | This capstone course is for Mathematics / Mathematics (Intensive), and Mathematics/Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study. Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics/ Mathematics (Intensive), and Mathematics/Physics Majors; and subject to approval by the Department. | Y | N | 2 | No exam | 12 | Dr X Zhang; Dr TK Wong, Mathematics |  | Major in Mathematics (2021,2020,2019,2018, $2017,2016,2015,2014)$; Major in Mathematics (Intensive) (2021,2020,2019,2018, $2017,2016) ;$ Major in Mathematics $/$ Physics (2017,2016,2015,2014) |
| MATH4911 | Mathematics capstone project | 6 | This capstone course is for Mathematics / Mathematics (Intensive), and Mathematics/Physics Majors students only. This course is for third and fourth year students only. The earliest that a student is allowed to take this capstone course is their year 3 study. <br> Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics/ Mathematics (Intensive), and Mathematics/Physics Majors; and subject to approval by the Department. | N | N | --- | --- | --- | Prof T W Ng, Mathematics |  | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics (Intensive) (2021,2020,2019,2018, 2017,2016); Major in Mathematics/Physics (2017,2016,2015,2014) |
| MATH4966 | Mathematics internship | 6 | This capstone course is for Mathematics / Mathematics (Intensive), and Mathematics/Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study. Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics/ Mathematics (Intensive), and Mathematics/Physics Majors; and subject to approval by the Department. | Y | Y | 1, 2, S | No exam | --- | Dr T K Wong, Mathematics |  | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics (Intensive) (2021,2020,2019,2018, 2017,2016); Major in Mathematics/Physics (2017,2016,2015,2014) |
| MATH4999 | Mathematics project | 12 | This capstone course is for Mathematics / Mathematics (Intensive), and Mathematics/Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study. Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics/ Mathematics (Intensive), and Mathematics/Physics Majors; and subject to approval by the Department. | Y | Y | 0 | No exam | --- | Prof X Yuan, Mathematics |  |  |


| MATH7101 | Intermediate complex analysis | 6 | Pass in a first course in Complex Analysis such as MATH3403, and approval by the course coordinator. | Y | Y | 1 | No exam | --- | Prof T W Ng; Dr. X Zhang, Mathematics | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics (Intensive) (2021,2020,2019,2018, 2017,2016); Major in Mathematics/Physics (2017,2016,2015,2014) Minor in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATH7201 | Topics in geometry | 6 | Pass in (MATH4402 or MATH4501) and (MATH4511 or the approval of the course coordinator) | N | N | --- | --- | - | TBC, Mathematics | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics (Intensive) (2021,2020,2019,2018, 2017,2016); Major in Mathematics/Physics (2017,2016,2015,2014) ; Minor in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| MATH7202 | Complex manifolds | 6 | Pass in MATH3403 or MATH4501 or MATH7101. | Y | N | 2 | No exam | --- | Prof N Mok, Mathematics | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics (Intensive) (2021,2020,2019,2018, 2017,2016); Major in Mathematics/Physics (2017,2016,2015,2014) ; Minor in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| MATH7217 | Topics in financial mathematics | 6 | Pass in an advanced level mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) and subject to the approval of the course coordinator. | N | N | --- | --- | --- | TBC, Mathematics | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics (Intensive) <br> (2021,2020,2019,2018, 2017,2016); Major in Mathematics/Physics (2017,2016,2015,2014) ; Minor in <br> Computational \& Financial Mathematics (2021,2020,2019,2018, 2017,2016); Minor in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| MATH7219 | Topics in applied functional analysis | 6 | Pass in MATH3401 and MATH4404, or approval of the course coordinator. | N | N | --- | --- | --- | TBC, Mathematics | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics/Physics (2017,2016,2015,2014) ; Minor in Mathematics (2021,2020,2019,2018 2017,2016,2015,2014) |  |  |
| MATH7224 | Topics in advanced probability theory | 6 | Pass in MATH3603 and MATH4402, and approval of the course coordinator. | N | N | --- | --- | --- | TBC, Mathematics | Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Mathematics |  |  |






|  | magnetism |  | PHYS1250 or ENGG1310 |  |  |  |  |  |  | (2014); Major in Physics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Physics (Intensive) (2021,2020,2019,2018, 2017,2016) | (2017,2016,2015); Major in Mathematics/Physics (2017,2016,2015) Minor in Physics $(2021,2020,2019,2018)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHYS2260 | Heat and waves | 6 | Pass in PHYS1050 or PHYS1250 | N | N | --- | --- | --- | Dr M Su, Physics | Major in Physics $(2017,2016,2015,2014)$ | Major in Astronomy (2017,2016,2015); Major in Mathematics/Physics (2017,2016,2015) |
| PHYS2261 | Introductory heat and thermodynamics | 6 | Pass in PHYS1050 or PHYS1150 or PHYS1250 or ENGG1350 | Y | Y | 1 | Dec | --- | Dr S Z Zhang, Physics |  <br> Major in Physics <br> (2021,2020,2019,2018) <br> ;Major in Physics <br> (Intensive) <br> $(2021,2020,2019,2018$, <br> $2017,2016)$ | Minor in Physics $(2021,2020,2019,2018)$ |
| PHYS2265 | Introductory quantum physics | 6 | Pass in PHYS1050 or PHYS1150 or PHYS1250 or ENGG1300 | Y | Y | 1,2 | Dec, May | --- | Dr F K Chow, Physics | Major in Astronomy (2017,2016,2015,2014) ;Major in Mathematics/Physics $(2017,2016,2015,2014)$ ; Major in Physics (2021,2020,2019,2018, $2017,2016,2015,2014) ;$ Major in Physics (Intensive) (2021,2020,2019,2018, 2017,2016); Minor in Astronomy $(2017,2016,2015,2014)$ ;Minor in Physics (2017,2016,2015,2014) | Minor in Physics <br> $(2021,2020,2019,2018)$ |
| PHYS2650 | Modern astronomy | 6 | Pass in PHYS1650 | Y | Y | 1 | Dec | --- | Dr J J L Lim, Physics | Minor in Astronomy $(2021,2020,2019,2018)$ | Major in Physics (Intensive) $(2021,2020,2019,2018$, $2017,2016)$ |
| PHYS2850 | Atomic and nuclear physics | 6 | Pass in PHYS2265 | N | N | --- | --- | --- | Dr S Z Zhang, Physics |  |  |
| PHYS3150 | Theoretical physics | 6 | Pass in MATH2211 or PHYS2150 or PHYS2155 | Y | Y | 1 | Dec | --- | Dr C J Wang, Physics | Major in Physics <br> (Intensive) <br> (2021,2020,2019,2018, <br> $2017,2016)$ | Major in Astronomy <br> (2017,2016,2015,2014) <br> ; Major in <br> Mathematics/Physics <br> (2017,2016,2015,2014) <br> ; Major in Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Minor in Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |
| PHYS3151 | Machine learning in physics | 6 | Pass in MATH2014 or MATH2101 or MATH2211 or PHYS2155 or PHYS2160. <br> Working knowledge of Python is needed (please talk to the course instructor in case of doubt). | Y | Y | 2 | May | - | Dr Z Y Meng, Physics |  | Major in Astronomy (2017,2016,2015); Major in <br> Mathematics/Physics (2017,2016,2015); Major in Physics (2021,2020,2019,2018, 2017,2016,2015); (Intensive) (2021,2020,2019,2018, 2017,2016); Minor in Physics $\qquad$ |




| PHYS3751 | Physics of nanomaterials | 6 | Pass in PHYS3351; and Pass in PHYS3551, or already enrolled in this course. | N | N | --- | --- | --- | TBC, Physics |  | Major in Astronomy $(2017,2016,2015,2014)$ ; Major in Mathematics/Physics (2017,2016,2015,2014) ; Major in Physics (2017,2016,2015,2014) ; Minor in Physics 2017,2016,2015,2014 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHYS3760 | Physics laboratory | 6 | Pass in any two of the following courses: PHYS3350, PHYS3351, PHYS3450, PHYS3550 | Y | Y | 2 | May | 16 | Dr $T$ T Luu, Physics | Major in Physics <br> (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016) | Major in Astronomy (2017,2016,2015); Major in Mathematics/Physics (2017,2016,2015); Major in Physics (2021,2020,2019,2018, 2017,2016,2015); Minor in Physics (2021,2020,2019,2018, 2017,2016,2015) |  |
| PHYS3850 | Physical Optics | 6 | Pass in PHYS2250 and PHYS2255 | Y | Y | 2 | May | --- | Dr D K Ki, Physics |  | Major in Astronomy <br> (2017,2016,2015,2014) <br> ; Major in <br> Mathematics/Physics <br> (2017,2016,2015,2014) <br> ; Major in Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Physics <br> (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016); Minor in <br> Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |
| PHYS3851 | Atomic and nuclear physics | 6 | Pass in PHYS2265; and Pass in PHYS3351, or already enrolled in this course. | N | Y | --- | --- | --- | Dr J H C Lee, Physics |  | Major in Astronomy <br> (2017,2016,2015,2014) <br> ; Major in <br> Mathematics/Physics <br> (2017,2016,2015,2014) <br> ; Major in Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Physics <br> (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016); Minor in <br> Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |
| PHYS3999 | Directed studies in physics | 6 | Pass in at least 24 credits of advanced level (3XXX level or above) disciplinary core/elective courses of the Physics Major, Physics (Intensive) Major, Mathematics/Physics Major or Astronomy Major curriculum. This capstone course is for Astronomy, Mathematics/Physics, Physics, and Physics (Intensive) Majors students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 1, 2, S | No exam | --- | Dr F C C Ling, Physics |  | Minor in Physics <br> (2017,2016,2015,2014) | Major in Astronomy <br> (2017,2016,2015,2014) <br> ; Major in <br> Mathematics/Physics <br> (2017,2016,2015,2014) <br> ; Major in Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Physics <br> (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016) |
| PHYS4150 | Computational physics | 6 | Pass in (MATH3301 or MATH3401 or MATH3403 or MATH3405 or PHYS2160 or PHYS3151) and | Y | Y | 1 | Dec | 24 | Dr Z Y Meng, Physics |  | Major in Astronomy <br> (2017,2016,2015,2014) <br> ; Major in |  |


|  |  |  | (PHYS3350 or PHYS3351 or PHYS3450 or PHYS3550) |  |  |  |  |  |  |  | Mathematics/Physics (2017,2016,2015,2014) <br> Major in Physics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Physics (Intensive) (2021,2020,2019,2018, 2017,2016); Minor in Physics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHYS4151 | Data analysis and modeling in physics | 6 | Pass in (MATH3301 or MATH3401 or MATH3403 or MATH3405 or PHYS2160 or PHYS3150); and (PHYS3350 or PHYS3351 or PHYS3450 or PHYS3550) | N | Y | --- | --- | --- | Prof H F Chau, Physics |  | Major in Astronomy (2017,2016,2015,2014) ; Major in Mathematics/Physics (2017,2016,2015,2014) ; Major in Physics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Physics (Intensive) (2021,2020,2019,2018, 2017,2016); Minor in Physics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| PHYS4350 | Advanced classical mechanics | 6 | Pass in PHYS 3350 | N | N | --- | --- | --- | Prof S Q Shen, Physics |  | Major in Astronomy (2017,2016,2015,2014) Major in Mathematics/Physics (2017,2016,2015,2014) $;$ Major in Physics (2017,2016,2015,2014) ; Minor in Physics (2017,2016,2015,2014) |  |  |
| PHYS4351 | Advanced quantum mechanics | 6 | Pass in (PHYS2155 or PHYS3150) and PHYS3351 | Y | Y | 2 | May | --- | Dr C Xiao, Physics | Major in Mathematics/Physics $(2017,2016,2015,2014)$ | Major in Astronomy <br> (2017,2016,2015,2014) <br> ; Major in Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Physics <br> (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016); Minor in <br> Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |  |
| PHYS4450 | Advanced electromagnetism | 6 | Pass in (PHYS2155 or PHYS3150) and PHYS3450 | Y | Y | 1 | Dec | --- | Prof X D Cui, Physics |  | Major in Astronomy <br> (2017,2016,2015,2014) <br> ; Major in <br> Mathematics/Physics <br> (2017,2016,2015,2014) <br> ; Major in Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Physics (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016); Minor in <br> Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |  |
| PHYS4550 | Advanced statistical mechanics | 6 | Pass in PHYS3550 | N | N | --- | --- | --- | Dr Y J Tu, Physics |  | Major in Astronomy <br> (2017,2016,2015,2014) <br> ; Major in |  |  |




|  |  |  |  |  |  |  |  |  |  | (2021,2020,2019,2018, 2017,2016,2015); Major in Physics (Intensive) <br> (2021,2020,2019,2018, 2017,2016); Minor in Astronomy (2021,2020,2019,2018, 2017,2016,2015); Minor in Physics (2021,2020,2019,2018, 2017,2016,2015) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHYS4750 | Experimental physics | 6 | TBC | N | N | --- | --- | --- | TBC, Physics | Major in Astronomy <br> (2017,2016,2015,2014) <br> Major in <br> Mathematics/Physics <br> (2017,2016,2015,2014) <br> ; Major in Physics <br> (2017,2016,2015,2014) <br> ; Minor in Physics <br> (2017,2016,2015,2014) |  |
| PHYS4850 | Particle physics | 6 | Pass in PHYS3351 | N | Y | --- | --- | --- | Dr Y J Tu, Physics | Major in Astronomy <br> (2017,2016,2015,2014) <br> ; Major in <br> Mathematics/Physics <br> (2017,2016,2015,2014) <br> ; Major in Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Physics <br> (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016); Minor in <br> Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |
| PHYS4966 | Physics internship | 6 | Pass in at least 24 credits of advanced level (3XXX level or above) disciplinary core/elective courses of the Physics Major, Physics (Intensive) Major, Mathematics/Physics Major or Astronomy Major curriculum. This capstone course is for Astronomy, Mathematics/Physics, Physics, and Physics (Intensive) Majors students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | s | No exam | --- | Dr F C C Ling, Physics | Minor in Physics <br> (2017,2016,2015,2014) | Major in Astronomy <br> (2017,2016,2015,2014) <br> ; Major in <br> Mathematics/Physics <br> (2017,2016,2015,2014) <br> ; Major in Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Physics <br> (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016) |
| PHYS4999 | Physics project | 12 | Pass in at least 24 credits of advanced level (3XXX level or above) disciplinary core/elective courses of the Physics Major, Physics (Intensive) Major, Mathematics/Physics Major or Astronomy Major curriculum. This capstone course is for Astronomy, Mathematics/Physics, Physics, and Physics (Intensive) Majors students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 0 | No exam | --- | Dr F C C Ling, Physics | Minor in Physics $(2017,2016,2015,2014)$ | Major in Astronomy <br> (2017,2016,2015,2014) <br> ; Major in <br> Mathematics/Physics <br> (2017,2016,2015,2014) <br> ; Major in Physics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Major in Physics <br> (Intensive) <br> (2021,2020,2019,2018, <br> 2017,2016) |
| PHYS7350 | Graduate classical mechanics | 6 | Pass in PHYS4350 | N | N | --- | --- | --- | TBC, Physics | Major in Astronomy (2017,2016,2015,2014) ; Major in Mathematics/Physics |  |




who are eligible for exemption. Students
should take this course in their first should take this course in their first year.)

2017,2016,2015,2014) Major in Biological Sciences $(2021,2020,2019,2018)$
$2017,2016,2015,2014) ;$ Major in Biological
Sciences (Intensive) (2021,2020,2019,2018 2017); Major
(2021,2020,2019,2018 2017,2016,2015,2014); Major in Chemistry
(Intensive)
(2021,2020,2019,2018 2017,2016,2015);
Major in Decision
Major in Decision
Analytics
(2021,2020,2019,2018 $(2021,2020,2019,2018$
$2017,2016,2015,2014)$ Major in Earth System Mcience
Sce
(2021,2020,2019,2018 2017,2016,2015,2014): Major in Ecology
Biodiversity (2021,2020,2019,2018 2017,2016,2015,20 Major in Ecology \&
Biodiversity (Inten (2021,2020,2019,2018, 2017,2016,2015); Major in Environmental Science
(2021,

2021,2020,2019,2018, 2017,2016,2015,2014); Major in Food \&
Nutritional Scien
Nutritional Science $(2021,2020,2019,2018$,
$2017,2016,2015,2014):$ Major in Geology (2021,2020,2019,2018 2017,2016,2015,2014); 2017,2016,2015,2
Major in Geology (Intensive)

(2021, 2020, 2019 | $(2017,2016,2015$ |
| :--- |

Major in Mathematics (2021,2020,2019,2018, 2017,2016,2015,2014)
Major in Mathematics (Intensive)
2021,2020,2019,2018 2017,2016); Major Mathematics/Physics (2017,2016,2015,2014) Major in M
Biology \&
(20iechnology
(2021,2020,2019,2018 $(2021,2020,2019,2018$
$2017,2016,2015,2014)$ Major in Molecular
Biology \&
Biotechnology
(2021,2020,2019,2018, $(2017,2016,2015)$
2015 Major in Physics (2021,2020,2019,2018,


|  |  |  |  |  |  |  |  |  |  | 2017,2016); Major in Mathematics/Physics (2017,2016,2015,2014) Major in Molecular Biology \& Biotechnology (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Molecular Biology \& Biotechnology (Intensive) (2021,2020,2019,2018, 2017,2016,2015); Major in Physics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Physics (Intensive) (2021,2020,2019,2018, 2017,2016); Major in Risk Management 2017,2016,2015,2014); Major in Statistics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCNC1113 | The big history of our planet: a scientific perspective on everything that has ever happened | 6 | Level 3 or above in at least one science subject at the pre-university level (HKDSE Physics, Chemistry, Biology, Combined/Integrated Science or equivalent) <br> This course is not offered to students in the 6901 BSc or 6119 BEd\&BSc programmes. | N | Y | --- | --- | 50 | Dr W M Y Cheung, Faculty |  |  |  |
| SCNC2121 | Sustainable food production | 6 | Students are expected to have passed at least 30 credits of level 1 and/or level 2 science courses. Students will also need to pass an interview in order to be enrolled in the course. | N | Y | --- | --- | 32 | Dr H S EI-Nezami, Biological Sciences |  |  |  |
| SCNC2122 | Marine life science: a North East Pacific perspective | 6 | Students are expected to have passed at least 30 credits of level 1 and/or level 2 science courses. Students will also need to pass an interview in order to be enrolled in the course. | N | Y | --- | --- | 32 | Dr T Vengatesen, Biological Sciences |  |  |  |
| SCNC3111 | Frontiers of science honours seminar course | 6 | Pass in a level 2 science course. The course is for Science students only Students who participated or will participate in ORF/SRF must take this course. | Y | Y | 1 | No exam | 120 | Dr R K W Lui, Faculty |  |  |  |



| APAI3799 | Directed studies in Applied AI | 6 | Pass in at least 24 credits of advanced level disciplinary core/elective courses in BASc(AppliedAI) programme; and Not for students who have already enrolled in APAI4798 in this academic year. <br> This capstone course is only for BASc (AppliedAI) students; and subject to the consent of the course coordinator. The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 1,2 | No exam | 50 | Prof T W Ng, Mathematics |  | Bachelor of Arts and Sciences in Applied Artificial Intelligence (2021,2020,2019) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| APAl4011 | Natural language processing | 6 | Pass in STAT2602 and (COMP2113 or COMP2119 or COMP2396). Recommended: familiarity with deep learning or machine learning; strong programming skills (e.g., Python) For BASc(AppliedAI) students only. | Y | Y | 2 | May | 30 | Dr L Yu, Statistics \& Actuarial Science | Bachelor of Arts and Sciences in Applied Artificial Intelligence (2021,2020,2019) |  |
| APAI4012 | High-performance computing | 6 | TBC For BASc(AppliedAI) students only. | N | Y | --- | --- |  | TBC | Bachelor of Arts and Sciences in Applied Artificial Intelligence (2021,2020,2019) |  |
| APAI4022 | Omics data analysis | 6 | Pass in STAT2602, and pass or already enrolled in STAT3612 <br> Knowledge in basic molecular biology/biochemistry/bioinformatics, undergraduate level statistics knowledge and programming skills are needed. <br> For BASc(AppliedAI) students only. | N | N | --- | --- | 30 | Dr D Y Zhang, Statistics \& Actuarial Science | Bachelor of Arts and Sciences in Applied Artificial Intelligence (2021,2020,2019) |  |
| APAI4023 | Medical image analysis | 6 | TBC <br> For BASc(AppliedAI) students only. | N | N | --- | --- |  | TBC | Bachelor of Arts and Sciences in Applied Artificial Intelligence (2021,2020,2019) |  |
| APAI4099 | Special topics of applied AI | 6 | TBC For BASc(AppliedAI) students only. | N | N | --- | --- |  | TBC, Statistics \& Actuarial Science | Bachelor of Arts and Sciences in Applied Artificial Intelligence (2021,2021,2021,2021, <br> 2021,2020,2020,2020,2 020,2020,2019,2019,20 19,2019,2019) |  |
| APAI4766 | Applied Al internship | 6 | Pass in at least 24 credits of advanced level disciplinary core/elective courses in student's selected concentration in $\mathrm{BASc}($ AppliedAI ) programme including COMP3340, MATH3904 and <br> STAT3612. <br> This internship course is only for BASc (AppliedAI) students. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 1, 2, S | No exam |  | Dr A S M Lau, Statistics \& Actuarial Science |  | Bachelor of Arts and <br> Sciences in Applied <br> Artificial Intelligence <br> (2021,2020,2019) |
| APAI4798 | Applied Al project | 12 | Pass in at least 24 credits of advanced level disciplinary core/elective courses in BASc(AppliedAI) programme; and This is a selective course. Student are expected to have a CGPA higher than 3.0 and their enrollment is subject to the approval of the course coordinator. Not for students who have already enrolled in APAI3799 in this academic year. <br> This capstone course is only for BASc (AppliedAI) students; The earliest that a student is allowed to | Y | Y | 0 | No exam | 50 | Prof T W Ng, Mathematics |  | Bachelor of Arts and <br> Sciences in Applied <br> Artificial Intelligence <br> $(2021,2020,2019)$ |






|  |  |  | Not for students who have passed or already enrolled in any of these courses: STAT2601, STAT2901, STAT3907, STAT4601, ECON2280. |  |  |  |  |  |  |  | 2017,2016,2015,2014) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { STAT3615 }}$ | Practical mathematics for investment | 6 | Pass in (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or STAT2601 or (STAT1603 and any University level 2 course) or STAT2901; and Not for students who have passed in STAT2902, or have already enrolled in this course. | Y | Y | 2 | May | --- | Prof K C Yuen, Statistics \& Actuaria Science | Major in Risk Management (2021,2020,2019,2018, 2017,2016,2015,2014) | Minor in Actuarial <br> Studies <br> (2021,2020,2019,2018, <br> $2017,2016,2015,2014) ;$ <br> Minor in Risk <br> Management <br> (2021,2020,2019,2018, <br> $2017,2016,2015,2014)$ |  |  |
| STAT3616 | Advanced SAS programming | 6 | Pass in STAT2601 or STAT2901 (Students are strongly recommended to take STAT2603 or STAT2604 prior to taking this course.) | N | N | --- | --- | 50 | TBC, Statistics \& Actuarial Science |  | BSc in Actuarial Science <br> (2017,2016,2015,2014) <br> ; Major in Decision Analytics <br> (2017,2016,2015,2014) <br> ; Major in Statistics <br> (2017,2016,2015,2014) <br> ; Minor in Statistics <br> $(2017,2016,2015,2014)$ |  |  |
| STAT3617 | Sample survey methods | 6 | Pass or already enrolled in BIOL2102, or (ECON1280 and any University level 2 course), or (STAT1601 and any University level 2 course), or (STAT1602 and any University level 2 course), or STAT2601, or (STAT1603 and any University level 2 course), or STAT2901. | Y | Y | 2 | May | --- | Ms O T K Choi, Statistics \& Actuarial Science |  | Major in Food \& Nutritional Science (2021,2020,2019); (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Statistics $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |  |  |
| STAT3618 | Derivatives and risk management | 6 | Pass in STAT3615; and Not for students who have passed or already enrolled in any of the following courses: FINA2322, STAT3905, STAT3910; and Not for BSc(Actuarial Science) students. | Y | Y | 1 | Dec | --- | Dr K P Wat, Statistics \& Actuarial Science |  | Major in Risk <br> Management <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Minor in Risk <br> Management <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |  |
| STAT3620 | Modern nonparametric statistics | 6 | Pass in STAT2602 or STAT3902 | N | Y | --- | --- | --- | TBC, Statistics \& Actuarial Science |  | Major in Decision Analytics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Statistics (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Statistics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| STAT3621 | Statistical data analysis | 6 | Pass in STAT3600 or STAT3907 (Students are strongly recommended to take STAT2603 or STAT2604 prior to taking this course.) | Y | Y | 2 | May | 50 | Dr J F Xu, Statistics \& Actuarial Science |  | Major in Decision Analytics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Statistics (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Statistics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| STAT3622 | Data visualization | 6 | Pass in STAT2602 or STAT3902 | N | N | --- | -- | 50 | Prof G Yin, Statistics \& Actuarial Science |  | Bachelor of Arts and Sciences in Applied Artificial Intelligence (2021,2020,2019); Major in Decision Analytics |  |  |


|  |  |  |  |  |  |  |  |  |  |  | $\left\|\begin{array}{l} (2021,2020,2019,2018, \\ 2017,2016,2015,2014) \end{array}\right\|$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STAT3655 | Survival analysis | 6 | Pass in STAT3902, or already enrolled in this course; or <br> Pass in STAT3600 or STAT3901; and Not for students who have passed in STAT3955, or already enrolled in this course. | N | N | --- | --- | --- | Dr J F Xu, Statistics \& Actuarial Science |  | Bachelor of Arts and Sciences in Applied Artificial Intelligence (2021,2020,2019); Major in Decision Analytics (2021,2020,2019,2018, 2017,2016); Major in Risk Management (2021,2020,2019,2018, 2017,2016); Major in Statistics (2021,2020,2019,2018 2017,2016,2015,2014); Minor in Statistics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| STAT3799 | Directed studies in statistics | 6 | Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Decision Analytics/Risk Management/Statistics Majors; and Not for students who have already enrolled in STAT4799 in this academic year. This capstone course is only for students majoring in Decision Analytics/Risk Management/Statistics; and subject to the consent of course coordinator. This course is mutually exclusive with STAT4710. The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 1,2 | No exam | 50 | Prof S M S Lee, Statistics \& Actuarial Science |  |  | Major in Decision Analytics (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Risk Management (2021,2020,2019,2018, 2017,2016,2015,2014); Major in Statistics $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ 2017,2016,2015,2014) |
| STAT3901 | Life contingencies I | 6 | (Pass in STAT2602 and STAT3615) or (Pass in STAT2902 and (Pass in STAT3902 or already enrolled in this course)) or <br> (Pass in STAT2602 and STAT2902) | Y | Y | 1 | Dec | --- | Prof K C Yuen, Statistics \& Actuarial Science | BSc in Actuarial <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ | Minor in Actuarial <br> Studies <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |
| STAT3902 | Statistical models | 6 | Pass in STAT2901; and Not for students who have passed in STAT2602, or already enrolled in this course; and For BSc(Actuarial Science) students only. | Y | Y | 1 | Dec | --- | Dr J F Xu, Statistics \& Actuarial Science | BSc in Actuarial <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| STAT3903 | Stochastic models | 6 | Pass in STAT2901; and Not for students who have passed in MATH3603, or have already enrolled in this course; and <br> Not for students who have passed in STAT3603, or have already enrolled in this course; and <br> For BSc(Actuarial Science) students only. | Y | Y | 2 | May | --- | Dr K Zhu, Statistics \& Actuarial Science | BSc in Actuarial Science $(2021,2020,2019,2018$, $2017,2016,2015,2014)$ |  |  |
| STAT3904 | Corporate finance for actuarial science | 6 | [(Pass in ACCT1101 and STAT2902) or (Pass in STAT3610 and STAT3615)]; and <br> Not for students who have passed in FINA1310, or have already enrolled in this course. | Y | Y | 2 | May | --- | Dr D Lee, Statistics \& Actuarial Science |  <br> BSc in Actuarial <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ | Minor in Actuarial <br> Studies <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |
| STAT3905 | Introduction to financial derivatives | 6 | Pass in STAT2902; and Not for students who have passed in STAT3618, or have already enrolled in this course; and Not for students who have passed in | Y | Y | 1 | Dec | --- | Dr K C Cheung, Statistics \& Actuarial Science |  <br> BSc in Actuarial <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |


|  |  |  | FINA2322, or have already enrolled in this course; and <br> For BSc(Actuarial Science) students only. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STAT3906 | Risk theory I | 6 | Pass in STAT3903, or already enrolled in this course; or Pass in MATH3603 or STAT3603 | Y | Y | 1 | Dec | --- | Dr K C Cheung, Statistics \& Actuarial Science | BSc in Actuarial <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ | Minor in Actuarial <br> Studies <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| STAT3907 | Linear models and forecasting | 6 | Pass in STAT2602 or STAT3902, or already enrolled in this course; and Not for students who have passed in STAT3600, or have already enrolled in this course; and <br> Not for students who have passed in STAT4601, or have already enrolled in this course; and <br> Not for students who have passed in ECON2280, or have already enrolled in this course; and <br> For BSc(Actuarial Science) students only. | Y | Y | 2 | May | --- | Prof G Li, Statistics \& Actuarial Science | BSc in Actuarial <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |  |
| STAT3908 | Credibility theory and loss distributions | 6 | Pass in STAT2602 or STAT3902 or STAT3906 | Y | Y | 2 | May | --- | Dr K C Cheung, Statistics \& Actuarial Science | BSc in Actuarial <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ | Minor in Actuarial <br> Studies <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| STAT3909 | Life contingencies II | 6 | Pass in STAT3901, or already enrolled in this course; and For BSc(Actuarial Science) students only. | Y | Y | 2 | May | --- | Dr D Lee, Statistics \& Actuarial Science | BSc in Actuarial <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |  |
| $\overline{\text { STAT3910 }}$ | Financial economics I | 6 | Pass in STAT2602 or STAT3902; and Not for students who have passed in STAT3618, or have already enrolled in this course; and Not for students who have passed in FINA2322, or have already enrolled in this course. | Y | Y | 1 | Dec | --- | Prof HL Yang, Statistics \& Actuarial Science | BSc in Actuarial <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ | Minor in Actuarial Studies (2021,2020,2019,2018, 2017,2016,2015,2014) |  |  |
| STAT3911 | Financial economics II | 6 | Pass in MATH3603 or STAT3603 or STAT3903 or STAT3910 | Y | Y | 2 | May | --- | Prof HL Yang, Statistics \& Actuarial Science | BSc in Actuarial <br> Science <br> $(2017,2016,2015,2014)$ | BSc in Actuarial Science <br> (2021,2020,2019,2018) <br> ; Major in Risk <br> Management <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014); <br> Minor in Actuarial <br> Studies <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |  |  |
| $\overline{\text { STAT3951 }}$ | Further topics in contingencies | 6 | Pass in STAT3909; and Pass in STAT3910, or already enrolled in this course; and For BSc(Actuarial Science) students only. | Y | Y | 1 | Dec | --- | Dr D Lee, Statistics \& Actuarial Science |  | BSc in Actuarial <br> Science <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| STAT3952 | Investment and asset management | 6 | Pass in STAT3901; and Not for students who have passed in FINA2320, or have already enrolled in this course; and For BSc(Actuarial Science) students only. | N | N | --- | --- | --- | TBC, Statistics \& Actuarial Science |  |  |  |  |
| STAT3953 | Fundamentals of actuarial practice | 6 | Pass in STAT3901. | Y | Y | 1 | No exam | - | Dr A G Benchimol, Statistics \& Actuarial Science |  | BSc in Actuarial Science (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Actuarial Studies |  |  |



|  |  |  |  |  |  |  |  |  |  |  | Analytics (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Statistics (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STAT4603 | Current topics in risk management | 6 | Pass in (STAT3618 or FINA2322) | Y | Y | 1 | Dec | --- | Dr O T K Choi, Statistics \& Actuarial Science |  | Major in Risk Management (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Risk Management (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| STAT4606 | Risk management and Basel Accords in banking and finance | 6 | Pass in STAT3618 or STAT3910 or STAT3905 or (FINA2322 and any University level 3 course) | N | N | --- | --- | --- | Mr P K Y Pang, Statistics \& Actuarial Science |  | Major in Risk Management (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Risk Management (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| STAT4607 | Credit risk analysis | 6 | Pass in STAT3618 or STAT3905 or STAT3910 or (FINA2322 and any University level 3 course) | Y | Y | 2 | May | --- | Dr K P Wat, Statistics \& Actuarial Science |  | BSc in Actuarial Science (2019,2018,2017,2016, 2015,2014); Major in Risk Management (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Risk Management (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| STAT4608 | Market risk analysis | 6 | Pass in STAT3907 and STAT3910; or Pass in STAT4601 and (FINA2320 or STAT3609) | Y | Y | 2 | May | --- | Dr K Zhu, Statistics \& Actuarial Science |  | BSc in Actuarial Science (2019,2018,2017,2016, 2015,2014); Major in Risk Management (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Risk Management (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| STAT4609 | Big data analytics | 6 | Pass in STAT3612 or STAT4904 | Y | Y | 2 | No exam | 50 | Dr M M Y Zhang, Statistics \& Actuarial Science | Major in Decision <br> Analytics <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014)$ |  |  |
| STAT4610 | Bayesian learning | 6 | Pass in STAT3600 or STAT3602 or STAT3603 or STAT3902 | N | Y | --- | --- |  | Prof G Yin, Statistics \& Actuarial Science |  | Bachelor of Arts and <br> Sciences in Applied <br> Artificial Intelligence <br> $(2021,2020,2019) ;$ <br> Major in Decision <br> Analytics <br> $(2021,2020,2019,2018$, <br> $2017,2016) ;$ Major in <br> Statistics <br> $(2021,2020,2019,2018$, <br> $2017,2016) ;$ Minor in <br> Statistics <br> $(2021,2020,2019,2018$, <br> $2017,2016)$ |  |
| STAT4710 | Capstone experience for statistics undergraduates | 6 | Students are expected to have satisfactorily completed at least 24 credits of advanced level disciplinary | Y | Y | 1,2 | No exam | 50 | Prof G Yin, Statistics \& Actuarial Science |  |  | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { Major in Decision } \\ \text { Analytics } \\ (2021,2020,2019,2018, \end{array} \\ \hline \end{array}$ |



| STAT4799 | Statistics project | 12 | Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Decision Analytics/Risk Management/Statistics Majors including STAT3600; and <br> Pass or already enrolled in at least one of the following courses: STAT3612, STAT3911, STAT4601, STAT4602; and Not for students who have already enrolled in STAT3799 in this academic year. <br> This capstone course is only for students majoring in Decision Analytics/Risk Management/Statistics; and subject to the consent of course coordinator. <br> This course is mutually exclusive with STAT4710. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. | Y | Y | 0 | No exam | 50 | Prof S M S Lee, Statistics \& Actuarial Science |  |  | Major in Decision <br> Analytics <br> $(2021,2020,2019,2018$, <br> 2017,2016,2015,2014); <br> Major in Risk <br> Management <br> $(2021,2020,2019,2018$, <br> $2017,2016,2015,2014) ;$ <br> Major in Stataistics <br> (2021,2020,2019,2018, <br> 2017,2016,2015,2014) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STAT4901 | Risk theory II | 6 | Pass in STAT3906 | N | N | --- | --- | --- | TBC, Statistics \& Actuarial Science |  | BSc in Actuarial Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| STAT4902 | Selected topics in actuarial science | 6 | Pass in STAT3906 | Y | N | 2 | May | --- | Dr J T Y Wong, Statistics \& Actuarial Science |  | BSc in Actuarial Science (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| STAT4903 | Actuarial techniques for general insurance | 6 | Pass in STAT3906 | Y | Y | 1 | Dec | --- | Dr A G Benchimol, Statistics \& Actuarial Science |  | BSc in Actuarial Science (2021,2020,2019,2018, 2017,2016,2015,2014); Minor in Actuarial Studies (2021,2020,2019,2018, 2017,2016,2015,2014) |  |
| STAT4904 | Statistical learning for risk modelling | 6 | Pass in STAT3907 or STAT3600; and Not for students who have passed in STAT3612, or already enrolled in this course; and For BSc(Actuarial Science) students only. | Y | Y | 2 | May | --- | Dr C Wang, Statistics \& Actuarial Science | BSc in Actuarial Science <br> (2021,2020,2019,2018) | BSc in Actuarial Science <br> $(2017,2016,2015,2014)$ |  |
| STAT7609 | Research methods in statistics | 6 | Pass in STAT3600 or STAT3907 | Y | Y | 1 | Dec | --- | Prof J J F Yao, Statistics \& Actuarial Science |  |  |  |
| STAT7610 | Advanced probability | 6 | Pass in STAT3603 or STAT3903 | Y | Y | 1 | Dec | --- | Prof H L Yang, Statistics \& Actuarial Science |  |  |  |
| STAT7611 | Computational statistics | 6 | Pass in STAT3600 or STAT3907 | Y | Y | 1 | Dec | --- | Prof G Yin, Statistics \& Actuarial Science |  |  |  |
| STAT7614 | Advanced statistical modelling | 6 | Pass in STAT3600 or STAT3907 | Y | Y | 1, 2 | Dec, May | --- | Prof G Yin, Statistics \& Actuarial Science |  |  |  |
| STAT7615 | Advanced quantitative risk management and finance | 6 | Pass in STAT4608 | Y | N | 2 | May | --- | Dr Z Zhang, Statistics \& Actuarial Science |  |  |  |
| Common Core Courses |  |  |  |  |  |  |  |  |  |  |  |  |
| CCCH9052 | Arts, Science and Artifacts in Chinese Cultural Heritage | 6 | NIL | Y | Y | 1 | No exam | 120 | Prof Q A Parker, Physics |  |  |  |
| CCGL9016 | Feeding the World | 6 | NIL | Y | Y | 1 | No exam | 120 | Dr G V Akom, Faculty |  |  |  |
| CCGL9017 | Food: Technology, Trade and Culture | 6 | NIL | Y | Y | 1 | Dec | 120 | Dr M Yasuhara, Biological Sciences |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |


| CCGL9033 | Weapons of Mass Destruction: <br> Science, Proliferation and Terrorism | 6 | NIL | Y | Y | 2 | No exam | 120 | Dr K H Lemke, Earth Sciences |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CCGL9059 | Water in a Changing World | 6 |  | Y | $Y$ | 2 | No exam | 120 | Dr G V Akom |  |  |  |  |
| CCST9012 | Our Place in the Universe | 6 | NIL | Y | Y | 2 | May | 120 | Dr T D Wotherspoon, Faculty |  |  |  |  |
| CCST9013 | Our Living Environment | 6 | NIL | Y | Y | 1 | No exam | 120 | Dr S C Chang, Earth Sciences |  |  |  |  |
| CCST9014 | Science and Music | 6 | NIL | Y | Y | 2 | No exam | 120 | Dr J C S Pun, Physics |  |  |  |  |
| CCST9017 | Hidden Order in Daily Life: A Mathematical Perspective | 6 | NIL | Y | Y | 1 | No exam | 120 | Prof T W Ng, Mathematics |  |  |  |  |
| CCST9018 | Origin and Evolution of Life | 6 | NIL | Y | Y | 2 | No exam | 120 | Dr K H Lemke, Earth Sciences |  |  |  |  |
| CCST9019 | Understanding Climate Change | 6 | NIL | Y | Y | 2 | No exam | 120 | Dr J Kaplan, Earth Sciences |  |  |  |  |
| CCST9021 | Hong Kong: Our Marine Heritage | 6 | NIL | N | N | --- | --- | 120 | Dr G V Akom, Faculty |  |  |  |  |
| CCST9022 | How the Mass Media Depicts Science, Technology and the Natural World | 6 | NIL | Y | Y | 1 | No exam | 120 | Prof H F Chau, Physics |  |  |  |  |
| CCST9023 | The Oceans: Science and Society | 6 | NIL | Y | Y | 1 | No exam | 120 | Dr J A King, Earth Sciences |  |  |  |  |
| CCST9026 | Scientific Revolutions: Their Continuing Impact on Our World and Society | 6 | NIL | Y | Y | 1 | No exam | 120 | Prof Q A Parker, Physics |  |  |  |  |
| CCST9030 | Forensic Science: Unmasking Evidence, Mysteries and Crimes | 6 | NIL | Y | Y | 1 | No exam | 120 | Prof Z X Guo, Chemistry |  |  |  |  |
| CCST9037 | Mathematics: A Cultural Heritage | 6 | NIL | Y | Y | 1 | No exam | 120 | Dr B R Kane, Mathematics |  |  |  |  |
| CCST9038 | Science and Science Fiction | 6 | NIL | Y | Y | 2 | No exam | 120 | Prof A B Djurisic, Physics |  |  |  |  |
| CCST9043 | Time's Arrow | 6 | NIL | Y | Y | 2 | No exam | 120 | Dr Y Li, Earth Sciences |  |  |  |  |
| CCST9045 | The Science and Lore of Culinary Culture | 6 | NIL | Y | Y | 2 | No exam | 120 | Dr A M Y Yuen, Chemistry |  |  |  |  |
| CCST9048 | Simplifying Complexity | 6 | NIL | Y | Y | 1 | No exam | 120 | Dr T D Wotherspoon, Faculty |  |  |  |  |
| CCST9051 | What are We Made of - the Fundamental Nature of Matter | 6 | NIL | Y | Y | 1 | No exam | 120 | Dr J C S Pun, Physics |  |  |  |  |
| CCST9054 | War, Peace, and the Natural World | 6 | NIL | Y | Y | S | No exam | 120 | Dr D M Baker, Biological Sciences |  |  |  |  |
| CCST9056 | The Force is with You: How Things Work | 6 | NIL | Y | Y | 1 | No exam | 120 | Dr F C C Ling, Physics |  |  |  |  |
| CCST9065 | Women in Science | 6 | NIL | Y | Y | 2 | No exam | 120 | Prof A B Djurisic, Physics |  |  |  |  |
| CCST9067 | Leaving Earth: Our Future in Space | 6 | NIL | N | N | --- | --- | 120 | Dr J R Michalski, Earth Sciences |  |  |  |  |
| CCST9068 | Artificial Intelligence: Utopia or Dystopia? | 6 | NIL | Y | Y | 2 | No exam | 120 | Dr R K W Lui, Faculty |  |  |  |  |

## Equivalency of HKDSE and

other qualifications


## Table of Equivalence between HKDSE and Other Qualifications

| HKDSE | Grade | Equivalent Qualification to HKDSE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | IB | GCE | SATII | AP | Gao Kao (高考) |
| Biology | $\begin{gathered} 3 \text { or } \\ \text { above } \end{gathered}$ | Biology (SL/HL) | Biology (AL) | Biology | Biology | Equivalent to fulfillment of all HKDSE requirements |
| Chemistry | $\begin{gathered} 3 \text { or } \\ \text { above } \end{gathered}$ | Chemistry (SL/HL) | Chemistry (AL) | Chemistry | Chemistry |  |
| Physics | $\begin{gathered} 3 \text { or } \\ \text { above } \end{gathered}$ | Physics (SL/HL) | Physics (AL) | Physics | Physics B or C |  |
| Mathematics | $\begin{gathered} 2 \text { or } \\ \text { above } \end{gathered}$ | Mathematics (SL)/Mathematical Studies (SL) | Mathematics (AL) | Mathematics <br> Level 1 or 2 |  |  |
| Mathematics + (M1 or M2) | $\begin{aligned} & 2 \text { or } \\ & \text { above } \end{aligned}$ | Mathematics (HL)/Mathematical Studies (HL) | Pure Mathematics <br> (AL) <br> Further <br> Mathematics (AL) |  | Calculus AB or BC |  |

[^3]
## Remarks:

For science students admitted through non-JUPAS scheme, the equivalent subject qualification(s) to HKDSE, if possessed, can be identified by the SIS for on-line course selection.

For other non-science students admitted through non-JUPAS scheme, they are still required to obtain the approval (written/via email) from the Course Selection Adviser of the course offering department even they have possessed the equivalent HKDSE subject qualification(s) to meet the course prerequisite requirement. Once approval is given, they need to forward it to their home faculties to add the course on-line.

## Science Majors 2021-2022

## Majors offered by Science Faculty

## Majors

Astronomy (only for 2017 cohort or before)
Biochemistry
Biological Sciences
Biological Sciences (Intensive) (for BSc students (2017 cohort and thereafter) only)
Chemistry
Chemistry (Intensive) (for BSc students (2015 cohort and thereafter) only)
Decision Analytics (not for BASc(AppliedAI) students)
Earth System Science
Ecology \& Biodiversity
Ecology \& Biodiversity (Intensive) (for BSc students (2015 cohort and thereafter) only)
Environmental Science
Food \& Nutritional Science
Geology
Geology (Intensive) (for BSc students (2015 cohort and thereafter) only)
Mathematics
Mathematics (Intensive) (for BSc students (2016 cohort and thereafter) only)
Mathematics/Physics (only for 2017 cohort or before)
Molecular Biology \& Biotechnology
Molecular Biology \& Biotechnology (Intensive) (for BSc students (2015 cohort and thereafter) only)
Physics
Physics (Intensive) (for BSc students (2016 cohort and thereafter) only)
Risk Management
Statistics

| Major Title | Major in Astronomy |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 7}$ |

## Objectives:

The 21st century is the golden age for astronomy as space-based telescopes are being used to explore the Universe in all parts of the electromagnetic spectrum, including X-ray, ultraviolet, and infrared. The Major in Astronomy is intended for the students who would like to acquire a solid foundation on the subject. A large selection of elective courses is provided for students to pursue their interested specialization in the subject, including observational astronomy, planetary science, stellar physics, and interstellar medium. Students will attain professional knowledge in astronomy, research experience and the training of analytical thinking and quantitative reasoning during their studies. In addition to preparing students for postgraduate studies as professional astronomers, astronomy training can lead to local careers in museums, weather services, and the education sectors. Beyond Hong Kong, astronomy graduates have challenging careers in aerospace, communications, energy, and computer industries, as well as in astronomical observatories and space research centers.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and frequent opportunities in field activities in the curriculum)
PLO 3 : analyze astrophysical problems qualitatively and quantitatively, and recognize moral and ethical issues related to the discipline (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Minor in Astronomy

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        PHYS1250 Fundamental physics (6)
        PHYS1650 Nature of the universe (6)
        EASC2408 Planetary geology (6)
        PHYS2250 Introductory mechanics (6)
        PHYS2265 Introductory quantum physics (6)
    Disciplinary Electives (6 Credits)
        At least 6 credits selected from the following courses:
        PHYS1150 Problem solving in physics (6)
        PHYS2055 Introductory relativity (6)
        PHYS2150 Methods in physics I (6)
        PHYS2155 Methods in physics II (6)
        PHYS2160 Introductory computational physics (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2260 Heat and waves (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (18 credits)
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
    Disciplinary Electives (24 credits)
        At least }12\mathrm{ credits selected from courses in List A:
        List A
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
        PHYS4655 Interstellar medium (6)
        PHYS7650 Stellar atmospheres (6)
```

    Plus at least 12 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
    prerequisite requirements. The current course list includes courses in List \(B\) and those courses not selected to fulfill the
    requirements in List \(A\) and the capstone requirement.
    List B
        PHYS3150
        Theoretical physics (6)
        PHYS3151 Machine learning in physics (6)
        PHYS3350 Classical mechanics (6)
    | PHYS3351 | Quantum mechanics (6) |
| :--- | :--- |
| PHYS3450 | Electromagnetism (6) |
| PHYS3550 | Statistical mechanics \& thermodynamics (6) |
| PHYS3551 | Introductory solid state physics (6) |
| PHYS3653 | Astrophysics (6) |
| PHYS3660 | Astronomy laboratory (6) |
| PHYS3750 | Laser and spectroscopy (6) |
| PHYS3751 | Physics of nanomaterials (6) |
| PHYS3760 | Physics laboratory (6) |
| PHYS3850 | Physical Optics (6) |
|  |  |
| PHYS3851 | Atomic and nuclear physics (6) |
| PHYS4150 | Computational physics (6) |
| PHYS4151 | Data analysis and modeling in physics (6) |
| PHYS4350 | Advanced classical mechanics (6) |
| PHYS4351 | Advanced quantum mechanics (6) |
| PHYS4450 | Advanced electromagnetism (6) |
| PHYS4550 | Advanced statistical mechanics (6) |
| PHYS4551 | Solid state physics (6) |
| PHYS4654 | General relativity (6) |
| PHYS4656 | Advanced astrophysics (6) |
| PHYS4750 | Experimental physics (6) |
| PHYS4850 | Particle physics (6) |
| PHYS7350 | Graduate classical mechanics (6) |
| PHYS7351 | Graduate quantum mechanics (6) |
| PHYS7450 | Graduate electromagnetism (6) |
| PHYS7550 | Graduate statistical mechanics (6) |
| PHYS7551 | Graduate solid state physics (6) |
| PHYS7750 | Nanophysics (6) |
| 3.Capstone requirement (6 credits)  <br> At least 6 credits selected from the following courses:  <br> PHYS3999 Directed studies in physics (6) <br> PHYS4966 Physics internship (6) <br> PHYS4999 Physics project (12) <br>   |  |

## Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Astronomy |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 6}$ |

## Objectives:

The 21st century is the golden age for astronomy as space-based telescopes are being used to explore the Universe in all parts of the electromagnetic spectrum, including X-ray, ultraviolet, and infrared. The Major in Astronomy is intended for the students who would like to acquire a solid foundation on the subject. A large selection of elective courses is provided for students to pursue their interested specialization in the subject, including observational astronomy, planetary science, stellar physics, and interstellar medium. Students will attain professional knowledge in astronomy, research experience and the training of analytical thinking and quantitative reasoning during their studies. In addition to preparing students for postgraduate studies as professional astronomers, astronomy training can lead to local careers in museums, weather services, and the education sectors. Beyond Hong Kong, astronomy graduates have challenging careers in aerospace, communications, energy, and computer industries, as well as in astronomical observatories and space research centers.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and frequent opportunities in field activities in the curriculum)
PLO 3 : analyze astrophysical problems qualitatively and quantitatively, and recognize moral and ethical issues related to the discipline (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Minor in Astronomy

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        PHYS1250 Fundamental physics (6)
        PHYS1650 Nature of the universe (6)
        EASC2408 Planetary geology (6)
        PHYS2250 Introductory mechanics (6)
        PHYS2265 Introductory quantum physics (6)
    Disciplinary Elective (6 credits)
    At least 6 credits selected from the following courses:
        PHYS1150 Problem solving in physics (6)
        PHYS2055 Introductory relativity (6)
        PHYS2150 Methods in physics I (6)
        PHYS2155 Methods in physics II (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2260 Heat and waves (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (18 credits)
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
    Disciplinary Electives (24 credits)
        At least }12\mathrm{ credits selected from courses in List A:
        List A
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
        PHYS4655 Interstellar medium (6)
        PHYS7650 Stellar atmospheres (6)
```

        Plus at least 12 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current course list includes courses in List B and those courses not selected to fulfill the
        requirements in List A and the capstone requirement.
        List B
        PHYS3150 Theoretical physics (6)
        PHYS3151 Machine learning in physics (6)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
    | PHYS3450 | Electromagnetism (6) |
| :--- | :--- |
| PHYS3550 | Statistical mechanics \& thermodynamics (6) |
| PHYS3551 | Introductory solid state physics (6) |
| PHYS3653 | Astrophysics (6) |
| PHYS3660 | Astronomy laboratory (6) |
| PHYS3750 | Laser and spectroscopy (6) |
| PHYS3751 | Physics of nanomaterials (6) |
| PHYS3760 | Physics laboratory (6) |
| PHYS3850 | Physical Optics (6) |
|  |  |
| PHYS3851 | Atomic and nuclear physics (6) |
| PHYS4150 | Computational physics (6) |
| PHYS4151 | Data analysis and modeling in physics (6) |
| PHYS4350 | Advanced classical mechanics (6) |
| PHYS4351 | Advanced quantum mechanics (6) |
| PHYS4450 | Advanced electromagnetism (6) |
| PHYS4550 | Advanced statistical mechanics (6) Waves and optics |
| PHYS4551 | Solid state physics (6) |
| PHYS4654 | General relativity (6) |
| PHYS4656 | Advanced astrophysics (6) |
| PHYS4750 | Experimental physics (6) |
| PHYS4850 | Particle physics (6) |
| PHYS7350 | Graduate classical mechanics (6) |
| PHYS7351 | Graduate quantum mechanics (6) |
| PHYS7450 | Graduate electromagnetism (6) |
| PHYS7550 | Graduate statistical mechanics (6) |
| PHYS7551 | Graduate solid state physics (6) |
| PHYS7750 | Nanophysics (6) |
| 3.Capstone requirement (6 credits) <br> At least 6 credits selected from the following courses: <br> PHYS3999 Directed studies in physics (6) |  |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Astronomy |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 5}$ |

## Objectives:

The 21st century is the golden age for astronomy as space-based telescopes are being used to explore the Universe in all parts of the electromagnetic spectrum, including X-ray, ultraviolet, and infrared. The Major in Astronomy is intended for the students who would like to acquire a solid foundation on the subject. A large selection of elective courses is provided for students to pursue their interested specialization in the subject, including observational astronomy, planetary science, stellar physics, and interstellar medium. Students will attain professional knowledge in astronomy, research experience and the training of analytical thinking and quantitative reasoning during their studies. In addition to preparing students for postgraduate studies as professional astronomers, astronomy training can lead to local careers in museums, weather services, and the education sectors. Beyond Hong Kong, astronomy graduates have challenging careers in aerospace, communications, energy, and computer industries, as well as in astronomical observatories and space research centers.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and frequent opportunities in field activities in the curriculum)
PLO 3 : analyze astrophysical problems qualitatively and quantitatively, and recognize moral and ethical issues related to the discipline (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Minor in Astronomy

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        PHYS1250 Fundamental physics (6)
        PHYS1650 Nature of the universe (6)
        EASC2408 Planetary geology (6)
        PHYS2250 Introductory mechanics (6)
        PHYS2265 Introductory quantum physics (6)
    Disciplinary Electives (6 credits)
        At least 6 credits selected from the following courses:
        PHYS1150 Problem solving in physics (6)
        PHYS2055 Introductory relativity (6)
        PHYS2150 Methods in physics I (6)
        PHYS2155 Methods in physics II (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2260 Heat and waves (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (18 credits)
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
    Disciplinary Electives (24 credits)
        At least }12\mathrm{ credits selected from courses in List A:
        List A
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
        PHYS4655 Interstellar medium (6)
        PHYS7650 Stellar atmospheres (6)
```

        Plus at least 12 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current course list includes courses in List B and those courses not selected to fulfill the
        requirements in List A and the capstone requirement.
        List B
        PHYS3150 Theoretical physics (6)
        PHYS3151 Machine learning in physics (6)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
    | PHYS3450 | Electromagnetism (6) |
| :--- | :--- |
| PHYS3550 | Statistical mechanics \& thermodynamics (6) |
| PHYS3551 | Introductory solid state physics (6) |
| PHYS3653 | Astrophysics (6) |
| PHYS3660 | Astronomy laboratory (6) |
| PHYS3750 | Laser and spectroscopy (6) |
| PHYS3751 | Physics of nanomaterials (6) |
| PHYS3760 | Physics laboratory (6) |
| PHYS3850 | Physical Optics (6) |
|  |  |
| PHYS3851 | Atomic and nuclear physics (6) |
| PHYS4150 | Computational physics (6) |
| PHYS4151 | Data analysis and modeling in physics (6) |
| PHYS4350 | Advanced classical mechanics (6) |
| PHYS4351 | Advanced quantum mechanics (6) |
| PHYS4450 | Advanced electromagnetism (6) |
| PHYS4550 | Advanced statistical mechanics (6) Waves and optics |
| PHYS4551 | Solid state physics (6) |
| PHYS4654 | General relativity (6) |
| PHYS4656 | Advanced astrophysics (6) |
| PHYS4750 | Experimental physics (6) |
| PHYS4850 | Particle physics (6) |
| PHYS7350 | Graduate classical mechanics (6) |
| PHYS7351 | Graduate quantum mechanics (6) |
| PHYS7450 | Graduate electromagnetism (6) |
| PHYS7550 | Graduate statistical mechanics (6) |
| PHYS7551 | Graduate solid state physics (6) |
| PHYS7750 | Nanophysics (6) |
| 3.Capstone requirement (6 credits) <br> At least 6 credits selected from the following courses: <br> PHYS3999 Directed studies in physics (6) |  |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Astronomy |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 4}$ |

## Objectives:

The 21st century is the golden age for astronomy as space-based telescopes are being used to explore the Universe in all parts of the electromagnetic spectrum, including X-ray, ultraviolet, and infrared. The Major in Astronomy is intended for the students who would like to acquire a solid foundation on the subject. A large selection of elective courses is provided for students to pursue their interested specialization in the subject, including observational astronomy, planetary science, stellar physics, and interstellar medium. Students will attain professional knowledge in astronomy, research experience and the training of analytical thinking and quantitative reasoning during their studies. In addition to preparing students for postgraduate studies as professional astronomers, astronomy training can lead to local careers in museums, weather services, and the education sectors. Beyond Hong Kong, astronomy graduates have challenging careers in aerospace, communications, energy, and computer industries, as well as in astronomical observatories and space research centers.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and frequent opportunities in field activities in the curriculum)
PLO 3 : analyze astrophysical problems qualitatively and quantitatively, and recognize moral and ethical issues related to the discipline (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Minor in Astronomy

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        PHYS1250 Fundamental physics (6)
        PHYS1650 Nature of the universe (6)
        EASC2408 Planetary geology (6)
        PHYS2250 Introductory mechanics (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2265 Introductory quantum physics (6)
```

    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (18 credits)
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
    Disciplinary Electives ( \(\mathbf{2 4}\) credits)
        At least 12 credits selected from courses in List \(A\).
        List A
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
        PHYS4655 Interstellar medium (6)
        PHYS7650 Stellar atmospheres (6)
        Plus at least 12 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current course list includes courses in List \(B\) and those courses not selected to fulfill the
        requirements in List A and the capstone requirement.
        List B
        PHYS3150 Theoretical physics (6)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
        PHYS3450 Electromagnetism (6)
        PHYS3550 Statistical mechanics \& thermodynamics (6)
        PHYS3551 Introductory solid state physics (6)
        PHYS3750 Laser and spectroscopy (6)
        PHYS3751 Physics of nanomaterials (6)
        PHYS3850 Physical Optics (6) [previous title: Waves and optics
        PHYS3851 Atomic and nuclear physics (6)
        PHYS4150 Computational physics (6)
    | PHYS4151 | Data analysis and modeling in physics (6) |
| :--- | :---: |
| PHYS4350 | Advanced classical mechanics (6) |
| PHYS4351 | Advanced quantum mechanics (6) |
| PHYS4450 | Advanced electromagnetism (6) |
| PHYS4550 | Advanced statistical mechanics (6) |
| PHYS4551 | Solid state physics (6) |
| PHYS4654 | General relativity (6) |
| PHYS4750 | Experimental physics (6) |
| PHYS4850 | Particle physics (6) |
| PHYS7350 | Graduate classical mechanics (6) |
| PHYS7351 | Graduate quantum mechanics (6) |
| PHYS7450 | Graduate electromagnetism (6) |
| PHYS7550 | Graduate statistical mechanics (6) |
| PHYS7551 | Graduate solid state physics (6) |
| PHYS7750 | Nanophysics (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| PHYS3999 | Directed studies in physics (6) |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Astronomy |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 3}$ |

## Objectives:

The 21st century is the golden age for astronomy as space-based telescopes are being used to explore the Universe in all parts of the electromagnetic spectrum, including X-ray, ultraviolet, and infrared. The Major in Astronomy is intended for the students who would like to acquire a solid foundation on the subject. A large selection of elective courses is provided for students to pursue their interested specialization in the subject, including observational astronomy, planetary science, stellar physics, and interstellar medium. Students will attain professional knowledge in astronomy, research experience and the training of analytical thinking and quantitative reasoning during their studies. In addition to preparing students for postgraduate studies as professional astronomers, astronomy training can lead to local careers in museums, weather services, and the education sectors. Beyond Hong Kong, astronomy graduates have challenging careers in aerospace, communications, energy, and computer industries, as well as in astronomical observatories and space research centers.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and frequent opportunities in field activities in the curriculum)
PLO 3 : analyze astrophysical problems qualitatively and quantitatively, and recognize moral and ethical issues related to the discipline (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Minor in Astronomy

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        PHYS1250 Fundamental physics (6)
        PHYS1650 Nature of the universe (6)
        EASC2408 Planetary geology (6)
        PHYS2250 Introductory mechanics (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2265 Introductory quantum physics (6)
```

    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (18 credits)
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
    Disciplinary Electives ( \(\mathbf{2 4}\) credits)
        At least 12 credits selected from courses in List \(A\).
        List A
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
        PHYS4655 Interstellar medium (6)
        PHYS7650 Stellar atmospheres (6)
        Plus at least 12 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current course list includes courses in List \(B\) and those courses not selected to fulfill the
        requirements in List A and the capstone requirement.
        List B
        PHYS3150 Theoretical physics (6)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
        PHYS3450 Electromagnetism (6)
        PHYS3550 Statistical mechanics \& thermodynamics (6)
        PHYS3551 Introductory solid state physics (6)
        PHYS3750 Laser and spectroscopy (6)
        PHYS3751 Physics of nanomaterials (6)
        PHYS3850 Physical Optics (6) [previous title: Waves and optics
        PHYS3851 Atomic and nuclear physics (6)
        PHYS4150 Computational physics (6)
    | PHYS4151 | Data analysis and modeling in physics (6) |
| :--- | :---: |
| PHYS4350 | Advanced classical mechanics (6) |
| PHYS4351 | Advanced quantum mechanics (6) |
| PHYS4450 | Advanced electromagnetism (6) |
| PHYS4550 | Advanced statistical mechanics (6) |
| PHYS4551 | Solid state physics (6) |
| PHYS4654 | General relativity (6) |
| PHYS4750 | Experimental physics (6) |
| PHYS4850 | Particle physics (6) |
| PHYS7350 | Graduate classical mechanics (6) |
| PHYS7351 | Graduate quantum mechanics (6) |
| PHYS7450 | Graduate electromagnetism (6) |
| PHYS7550 | Graduate statistical mechanics (6) |
| PHYS7551 | Graduate solid state physics (6) |
| PHYS7750 | Nanophysics (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| PHYS3999 | Directed studies in physics (6) |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Astronomy |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 2}$ |

## Objectives:

The 21st century is the golden age for astronomy as space-based telescopes are being used to explore the Universe in all parts of the electromagnetic spectrum, including X-ray, ultraviolet, and infrared. The Major in Astronomy is intended for the students who would like to acquire a solid foundation on the subject. A large selection of elective courses is provided for students to pursue their interested specialization in the subject, including observational astronomy, planetary science, stellar physics, and interstellar medium. Students will attain professional knowledge in astronomy, research experience and the training of analytical thinking and quantitative reasoning during their studies. In addition to preparing students for postgraduate studies as professional astronomers, astronomy training can lead to local careers in museums, weather services, and the education sectors. Beyond Hong Kong, astronomy graduates have challenging careers in aerospace, communications, energy, and computer industries, as well as in astronomical observatories and space research centers.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and frequent opportunities in field activities in the curriculum)
PLO 3 : analyze astrophysical problems qualitatively and quantitatively, and recognize moral and ethical issues related to the discipline (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Minor in Astronomy

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        PHYS1250 Fundamental physics (6)
        PHYS1650 Nature of the universe (6)
        EASC2408 Planetary geology (6)
        PHYS2250 Introductory mechanics (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2265 Introductory quantum physics (6)
```

    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (18 credits)
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
    Disciplinary Electives ( \(\mathbf{2 4}\) credits)
        At least 12 credits selected from courses in List \(A\).
        List A
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
        PHYS4655 Interstellar medium (6)
        PHYS7650 Stellar atmospheres (6)
        Plus at least 12 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current course list includes courses in List \(B\) and those courses not selected to fulfill the
        requirements in List A and the capstone requirement.
        List B
        PHYS3150 Theoretical physics (6)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
        PHYS3450 Electromagnetism (6)
        PHYS3550 Statistical mechanics \& thermodynamics (6)
        PHYS3551 Introductory solid state physics (6)
        PHYS3750 Laser and spectroscopy (6)
        PHYS3751 Physics of nanomaterials (6)
        PHYS3850 Physical Optics (6) [previous title: Waves and optics
        PHYS3851 Atomic and nuclear physics (6)
        PHYS4150 Computational physics (6)
    | PHYS4151 | Data analysis and modeling in physics (6) |
| :--- | :---: |
| PHYS4350 | Advanced classical mechanics (6) |
| PHYS4351 | Advanced quantum mechanics (6) |
| PHYS4450 | Advanced electromagnetism (6) |
| PHYS4550 | Advanced statistical mechanics (6) |
| PHYS4551 | Solid state physics (6) |
| PHYS4654 | General relativity (6) |
| PHYS4750 | Experimental physics (6) |
| PHYS4850 | Particle physics (6) |
| PHYS7350 | Graduate classical mechanics (6) |
| PHYS7351 | Graduate quantum mechanics (6) |
| PHYS7450 | Graduate electromagnetism (6) |
| PHYS7550 | Graduate statistical mechanics (6) |
| PHYS7551 | Graduate solid state physics (6) |
| PHYS7750 | Nanophysics (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| PHYS3999 | Directed studies in physics (6) |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biochemistry |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 1}$ |
| admitted to Year 1 in |  |

## Objectives:

The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students' ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)
PLO 2 : apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratorybased and research project-based learning)
PLO 3 : interpret and communicate scientific data and literature using appropriate scientific language (by means of literaturebased coursework and debate)
PLO 4: work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)
PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

## Impermissible Combinations:

Minor in Biochemistry

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        BIOC2600 Basic biochemistry (6)
    BIOL2220 Principles of biochemistry (6)
    CHEM2441 Organic chemistry I (6)
Disciplinary Electives (6 credits)
    BIOC1600 Perspectives in biochemistry (6)
    BIOL1110 From molecules to cells (6)
```

2. Advanced level courses ( $\mathbf{4 8}$ credits)

Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both. Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both.
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOC3601 Basic metabolism (6)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
BIOC4613 Advanced techniques in biochemistry \& molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
BIOC3606 Molecular medicine (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
$\begin{array}{ll}\text { BIOC3606 } & \text { Molecular medicine (6) } \\ \text { BIOL3202 } & \text { Nutritional biochemistry (6) }\end{array}$
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)
$\begin{array}{ll}\text { BIOL4417 } & \text { 'Omics' and systems biology (6) } \\ \text { CHEM4145 } & \text { Medicinal chemistry (6) }\end{array}$
C
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOC3999 Directed studies in biochemistry (6)
BIOC4966 Biochemistry internship (6)
BIOC4999 Biochemistry project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
5. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

6. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biochemistry |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 2 0}$ |

## Objectives:

The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students' ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)
PLO 2: apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratorybased and research project-based learning)
PLO 3 : interpret and communicate scientific data and literature using appropriate scientific language (by means of literaturebased coursework and debate)
PLO 4: work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)
PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

## Impermissible Combinations:

Minor in Biochemistry

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        BIOC2600 Basic biochemistry (6)
    BIOL2220 Principles of biochemistry (6)
    CHEM2441 Organic chemistry I (6)
Disciplinary Electives (6 credits)
    BIOC1600 Perspectives in biochemistry (6)
    BIOL1110 From molecules to cells (6)
```

2. Advanced level courses ( $\mathbf{4 8}$ credits)

Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both. Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both.
Disciplinary Core Courses ( 30 credits)
BIOC3601 Basic metabolism (6)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
BIOC4613 Advanced techniques in biochemistry \& molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
BIOC3606 Molecular medicine (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
$\begin{array}{ll}\text { BIOC3606 } & \text { Molecular medicine (6) } \\ \text { BIOL3202 } & \text { Nutritional biochemistry (6) }\end{array}$
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

| BIOL4417 | 'Omics' and systems biology (6) |
| :--- | :--- |
| CHEM4145 | Medicinal chemistry (6) |
| CHEM4444 | Chemical biology (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOC3999 Directed studies in biochemistry (6)
BIOC4966 Biochemistry internship (6)
BIOC4999 Biochemistry project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
5. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biochemistry |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 9}$ |

## Objectives:

The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students' ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)
PLO 2 : apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratorybased and research project-based learning)
PLO 3 : interpret and communicate scientific data and literature using appropriate scientific language (by means of literaturebased coursework and debate)
PLO 4: work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)
PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

## Impermissible Combinations:

Minor in Biochemistry

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        BIOC2600 Basic biochemistry (6)
    BIOL2220 Principles of biochemistry (6)
    CHEM2441 Organic chemistry I (6)
Disciplinary Electives (6 credits)
    BIOC1600 Perspectives in biochemistry (6)
    BIOL1110 From molecules to cells (6)
```

2. Advanced level courses ( $\mathbf{4 8}$ credits)

Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both. Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both.
Disciplinary Core Courses ( 30 credits)
BIOC3601 Basic metabolism (6)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
BIOC4613 Advanced techniques in biochemistry \& molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
BIOC3606 Molecular medicine (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
$\begin{array}{ll}\text { BIOC3606 } & \text { Molecular medicine (6) } \\ \text { BIOL3202 } & \text { Nutritional biochemistry (6) }\end{array}$
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

```
BIOL4417 'Omics' and systems biology (6)
CHEM4145 Medicinal chemistry (6)
CHEM4444 Chemical biology (6)
```

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOC3999 Directed studies in biochemistry (6)
BIOC4966 Biochemistry internship (6)
BIOC4999 Biochemistry project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6 -credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biochemistry |
| :--- | :--- |
| Offered to students | 2018 |
| admitted to Year 1 in |  |

## Objectives:

The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students' ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)
PLO 2 : apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratorybased and research project-based learning)
PLO 3 : interpret and communicate scientific data and literature using appropriate scientific language (by means of literaturebased coursework and debate)
PLO 4: work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)
PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

## Impermissible Combinations:

Minor in Biochemistry

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        BIOC2600 Basic biochemistry (6)
    BIOL2220 Principles of biochemistry (6)
    CHEM2441 Organic chemistry I (6)
Disciplinary Electives (6 credits)
    BIOC1600 Perspectives in biochemistry (6)
    BIOL1110 From molecules to cells (6)
```

2. Advanced level courses ( $\mathbf{4 8}$ credits)

Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both. Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both.
Disciplinary Core Courses ( 30 credits)
BIOC3601 Basic metabolism (6)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
BIOC4613 Advanced techniques in biochemistry \& molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
BIOC3606 Molecular medicine (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
$\begin{array}{ll}\text { BIOC3606 } & \text { Molecular medicine (6) } \\ \text { BIOL3202 } & \text { Nutritional biochemistry (6) }\end{array}$
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

```
BIOL4417 'Omics' and systems biology (6)
CHEM4145 Medicinal chemistry (6)
CHEM4444 Chemical biology (6)
```

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOC3999 Directed studies in biochemistry (6)
BIOC4966 Biochemistry internship (6)
BIOC4999 Biochemistry project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6 -credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Biochemistry
Offered to students $\quad 2017$
admitted to Year 1 in
Objectives:
The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and
molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the
fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular
biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students
with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and
molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals,
problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects.
These experiences are designed to develop students' ability to read and interpret scientific data, to integrate knowledge with
wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a
comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical
skills essential for them to play a leading role in society in the future.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)
PLO 2 : apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratorybased and research project-based learning)
PLO 3 : interpret and communicate scientific data and literature using appropriate scientific language (by means of literaturebased coursework and debate)
PLO 4 : work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)
PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

## Impermissible Combinations:

Minor in Biochemistry

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        BIOC2600 Basic biochemistry (6)
    BIOL2220 Principles of biochemistry (6)
    CHEM2441 Organic chemistry I (6)
Disciplinary Electives (6 credits)
    BIOC1600 Perspectives in biochemistry (6)
    BIOL1110 From molecules to cells (6)
```

2. Advanced level courses ( $\mathbf{4 8}$ credits)

Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both. Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both.
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOC3601 Basic metabolism (6)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
BIOC4613 Advanced techniques in biochemistry \& molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
BIOC3606 Molecular medicine (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
$\begin{array}{ll}\text { BIOC3606 } & \text { Molecular medicine (6) } \\ \text { BIOL3202 } & \text { Nutritional biochemistry (6) }\end{array}$
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

```
BIOL4417 'Omics' and systems biology (6)
CHEM4145 Medicinal chemistry (6)
CHEM4444 Chemical biology (6)
```

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOC3999 Directed studies in biochemistry (6)
BIOC4966 Biochemistry internship (6)
BIOC4999 Biochemistry project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6 -credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biochemistry |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | 2016 |

## Objectives:

The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students' ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)
PLO 2 : apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratorybased and research project-based learning)
PLO 3 : interpret and communicate scientific data and literature using appropriate scientific language (by means of literaturebased coursework and debate)
PLO 4: work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)
PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

## Impermissible Combinations:

Minor in Biochemistry

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        BIOC2600 Basic biochemistry (6)
    BIOL2220 Principles of biochemistry (6)
    CHEM2441 Organic chemistry I (6)
Disciplinary Electives (6 credits)
    BIOC1600 Perspectives in biochemistry (6)
    BIOL1110 From molecules to cells (6)
```

2. Advanced level courses ( $\mathbf{4 8}$ credits)

Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both. Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both.
Disciplinary Core Courses ( 30 credits)
BIOC3601 Basic metabolism (6)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
BIOC4613 Advanced techniques in biochemistry \& molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
BIOC3606 Molecular medicine (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
$\begin{array}{ll}\text { BIOC3606 } & \text { Molecular medicine (6) } \\ \text { BIOL3202 } & \text { Nutritional biochemistry (6) }\end{array}$
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

```
BIOL4417 'Omics' and systems biology (6)
CHEM4145 Medicinal chemistry (6)
CHEM4444 Chemical biology (6)
```

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOC3999 Directed studies in biochemistry (6)
BIOC4966 Biochemistry internship (6)
BIOC4999 Biochemistry project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6 -credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biochemistry |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | 2015 |

## Objectives:

The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students' ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)
PLO 2 : apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratorybased and research project-based learning)
PLO 3 : interpret and communicate scientific data and literature using appropriate scientific language (by means of literaturebased coursework and debate)
PLO 4: work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)
PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

## Impermissible Combinations:

Minor in Biochemistry

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        BIOC2600 Basic biochemistry (6)
    BIOL2220 Principles of biochemistry (6)
    CHEM2441 Organic chemistry I (6)
Disciplinary Electives (6 credits)
    BIOC1600 Perspectives in biochemistry (6)
    BIOL1110 From molecules to cells (6)
```

2. Advanced level courses ( $\mathbf{4 8}$ credits)

Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both. Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both.
Disciplinary Core Courses ( 30 credits)
BIOC3601 Basic metabolism (6)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
BIOC4613 Advanced techniques in biochemistry \& molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
BIOC3606 Molecular medicine (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOC3604 Essential techniques in biochemistry and molecular biology (6)
BIOL3401 Molecular biology (6)
BIOC4610 Advanced biochemistry (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
$\begin{array}{ll}\text { BIOC3606 } & \text { Molecular medicine (6) } \\ \text { BIOL3202 } & \text { Nutritional biochemistry (6) }\end{array}$
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)

```
BIOL4417 'Omics' and systems biology (6)
CHEM4145 Medicinal chemistry (6)
CHEM4444 Chemical biology (6)
```

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOC3999 Directed studies in biochemistry (6)
BIOC4966 Biochemistry internship (6)
BIOC4999 Biochemistry project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6 -credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biochemistry |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | 2014 |

## Objectives:

The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students' ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)
PLO 2 : apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratorybased and research project-based learning)
PLO 3 : interpret and communicate scientific data and literature using appropriate scientific language (by means of literaturebased coursework and debate)
PLO 4 : work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)
PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

## Impermissible Combinations:

Minor in Biochemistry
Required courses (96 credits)

| 1. Introductory level courses (48 credits) |
| :--- |
| Disciplinary Core Courses: Science Foundation Courses (12 credits) |
| SCNC1111 |$\quad$ Scientific method and reasoning (6)

SCNC1112 $\quad$ Fundamentals of modern science (6)

Take either CHEM1043 or CHEM2541 to fulfill this 6 credits requirement, but not both. Take either CHEM1043 or CHEM2541 to fulfill this 6 credits requirement, but not both.
2. Advanced level courses (42 credits)

Disciplinary Core Courses (30 credits)
BIOC3601 Basic metabolism (6) BIOC3604 Essential techniques in biochemistry and molecular biology (6) BIOL3401 Molecular biology (6) BIOC4610 Advanced biochemistry (6) BIOC4613 Advanced techniques in biochemistry \& molecular biology (6)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
BIOC3606 Molecular medicine (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)
BIOL4417 'Omics' and systems biology (6)
CHEM4145 Medicinal chemistry (6)
CHEM4444 Chemical biology (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| BIOC3999 | Directed studies in biochemistry (6) |
| :--- | :--- |
| BIOC4966 | Biochemistry internship (6) |
| BIOC4999 | Biochemistry project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biochemistry |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2013 |

## Objectives:

The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students' ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)
PLO 2: apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratorybased and research project-based learning)
PLO 3 : interpret and communicate scientific data and literature using appropriate scientific language (by means of literaturebased coursework and debate)
PLO 4 : work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)
PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

## Impermissible Combinations:

Minor in Biochemistry
Required courses (96 credits)

| 1. Introductory level courses (48 credits) |
| :--- |
| Disciplinary Core Courses: Science Foundation Courses (12 credits) |
| SCNC1111 |$\quad$ Scientific method and reasoning (6)

SCNC1112 $\quad$ Fundamentals of modern science (6)

Take either CHEM1043 or CHEM2541 to fulfill this 6 credits requirement, but not both. Take either CHEM1043 or CHEM2541 to fulfill this 6 credits requirement, but not both.
2. Advanced level courses (42 credits)

Disciplinary Core Courses (30 credits)
BIOC3601 Basic metabolism (6) BIOC3604 Essential techniques in biochemistry and molecular biology (6) BIOL3401 Molecular biology (6) BIOC4610 Advanced biochemistry (6) BIOC4613 Advanced techniques in biochemistry \& molecular biology (6)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
BIOC3606 Molecular medicine (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)
BIOL4417 'Omics' and systems biology (6)
CHEM4145 Medicinal chemistry (6)
CHEM4444 Chemical biology (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| BIOC3999 | Directed studies in biochemistry (6) |
| :--- | :--- |
| BIOC4966 | Biochemistry internship (6) |
| BIOC4999 | Biochemistry project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biochemistry |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 2}$ |
| admitted to Year 1 in |  |

## Objectives:

The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students' ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)
PLO 2 : apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratorybased and research project-based learning)
PLO 3 : interpret and communicate scientific data and literature using appropriate scientific language (by means of literaturebased coursework and debate)
PLO 4 : work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)
PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

## Impermissible Combinations:

Minor in Biochemistry
Required courses (96 credits)

| 1. Introductory level courses (48 credits) |
| :--- |
| Disciplinary Core Courses: Science Foundation Courses (12 credits) |
| SCNC1111 |$\quad$ Scientific method and reasoning (6)

SCNC1112 $\quad$ Fundamentals of modern science (6)

Take either CHEM1043 or CHEM2541 to fulfill this 6 credits requirement, but not both. Take either CHEM1043 or CHEM2541 to fulfill this 6 credits requirement, but not both.
2. Advanced level courses (42 credits)

Disciplinary Core Courses (30 credits)
BIOC3601 Basic metabolism (6) BIOC3604 Essential techniques in biochemistry and molecular biology (6) BIOL3401 Molecular biology (6) BIOC4610 Advanced biochemistry (6) BIOC4613 Advanced techniques in biochemistry \& molecular biology (6)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
BIOC3605 Sequence bioinformatics (6)
BIOC3606 Molecular medicine (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
CHEM3441 Organic chemistry II (6)
BIOC4612 Molecular biology of the gene (6)
BIOL4417 'Omics' and systems biology (6)
CHEM4145 Medicinal chemistry (6)
CHEM4444 Chemical biology (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| BIOC3999 | Directed studies in biochemistry (6) |
| :--- | :--- |
| BIOC4966 | Biochemistry internship (6) |
| BIOC4999 | Biochemistry project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biological Sciences |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 2 1}$ |

## Objectives:

This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology) and will undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and explain the key concepts in genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 2 : analyze and interpret quantitative and qualitative biological data to provide scientifically based conclusions and/or judgements (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 3 : tackle biological research problems by formulating hypothesis and designing experimental investigations (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 4 : communicate effectively and professionally with scientists, educators, media, and general public in oral and written forms (by means of coursework, laboratory- and/or research-based learning, and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity (Intensive)
Major in Molecular Biology \& Biotechnology (Intensive)

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
    SCNC11111 Scientific method and reasoning (6)
    SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        BIOL1110 From molecules to cells (6)
        BIOL1309 Evolutionary diversity (6)
    BIOL2102 Biostatistics (6)
    BIOL2103 Biological sciences laboratory course (6)
    BIOL2306 Ecology and evolution (6)
    BIOC2600 Basic biochemistry (6)
```

    BIOL2220 Principles of biochemistry (6) Take either BIOL2220 or BIOC2600 to fulfill
        this 36 credits requirement, but not both.
        BIOL2220 and BIOC2600 are mutually
        exclusive.
    2. Advanced level courses (at least 42 credits)

Disciplinary Electives (42 credits)
(A) Genetics, molecular and cell biology (at least 12 credits selected from area A)

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
(B) Ecology, systematics and evolution (at least 12 credits selected from area B)

BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6)
BIOL3319 Tropical terrestrial ecology (6)
BIOL3506 Evolutionary biology (6)
(C) Physiology and organismic biology (at least 18 credits with 6 credits from each of List I, II \& III) List I
BIOL3105 Animal physiology and environmental adaptation (6)
BIOL3205 Human physiology (6)
BIOL3403 Immunology (6)
BIOL3406 Reproduction and reproductive biotechnology (6)
BIOL3503 Endocrinology: human physiology II (6)
List II
BIOL3314 Plant structure and evolution (6)
ENVS3202 Plant physiology and climate change (6)
BIOL4411 Plant and food biotechnology (6)

```
List III
    BIOL3109 Environmental microbiology (6)
    BIOL3203 Food microbiology (6)
    BIOL3508 Microbial physiology and biotechnology (6)
3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
\begin{tabular}{ll} 
BIOL3994 & Directed studies in biological sciences (6) \\
BIOL4964 & Biological sciences internship (6)
\end{tabular}
BIOL4994 Biological sciences project (12)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning ( 6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

5. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biological Sciences |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 2 0}$ |

## Objectives:

This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology) and will undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and explain the key concepts in genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 2 : analyze and interpret quantitative and qualitative biological data to provide scientifically based conclusions and/or judgements (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 3 : tackle biological research problems by formulating hypothesis and designing experimental investigations (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 4 : communicate effectively and professionally with scientists, educators, media, and general public in oral and written forms (by means of coursework, laboratory- and/or research-based learning, and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity (Intensive)
Major in Molecular Biology \& Biotechnology (Intensive)

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
    SCNC11111 Scientific method and reasoning (6)
    SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        BIOL1110 From molecules to cells (6)
        BIOL1309 Evolutionary diversity (6)
    BIOL2102 Biostatistics (6)
    BIOL2103 Biological sciences laboratory course (6)
    BIOL2306 Ecology and evolution (6)
    BIOC2600 Basic biochemistry (6)
```

    BIOL2220 Principles of biochemistry (6) Take either BIOL2220 or BIOC2600 to fulfill
        this 36 credits requirement, but not both.
        BIOL2220 and BIOC2600 are mutually
        exclusive.
    2. Advanced level courses (at least 42 credits)

Disciplinary Electives (42 credits)
(A) Genetics, molecular and cell biology (at least 12 credits selected from area A)

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
(B) Ecology, systematics and evolution (at least 12 credits selected from area B)

BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6)
BIOL3319 Tropical terrestrial ecology (6)
BIOL3506 Evolutionary biology (6)
(C) Physiology and organismic biology (at least 18 credits with 6 credits from each of List I, II \& III) List I
BIOL3105 Animal physiology and environmental adaptation (6)
BIOL3205 Human physiology (6)
BIOL3403 Immunology (6)
BIOL3406 Reproduction and reproductive biotechnology (6)
BIOL3503 Endocrinology: human physiology II (6)
List II
BIOL3314 Plant structure and evolution (6)
ENVS3202 Plant physiology and climate change (6)
BIOL4411 Plant and food biotechnology (6)

```
List III
    BIOL3109 Environmental microbiology (6)
    BIOL3203 Food microbiology (6)
    BIOL3508 Microbial physiology and biotechnology (6)
    BIOL4401 Medical microbiology and applied immunology (6)
```

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOL3994 Directed studies in biological sciences (6)
BIOL4964 Biological sciences internship (6)
BIOL4994 Biological sciences project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biological Sciences |
| :--- | :--- |
| Offered to students | 2019 |
| admitted to Year 1 in |  |

## Objectives:

This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology) and will undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand concepts underpinning advances in genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5: communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)
PLO 6 : be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity (Intensive)
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
BIOC2600 Basic biochemistry (6)

## 2. Advanced level courses (at least 42 credits)

Disciplinary Electives (42 credits)
(A) Genetics, molecular and cell biology (at least 12 credits selected from area A)

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
(B) Ecology, systematics and evolution (at least 12 credits selected from area B)

BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6)
BIOL3319 Tropical terrestrial ecology (6)
BIOL3506 Evolutionary biology (6)
(C) Physiology and organismic biology (at least 18 credits with 6 credits from each of List I, II \& III) List I
BIOL3105 Animal physiology and environmental adaptation (6)
BIOL3205 Human physiology (6)
BIOL3403 Immunology (6)
BIOL3406 Reproduction and reproductive biotechnology (6)
BIOL3503 Endocrinology: human physiology II (6)

```
    List II
```

BIOL4411
List III
BIOL 3109
BIOL3203
BIOL3508
BIOL440

Plant physiology (6)

BIOL3314 Plant structure and evolution (6)
ENVS3202 Plant physiology and climate change (6)

Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
BIOL3994 Directed studies in biological sciences (6)
BIOL4964 Biological sciences internship (6)
BIOL4994 Biological sciences project (12)
BIOL3107 Plant physiology (6) Take either BIOL3107 or ENVS3202 to fulfill
this 6 credits requirement in List II, but not
both. BIOL3107 and ENVS3202 are mutually
exclusive.
Take either BIOL3107 or ENVS3202 to fulfill
this 6 credits requirement in List II, but not
both. BIOL3107 and ENVS3202 are mutually
exclusive.

Take either BIOL3107 or ENVS3202 to fulfill Tis 6 credits requirement in List II, but not both. BIOL3107 and ENVS3202 are mutually Take either BIOL3107 or ENVS3202 to fulfill this 6 credits requirement in List II, but not exclusive.

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning ( 6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biological Sciences |
| :--- | :--- |
| Offered to students | 2018 |
| admitted to Year 1 in |  |

## Objectives:

This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology) and will undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand concepts underpinning advances in genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5: communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)
PLO 6 : be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity (Intensive)
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
BIOC2600 Basic biochemistry (6)

Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
2. Advanced level courses (at least 42 credits)

Disciplinary Electives (42 credits)
(A) Genetics, molecular and cell biology (at least 12 credits selected from area A)

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
(B) Ecology, systematics and evolution (at least 12 credits selected from area B)

BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6)
BIOL3419 Insect ecology: the little things that run the world (6)
BIOL3501 Evolution (6)

BIOL3506 Evolutionary biology (6)

Take either BIOL3501 or BIOL3506 to fulfill this 12 credits requirement, but not both. BIOL3501 and BIOL3506 are mutually exclusive.
Take either BIOL3501 or BIOL3506 to fulfill this 12 credits requirement, but not both. BIOL3501 and BIOL3506 are mutually exclusive.
(C) Physiology and organismic biology (at least 18 credits with 6 credits from each of List I, II \& III)

```
    List I
        BIOL3105 Animal physiology and environmental adaptation (6)
        BIOL3205 Human physiology (6)
    BIOL3403 Immunology (6)
    BIOL3406 Reproduction and reproductive biotechnology (6)
    BIOL3503 Endocrinology: human physiology II (6)
    List II
        BIOL3107 Plant physiology (6)
        BIOL3314 Plant structure and evolution (6)
        ENVS3202 Plant physiology and climate change (6)
        BIOL4411 Plant and food biotechnology (6)
        List III
        BIOL3109
        BIOL3203 Food microbiology (6)
        Environmental microbiology (6)
    BIOL3508 Microbial physiology and biotechnology (6)
    BIOL4401 Medical microbiology and applied immunology (6)
```


## 3. Capstone requirement ( 6 credits)

```
\begin{tabular}{ll} 
At least 6 credits selected from the following courses: \\
BIOL3994 & Directed studies in biological sciences (6) \\
BIOL4964 & Biological sciences internship (6) \\
BIOL4994 & Biological sciences project (12)
\end{tabular}
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biological Sciences |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 7}$ |
| admitted to Year 1 in |  |

## Objectives:

This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology) and will undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand concepts underpinning advances in genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5: communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)
PLO 6 : be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity (Intensive)
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
BIOC2600 Basic biochemistry (6)

Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
2. Advanced level courses (at least 42 credits)

Disciplinary Electives (42 credits)
(A) Genetics, molecular and cell biology (at least 12 credits selected from area A)

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
(B) Ecology, systematics and evolution (at least 12 credits selected from area $B$ )

BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6)
BIOL3419 Insect ecology: the little things that run the world (6)
BIOL3501 Evolution (6)

BIOL3506 Evolutionary biology (6)

Take either BIOL3501 or BIOL3506 to fulfill this 12 credits requirement, but not both. BIOL3501 and BIOL3506 are mutually exclusive.
Take either BIOL3501 or BIOL3506 to fulfill this 12 credits requirement, but not both. BIOL3501 and BIOL3506 are mutually exclusive.
(C) Physiology and organismic biology (at least 18 credits with 6 credits from each of List I, II \& III)

```
    List I
        BIOL3105 Animal physiology and environmental adaptation (6)
        BIOL3205 Human physiology (6)
    BIOL3403 Immunology (6)
    BIOL3406 Reproduction and reproductive biotechnology (6)
    BIOL3503 Endocrinology: human physiology II (6)
    List II
        BIOL3107 Plant physiology (6)
        BIOL3314 Plant structure and evolution (6)
        ENVS3202 Plant physiology and climate change (6)
        BIOL4411 Plant and food biotechnology (6)
        List III
        BIOL3109
        BIOL3203 Food microbiology (6)
        Environmental microbiology (6)
    BIOL3508 Microbial physiology and biotechnology (6)
    BIOL4401 Medical microbiology and applied immunology (6)
```


## 3. Capstone requirement ( 6 credits)

```
\begin{tabular}{ll} 
At least 6 credits selected from the following courses: \\
BIOL3994 & Directed studies in biological sciences (6) \\
BIOL4964 & Biological sciences internship (6) \\
BIOL4994 & Biological sciences project (12)
\end{tabular}
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biological Sciences |
| :--- | :--- |
| Offered to students | 2016 |
| admitted to Year 1 in |  |

## Objectives:

This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology) and will undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand concepts underpinning advances in genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5: communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)
PLO 6 : be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity (Intensive)
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6) Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually

BIOL2306 Ecology and evolution (6)
BIOC2600 Basic biochemistry (6)
2. Advanced level courses (at least 42 credits)

Disciplinary Electives (42 credits)
(A) Genetics, molecular and cell biology (at least 12 credits selected from area $A$ )

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
(B) Ecology, systematics and evolution (at least 12 credits selected from area $B$ )

BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6)
BIOL3419 Insect ecology: the little things that run the world (6)
BIOL3501 Evolution (6)
Blol2220 or BIOC2600 to fullil this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL3501 or BIOL3506 to fulfill this 12 credits requirement, but not both. BIOL3501 and BIOL3506 are mutually exclusive.
Take either BIOL3501 or BIOL3506 to fulfill this 12 credits requirement, but not both. BIOL3501 and BIOL3506 are mutually exclusive.
(C) Physiology and organismic biology (at least 18 credits with 6 credits from each of List I, II \& III) List I

| BIOL3105 | Animal physiology and environmental adaptation (6) |  |
| :---: | :---: | :---: |
| BIOL3205 | Human physiology (6) |  |
| BIOL3403 | Immunology (6) |  |
| BIOL3406 | Reproduction and reproductive biotechnology (6) |  |
| BIOL3503 | Endocrinology: human physiology II (6) |  |
| List II |  |  |
| BIOL3107 | Plant physiology (6) | Take either BIOL3107 or ENVS3202 to fulfill this 6 credits requirement in List II, but not both. BIOL3107 and ENVS3202 are mutually exclusive. |
| BIOL3314 | Plant structure and evolution (6) |  |
| ENVS3202 | Plant physiology and climate change (6) | Take either BIOL3107 or ENVS3202 to fulfill this 6 credits requirement in List II, but not both. BIOL3107 and ENVS3202 are mutually exclusive. |
| BIOL4411 | Plant and food biotechnology (6) |  |
| List III |  |  |
| BIOL3109 | Environmental microbiology (6) |  |
| BIOL3203 | Food microbiology (6) |  |
| BIOL3508 | Microbial physiology and biotechnology (6) |  |
| BIOL4401 | Medical microbiology and applied immunology (6) |  |
| 3. Capstone requirement ( 6 credits) |  |  |
| At least 6 credits selected from the following courses: |  |  |
| BIOL3994 | Directed studies in biological sciences (6) |  |
| BIOL4964 | Biological sciences internship (6) |  |
| BIOL4994 | Biological sciences project (12) |  |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biological Sciences |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 5}$ |

## Objectives:

This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further allowed to specialize in areas such as microbiology, genetics \& cytology, physiology \& homeostasis, or diversity of life \& environmental biology and undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1 : understand concepts underpinning advances in cell biology and genetics, physiology and systems biology, diversity of life and environmental biology, and applied biology (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)
PLO 2 : evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)
PLO 6 : be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity (Intensive)
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (36 credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
BIOC2600 Basic biochemistry (6)
2. Advanced level courses (at least 42 credits)

Disciplinary Electives (42 credits)
Students must select at least 6 credits from each of the following area $A, B, C$ \& $D$ :
(A) Genetics and cell biology

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3408 Genetics (6)
(B) Physiology and systems biology

BIOL3105 Animal physiology and environmental adaptation (6)
BIOL3107 Plant physiology (6)
BIOL3108 Microbial physiology (6)

BIOL3205 Human physiology (6)
BIOL3508 Microbial physiology and biotechnology (6)
(C) Diversity of life and environmental biology Environmental microbiology (6)

Take either BIOL3108 or BIOL3508 to fulfill this 42 credits requirement, but not both. BIOL3108 and BIOL3508 are mutually exclusive.

Take either BIOL3108 or BIOL3508 to fulfill this 42 credits requirement, but not both. BIOL3108 and BIOL3508 are mutually exclusive.

Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL2220 and BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

| BIOL3110 | Environmental toxicology (6) |
| :--- | :--- |
| BIOL3301 | Marine biology (6) |
| BIOL3302 | Systematics and phylogenetics (6) |
| (D) Applied biology |  |
| BIOL3303 | Conservation biology (6) |
| BIOL3409 | Business aspects of biotechnology (6) |
| BIOL4301 | Fish and fisheries (6) |
| BIOL4401 | Medical microbiology and applied immunology (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| BIOL3994 | Directed studies in biological sciences (6) |
| BIOL4964 | Biological sciences internship (6) |
| BIOL4994 | Biological sciences project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biological Sciences |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 4}$ |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further allowed to specialize in areas such as microbiology, genetics \& cytology, physiology \& homeostasis, or diversity of life \& environmental biology and undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand concepts underpinning advances in cell biology and genetics, physiology and systems biology, diversity of life and environmental biology, and applied biology (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)
PLO 2 : evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)
PLO 6 : be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

## Impermissible Combinations:

NIL

## Required courses ( 96 credits)

## 1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1111 Introductory microbiology (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2306 Ecology and evolution (6)
2. Advanced level courses (at least $\mathbf{4 2}$ credits)

Disciplinary Electives (42 credits)
Students must select at least 6 credits from each of the following area $A, B, C \& D$ :
(A) Genetics and cell biology

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3408 Genetics (6)
(B) Physiology and systems biology

BIOL3105 Animal physiology and environmental adaptation (6)
BIOL3107 Plant physiology (6)
BIOL3108 Microbial physiology (6) Take either BIOL3108 or BIOL3508 to fulfill this 42 credits requirement, but not both. BIOL3108 and BIOL3508 are mutually exclusive.
BIOL3205 Human physiology (6)
BIOL3508 Microbial physiology and biotechnology (6)
(C) Diversity of life and environmental biology

BIOL3109 Environmental microbiology (6)
BIOL3110 Environmental toxicology (6)
BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
(D) Applied biology

BIOL3303
Conservation biology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL4301 Fish and fisheries (6)

Take either BIOL3108 or BIOL3508 to fulfill this 42 credits requirement, but not both. BIOL3108 and BIOL3508 are mutually exclusive.

## BIOL4401 <br> Medical microbiology and applied immunology (6)

## 3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOL3994 Directed studies in biological sciences (6)
BIOL4964 Biological sciences internship (6)
BIOL4994 Biological sciences project (12)

## Notes:

1. BIOL1111 Introductory Microbiology is not offered from 2015-16. Students should take either BIOL2220 Principles of biochemistry or BIOC2600 Basic biochemistry as a replacement, both BIOL2220 and BIOC2600 are mutually exclusive.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biological Sciences |
| :--- | :--- |
| Offered to students | 2013 |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further allowed to specialize in areas such as microbiology, genetics \& cytology, physiology \& homeostasis, or diversity of life \& environmental biology and undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand concepts underpinning advances in cell biology and genetics, physiology and systems biology, diversity of life and environmental biology, and applied biology (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)
PLO 2 : evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)
PLO 6 : be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

## Impermissible Combinations:

NIL

## Required courses ( 96 credits)

## 1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1111 Introductory microbiology (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2306 Ecology and evolution (6)
2. Advanced level courses (at least $\mathbf{4 2}$ credits)

Disciplinary Electives (42 credits)
Students must select at least 6 credits from each of the following area $A, B, C \& D$ :
(A) Genetics and cell biology

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3408 Genetics (6)
(B) Physiology and systems biology

BIOL3105 Animal physiology and environmental adaptation (6)
BIOL3107 Plant physiology (6)
BIOL3108 Microbial physiology (6) Take either BIOL3108 or BIOL3508 to fulfill this 42 credits requirement, but not both. BIOL3108 and BIOL3508 are mutually exclusive.
BIOL3205 Human physiology (6)
BIOL3508 Microbial physiology and biotechnology (6)
(C) Diversity of life and environmental biology

BIOL3109 Environmental microbiology (6)
BIOL3110 Environmental toxicology (6)
BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
(D) Applied biology

BIOL3303
Conservation biology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL4301 Fish and fisheries (6)

Take either BIOL3108 or BIOL3508 to fulfill this 42 credits requirement, but not both. BIOL3108 and BIOL3508 are mutually exclusive.

## BIOL4401 <br> Medical microbiology and applied immunology (6)

## 3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOL3994 Directed studies in biological sciences (6)
BIOL4964 Biological sciences internship (6)
BIOL4994 Biological sciences project (12)

## Notes:

1. BIOL1111 Introductory Microbiology is not offered from 2015-16. Students should take either BIOL2220 Principles of biochemistry or BIOC2600 Basic biochemistry as a replacement, both BIOL2220 and BIOC2600 are mutually exclusive.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Biological Sciences |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 2}$ |
| admitted to Year 1 in |  |

Objectives:
This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further allowed to specialize in areas such as microbiology, genetics \& cytology, physiology \& homeostasis, or diversity of life \& environmental biology and undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1 : understand concepts underpinning advances in cell biology and genetics, physiology and systems biology, diversity of life and environmental biology, and applied biology (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)
PLO 2 : evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5: communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)
PLO 6 : be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

## Impermissible Combinations:

NIL

## Required courses ( 96 credits)

## 1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1111 Introductory microbiology (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2306 Ecology and evolution (6)
2. Advanced level courses (at least $\mathbf{4 2}$ credits)

Disciplinary Electives (42 credits)
Students must select at least 6 credits from each of the following area $A, B, C \& D$ :
(A) Genetics and cell biology

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3408 Genetics (6)
(B) Physiology and systems biology

BIOL3105 Animal physiology and environmental adaptation (6)
BIOL3107 Plant physiology (6)
BIOL3108 Microbial physiology (6) Take either BIOL3108 or BIOL3508 to fulfill this 42 credits requirement, but not both. BIOL3108 and BIOL3508 are mutually exclusive.
BIOL3205 Human physiology (6)
BIOL3508 Microbial physiology and biotechnology (6)
(C) Diversity of life and environmental biology

BIOL3109 Environmental microbiology (6)
BIOL3110 Environmental toxicology (6)
BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
(D) Applied biology

BIOL3303
Conservation biology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL4301 Fish and fisheries (6)

Take either BIOL3108 or BIOL3508 to fulfill this 42 credits requirement, but not both. BIOL3108 and BIOL3508 are mutually exclusive.

## BIOL4401 <br> Medical microbiology and applied immunology (6)

## 3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOL3994 Directed studies in biological sciences (6)
BIOL4964 Biological sciences internship (6)
BIOL4994 Biological sciences project (12)

## Notes:

1. BIOL1111 Introductory Microbiology is not offered from 2015-16. Students should take either BIOL2220 Principles of biochemistry or BIOC2600 Basic biochemistry as a replacement, both BIOL2220 and BIOC2600 are mutually exclusive.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.


#### Abstract

Major Title Offered to students Major in Biological Sciences (Intensive) admitted to Year 1 in

\section*{Objectives:}

This major is designed for students seeking a broad-based training in conventional and modern biology. Students are guided in a stimulating learning environment to explore major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The curriculum allows students to select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology). Students are engaged in scientific learning through a wide range of laboratory and field work. They will acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major prepares graduates for employment as professionals in a variety of careers or for postgraduate study. The intensive major includes additional coursework and a compulsory capstone research project. It is designed for students with a strong desire to acquire knowledge with sufficient depth and breadth in biological sciences.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).


## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and explain the key concepts in genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology, and to appraise the related ethical and moral issues (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 2 : equip with sufficient knowledge in chemistry for application within a biological context (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 3 : analyze and interpret quantitative and qualitative biological data to provide scientifically based conclusions and/or judgements (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 4 : tackle biological research problems by formulating hypothesis and designing experimental investigations (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 5: communicate effectively and professionally with scientists, educators, media, and general public in oral and written forms (by means of coursework, laboratory- and/or research-based learning, and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)
Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

| Required courses (144 credits) |  |  |
| :---: | :---: | :---: |
| 1. Introductory level courses ( 60 credits) |  |  |
| Disciplinary Core Courses: Science Foundation Courses (12 credits) |  |  |
| SCNC1111 | Scientific method and reasoning (6) | (Note 1) |
| SCNC1112 | Fundamentals of modern science (6) | (Note 1) |
| Disciplinary Core Courses (48 credits) |  |  |
| BIOL1110 | From molecules to cells (6) | (Note 1) |
| BIOL1309 | Evolutionary diversity (6) | (Note 1) |
| CHEM1042 | General chemistry I (6) |  |
| CHEM1043 | General chemistry II (6) |  |
| BIOL2102 | Biostatistics (6) | (Note 1) |
| BIOL2103 | Biological sciences laboratory course (6) | (Note 1) |
| BIOL2220 | Principles of biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 48 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1) |
| BIOL2306 | Ecology and evolution (6) | (Note 1) |
| BIOC2600 | Basic biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 48 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1) |

2. Advanced level courses ( 72 credits)

Disciplinary Electives ( 72 credits with at least 18 credits of Level 4XXX courses))
(A) Genetics, molecular and cell biology (at least 12 credits selected from area A)

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
(B) Ecology, systematics and evolution (at least 12 credits selected from area B)

BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6)

```
    BIOL3319 Tropical terrestrial ecology (6)
    BIOL3506 Evolutionary biology (6)
    BIOL4302 Environmental impact assessment (6)
(C) Physiology and organismic biology (at least }18\mathrm{ credits with }6\mathrm{ credits from each of List I, II & III)
    List I
    BIOL3101 Animal behaviour (6)
    BIOL3105 Animal physiology and environmental adaptation (6)
    BIOL3205 Human physiology (6)
    BIOL3403 Immunology (6)
    BIOL3406 Reproduction and reproductive biotechnology (6)
    BIOL3503 Endocrinology: human physiology II (6)
    List II
    BIOL3314 Plant structure and evolution (6)
    ENVS3202 Plant physiology and climate change (6)
    BIOL4411 Plant and food biotechnology (6)
    List III
    BIOL3109 Environmental microbiology (6)
    BIOL3203 Food microbiology (6)
    BIOL3508 Microbial physiology and biotechnology (6)
3. Capstone requirement (12 credits)
    BIOL4994 Biological sciences project (12)
```


## Notes:

1. These are core courses in the regular Biological Sciences Major ( 96 credits) curriculum.
2. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

3. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis

4. As this curriculum is accredited by the Royal Society of Biology (RSB), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.


#### Abstract

Major Title Offered to students Major in Biological Sciences (Intensive) admitted to Year 1 in

\section*{Objectives:}

This major is designed for students seeking a broad-based training in conventional and modern biology. Students are guided in a stimulating learning environment to explore major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The curriculum allows students to select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology). Students are engaged in scientific learning through a wide range of laboratory and field work. They will acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major prepares graduates for employment as professionals in a variety of careers or for postgraduate study. The intensive major includes additional coursework and a compulsory capstone research project. It is designed for students with a strong desire to acquire knowledge with sufficient depth and breadth in biological sciences.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).


## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and explain the key concepts in genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology, and to appraise the related ethical and moral issues (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 2 : equip with sufficient knowledge in chemistry for application within a biological context (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 3 : analyze and interpret quantitative and qualitative biological data to provide scientifically based conclusions and/or judgements (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 4 : tackle biological research problems by formulating hypothesis and designing experimental investigations (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 5: communicate effectively and professionally with scientists, educators, media, and general public in oral and written forms (by means of coursework, laboratory- and/or research-based learning, and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)
Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

| Required courses (144 credits) |  |  |
| :---: | :---: | :---: |
| 1. Introductory level courses ( 60 credits) |  |  |
| Disciplinary Core Courses: Science Foundation Courses (12 credits) |  |  |
| SCNC1111 | Scientific method and reasoning (6) | (Note 1) |
| SCNC1112 | Fundamentals of modern science (6) | (Note 1) |
| Disciplinary Core Courses (48 credits) |  |  |
| BIOL1110 | From molecules to cells (6) | (Note 1) |
| BIOL1309 | Evolutionary diversity (6) | (Note 1) |
| CHEM1042 | General chemistry I (6) |  |
| CHEM1043 | General chemistry II (6) |  |
| BIOL2102 | Biostatistics (6) | (Note 1) |
| BIOL2103 | Biological sciences laboratory course (6) | (Note 1) |
| BIOL2220 | Principles of biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 48 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1) |
| BIOL2306 | Ecology and evolution (6) | (Note 1) |
| BIOC2600 | Basic biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 48 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1) |

2. Advanced level courses ( 72 credits)

Disciplinary Electives ( 72 credits with at least 18 credits of Level 4XXX courses))
(A) Genetics, molecular and cell biology (at least 12 credits selected from area A)

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
(B) Ecology, systematics and evolution (at least 12 credits selected from area B)

BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6)

```
    BIOL3319 Tropical terrestrial ecology (6)
    BIOL3506 Evolutionary biology (6)
    BIOL4302 Environmental impact assessment (6)
    (C) Physiology and organismic biology (at least }18\mathrm{ credits with }6\mathrm{ credits from each of List I, II & III)
    List I
    BIOL3101 Animal behaviour (6)
    BIOL3105 Animal physiology and environmental adaptation (6)
    BIOL3205 Human physiology (6)
    BIOL3403 Immunology (6)
    BIOL3406 Reproduction and reproductive biotechnology (6)
    BIOL3503 Endocrinology: human physiology II (6)
    List II
    BIOL3314 Plant structure and evolution (6)
    ENVS3202 Plant physiology and climate change (6)
    BIOL4411 Plant and food biotechnology (6)
    List III
    BIOL3109 Environmental microbiology (6)
    BIOL3203 Food microbiology (6)
    BIOL3508 Microbial physiology and biotechnology (6)
    BIOL4401 Medical microbiology and applied immunology (6)
3. Capstone requirement (12 credits)
    BIOL4994 Biological sciences project (12)
```


## Notes:

1. These are core courses in the regular Biological Sciences Major ( 96 credits) curriculum.
2. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

3. As this curriculum is accredited by the Royal Society of Biology (RSB), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.


#### Abstract

Major Title Offered to students Major in Biological Sciences (Intensive) admitted to Year 1 in

\section*{Objectives:}

This major is designed for students seeking a broad-based training in conventional and modern biology. Students are guided in a stimulating learning environment to explore major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The curriculum allows students to select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology). Students are engaged in scientific learning through a wide range of laboratory and field work. They will acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major prepares graduates for employment as professionals in a variety of careers or for postgraduate study. The intensive major includes additional coursework and a compulsory capstone research project. It is designed for students with a strong desire to acquire knowledge with sufficient depth and breadth in biological sciences.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).


## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and explain the key concepts in genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology, and to appraise the related ethical and moral issues (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 2 : equip with sufficient knowledge in chemistry for application within a biological context (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 3 : analyze and interpret quantitative and qualitative biological data to provide scientifically based conclusions and/or judgements (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 4 : tackle biological research problems by formulating hypothesis and designing experimental investigations (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 5: communicate effectively and professionally with scientists, educators, media, and general public in oral and written forms (by means of coursework, laboratory- and/or research-based learning, and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)
Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

| Required courses (144 credits) |  |  |
| :---: | :---: | :---: |
| 1. Introductory level courses ( 60 credits) |  |  |
| Disciplinary Core Courses: Science Foundation Courses (12 credits) |  |  |
| SCNC1111 | Scientific method and reasoning (6) | (Note 1) |
| SCNC1112 | Fundamentals of modern science (6) | (Note 1) |
| Disciplinary Core Courses (48 credits) |  |  |
| BIOL1110 | From molecules to cells (6) | (Note 1) |
| BIOL1309 | Evolutionary diversity (6) | (Note 1) |
| CHEM1042 | General chemistry I (6) |  |
| CHEM1043 | General chemistry II (6) |  |
| BIOL2102 | Biostatistics (6) | (Note 1) |
| BIOL2103 | Biological sciences laboratory course (6) | (Note 1) |
| BIOL2220 | Principles of biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 48 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1) |
| BIOL2306 | Ecology and evolution (6) | (Note 1) |
| BIOC2600 | Basic biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 48 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1) |

2. Advanced level courses ( 72 credits)

Disciplinary Electives ( 72 credits with at least 18 credits of Level 4XXX courses )
(A) Genetics, molecular and cell biology (at least 12 credits selected from area A)

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
(B) Ecology, systematics and evolution (at least 12 credits selected from area B)

BIOL3101 Animal behaviour (6)
BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)

```
    BIOL3303 Conservation biology (6)
    BIOL3319 Tropical terrestrial ecology (6)
    BIOL3506 Evolutionary biology (6)
    BIOL4302 Environmental impact assessment (6)
(C) Physiology and organismic biology (at least }18\mathrm{ credits with }6\mathrm{ credits from each of List I, II & III)
    List I
    BIOL3105 Animal physiology and environmental adaptation (6)
    BIOL3205 Human physiology (6)
    BIOL3403 Immunology (6)
    BIOL3406 Reproduction and reproductive biotechnology (6)
    BIOL3503 Endocrinology: human physiology II (6)
    List II
    BIOL3107 Plant physiology (6) Take either BIOL3107 or ENVS3202 to fulfill
                                    this 6 credits requirement in List II, but not
                                    both. BIOL3107 and ENVS3202 are mutually
                                    exclusive.
    BIOL3314 Plant structure and evolution (6)
    ENVS3202 Plant physiology and climate change (6)
    BIOL4411 Plant and food biotechnology (6)
    List III
    BIOL3109 Environmental microbiology (6)
    BIOL3203 Food microbiology (6)
    BIOL3508 Microbial physiology and biotechnology (6)
    BIOL4401 Medical microbiology and applied immunology (6)
3. Capstone requirement (12 credits)
    BIOL4994 Biological sciences project (12)
```


## Notes:

1. These are core courses in the regular Biological Sciences Major ( 96 credits) curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.


#### Abstract

Major Title Offered to students Major in Biological Sciences (Intensive) admitted to Year 1 in

\section*{2018}

\section*{Objectives:}

This major is designed for students seeking a broad-based training in conventional and modern biology. Students are guided in a stimulating learning environment to explore major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The curriculum allows students to select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology). Students are engaged in scientific learning through a wide range of laboratory and field work. They will acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major prepares graduates for employment as professionals in a variety of careers or for postgraduate study. The intensive major includes additional coursework and a compulsory capstone research project. It is designed for students with a strong desire to acquire knowledge with sufficient depth and breadth in biological sciences.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).


## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and explain the key concepts in genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology, and to appraise the related ethical and moral issues (by means of coursework, laboratory-and/or research-based learning in the curriculum)
PLO 2 : equip with sufficient knowledge in chemistry for application within a biological context (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 3 : analyze and interpret quantitative and qualitative biological data to provide scientifically based conclusions and/or judgements (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 4 : tackle biological research problems by formulating hypothesis and designing experimental investigations (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 5: communicate effectively and professionally with scientists, educators, media, and general public in oral and written forms (by means of coursework, laboratory- and/or research-based learning, and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)
Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

| Required courses (144 credits) |  |  |
| :---: | :---: | :---: |
| 1. Introductory level courses ( 60 credits) |  |  |
| Disciplinary Core Courses: Science Foundation Courses (12 credits) |  |  |
| SCNC1111 | Scientific method and reasoning (6) | (Note 1) |
| SCNC1112 | Fundamentals of modern science (6) | (Note 1) |
| Disciplinary Core Courses (48 credits) |  |  |
| BIOL1110 | From molecules to cells (6) | (Note 1) |
| BIOL1309 | Evolutionary diversity (6) | (Note 1) |
| CHEM1042 | General chemistry I (6) |  |
| CHEM1043 | General chemistry II (6) |  |
| BIOL2102 | Biostatistics (6) | (Note 1) |
| BIOL2103 | Biological sciences laboratory course (6) | (Note 1) |
| BIOL2220 | Principles of biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 48 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1) |
| BIOL2306 | Ecology and evolution (6) | (Note 1) |
| BIOC2600 | Basic biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 48 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1) |

2. Advanced level courses ( 72 credits)

Disciplinary Electives ( $\mathbf{7 2}$ credits with at least 18 credits of Level 4XXX courses )
(A) Genetics, molecular and cell biology (at least 12 credits selected from area A)

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
(B) Ecology, systematics and evolution (at least 12 credits selected from area B)

BIOL3101 Animal behaviour (6)
BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)

```
    BIOL3303 Conservation biology (6)
    BIOL3319 Tropical terrestrial ecology (6)
    BIOL3506 Evolutionary biology (6)
    BIOL4302 Environmental impact assessment (6)
(C) Physiology and organismic biology (at least }18\mathrm{ credits with }6\mathrm{ credits from each of List I, II & III)
    List I
    BIOL3105 Animal physiology and environmental adaptation (6)
    BIOL3205 Human physiology (6)
    BIOL3403 Immunology (6)
    BIOL3406 Reproduction and reproductive biotechnology (6)
    BIOL3503 Endocrinology: human physiology II (6)
    List II
    BIOL3107 Plant physiology (6) Take either BIOL3107 or ENVS3202 to fulfill
                                    this 6 credits requirement in List II, but not
                                    both. BIOL3107 and ENVS3202 are mutually
                                    exclusive.
    BIOL3314 Plant structure and evolution (6)
    ENVS3202 Plant physiology and climate change (6)
    BIOL4411 Plant and food biotechnology (6)
    List III
    BIOL3109 Environmental microbiology (6)
    BIOL3203 Food microbiology (6)
    BIOL3508 Microbial physiology and biotechnology (6)
    BIOL4401 Medical microbiology and applied immunology (6)
3. Capstone requirement (12 credits)
    BIOL4994 Biological sciences project (12)
```


## Notes:

1. These are core courses in the regular Biological Sciences Major ( 96 credits) curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.


#### Abstract

Major Title Offered to students Major in Biological Sciences (Intensive) admitted to Year 1 in

\section*{Objectives:}

This major is designed for students seeking a broad-based training in conventional and modern biology. Students are guided in a stimulating learning environment to explore major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The curriculum allows students to select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology). Students are engaged in scientific learning through a wide range of laboratory and field work. They will acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major prepares graduates for employment as professionals in a variety of careers or for postgraduate study. The intensive major includes additional coursework and a compulsory capstone research project. It is designed for students with a strong desire to acquire knowledge with sufficient depth and breadth in biological sciences.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).


## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and explain the key concepts in genetics, molecular \& cell biology; ecology, systematics and evolution; physiology and organismic biology, and to appraise the related ethical and moral issues (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 2 : equip with sufficient knowledge in chemistry for application within a biological context (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 3 : analyze and interpret quantitative and qualitative biological data to provide scientifically based conclusions and/or judgements (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 4 : tackle biological research problems by formulating hypothesis and designing experimental investigations (by means of coursework, laboratory- and/or research-based learning in the curriculum)
PLO 5: communicate effectively and professionally with scientists, educators, media, and general public in oral and written forms (by means of coursework, laboratory- and/or research-based learning, and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)
Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

| Required courses (144 credits) |  |  |
| :---: | :---: | :---: |
| 1. Introductory level courses ( 60 credits) |  |  |
| Disciplinary Core Courses: Science Foundation Courses (12 credits) |  |  |
| SCNC1111 | Scientific method and reasoning (6) | (Note 1) |
| SCNC1112 | Fundamentals of modern science (6) | (Note 1) |
| Disciplinary Core Courses (48 credits) |  |  |
| BIOL1110 | From molecules to cells (6) | (Note 1) |
| BIOL1309 | Evolutionary diversity (6) | (Note 1) |
| CHEM1042 | General chemistry I (6) |  |
| CHEM1043 | General chemistry II (6) |  |
| BIOL2102 | Biostatistics (6) | (Note 1) |
| BIOL2103 | Biological sciences laboratory course (6) | (Note 1) |
| BIOL2220 | Principles of biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 48 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1) |
| BIOL2306 | Ecology and evolution (6) | (Note 1) |
| BIOC2600 | Basic biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 48 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1) |

2. Advanced level courses ( 72 credits)

Disciplinary Electives ( 72 credits with at least 18 credits of Level 4XXX courses )
(A) Genetics, molecular and cell biology (at least 12 credits selected from area A)

BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3404 Protein structure and function (6)
BIOL3408 Genetics (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
(B) Ecology, systematics and evolution (at least 12 credits selected from area B)

BIOL3101 Animal behaviour (6)
BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)

```
    BIOL3303 Conservation biology (6)
    BIOL3319 Tropical terrestrial ecology (6)
    BIOL3506 Evolutionary biology (6)
    BIOL4302 Environmental impact assessment (6)
(C) Physiology and organismic biology (at least }18\mathrm{ credits with }6\mathrm{ credits from each of List I, II & III)
    List I
    BIOL3105 Animal physiology and environmental adaptation (6)
    BIOL3205 Human physiology (6)
    BIOL3403 Immunology (6)
    BIOL3406 Reproduction and reproductive biotechnology (6)
    BIOL3503 Endocrinology: human physiology II (6)
    List II
    BIOL3107 Plant physiology (6) Take either BIOL3107 or ENVS3202 to fulfill
                                    this 6 credits requirement in List II, but not
                                    both. BIOL3107 and ENVS3202 are mutually
                                    exclusive.
    BIOL3314 Plant structure and evolution (6)
    ENVS3202 Plant physiology and climate change (6)
    BIOL4411 Plant and food biotechnology (6)
    List III
    BIOL3109 Environmental microbiology (6)
    BIOL3203 Food microbiology (6)
    BIOL3508 Microbial physiology and biotechnology (6)
    BIOL4401 Medical microbiology and applied immunology (6)
3. Capstone requirement (12 credits)
    BIOL4994 Biological sciences project (12)
```


## Notes:

1. These are core courses in the regular Biological Sciences Major ( 96 credits) curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 2 1}$ |

## Objectives:

The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3: have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4 : have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for student internship opportunities, directed studies of no less than three weeks with chemistry-related companies or research laboratories, or any other relevant capstone experience in chemistry)

## Impermissible Combinations:

Major in Chemistry (Intensive)
Minor in Chemistry

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        CHEM2241 Analytical chemistry I (6)
        CHEM2341 Inorganic chemistry I (6)
        CHEM2441 Organic chemistry I (6)
        CHEM2541 Introductory physical chemistry (6)
```

    2. Advanced level courses (42 credits)
    Disciplinary Core Course (30 credits)
        CHEM3241 Analytical chemistry II: chemical instrumentation (6)
        CHEM3341 Inorganic chemistry II (6)
        CHEM3441 Organic chemistry II (6)
        CHEM3443 Organic chemistry laboratory (6)
        CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
    Disciplinary Electives (12 credits)
        At least 12 credits of any level 4 Chemistry (CHEM4XXX) courses. The current list include courses in List A.
        List A
    CHEM4142 Symmetry, group theory and applications (6)
    CHEM4143 Interfacial science and technology (6)
    CHEM4144 Advanced materials (6)
    CHEM4145 Medicinal chemistry (6)
    CHEM4147 Supramolecular chemistry (6)
    CHEM4148 Frontiers in Modern Chemical Science (6)
    CHEM4241 Modern chemical instrumentation and applications (6)
    CHEM4242 Analytical chemistry (6)
    CHEM4341 Advanced inorganic chemistry (6)
    CHEM4342 Organometallic chemistry (6)
    CHEM4441 Advanced organic chemistry (6)
    ```
    CHEM4443 Integrated organic synthesis (6)
    CHEM4444 Chemical biology (6)
    CHEM4542 Computational chemistry (6)
    CHEM4543 Advanced physical chemistry (6)
    CHEM4544 Electrochemical science and technology (6)
3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
CHEM3999 Directed studies in chemistry (6)
CHEM4910 Chemistry literacy and research (6)
CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia
CHEM4999
Chemistry internship (6)
Chemistry project (12)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
5. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

6. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 2 0}$ |

## Objectives:

The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3: have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4 : have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for student internship opportunities, directed studies of no less than three weeks with chemistry-related companies or research laboratories, or any other relevant capstone experience in chemistry)

## Impermissible Combinations:

Major in Chemistry (Intensive)
Minor in Chemistry

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        CHEM2241 Analytical chemistry I (6)
        CHEM2341 Inorganic chemistry I (6)
        CHEM2441 Organic chemistry I (6)
        CHEM2541 Introductory physical chemistry (6)
```

    2. Advanced level courses (42 credits)
    Disciplinary Core Course ( 30 credits)
        CHEM3241 Analytical chemistry II: chemical instrumentation (6)
        CHEM3341 Inorganic chemistry II (6)
        CHEM3441 Organic chemistry II (6)
        CHEM3443 Organic chemistry laboratory (6)
        CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
    Disciplinary Electives (12 credits)
        At least 12 credits of any level 4 Chemistry (CHEM4XXX) courses. The current list include courses in List A.
        List A
    CHEM4142 Symmetry, group theory and applications (6)
    CHEM4143 Interfacial science and technology (6)
    CHEM4144 Advanced materials (6)
    CHEM4145 Medicinal chemistry (6)
    CHEM4147 Supramolecular chemistry (6)
    CHEM4148 Frontiers in Modern Chemical Science (6)
    CHEM4241 Modern chemical instrumentation and applications (6)
    CHEM4242 Analytical chemistry (6)
    CHEM4341 Advanced inorganic chemistry (6)
    CHEM4342 Organometallic chemistry (6)
    CHEM4441 Advanced organic chemistry (6)
    | CHEM4443 | Integrated organic synthesis (6) |
| :--- | :--- |
| CHEM4444 | Chemical biology (6) |
| CHEM4542 | Computational chemistry (6) |
| CHEM4543 | Advanced physical chemistry (6) |
| CHEM4544 | Electrochemical science and technology (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| CHEM3999 | Directed studies in chemistry (6) |
| CHEM4910 | Chemistry literacy and research (6) |
| CHEM4911 | Capstone experience for chemistry undergraduates: HKUtopia |
|  | (6) |
| CHEM4966 | Chemistry internship (6) |
| CHEM4999 | Chemistry project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
5. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 9}$ |

## Objectives:

The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3: have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4 : have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for student internship opportunities, directed studies of no less than three weeks with chemistry-related companies or research laboratories, or any other relevant capstone experience in chemistry)

## Impermissible Combinations:

Major in Chemistry (Intensive)
Minor in Chemistry

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        CHEM2241 Analytical chemistry I (6)
        CHEM2341 Inorganic chemistry I (6)
        CHEM2441 Organic chemistry I (6)
        CHEM2541 Introductory physical chemistry (6)
```

    2. Advanced level courses (42 credits)
    Disciplinary Core Course ( 30 credits)
        CHEM3241 Analytical chemistry II: chemical instrumentation (6)
        CHEM3341 Inorganic chemistry II (6)
        CHEM3441 Organic chemistry II (6)
        CHEM3443 Organic chemistry laboratory (6)
        CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
    Disciplinary Electives (12 credits)
        At least 12 credits of any level 4 Chemistry (CHEM4XXX) courses. The current list include courses in List A.
        List A
    CHEM4142 Symmetry, group theory and applications (6)
    CHEM4143 Interfacial science and technology (6)
    CHEM4144 Advanced materials (6)
    CHEM4145 Medicinal chemistry (6)
    CHEM4147 Supramolecular chemistry (6)
    CHEM4148 Frontiers in Modern Chemical Science (6)
    CHEM4241 Modern chemical instrumentation and applications (6)
    CHEM4242 Analytical chemistry (6)
    CHEM4341 Advanced inorganic chemistry (6)
    CHEM4342 Organometallic chemistry (6)
    CHEM4441 Advanced organic chemistry (6)
    ```
    CHEM4443 Integrated organic synthesis (6)
    CHEM4444 Chemical biology (6)
    CHEM4542 Computational chemistry (6)
    CHEM4543 Advanced physical chemistry (6)
    CHEM4544 Electrochemical science and technology (6)
3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
CHEM3999 Directed studies in chemistry (6)
CHEM4910 Chemistry literacy and research (6)
CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia
CHEM4966 Chemistry internship (6)
CHEM4999 Chemistry project (12)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2018 |

## Objectives:

The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3: have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4 : have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for student internship opportunities, directed studies of no less than three weeks with chemistry-related companies or research laboratories, or any other relevant capstone experience in chemistry)

## Impermissible Combinations:

Major in Chemistry (Intensive)
Minor in Chemistry

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        CHEM2241 Analytical chemistry I (6)
        CHEM2341 Inorganic chemistry I (6)
        CHEM2441 Organic chemistry I (6)
        CHEM2541 Introductory physical chemistry (6)
```

    2. Advanced level courses (42 credits)
    Disciplinary Core Course ( 30 credits)
        CHEM3241 Analytical chemistry II: chemical instrumentation (6)
        CHEM3341 Inorganic chemistry II (6)
        CHEM3441 Organic chemistry II (6)
        CHEM3443 Organic chemistry laboratory (6)
        CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
    Disciplinary Electives (12 credits)
        At least 12 credits of any level 4 Chemistry (CHEM4XXX) courses. The current list include courses in List A.
        List A
    CHEM4142 Symmetry, group theory and applications (6)
    CHEM4143 Interfacial science and technology (6)
    CHEM4144 Advanced materials (6)
    CHEM4145 Medicinal chemistry (6)
    CHEM4147 Supramolecular chemistry (6)
    CHEM4148 Frontiers in Modern Chemical Science (6)
    CHEM4241 Modern chemical instrumentation and applications (6)
    CHEM4242 Analytical chemistry (6)
    CHEM4341 Advanced inorganic chemistry (6)
    CHEM4342 Organometallic chemistry (6)
    CHEM4441 Advanced organic chemistry (6)
    ```
    CHEM4443 Integrated organic synthesis (6)
    CHEM4444 Chemical biology (6)
    CHEM4542 Computational chemistry (6)
    CHEM4543 Advanced physical chemistry (6)
    CHEM4544 Electrochemical science and technology (6)
3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
CHEM3999 Directed studies in chemistry (6)
CHEM4910 Chemistry literacy and research (6)
CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia
CHEM4966 Chemistry internship (6)
CHEM4999 Chemistry project (12)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2017 |

## Objectives:

The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3: have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4 : have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for student internship opportunities, directed studies of no less than three weeks with chemistry-related companies or research laboratories, or any other relevant capstone experience in chemistry)

## Impermissible Combinations:

Major in Chemistry (Intensive)
Minor in Chemistry

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        CHEM2241 Analytical chemistry I (6)
        CHEM2341 Inorganic chemistry I (6)
        CHEM2441 Organic chemistry I (6)
        CHEM2541 Introductory physical chemistry (6)
```

    2. Advanced level courses (42 credits)
    Disciplinary Core Course (30 credits)
        CHEM3241 Analytical chemistry II: chemical instrumentation (6)
        CHEM3341 Inorganic chemistry II (6)
        CHEM3441 Organic chemistry II (6)
        CHEM3443 Organic chemistry laboratory (6)
        CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
    Disciplinary Electives (12 credits)
        At least 12 credits of any level 4 Chemistry (CHEM4XXX) courses. The current list include courses in List A.
        List A
    CHEM4142 Symmetry, group theory and applications (6)
    CHEM4143 Interfacial science and technology (6)
    CHEM4144 Advanced materials (6)
    CHEM4145 Medicinal chemistry (6)
    CHEM4147 Supramolecular chemistry (6)
    CHEM4148 Frontiers in Modern Chemical Science (6)
    CHEM4241 Modern chemical instrumentation and applications (6)
    CHEM4242 Analytical chemistry (6)
    CHEM4341 Advanced inorganic chemistry (6)
    CHEM4342 Organometallic chemistry (6)
    CHEM4441 Advanced organic chemistry (6)
    ```
    CHEM4443 Integrated organic synthesis (6)
    CHEM4444 Chemical biology (6)
    CHEM4542 Computational chemistry (6)
    CHEM4543 Advanced physical chemistry (6)
    CHEM4544 Electrochemical science and technology (6)
3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
CHEM3999 Directed studies in chemistry (6)
CHEM4910 Chemistry literacy and research (6)
CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia
CHEM4966 Chemistry internship (6)
CHEM4999 Chemistry project (12)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 6}$ |

## Objectives:

The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3: have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4 : have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for student internship opportunities, directed studies of no less than three weeks with chemistry-related companies or research laboratories, or any other relevant capstone experience in chemistry)

## Impermissible Combinations:

Major in Chemistry (Intensive)
Minor in Chemistry

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        CHEM2241 Analytical chemistry I (6)
        CHEM2341 Inorganic chemistry I (6)
        CHEM2441 Organic chemistry I (6)
        CHEM2541 Introductory physical chemistry (6)
```

    2. Advanced level courses (42 credits)
    Disciplinary Core Course ( 30 credits)
        CHEM3241 Analytical chemistry II: chemical instrumentation (6)
        CHEM3341 Inorganic chemistry II (6)
        CHEM3441 Organic chemistry II (6)
        CHEM3443 Organic chemistry laboratory (6)
        CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
    Disciplinary Electives (12 credits)
        At least 12 credits of any level 4 Chemistry (CHEM4XXX) courses. The current list include courses in List A.
        List A
    CHEM4142 Symmetry, group theory and applications (6)
    CHEM4143 Interfacial science and technology (6)
    CHEM4144 Advanced materials (6)
    CHEM4145 Medicinal chemistry (6)
    CHEM4147 Supramolecular chemistry (6)
    CHEM4148 Frontiers in Modern Chemical Science (6)
    CHEM4241 Modern chemical instrumentation and applications (6)
    CHEM4242 Analytical chemistry (6)
    CHEM4341 Advanced inorganic chemistry (6)
    CHEM4342 Organometallic chemistry (6)
    CHEM4441 Advanced organic chemistry (6)
    ```
    CHEM4443 Integrated organic synthesis (6)
    CHEM4444 Chemical biology (6)
    CHEM4542 Computational chemistry (6)
    CHEM4543 Advanced physical chemistry (6)
    CHEM4544 Electrochemical science and technology (6)
3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
CHEM3999 Directed studies in chemistry (6)
CHEM4910 Chemistry literacy and research (6)
CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia
CHEM4966 Chemistry internship (6)
CHEM4999 Chemistry project (12)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 5}$ |

## Objectives:

The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3: have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4 : have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for student internship opportunities, directed studies of no less than three weeks with chemistry-related companies or research laboratories, or any other relevant capstone experience in chemistry)

## Impermissible Combinations:

Major in Chemistry (Intensive)
Minor in Chemistry

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        CHEM2241 Analytical chemistry I (6)
        CHEM2341 Inorganic chemistry I (6)
        CHEM2441 Organic chemistry I (6)
        CHEM2541 Introductory physical chemistry (6)
```

    2. Advanced level courses (42 credits)
    Disciplinary Core Course ( 30 credits)
        CHEM3241 Analytical chemistry II: chemical instrumentation (6)
        CHEM3341 Inorganic chemistry II (6)
        CHEM3441 Organic chemistry II (6)
        CHEM3443 Organic chemistry laboratory (6)
        CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
    Disciplinary Electives (12 credits)
        At least 12 credits of any level 4 Chemistry (CHEM4XXX) courses. The current list include courses in List A.
        List A
    CHEM4142 Symmetry, group theory and applications (6)
    CHEM4143 Interfacial science and technology (6)
    CHEM4144 Advanced materials (6)
    CHEM4145 Medicinal chemistry (6)
    CHEM4147 Supramolecular chemistry (6)
    CHEM4148 Frontiers in Modern Chemical Science (6)
    CHEM4241 Modern chemical instrumentation and applications (6)
    CHEM4242 Analytical chemistry (6)
    CHEM4341 Advanced inorganic chemistry (6)
    CHEM4342 Organometallic chemistry (6)
    CHEM4441 Advanced organic chemistry (6)
    ```
    CHEM4443 Integrated organic synthesis (6)
    CHEM4444 Chemical biology (6)
    CHEM4542 Computational chemistry (6)
    CHEM4543 Advanced physical chemistry (6)
    CHEM4544 Electrochemical science and technology (6)
3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
CHEM3999 Directed studies in chemistry (6)
CHEM4910 Chemistry literacy and research (6)
CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia
CHEM4966 Chemistry internship (6)
CHEM4999 Chemistry project (12)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title

Offered to students admitted to Year 1 in

## Objectives:

The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3: have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4 : have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

## Impermissible Combinations:

Minor in Chemistry

## Required courses ( 96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
CHEM1042 General chemistry I (6) [previous title: General chemistry (6)]
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6)
CHEM2541 Introductory physical chemistry (6) [previous title: Physical chemistry I (6)]
2. Advanced level courses (48 credits)

Disciplinary Core Course ( 30 credits)
CHEM3146 Principles and applications of spectroscopic
and analytical techniques (6)
CHEM3241 Analytical chemistry II: chemical

- instrumentation (6)

倍
CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
[ previous title: Physical chemistry II: Introduction to quantum chemistry (6)]

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following 18 credits of courses in two different areas in List A:
List A
CHEM3542 Physical chemistry: statistical
thermodynamics and kinetics theory (6)
CHEM4341 Advanced inorganic chemistry (6)
CHEM4441 Advanced organic chemistry (6)
CHEM4443 Integrated organic synthesis (6)
Disciplinary Electives ( 6 credits)

Take either CHEM4443 or CHEM4441 to fulfill this 12 credits requirement, but not both.
Take either CHEM4443 or CHEM4441 to fulfill this 12 credits requirement, but not both.

At least 6 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level, excluding CHEM3999 Directed studies in chemistry, CHEM4910 Chemistry literacy and research, CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia, CHEM4966 Chemistry internship and CHEM4999 Chemistry project), subject to pre-requisite requirements. The current list inlcude courses in List B and those course not selected to fulfill the requirements in List A.
List B
CHEM3141 Environmental chemistry (6)
CHEM3142 Chemical process industries and analysis (6)
CHEM3143 Introduction to materials chemistry (6)
CHEM3242 Food and water analysis (6)
CHEM3342 Bioinorganic chemistry (6)
CHEM3442 Organic chemistry of biomolecules (6)
CHEM3443 Organic chemistry laboratory (6)
CHEM3445 Integrated laboratory (6)
CHEM4142 Symmetry, group theory and applications (6)
CHEM4143 Interfacial science and technology (6)
CHEM4144 Advanced materials (6)
CHEM4145 Medicinal chemistry (6)
CHEM4147 Supramolecular chemistry (6)
CHEM4148 Frontiers in Modern Chemical Science (6)
CHEM4241 Modern chemical instrumentation and
CHEM4242 applications (6)

- Analytical chemistry (6)

CHEM4342 Organometallic chemistry (6)
CHEM4444 Chemical biology (6)
CHEM4542 Computational chemistry (6)
CHEM4543 Advanced physical chemistry (6)
CHEM4544 Electrochemical science and technology (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
CHEM3999 Directed studies in chemistry (6)
CHEM4910 Chemistry literacy and research (6)
CHEM4911 Capstone experience for chemistry
CHEM4966 undergraduates. HKUtopia (6)
CHEM4999

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
6. CHEM3146 Principles and applications of spectroscopic and analytical techniques is not offered from 2016-17. Students should consult the course selection advisers for course replacement.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title

Offered to students
admitted to Year 1 in

## Objectives:

The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3: have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4 : have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

## Impermissible Combinations:

Minor in Chemistry

## Required courses ( 96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
CHEM1042 General chemistry I (6) [previous title: General chemistry (6)]
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6)
CHEM2541 Introductory physical chemistry (6) [previous title: Physical chemistry I (6)]
2. Advanced level courses ( 48 credits)

Disciplinary Core Courses ( 30 credits)
CHEM3146 Principles and applications of spectroscopic
and analytical techniques (6)
CHEM3241 Analytical chemistry II: chemical

- instrumentation (6)

Organic chemistry II (6)
CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
[ previous title: Physical chemistry II: Introduction to quantum chemistry (6) ]

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following 18 credits of courses in two different areas in List A:
List A
CHEM3542 Physical chemistry: statistical
thermodynamics and kinetics theory (6)
Advanced inorganic chemistry (6)
CHEM4441 Advanced organic chemistry (6)
CHEM4443 Integrated organic synthesis (6)
CHEM4541 Physical chemistry III: statistical
thermodynamics and kinetics theory (6)
Disciplinary Electives ( 6 credits)

Take either CHEM3542 or CHEM4541 to fulfill this 12 credits requirement, but not both.

Take either CHEM4443 or CHEM4441 to fulfill this 12 credits requirement, but not both.
Take either CHEM4443 or CHEM4441 to fulfill this 12 credits requirement, but not both.
Take either CHEM3542 or CHEM4541 to fulfill this 12 credits requirement, but not both.

At least 6 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level, excluding CHEM3999 Directed studies in chemistry, CHEM4910 Chemistry literacy and research, CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia, CHEM4966 Chemistry internship and CHEM4999 Chemistry project), subject to pre-requisite requirements. The current list inlcude courses in List $B$ and those courses not selected to fulfill the requirements in List A.
List B
CHEM3141 Environmental chemistry (6)
CHEM3142 Chemical process industries and analysis (6)
CHEM3143 Introduction to materials chemistry (6)
CHEM3242 Food and water analysis (6)
CHEM3342 Bioinorganic chemistry (6)
CHEM3442 Organic chemistry of biomolecules (6)
CHEM3443 Organic chemistry laboratory (6)
CHEM3445 Integrated laboratory (6)
CHEM4142 Symmetry, group theory and applications (6)
CHEM4143 Interfacial science and technology (6)
CHEM4144 Advanced materials (6)
CHEM4145 Medicinal chemistry (6)
CHEM4147 Supramolecular chemistry (6)
CHEM4148 Frontiers in Modern Chemical Science (6)
CHEM4241 Modern chemical instrumentation and
CHEM4242 applications (6)
Analytical chemistry (6)
CHEM4342 Organometallic chemistry (6)
CHEM4444 Chemical biology (6)
CHEM4542 Computational chemistry (6)
CHEM4543 Advanced physical chemistry (6)
CHEM4544 Electrochemical science and technology (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
CHEM3999 Directed studies in chemistry (6)
CHEM4910 Chemistry literacy and research (6)
CHEM4911 Capstone experience for chemistry
CHEM4966 undergraduates. HKUtopia (6)
CHEM4999

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
6. CHEM3146 Principles and applications of spectroscopic and analytical techniques is not offered from 2016-17. Students should consult the course selection advisers for course replacement.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title

Offered to students
admitted to Year 1 in

## Objectives:

The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3: have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4 : have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

## Impermissible Combinations:

Minor in Chemistry

## Required courses ( 96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
CHEM1042 General chemistry I (6) [previous title: General chemistry (6)]
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6)
CHEM2541 Introductory physical chemistry (6) [previous title: Physical chemistry I (6)]
2. Advanced level courses ( 48 credits)

Disciplinary Core Courses ( 30 credits)
CHEM3146 Principles and applications of spectroscopic
and analytical techniques (6)
CHEM3241 Analytical chemistry II: chemical

- instrumentation (6)

Organic chemistry II (6)
CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
[ previous title: Physical chemistry II: Introduction to quantum chemistry (6) ]

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following 18 credits of courses in two different areas in List A:
List A
CHEM3542 Physical chemistry: statistical
thermodynamics and kinetics theory (6)
Advanced inorganic chemistry (6)
CHEM4441 Advanced organic chemistry (6)
CHEM4443 Integrated organic synthesis (6)
CHEM4541 Physical chemistry III: statistical
thermodynamics and kinetics theory (6)
Disciplinary Electives ( 6 credits)

Take either CHEM3542 or CHEM4541 to fulfill this 12 credits requirement, but not both.

Take either CHEM4443 or CHEM4441 to fulfill this 12 credits requirement, but not both.
Take either CHEM4443 or CHEM4441 to fulfill this 12 credits requirement, but not both.
Take either CHEM3542 or CHEM4541 to fulfill this 12 credits requirement, but not both.

At least 6 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level, excluding CHEM3999 Directed studies in chemistry, CHEM4910 Chemistry literacy and research, CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia, CHEM4966 Chemistry internship and CHEM4999 Chemistry project), subject to pre-requisite requirements. The current list inlcude courses in List $B$ and those courses not selected to fulfill the requirements in List A.
List B
CHEM3141 Environmental chemistry (6)
CHEM3142 Chemical process industries and analysis (6)
CHEM3143 Introduction to materials chemistry (6)
CHEM3242 Food and water analysis (6)
CHEM3342 Bioinorganic chemistry (6)
CHEM3442 Organic chemistry of biomolecules (6)
CHEM3443 Organic chemistry laboratory (6)
CHEM3445 Integrated laboratory (6)
CHEM4142 Symmetry, group theory and applications (6)
CHEM4143 Interfacial science and technology (6)
CHEM4144 Advanced materials (6)
CHEM4145 Medicinal chemistry (6)
CHEM4147 Supramolecular chemistry (6)
CHEM4148 Frontiers in Modern Chemical Science (6)
CHEM4241 Modern chemical instrumentation and
CHEM4242 applications (6)
Analytical chemistry (6)
CHEM4342 Organometallic chemistry (6)
CHEM4444 Chemical biology (6)
CHEM4542 Computational chemistry (6)
CHEM4543 Advanced physical chemistry (6)
CHEM4544 Electrochemical science and technology (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
CHEM3999 Directed studies in chemistry (6)
CHEM4910 Chemistry literacy and research (6)
CHEM4911 Capstone experience for chemistry
CHEM4966 undergraduates. HKUtopia (6)
CHEM4999 Chemistry project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
6. CHEM3146 Principles and applications of spectroscopic and analytical techniques is not offered from 2016-17. Students should consult the course selection advisers for course replacement.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry (Intensive) |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 1}$ |
| admitted to Year 1 in |  |

## Objectives:

The Intensive Major in Chemistry aims to provide students with a strong foundation on major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. The curriculum emphasizes comprehensive coverage in theoretical knowledge, laboratory skills, and research experience. A wide selection of elective courses is also available for student preparation to pursue learning in specializations such as chemical biology, computation chemistry, and materials. Graduates of the Intensive Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences. Graduates are expected to be well-prepared for further studies in chemistry and related disciplines and to pursue professional careers in scientific and technical fields.

This intensive major has been accredited by the Royal Society of Chemistry (RSC), UK.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3 : have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4: have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 300 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for chemistry research project of no less than 24 weeks, or student internship opportunities plus directed studies of no less than three weeks with chemistry-related companies or research laboratories)

## Impermissible Combinations:

Major in Chemistry
Minor in Chemistry
Required courses ( 144 credits)

1. Introductory level courses ( 54 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
(Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (36 credits)
CHEM1042 General chemistry I (6) (Note 1)
CHEM1043 General chemistry II (6) (Note 1)
CHEM2241 Analytical chemistry I (6) (Note 1)
CHEM2341 Inorganic chemistry I (6) (Note 1)
CHEM2441 Organic chemistry I (6) (Note 1)
CHEM2541 Introductory physical chemistry (6) (Note 1)
Disciplinary Electives (6 credits)
(Students are encouraged to meet with a Chemistry Course Selection Advisor in the course selection period to discuss which of the following courses they should take based on their previous background in Mathematics.)
CHEM1044 Mathematics in chemistry (6)
COMP1117 Computer programming (6)
MATH1011 University mathematics I (6)
MATH1013 University mathematics II (6)
STAT1601 Elementary statistical methods (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 78 credits)

Disciplinary Core Course (66 credits)
CHEM3143 Introduction to materials chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6) (Note 1)
CHEM3341 Inorganic chemistry II (6) (Note 1)
CHEM3441 Organic chemistry II (6) (Note 1)
CHEM3443 Organic chemistry laboratory (6) (Note 1)
CHEM3445 Integrated laboratory (6)
CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
(Note 1)
CHEM3542 Physical chemistry: statistical thermodynamics and kinetics
theory (6)

```
    CHEM4142 Symmetry, group theory and applications (6)
    CHEM4144 Advanced materials (6)
    CHEM4241
    Modern chemical instrumentation and applications (6)
```

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
(Note that one of the two elective courses selected must contain a laboratory component. Courses marked with (lab)
have a laboratory component. The list of electives given below may be subject to change.)
CHEM4143 Interfacial science and technology (6)
CHEM4145 Medicinal chemistry (6)
CHEM4147 Supramolecular chemistry (6)
CHEM4148 Frontiers in Modern Chemical Science (6)
$\begin{array}{ll}\text { CHEM4242 } & \text { Analytical chemistry (6) } \\ \text { CHEM4341 } & \text { Advanced inorganic chemistry (6) }\end{array}$
CHEM4342 Organometallic chemistry (6)
Advanced organic chemistry (6)
Integrated organic synthesis (6) (lab)
Chemical biology (6)
Computational chemistry (6) (lab)
Advanced physical chemistry (6)
Electrochemical science and technology (6) (lab)
3. Capstone requirement ( 12 credits)
At least 12 credits selected from the following courses:

| CHEM3999 | Directed studies in chemistry (6) |
| :--- | :--- |
| CHEM4966 | Chemistry internship (6) |

CHEM4999 Chemistry project (12)

## Notes:

1. These are core courses in the regular Chemistry Major (96 credits) curriculum.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
3. As this curriculum is accredited by the Royal Society of Chemistry (RSC), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme. For students who have credit transfer from exchange studies, for example) a student took CHEM3A and CHEM3B in a host university during his/her exchange studies and these two courses have been approved by the Faculty of Science to be considered equivalent as CHEM3241 and CHEM3341, they will be considered taking those HKUversion courses and in the example shown here, the student is deemed to have taken CHEM3241 and CHEM3341 to fulfil the accredited curriculum.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

5. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry (Intensive) |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 0}$ |
| admitted to Year 1 in |  |

## Objectives:

The Intensive Major in Chemistry aims to provide students with a strong foundation on major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. The curriculum emphasizes comprehensive coverage in theoretical knowledge, laboratory skills, and research experience. A wide selection of elective courses is also available for student preparation to pursue learning in specializations such as chemical biology, computation chemistry, and materials. Graduates of the Intensive Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences. Graduates are expected to be well-prepared for further studies in chemistry and related disciplines and to pursue professional careers in scientific and technical fields.

This intensive major has been accredited by the Royal Society of Chemistry (RSC), UK.

## Learning Outcomes:

## By the end of this programme, students should be able to:

PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3 : have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4: have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 300 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for chemistry research project of no less than 24 weeks, or student internship opportunities plus directed studies of no less than three weeks with chemistry-related companies or research laboratories)

## Impermissible Combinations:

Major in Chemistry
Minor in Chemistry
Required courses ( 144 credits)

1. Introductory level courses ( 54 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
(Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (36 credits)
CHEM1042 General chemistry I (6) (Note 1)
CHEM1043 General chemistry II (6) (Note 1)
CHEM2241 Analytical chemistry I (6) (Note 1)
CHEM2341 Inorganic chemistry I (6) (Note 1)
CHEM2441 Organic chemistry I (6) (Note 1)
CHEM2541 Introductory physical chemistry (6) (Note 1)
Disciplinary Electives (6 credits)
(Students are encouraged to meet with a Chemistry Course Selection Advisor in the course selection period to discuss which of the following courses they should take based on their previous background in Mathematics.)
CHEM1044 Mathematics in chemistry (6)
COMP1117 Computer programming (6)
MATH1011 University mathematics I (6)
MATH1013 University mathematics II (6)
STAT1601 Elementary statistical methods (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 78 credits)

Disciplinary Core Course (66 credits)
CHEM3143 Introduction to materials chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6) (Note 1)
CHEM3341 Inorganic chemistry II (6) (Note 1)
CHEM3441 Organic chemistry II (6) (Note 1)
CHEM3443 Organic chemistry laboratory (6) (Note 1)
CHEM3445 Integrated laboratory (6)
CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
(Note 1)
CHEM3542 Physical chemistry: statistical thermodynamics and kinetics
theory (6)

```
    CHEM4142 Symmetry, group theory and applications (6)
    CHEM4144 Advanced materials (6)
    CHEM4241
    Modern chemical instrumentation and applications (6)
```

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
(Note that one of the two elective courses selected must contain a laboratory component. Courses marked with (lab)
have a laboratory component. The list of electives given below may be subject to change.)
CHEM4143 Interfacial science and technology (6)
CHEM4145 Medicinal chemistry (6)
CHEM4147 Supramolecular chemistry (6)
CHEM4148 Frontiers in Modern Chemical Science (6)
CHEM4242 Analytical chemistry (6) (lab)
CHEM4341 Advanced inorganic chemistry (6)
CHEM4342 Organometallic chemistry (6)
Advanced organic chemistry (6)
Integrated organic synthesis (6) (lab)
Chemical biology (6)
Computational chemistry (6) (lab)
Advanced physical chemistry (6)
Electrochemical science and technology (6) (lab)
3. Capstone requirement ( 12 credits)
At least 12 credits selected from the following courses:
CHEM3999 Directed studies in chemistry (6)
CHEM4966 Chemistry internship (6)
CHEM4999 Chemistry project (12)

## Notes:

1. These are core courses in the regular Chemistry Major ( 96 credits) curriculum.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
3. As this curriculum is accredited by the Royal Society of Chemistry (RSC), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme. For students who have credit transfer from exchange studies, for example) a student took CHEM3A and CHEM3B in a host university during his/her exchange studies and these two courses have been approved by the Faculty of Science to be considered equivalent as CHEM3241 and CHEM3341, they will be considered taking those HKUversion courses and in the example shown here, the student is deemed to have taken CHEM3241 and CHEM3341 to fulfil the accredited curriculum.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry (Intensive) |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 9}$ |
| admitted to Year 1 in |  |

## Objectives:

The Intensive Major in Chemistry aims to provide students with a strong foundation on major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. The curriculum emphasizes comprehensive coverage in theoretical knowledge, laboratory skills, and research experience. A wide selection of elective courses is also available for student preparation to pursue learning in specializations such as chemical biology, computation chemistry, and materials. Graduates of the Intensive Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences. Graduates are expected to be well-prepared for further studies in chemistry and related disciplines and to pursue professional careers in scientific and technical fields.

This intensive major has been accredited by the Royal Society of Chemistry (RSC), UK.

## Learning Outcomes:

## By the end of this programme, students should be able to:

PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3 : have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4: have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 300 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for chemistry research project of no less than 24 weeks, or student internship opportunities plus directed studies of no less than three weeks with chemistry-related companies or research laboratories)

## Impermissible Combinations:

Major in Chemistry
Minor in Chemistry
Required courses ( 144 credits)

1. Introductory level courses ( 54 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
(Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (36 credits)
CHEM1042 General chemistry I (6) (Note 1)
CHEM1043 General chemistry II (6) (Note 1)
CHEM2241 Analytical chemistry I (6) (Note 1)
CHEM2341 Inorganic chemistry I (6) (Note 1)
CHEM2441 Organic chemistry I (6) (Note 1)
CHEM2541 Introductory physical chemistry (6) (Note 1)
Disciplinary Electives (6 credits)
(Students are encouraged to meet with a Chemistry Course Selection Advisor in the course selection period to discuss which of the following courses they should take based on their previous background in Mathematics.)
CHEM1044 Mathematics in chemistry (6)
COMP1117 Computer programming (6)
MATH1011 University mathematics I (6)
MATH1013 University mathematics II (6)
STAT1601 Elementary statistical methods (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 78 credits)

Disciplinary Core Course (66 credits)
CHEM3143 Introduction to materials chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6) (Note 1)
CHEM3341 Inorganic chemistry II (6) (Note 1)
CHEM3441 Organic chemistry II (6) (Note 1)
CHEM3443 Organic chemistry laboratory (6) (Note 1)
CHEM3445 Integrated laboratory (6)
CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
(Note 1)
CHEM3542 Physical chemistry: statistical thermodynamics and kinetics
theory (6)

| CHEM4142 | Symmetry, group theory and applications (6) |
| :--- | :--- |
| CHEM4144 | Advanced materials (6) |
| CHEM4241 | Modern chemical instrumentation and applications (6) |

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
(Note that one of the two elective courses selected must contain a laboratory component. Courses marked with (lab)
have a laboratory component. The list of electives given below may be subject to change.)

| CHEM4143 | Interfacial science and technology (6) |
| :--- | :--- |
| CHEM4145 | Medicinal chemistry (6) |
| CHEM4147 | Supramolecular chemistry (6) |
| CHEM4148 | Frontiers in Modern Chemical Science (6) |
| CHEM4242 | Analytical chemistry (6) |
| CHEM4341 | Advanced inorganic chemistry (6) |
| CHEM4342 | Organometallic chemistry (6) |
| CHEM4441 | Advanced organic chemistry (6) |
| CHEM4443 | Integrated organic synthesis (6) |
| CHEM4444 | Chemical biology (6) |
| CHEM4542 | Computational chemistry (6) |
| CHEM4543 | Advanced physical chemistry (6) |
| CHEM4544 | Electrochemical science and technology (6) |

3. Capstone requirement ( 12 credits)

At least 12 credits selected from the following courses:

| CHEM3999 | Directed studies in chemistry (6) |
| :--- | :--- |
| CHEM4966 | Chemistry internship (6) |

CHEM4999 Chemistry project (12)

## Notes:

1. These are core courses in the regular Chemistry Major ( 96 credits) curriculum.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
3. As this curriculum is accredited by the Royal Society of Chemistry (RSC), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme. For students who have credit transfer from exchange studies, for example) a student took CHEM3A and CHEM3B in a host university during his/her exchange studies and these two courses have been approved by the Faculty of Science to be considered equivalent as CHEM3241 and CHEM3341, they will be considered taking those HKUversion courses and in the example shown here, the student is deemed to have taken CHEM3241 and CHEM3341 to fulfil the accredited curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry (Intensive) |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 8}$ |

## Objectives:

The Intensive Major in Chemistry aims to provide students with a strong foundation on major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. The curriculum emphasizes comprehensive coverage in theoretical knowledge, laboratory skills, and research experience. A wide selection of elective courses is also available for student preparation to pursue learning in specializations such as chemical biology, computation chemistry, and materials. Graduates of the Intensive Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences. Graduates are expected to be well-prepared for further studies in chemistry and related disciplines and to pursue professional careers in scientific and technical fields.

This intensive major has been accredited by the Royal Society of Chemistry (RSC), UK.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3 : have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4: have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 300 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for chemistry research project of no less than 24 weeks, or student internship opportunities plus directed studies of no less than three weeks with chemistry-related companies or research laboratories)

## Impermissible Combinations:

Major in Chemistry
Minor in Chemistry
Required courses ( 144 credits)

1. Introductory level courses ( 54 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
(Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (36 credits)
CHEM1042 General chemistry I (6) (Note 1)
CHEM1043 General chemistry II (6) (Note 1)
CHEM2241 Analytical chemistry I (6) (Note 1)
CHEM2341 Inorganic chemistry I (6) (Note 1)
CHEM2441 Organic chemistry I (6) (Note 1)
CHEM2541 Introductory physical chemistry (6) (Note 1)
Disciplinary Electives ( 6 credits)
(Students are encouraged to meet with a Chemistry Course Selection Advisor in the course selection period to discuss which of the following courses they should take based on their previous background in Mathematics.)
CHEM1044 Mathematics in chemistry (6)
COMP1117 Computer programming (6)
MATH1011 University mathematics I (6)
MATH1013 University mathematics II (6)
STAT1601 Elementary statistical methods (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 78 credits)

Disciplinary Core Course (66 credits)
CHEM3143 Introduction to materials chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6) (Note 1)
CHEM3341 Inorganic chemistry II (6) (Note 1)
CHEM3441 Organic chemistry II (6) (Note 1)
CHEM3443 Organic chemistry laboratory (6) (Note 1)
CHEM3445 Integrated laboratory (6)
CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
(Note 1)
CHEM3542 Physical chemistry: statistical thermodynamics and kinetics
theory (6)

| CHEM4142 | Symmetry, group theory and applications (6) |
| :--- | :--- |
| CHEM4144 | Advanced materials (6) |
| CHEM4241 | Modern chemical instrumentation and applications (6) |

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
(Note that one of the two elective courses selected must contain a laboratory component. Courses marked with (lab)
have a laboratory component. The list of electives given below may be subject to change.)

| CHEM4143 | Interfacial science and technology (6) |
| :--- | :--- |
| CHEM4145 | Medicinal chemistry (6) |
| CHEM4147 | Supramolecular chemistry (6) |
| CHEM4148 | Frontiers in Modern Chemical Science (6) |
| CHEM4242 | Analytical chemistry (6) |
| CHEM4341 | Advanced inorganic chemistry (6) |
| CHEM4342 | Organometallic chemistry (6) |
| CHEM4441 | Advanced organic chemistry (6) |
| CHEM4443 | Integrated organic synthesis (6) |
| CHEM4444 | Chemical biology (6) |
| CHEM4542 | Computational chemistry (6) |
| CHEM4543 | Advanced physical chemistry (6) |
| CHEM4544 | Electrochemical science and technology (6) |

3. Capstone requirement ( 12 credits)

At least 12 credits selected from the following courses:

| CHEM3999 | Directed studies in chemistry (6) |
| :--- | :--- |
| CHEM4966 | Chemistry internship (6) |

CHEM4999 Chemistry project (12)

## Notes:

1. These are core courses in the regular Chemistry Major ( 96 credits) curriculum.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
3. As this curriculum is accredited by the Royal Society of Chemistry (RSC), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme. For students who have credit transfer from exchange studies, for example) a student took CHEM3A and CHEM3B in a host university during his/her exchange studies and these two courses have been approved by the Faculty of Science to be considered equivalent as CHEM3241 and CHEM3341, they will be considered taking those HKUversion courses and in the example shown here, the student is deemed to have taken CHEM3241 and CHEM3341 to fulfil the accredited curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry (Intensive) |
| :--- | :--- |
| Offered to students | 2017 |
| admitted to Year 1 in |  |

## Objectives:

The Intensive Major in Chemistry aims to provide students with a strong foundation on major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. The curriculum emphasizes comprehensive coverage in theoretical knowledge, laboratory skills, and research experience. A wide selection of elective courses is also available for student preparation to pursue learning in specializations such as chemical biology, computation chemistry, and materials. Graduates of the Intensive Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences. Graduates are expected to be well-prepared for further studies in chemistry and related disciplines and to pursue professional careers in scientific and technical fields.

This intensive major has been accredited by the Royal Society of Chemistry (RSC), UK.

## Learning Outcomes:

## By the end of this programme, students should be able to:

PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3 : have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4: have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 300 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for chemistry research project of no less than 24 weeks, or student internship opportunities plus directed studies of no less than three weeks with chemistry-related companies or research laboratories)

## Impermissible Combinations:

Major in Chemistry
Minor in Chemistry
Required courses ( 144 credits)

1. Introductory level courses ( 54 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
(Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (36 credits)
CHEM1042 General chemistry I (6) (Note 1)
CHEM1043 General chemistry II (6) (Note 1)
CHEM2241 Analytical chemistry I (6) (Note 1)
CHEM2341 Inorganic chemistry I (6) (Note 1)
CHEM2441 Organic chemistry I (6) (Note 1)
CHEM2541 Introductory physical chemistry (6) (Note 1)
Disciplinary Electives (6 credits)
(Students are encouraged to meet with a Chemistry Course Selection Advisor in the course selection period to discuss which of the following courses they should take based on their previous background in Mathematics.)
CHEM1044 Mathematics in chemistry (6)
COMP1117 Computer programming (6)
MATH1011 University mathematics I (6)
MATH1013 University mathematics II (6)
STAT1601 Elementary statistical methods (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 78 credits)

Disciplinary Core Course (66 credits)
CHEM3143 Introduction to materials chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6) (Note 1)
CHEM3341 Inorganic chemistry II (6) (Note 1)
CHEM3441 Organic chemistry II (6) (Note 1)
CHEM3443 Organic chemistry laboratory (6) (Note 1)
CHEM3445 Integrated laboratory (6)
CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
(Note 1)
CHEM3542 Physical chemistry: statistical thermodynamics and kinetics
theory (6)

| CHEM4142 | Symmetry, group theory and applications (6) |
| :--- | :--- |
| CHEM4144 | Advanced materials (6) |
| CHEM4241 | Modern chemical instrumentation and applications (6) |

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
(Note that one of the two elective courses selected must contain a laboratory component. Courses marked with (lab)
have a laboratory component. The list of electives given below may be subject to change.)

| CHEM4143 | Interfacial science and technology (6) |
| :--- | :--- |
| CHEM4145 | Medicinal chemistry (6) |
| CHEM4147 | Supramolecular chemistry (6) |
| CHEM4148 | Frontiers in Modern Chemical Science (6) |
| CHEM4242 | Analytical chemistry (6) |
| CHEM4341 | Advanced inorganic chemistry (6) |
| CHEM4342 | Organometallic chemistry (6) |
| CHEM4441 | Advanced organic chemistry (6) |
| CHEM4443 | Integrated organic synthesis (6) |
| CHEM4444 | Chemical biology (6) |
| CHEM4542 | Computational chemistry (6) |
| CHEM4543 | Advanced physical chemistry (6) |
| CHEM4544 | Electrochemical science and technology (6) |

3. Capstone requirement ( 12 credits)

At least 12 credits selected from the following courses:

| CHEM3999 | Directed studies in chemistry (6) |
| :--- | :--- |
| CHEM4966 | Chemistry internship (6) |

CHEM4999 Chemistry project (12)

## Notes:

1. These are core courses in the regular Chemistry Major ( 96 credits) curriculum.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
3. As this curriculum is accredited by the Royal Society of Chemistry (RSC), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme. For students who have credit transfer from exchange studies, for example) a student took CHEM3A and CHEM3B in a host university during his/her exchange studies and these two courses have been approved by the Faculty of Science to be considered equivalent as CHEM3241 and CHEM3341, they will be considered taking those HKUversion courses and in the example shown here, the student is deemed to have taken CHEM3241 and CHEM3341 to fulfil the accredited curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry (Intensive) |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 6}$ |

## Objectives:

The Intensive Major in Chemistry aims to provide students with a strong foundation on major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. The curriculum emphasizes comprehensive coverage in theoretical knowledge, laboratory skills, and research experience. A wide selection of elective courses is also available for student preparation to pursue learning in specializations such as chemical biology, computation chemistry, and materials. Graduates of the Intensive Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences. Graduates are expected to be well-prepared for further studies in chemistry and related disciplines and to pursue professional careers in scientific and technical fields.

This intensive major has been accredited by the Royal Society of Chemistry (RSC), UK.

## Learning Outcomes:

## By the end of this programme, students should be able to:

PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3 : have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4: have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 300 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for chemistry research project of no less than 24 weeks, or student internship opportunities plus directed studies of no less than three weeks with chemistry-related companies or research laboratories)

## Impermissible Combinations:

Major in Chemistry
Minor in Chemistry
Required courses ( 144 credits)

1. Introductory level courses ( 54 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
(Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (36 credits)
CHEM1042 General chemistry I (6) (Note 1)
CHEM1043 General chemistry II (6) (Note 1)
CHEM2241 Analytical chemistry I (6) (Note 1)
CHEM2341 Inorganic chemistry I (6) (Note 1)
CHEM2441 Organic chemistry I (6) (Note 1)
CHEM2541 Introductory physical chemistry (6) (Note 1)
Disciplinary Electives (6 credits)
(Students are encouraged to meet with a Chemistry Course Selection Advisor in the course selection period to discuss which of the following courses they should take based on their previous background in Mathematics.)
CHEM1044 Mathematics in chemistry (6)
COMP1117 Computer programming (6)
MATH1011 University mathematics I (6)
MATH1013 University mathematics II (6)
STAT1601 Elementary statistical methods (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 78 credits)

Disciplinary Core Course (66 credits)
CHEM3143 Introduction to materials chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6) (Note 1)
CHEM3341 Inorganic chemistry II (6) (Note 1)
CHEM3441 Organic chemistry II (6) (Note 1)
CHEM3443 Organic chemistry laboratory (6) (Note 1)
CHEM3445 Integrated laboratory (6)
CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
(Note 1)
CHEM3542 Physical chemistry: statistical thermodynamics and kinetics
theory (6)

| CHEM4142 | Symmetry, group theory and applications (6) |
| :--- | :--- |
| CHEM4144 | Advanced materials (6) |
| CHEM4241 | Modern chemical instrumentation and applications (6) |

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
(Note that one of the two elective courses selected must contain a laboratory component. Courses marked with (lab)
have a laboratory component. The list of electives given below may be subject to change.)

| CHEM4143 | Interfacial science and technology (6) |
| :--- | :--- |
| CHEM4145 | Medicinal chemistry (6) |
| CHEM4147 | Supramolecular chemistry (6) |
| CHEM4148 | Frontiers in Modern Chemical Science (6) |
| CHEM4242 | Analytical chemistry (6) |
| CHEM4341 | Advanced inorganic chemistry (6) |
| CHEM4342 | Organometallic chemistry (6) |
| CHEM4441 | Advanced organic chemistry (6) |
| CHEM4443 | Integrated organic synthesis (6) |
| CHEM4444 | Chemical biology (6) |
| CHEM4542 | Computational chemistry (6) |
| CHEM4543 | Advanced physical chemistry (6) |
| CHEM4544 | Electrochemical science and technology (6) |

3. Capstone requirement ( 12 credits)

At least 12 credits selected from the following courses:

| CHEM3999 | Directed studies in chemistry (6) |
| :--- | :--- |
| CHEM4966 | Chemistry internship (6) |

CHEM4999 Chemistry project (12)

## Notes:

1. These are core courses in the regular Chemistry Major ( 96 credits) curriculum.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
3. As this curriculum is accredited by the Royal Society of Chemistry (RSC), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme. For students who have credit transfer from exchange studies, for example) a student took CHEM3A and CHEM3B in a host university during his/her exchange studies and these two courses have been approved by the Faculty of Science to be considered equivalent as CHEM3241 and CHEM3341, they will be considered taking those HKUversion courses and in the example shown here, the student is deemed to have taken CHEM3241 and CHEM3341 to fulfil the accredited curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Chemistry (Intensive) |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 5}$ |

## Objectives:

The Intensive Major in Chemistry aims to provide students with a strong foundation on major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. The curriculum emphasizes comprehensive coverage in theoretical knowledge, laboratory skills, and research experience. A wide selection of elective courses is also available for student preparation to pursue learning in specializations such as chemical biology, computation chemistry, and materials. Graduates of the Intensive Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences. Graduates are expected to be well-prepared for further studies in chemistry and related disciplines and to pursue professional careers in scientific and technical fields.

This intensive major has been accredited by the Royal Society of Chemistry (RSC), UK.

## Learning Outcomes:

## By the end of this programme, students should be able to:

PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic \& physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 2 : demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical \& practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
PLO 3 : have developed an awareness \& understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratorybased and/or research-based learning in the curriculum)
PLO 4: have substantially developed advanced experimental skills including chemical synthesis, analysis \& operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information \& infer appropriate conclusions (by requiring of no less than 300 hours of laboratory classes in the curriculum)
PLO 5 : demonstrate problem-solving skills, critical thinking, creativity \& effective written \& oral communication skills, and to co-operate with other people \& participate as an effective team member (by means of coursework, laboratory-based learning, group project \& presentation opportunities in the curriculum)
PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills \& project organization skills (by arrangement for chemistry research project of no less than 24 weeks, or student internship opportunities plus directed studies of no less than three weeks with chemistry-related companies or research laboratories)

## Impermissible Combinations:

Major in Chemistry
Minor in Chemistry
Required courses ( 144 credits)

1. Introductory level courses ( 54 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
(Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (36 credits)
CHEM1042 General chemistry I (6) (Note 1)
CHEM1043 General chemistry II (6) (Note 1)
CHEM2241 Analytical chemistry I (6) (Note 1)
CHEM2341 Inorganic chemistry I (6) (Note 1)
CHEM2441 Organic chemistry I (6) (Note 1)
CHEM2541 Introductory physical chemistry (6) (Note 1)
Disciplinary Electives ( 6 credits)
(Students are encouraged to meet with a Chemistry Course Selection Advisor in the course selection period to discuss which of the following courses they should take based on their previous background in Mathematics.)
CHEM1044 Mathematics in chemistry (6)
COMP1117 Computer programming (6)
MATH1011 University mathematics I (6)
MATH1013 University mathematics II (6)
STAT1601 Elementary statistical methods (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 78 credits)

Disciplinary Core Course (66 credits)
CHEM3143 Introduction to materials chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6) (Note 1)
CHEM3341 Inorganic chemistry II (6) (Note 1)
CHEM3441 Organic chemistry II (6) (Note 1)
CHEM3443 Organic chemistry laboratory (6) (Note 1)
CHEM3445 Integrated laboratory (6)
CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
(Note 1)
CHEM3542 Physical chemistry: statistical thermodynamics and kinetics
theory (6)

| CHEM4142 | Symmetry, group theory and applications (6) |
| :--- | :--- |
| CHEM4144 | Advanced materials (6) |
| CHEM4241 | Modern chemical instrumentation and applications (6) |

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
(Note that one of the two elective courses selected must contain a laboratory component. Courses marked with (lab)
have a laboratory component. The list of electives given below may be subject to change.)

| CHEM4143 | Interfacial science and technology (6) |
| :--- | :--- |
| CHEM4145 | Medicinal chemistry (6) |
| CHEM4147 | Supramolecular chemistry (6) |
| CHEM4148 | Frontiers in Modern Chemical Science (6) |
| CHEM4242 | Analytical chemistry (6) |
| CHEM4341 | Advanced inorganic chemistry (6) |
| CHEM4342 | Organometallic chemistry (6) |
| CHEM4441 | Advanced organic chemistry (6) |
| CHEM4443 | Integrated organic synthesis (6) |
| CHEM4444 | Chemical biology (6) |
| CHEM4542 | Computational chemistry (6) |
| CHEM4543 | Advanced physical chemistry (6) |
| CHEM4544 | Electrochemical science and technology (6) |

3. Capstone requirement ( 12 credits)

At least 12 credits selected from the following courses:

| CHEM3999 | Directed studies in chemistry (6) |
| :--- | :--- |
| CHEM4966 | Chemistry internship (6) |

CHEM4999 Chemistry project (12)

## Notes:

1. These are core courses in the regular Chemistry Major ( 96 credits) curriculum.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.
3. As this curriculum is accredited by the Royal Society of Chemistry (RSC), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme. For students who have credit transfer from exchange studies, for example) a student took CHEM3A and CHEM3B in a host university during his/her exchange studies and these two courses have been approved by the Faculty of Science to be considered equivalent as CHEM3241 and CHEM3341, they will be considered taking those HKUversion courses and in the example shown here, the student is deemed to have taken CHEM3241 and CHEM3341 to fulfil the accredited curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Decision Analytics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 2 1}$ |

Objectives:
Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

BASc in Applied Artificial Intelligence
BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
COMP1117 Computer programming (6)
COMP2119 Introduction to data structures and algorithms (6)
MATH1013 University mathematics II (6)
MATH2014 Multivariable calculus and linear algebra (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
2. Advanced level courses ( $\mathbf{4 2}$ credits)

Disciplinary Core Courses ( 30 credits)
COMP3278 Introduction to database management systems (6)
MATH3904 Introduction to optimization (6)
STAT3600 Linear statistical analysis (6)
STAT3612 Statistical machine learning (6)
STAT4609 Big data analytics (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
COMP3250 Design and analysis of algorithms (6)
COMP3270 Artificial intelligence (6)
COMP3323 Advanced database systems (6)
COMP3407 Scientific computing (6)
MATH3408 Computational methods and differential equations with
MATH3600 $\quad \begin{aligned} & \text { applications (6) } \\ & \text { Discrete mathematics (6) }\end{aligned}$
MATH3601 Numerical analysis (6)
MATH3901 Operations research I (6)

| STAT3620 | Modern nonparametric statistics (6) |
| :--- | :--- |
| STAT3621 | Statistical data analysis (6) |
| STAT3622 | Data visualization (6) |
| STAT3655 | Survival analysis (6) |
| STAT4601 | Time-series analysis (6) |
| STAT4602 | Multivariate data analysis (6) |
| STAT4610 | Bayesian learning (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
a. Biomedical Analytics

BIOL4417 'Omics' and systems biology
STAT3607 Statistics in clinical medicine and bio-medical research
STAT3608 Statistical genetics
STAT3620 Modern nonparametric statistics
STAT3621 Statistical data analysis
STAT4602 Multivariate data analysis
b. Financial and Risk Analytics

STAT3621 Statistical data analysis
STAT4601 Time series analysis
Plus advanced level courses listed for the Major in Risk Management
c. Operational Analytics

COMP3250 Design and analysis of algorithms
MATH3600 Discrete mathematics
MATH3901 Operations research I
MATH3943 Network models in operations research
MATH4902 Operations research II
STAT3606 Business logistics
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/useful-resources/handbooks (Student Handbook).
7. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

8. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Decision Analytics |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 2 0}$ |

Objectives:
Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

BASc in Applied Artificial Intelligence
BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
COMP1117 Computer programming (6)
COMP2119 Introduction to data structures and algorithms (6)
MATH1013 University mathematics II (6)
MATH2014 Multivariable calculus and linear algebra (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
2. Advanced level courses ( $\mathbf{4 2}$ credits)

Disciplinary Core Courses ( 30 credits)
COMP3278 Introduction to database management systems (6)
MATH3904 Introduction to optimization (6)
STAT3600 Linear statistical analysis (6)
STAT3612 Statistical machine learning (6)
STAT4609 Big data analytics (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
COMP3250 Design and analysis of algorithms (6)
COMP3270 Artificial intelligence (6)
COMP3323 Advanced database systems (6)
COMP3407 Scientific computing (6)
MATH3408 Computational methods and differential equations with
MATH3600 $\quad \begin{aligned} & \text { applications (6) } \\ & \text { Discrete mathematics (6) }\end{aligned}$
MATH3601 Numerical analysis (6)
MATH3901 Operations research I (6)

| STAT3620 | Modern nonparametric statistics (6) |
| :--- | :--- |
| STAT3621 | Statistical data analysis (6) |
| STAT3622 | Data visualization (6) |
| STAT3655 | Survival analysis (6) |
| STAT4601 | Time-series analysis (6) |
| STAT4602 | Multivariate data analysis (6) |
| STAT4610 | Bayesian learning (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
a. Biomedical Analytics

BIOL4417 'Omics' and systems biology
STAT3607 Statistics in clinical medicine and bio-medical research
STAT3608 Statistical genetics
STAT3620 Modern nonparametric statistics
STAT3621 Statistical data analysis
STAT4602 Multivariate data analysis
b. Financial and Risk Analytics

STAT3621 Statistical data analysis
STAT4601 Time series analysis
Plus advanced level courses listed for the Major in Risk Management
c. Operational Analytics

COMP3250 Design and analysis of algorithms
MATH3600 Discrete mathematics
MATH3901 Operations research I
MATH3943 Network models in operations research
MATH4902 Operations research II
STAT3606 Business logistics
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/useful-resources/handbooks (Student Handbook).
7. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Decision Analytics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 9}$ |

## Objectives:

Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

BASc in Applied Artificial Intelligence
BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
COMP1117 Computer programming (6)
COMP2119 Introduction to data structures and algorithms (6)
MATH1013 University mathematics II (6)
MATH2014 Multivariable calculus and linear algebra (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
2. Advanced level courses ( $\mathbf{4 2}$ credits)

Disciplinary Core Courses ( 30 credits)
COMP3278 Introduction to database management systems (6)
MATH3904 Introduction to optimization (6)
STAT3600 Linear statistical analysis (6)
STAT3612 Statistical machine learning (6)
STAT4609 Big data analytics (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
COMP3250 Design and analysis of algorithms (6)
COMP3270 Artificial intelligence (6)
COMP3323 Advanced database systems (6)
COMP3407 Scientific computing (6)
MATH3408 Computational methods and differential equations with
MATH3600 $\quad \begin{aligned} & \text { applications (6) } \\ & \text { Discrete mathematics (6) }\end{aligned}$
MATH3601 Numerical analysis (6)
MATH3901 Operations research I (6)

| STAT3620 | Modern nonparametric statistics (6) |
| :--- | :--- |
| STAT3621 | Statistical data analysis (6) |
| STAT3622 | Data visualization (6) |
| STAT3655 | Survival analysis (6) |
| STAT4601 | Time-series analysis (6) |
| STAT4602 | Multivariate data analysis (6) |
| STAT4610 | Bayesian learning (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
a. Biomedical Analytics

BIOL4417 'Omics' and systems biology
STAT3607 Statistics in clinical medicine and bio-medical research
STAT3608 Statistical genetics
STAT3620 Modern nonparametric statistics
STAT3621 Statistical data analysis
STAT4602 Multivariate data analysis
b. Financial and Risk Analytics

STAT3621 Statistical data analysis
STAT4601 Time series analysis
Plus advanced level courses listed for the Major in Risk Management
c. Operational Analytics

COMP3250 Design and analysis of algorithms
MATH3600 Discrete mathematics
MATH3901 Operations research I
MATH3943 Network models in operations research
MATH4902 Operations research II
STAT3606 Business logistics
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/useful-resources/handbooks (Student Handbook).

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Decision Analytics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 8}$ |

## Objectives:

Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6 : gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (36 credits)
COMP1117 Computer programming (6)
COMP2119 Introduction to data structures and algorithms (6)
MATH1013 University mathematics II (6)
MATH2014 Multivariable calculus and linear algebra (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 30 credits)
COMP3278 Introduction to database management systems (6)
MATH3904 Introduction to optimization (6)
STAT3600 Linear statistical analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]

## STAT4609 Big data analytics (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
COMP3250 Design and analysis of algorithms (6)
COMP3270 Artificial intelligence (6)
COMP3323 Advanced database systems (6)
COMP3407 Scientific computing (6)
MATH3408 Computational methods and differential equations with
MATH3600 $\quad$ Discrete mathematics (6)
MATH3601 Numerical analysis (6)
MATH3901 Operations research I (6)
STAT3620 Modern nonparametric statistics (6)

```
    STAT3621 Statistical data analysis (6)
    STAT3622 Data visualization (6)
    STAT3655 Survival analysis (6)
    STAT4601 Time-series analysis (6)
    STAT4602 Multivariate data analysis (6)
    STAT4610 Bayesian learning (6)
```

3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
a. Biomedical Analytics

BIOL4417 'Omics' and systems biology
STAT3607 Statistics in clinical medicine and bio-medical research
STAT3608 Statistical genetics
STAT3620 Modern nonparametric statistics
STAT3621 Statistical data analysis
STAT4602 Multivariate data analysis
b. Financial and Risk Analytics

STAT3621 Statistical data analysis
STAT4601 Time series analysis
Plus advanced level courses listed for the Major in Risk Management
c. Operational Analytics

COMP3250 Design and analysis of algorithms
MATH3600 Discrete mathematics
MATH3901 Operations research I
MATH3943 Network models in operations research
MATH4902 Operations research II
STAT3606 Business logistics
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/useful-resources/handbooks (Student Handbook).

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Decision Analytics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 7}$ |

Objectives:
Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
COMP1117 Computer programming (6)
COMP2119 Introduction to data structures and algorithms (6)
MATH1013 University mathematics II (6)
MATH2014 Multivariable calculus and linear algebra (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 30 credits)
COMP3278 Introduction to database management systems (6)
MATH3904 Introduction to optimization (6)
STAT3600 Linear statistical analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
STAT4609 Big data analytics (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
COMP3250 Design and analysis of algorithms (6)
COMP3270 Artificial intelligence (6)
COMP3323 Advanced database systems (6)
COMP3407 Scientific computing (6)
MATH3408 Computational methods and differential equations with
MATH3600 $\quad$ Discrete mathematics (6)
MATH3601 Numerical analysis (6)
MATH3901 Operations research I (6)
STAT3616 Advanced SAS programming (6)

| STAT3620 | Modern nonparametric statistics (6) |
| :--- | :--- |
| STAT3621 | Statistical data analysis (6) |
| STAT3622 | Data visualization (6) |
| STAT3655 | Survival analysis (6) |
| STAT4601 | Time-series analysis (6) |
| STAT4602 | Multivariate data analysis (6) |
| STAT4610 | Bayesian learning (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
a. Biomedical Analytics

BIOL4417 'Omics' and systems biology
STAT3607 Statistics in clinical medicine and bio-medical research
STAT3608 Statistical genetics
STAT3620 Modern nonparametric statistics
STAT3621 Statistical data analysis
STAT4602 Multivariate data analysis
b. Financial and Risk Analytics

STAT3616 Advanced SAS programming
STAT3621 Statistical data analysis
STAT4601 Time series analysis
Plus advanced level courses listed for the Major in Risk Management
c. Operational Analytics

COMP3250 Design and analysis of algorithms
MATH3600 Discrete mathematics
MATH3901 Operations research I
MATH3943 Network models in operations research
MATH4902 Operations research II
STAT3606 Business logistics
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/useful-resources/handbooks (Student Handbook).

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Decision Analytics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 6}$ |

## Objectives:

Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6 : gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (36 credits)
COMP1117 Computer programming (6)
COMP2119 Introduction to data structures and algorithms (6)
MATH1013 University mathematics II (6)
MATH2014 Multivariable calculus and linear algebra (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 30 credits)
COMP3278 Introduction to database management systems (6)
MATH3904 Introduction to optimization (6)
STAT3600 Linear statistical analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]

## STAT4609 Big data analytics (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
COMP3250 Design and analysis of algorithms (6)
COMP3270 Artificial intelligence (6)
COMP3323 Advanced database systems (6)
COMP3407 Scientific computing (6)
MATH3408 Computational methods and differential equations with
MATH3600 $\quad$ Discrete mathematics (6)
MATH3601 Numerical analysis (6)
MATH3901 Operations research I (6)
STAT3616 Advanced SAS programming (6)

| STAT3620 | Modern nonparametric statistics (6) |
| :--- | :--- |
| STAT3621 | Statistical data analysis (6) |
| STAT3622 | Data visualization (6) |
| STAT3655 | Survival analysis (6) |
| STAT4601 | Time-series analysis (6) |
| STAT4602 | Multivariate data analysis (6) |
| STAT4610 | Bayesian learning (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
a. Biomedical Analytics

BIOL4417 'Omics' and systems biology
STAT3607 Statistics in clinical medicine and bio-medical research
STAT3608 Statistical genetics
STAT3620 Modern nonparametric statistics
STAT3621 Statistical data analysis
STAT4602 Multivariate data analysis
b. Financial and Risk Analytics

STAT3616 Advanced SAS programming
STAT3621 Statistical data analysis
STAT4601 Time series analysis
Plus advanced level courses listed for the Major in Risk Management
c. Operational Analytics

COMP3250 Design and analysis of algorithms
MATH3600 Discrete mathematics
MATH3901 Operations research I
MATH3943 Network models in operations research
MATH4902 Operations research II
STAT3606 Business logistics
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/useful-resources/handbooks (Student Handbook).

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Decision Analytics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 5}$ |

Objectives:
Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6 : gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
COMP1117 Computer programming (6)
COMP2119 Introduction to data structures and algorithms (6)
MATH1013 University mathematics II (6)
MATH2014 Multivariable calculus and linear algebra (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 30 credits)
COMP3278 Introduction to database management systems (6)
MATH3904 Introduction to optimization (6)
STAT3600 Linear statistical analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
STAT4609 Big data analytics (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
COMP3250 Design and analysis of algorithms (6)
COMP3270 Artificial intelligence (6)
COMP3323 Advanced database systems (6)
COMP3407 Scientific computing (6)
MATH3408 Computational methods and differential equations with
MATH3600 $\quad$ Discrete mathematics (6)
MATH3601 Numerical analysis (6)
MATH3901 Operations research I (6)
STAT3616 Advanced SAS programming (6)

| STAT3620 | Modern nonparametric statistics (6) |
| :--- | :--- |
| STAT3621 | Statistical data analysis (6) |
| STAT3622 | Data visualization (6) |
| STAT4601 | Time-series analysis (6) |
| STAT4602 | Multivariate data analysis (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
a. Biomedical Analytics

BIOL4417 'Omics' and systems biology
STAT3607 Statistics in clinical medicine and bio-medical research
STAT3608 Statistical genetics
STAT3620 Modern nonparametric statistics
STAT3621 Statistical data analysis
STAT4602 Multivariate data analysis
b. Financial and Risk Analytics

STAT3616 Advanced SAS programming
STAT3621 Statistical data analysis
STAT4601 Time series analysis
Plus advanced level courses listed for the Major in Risk Management
c. Operational Analytics

COMP3250 Design and analysis of algorithms
MATH3600 Discrete mathematics
MATH3901 Operations research I
MATH3943 Network models in operations research
MATH4902 Operations research II
STAT3606 Business logistics
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Decision Analytics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 4}$ |

## Objectives:

Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (36 credits)
COMP1117 Computer programming (6)
COMP2119 Introduction to data structures and algorithms (6)
MATH1013 University mathematics II (6)
MATH2014 Multivariable calculus and linear algebra (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 30 credits)
COMP3278 Introduction to database management systems (6)
MATH3904 Introduction to optimization (6)
STAT3600 Linear statistical analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
STAT4609 Big data analytics (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
COMP3250 Design and analysis of algorithms (6)
COMP3270 Artificial intelligence (6)
COMP3323 Advanced database systems (6)
COMP3407 Scientific computing (6)
MATH3408 Computational methods and differential equations with
MATH3600 $\quad$ Discrete mathematics (6)
MATH3601 Numerical analysis (6)
MATH3901 Operations research I (6)
STAT3616 Advanced SAS programming (6)

| STAT3620 | Modern nonparametric statistics (6) |
| :--- | :--- |
| STAT3621 | Statistical data analysis (6) |
| STAT3622 | Data visualization (6) |
| STAT4601 | Time-series analysis (6) |
| STAT4602 | Multivariate data analysis (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
a. Biomedical Analytics

BIOL4417 'Omics' and systems biology
STAT3607 Statistics in clinical medicine and bio-medical research
STAT3608 Statistical genetics
STAT3620 Modern nonparametric statistics
STAT3621 Statistical data analysis
STAT4602 Multivariate data analysis
b. Financial and Risk Analytics

STAT3616 Advanced SAS programming
STAT3621 Statistical data analysis
STAT4601 Time series analysis
Plus advanced level courses listed for the Major in Risk Management
c. Operational Analytics

COMP3250 Design and analysis of algorithms
MATH3600 Discrete mathematics
MATH3901 Operations research I
MATH3943 Network models in operations research
MATH4902 Operations research II
STAT3606 Business logistics
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Decision Analytics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 3}$ |

## Objectives:

Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (36 credits)
COMP1117 Computer programming (6)
COMP2119 Introduction to data structures and algorithms (6)
MATH1013 University mathematics II (6)
MATH2014 Multivariable calculus and linear algebra (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 30 credits)
COMP3278 Introduction to database management systems (6)
MATH3904 Introduction to optimization (6)
STAT3600 Linear statistical analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]

## STAT4609 Big data analytics (6)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
COMP3250 Design and analysis of algorithms (6)
COMP3270 Artificial intelligence (6)
COMP3323 Advanced database systems (6)
COMP3407 Scientific computing (6)
MATH3408 Computational methods and differential equations with
MATH3600 $\quad$ Discrete mathematics (6)
MATH3601 Numerical analysis (6)
MATH3901 Operations research I (6)
STAT3616 Advanced SAS programming (6)

| STAT3620 | Modern nonparametric statistics (6) |
| :--- | :--- |
| STAT3621 | Statistical data analysis (6) |
| STAT3622 | Data visualization (6) |
| STAT4601 | Time-series analysis (6) |
| STAT4602 | Multivariate data analysis (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
a. Biomedical Analytics

BIOL4417 'Omics' and systems biology
STAT3607 Statistics in clinical medicine and bio-medical research
STAT3608 Statistical genetics
STAT3620 Modern nonparametric statistics
STAT3621 Statistical data analysis
STAT4602 Multivariate data analysis
b. Financial and Risk Analytics

STAT3616 Advanced SAS programming
STAT3621 Statistical data analysis
STAT4601 Time series analysis
Plus advanced level courses listed for the Major in Risk Management
c. Operational Analytics

COMP3250 Design and analysis of algorithms
MATH3600 Discrete mathematics
MATH3901 Operations research I
MATH3943 Network models in operations research
MATH4902 Operations research II
STAT3606 Business logistics
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Decision Analytics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 2}$ |

admitted to Year 1 in
Objectives:
Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

## BEng in Computer Science

Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

## Required courses (96 credits)

## 1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( 36 credits)
COMP1117 Computer programming (6)
COMP2119 Introduction to data structures and algorithms (6)
MATH1013 University mathematics II (6)
MATH2014 Multivariable calculus and linear algebra (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
2. Advanced level courses (42 credits)

Disciplinary Core Courses (30 credits)
COMP3278 Introduction to database management systems (6)
MATH3904 Introduction to optimization (6)
STAT3600 Linear statistical analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
STAT4609 Big data analytics (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
COMP3250 Design and analysis of algorithms (6)
COMP3270 Artificial intelligence (6)
COMP3323 Advanced database systems (6)
COMP3407 Scientific computing (6)
MATH3408 Computational methods and differential equations with
MATH3600 $\quad$ Discrete mathematics (6)
MATH3601 Numerical analysis (6)
MATH3901 Operations research I (6)
STAT3616 Advanced SAS programming (6)

| STAT3620 | Modern nonparametric statistics (6) |
| :--- | :--- |
| STAT3621 | Statistical data analysis (6) |
| STAT3622 | Data visualization (6) |
| STAT4601 | Time-series analysis (6) |
| STAT4602 | Multivariate data analysis (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
a. Biomedical Analytics

BIOL4417 'Omics' and systems biology
STAT3607 Statistics in clinical medicine and bio-medical research
STAT3608 Statistical genetics
STAT3620 Modern nonparametric statistics
STAT3621 Statistical data analysis
STAT4602 Multivariate data analysis
b. Financial and Risk Analytics

STAT3616 Advanced SAS programming
STAT3621 Statistical data analysis
STAT4601 Time series analysis
Plus advanced level courses listed for the Major in Risk Management
c. Operational Analytics

COMP3250 Design and analysis of algorithms
MATH3600 Discrete mathematics
MATH3901 Operations research I
MATH3943 Network models in operations research
MATH4902 Operations research II
STAT3606 Business logistics
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students Major in Earth System Science <br> admitted to Year 1 in

## Objectives:

Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, the biosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, environment and life conservation and teaching.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : identify real life problems pertaining to the physical environment and find solutions to those problems (by means capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)
PLO 6 : work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
EASC1401 Blue Planet (6)
EASC2401 Fluid/solid interactions in earth processes (6)
EASC2402 Field and laboratory methods (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
EASC2410 Data analysis and modeling in earth sciences (6)
EASC2411 Introduction to the Earth-Life system (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 6 credits) EASC4403

Biogeochemical cycles (6)
Disciplinary Electives ( $\mathbf{3 6}$ credits)
At least 36 credits selected from Lists A and B, among which at least 18 credits from List A:
List A
EASC3410 Hydrogeology (6)
EASC3415 Meteorology (6)
EASC3418 Coasts and coastal change (6)
ENVS3313 Environmental oceanography (6)
List B
EASC3020 Global change: anthropogenic impacts (6)
EASC3403 Sedimentary environments (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3412 Earth resources (6)
EASC3417 Earth through time (6)
EASC3419 Earth System Science Field Studies (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
EASC4408 Special topics in earth sciences (6)
EASC4999 Earth sciences project (12)
3. Capstone requirement ( 6 credits)

EASC4911
Earth system: contemporary issues (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.
5. Students are recommended to take PHYS1240 Physics by Inquiry and CHEM1041 Foundations of Chemistry if they do not have level 3 or above in HKDSE Physics and Chemistry, respectively, or equivalent.
6. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

7. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Earth System Science <br> admitted to Year 1 in <br> 2020

## Objectives:

Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, the biosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, environment and life conservation and teaching.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : identify real life problems pertaining to the physical environment and find solutions to those problems (by means capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)
PLO 6 : work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
EASC1401 Blue Planet (6)
EASC1406 Introduction to the earth-life system (6) Take either EASC1406 or EASC2411 to fulfill this 36 credits requirement, but not both. EASC1406 and EASC2411 are mutually

EASC2401 Fluid/solid interactions in earth processes (6)
EASC2402 Field and laboratory methods (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
EASC2410 Data analysis and modeling in earth sciences (6)
EASC2411 Introduction to the Earth-Life system (6) exclusive.

## 2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 6 credits)
EASC4403 Biogeochemical cycles (6)
Disciplinary Electives ( $\mathbf{3 6}$ credits)
At least 36 credits selected from Lists A and B, among which at least 18 credits from List A:
List A
EASC3410
Hydrogeology (6)
EASC3415 Meteorology (6)
EASC3418 Coasts and coastal change (6)
ENVS3313 Environmental oceanography (6)
List B EASC3020

Global change: anthropogenic impacts (6)
EASC3403 Sedimentary environments (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3412 Earth resources (6)
EASC3417 Earth through time (6)
EASC3419 Earth System Science Field Studies (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)

```
    EASC4408 Special topics in earth sciences (6)
    EASC4999 Earth sciences project (12)
```

3. Capstone requirement ( 6 credits)
EASC4911 Earth system: contemporary issues (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.
5. Students are recommended to take PHYS1240 Physics by Inquiry and CHEM1041 Foundations of Chemistry if they do not have level 3 or above in HKDSE Physics and Chemistry, respectively, or equivalent.
6. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students Major in Earth System Science <br> 2019 <br> admitted to Year 1 in

## Objectives:

Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, the biosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, environment and life conservation and teaching.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : identify real life problems pertaining to the physical environment and find solutions to those problems (by means capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)
PLO 6 : work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
EASC1401 Blue Planet (6)
EASC1406 Introduction to the earth-life system (6) Take either EASC1406 or EASC2411 to fulfill this 36 credits requirement, but not both. EASC1406 and EASC2411 are mutually

EASC2401 Fluid/solid interactions in earth processes (6)
EASC2402 Field and laboratory methods (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
EASC2410 Data analysis and modeling in earth sciences (6)
EASC2411 Introduction to the Earth-Life system (6) exclusive.

## 2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 6 credits)
EASC4403 Biogeochemical cycles (6)
Disciplinary Electives ( $\mathbf{3 6}$ credits)
At least 36 credits selected from Lists A and B, among which at least 18 credits from List A:
List A
EASC3410
Hydrogeology (6)
EASC3415 Meteorology (6)
EASC3418 Coasts and coastal change (6)
ENVS3313 Environmental oceanography (6)
List B EASC3020

Global change: anthropogenic impacts (6)
EASC3403 Sedimentary environments (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3412 Earth resources (6)
EASC3417 Earth through time (6)
EASC3419 Earth System Science Field Studies (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)

```
    EASC4408 Special topics in earth sciences (6)
    EASC4999 Earth sciences project (12)
```

3. Capstone requirement ( 6 credits)
EASC4911 Earth system: contemporary issues (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.
6. Students are recommended to take PHYS1240 Physics by Inquiry and CHEM1041 Foundations of Chemistry if they do not have level 3 or above in HKDSE Physics and Chemistry, respectively, or equivalent.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Earth System Science <br> 2018 <br> admitted to Year 1 in

## Objectives:

Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, the biosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, environment and life conservation and teaching.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : identify real life problems pertaining to the physical environment and find solutions to those problems (by means capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)
PLO 6 : work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
EASC1401 Blue Planet (6)
EASC1406 Introduction to the earth-life system (6) Take either EASC1406 or EASC2411 to fulfill this 36 credits requirement, but not both. EASC1406 and EASC2411 are mutually

EASC2401 Fluid/solid interactions in earth processes (6)
EASC2402 Field and laboratory methods (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
EASC2410 Data analysis and modeling in earth sciences (6)
EASC2411 Introduction to the Earth-Life system (6) exclusive.

## 2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 6 credits)
EASC4403 Biogeochemical cycles (6)
Disciplinary Electives ( $\mathbf{3 6}$ credits)
At least 36 credits selected from Lists A and B, among which at least 18 credits from List A:
List A
EASC3410
Hydrogeology (6)
EASC3415 Meteorology (6)
EASC3418 Coasts and coastal change (6)
ENVS3313 Environmental oceanography (6)
List B EASC3020

Global change: anthropogenic impacts (6)
EASC3403 Sedimentary environments (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3412 Earth resources (6)
EASC3417 Earth through time (6)
EASC3419 Earth System Science Field Studies (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)

```
    EASC4408 Special topics in earth sciences (6)
    EASC4999 Earth sciences project (12)
```

3. Capstone requirement ( 6 credits)
EASC4911 Earth system: contemporary issues (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.
6. Students are recommended to take PHYS1240 Physics by Inquiry and CHEM1041 Foundations of Chemistry if they do not have level 3 or above in HKDSE Physics and Chemistry, respectively, or equivalent.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students Major in Earth System Science <br> 2017 <br> admitted to Year 1 in

## Objectives:

Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, the biosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, environment and life conservation and teaching.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : identify real life problems pertaining to the physical environment and find solutions to those problems (by means capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)
PLO 6 : work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
EASC1401 Blue Planet (6)
EASC1406 Introduction to the earth-life system (6) Take either EASC1406 or EASC2411 to fulfill this 36 credits requirement, but not both. EASC1406 and EASC2411 are mutually

EASC2401 Fluid/solid interactions in earth processes (6)
EASC2402 Field and laboratory methods (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
EASC2410 Data analysis and modeling in earth sciences (6)
EASC2411 Introduction to the Earth-Life system (6) exclusive.

## 2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 6 credits)
EASC4403 Biogeochemical cycles (6)
Disciplinary Electives ( $\mathbf{3 6}$ credits)
At least 36 credits selected from Lists A and B, among which at least 18 credits from List A:
List A
EASC3410
Hydrogeology (6)
EASC3415 Meteorology (6)
EASC3418 Coasts and coastal change (6)
ENVS3313 Environmental oceanography (6)
List B EASC3020

Global change: anthropogenic impacts (6)
EASC3403 Sedimentary environments (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3412 Earth resources (6)
EASC3417 Earth through time (6)
EASC3419 Earth System Science Field Studies (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)

```
    EASC4408 Special topics in earth sciences (6)
    EASC4999 Earth sciences project (12)
```

3. Capstone requirement ( 6 credits)
EASC4911 Earth system: contemporary issues (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.
6. Students are recommended to take PHYS1240 Physics by Inquiry and CHEM1041 Foundations of Chemistry if they do not have level 3 or above in HKDSE Physics and Chemistry, respectively, or equivalent.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Earth System Science <br> 2016 <br> admitted to Year 1 in

## Objectives:

Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, the biosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, environment and life conservation and teaching.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5: identify real life problems pertaining to the physical environment and find solutions to those problems (by means capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)
PLO 6 : work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( 30 credits)
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
EASC2402 Field and laboratory methods (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
Disciplinary Electives ( 6 credits)
BIOL1309 Evolutionary diversity (6)
EASC1406 Introduction to the earth-life system (6) Take either EASC1406 or EASC2411 to fulfill this 6 credits requirement, but not both. EASC1406 and EASC2411 are mutually exclusive.
EASC2411 Introduction to the Earth-Life system (6)
Take either EASC1406 or EASC2411 to fulfill this 6 credits requirement, but not both. EASC1406 and EASC2411 are mutually exclusive.
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 6 credits)
EASC4403 Biogeochemical cycles (6)
Disciplinary Electives ( 36 credits)
At least 36 credits selected from Lists A and B, among which at least 12 credits from List A:
List A
EASC3410 Hydrogeology (6)
EASC3415 Meteorology (6)
ENVS3313 Environmental oceanography (6)
List B
EASC3403
EASC3405
Envionment (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3412 Earth resources (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)

```
    ENVS3007 Natural hazards and mitigation (6)
    EASC4408 Special topics in earth sciences (6)
    EASC4999 Earth sciences project (12)
```


## 3. Capstone requirement ( 6 credits)

EASC4911 Earth system: contemporary issues (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students Major in Earth System Science <br> 2015 <br> admitted to Year 1 in

## Objectives:

Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, the biosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, environment and life conservation and teaching.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5: identify real life problems pertaining to the physical environment and find solutions to those problems (by means capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)
PLO 6 : work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( 30 credits)
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
EASC2402 Field and laboratory methods (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
Disciplinary Electives ( 6 credits)
BIOL1309 Evolutionary diversity (6)
EASC1406 Introduction to the earth-life system (6) Take either EASC1406 or EASC2411 to fulfill this 6 credits requirement, but not both. EASC1406 and EASC2411 are mutually exclusive.
EASC2411 Introduction to the Earth-Life system (6)
Take either EASC1406 or EASC2411 to fulfill this 6 credits requirement, but not both. EASC1406 and EASC2411 are mutually exclusive.
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 6 credits)
EASC4403 Biogeochemical cycles (6)
Disciplinary Electives ( 36 credits)
At least 36 credits selected from Lists A and B, among which at least 12 credits from List A:
List A
EASC3410 Hydrogeology (6)
EASC3415 Meteorology (6)
ENVS3313 Environmental oceanography (6)
List B
EASC3403
EASC3405
(6)

EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3412 Earth resources (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)

```
    ENVS3007 Natural hazards and mitigation (6)
    EASC4408 Special topics in earth sciences (6)
    EASC4999 Earth sciences project (12)
```


## 3. Capstone requirement ( 6 credits)

EASC4911 Earth system: contemporary issues (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Earth System Science <br> 2014 <br> admitted to Year 1 in

## Objectives:

Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, soil and water conservation and teaching.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : identify real life problems pertaining to the physical environment and find solutions to those problems (by means capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)
PLO 6 : work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences
Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses ( 12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (36 credits)
BIOL1309 Evolutionary diversity (6)
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
EASC2402 Field and laboratory methods (6) EASC2404 Introduction to atmosphere and hydrosphere (6)
2. Advanced level courses (42 credits)

Disciplinary Core Courses ( 6 credits)
EASC4403 Biogeochemical cycles (6)
Disciplinary Electives ( 36 credits)
At least 36 credits from Lists $A$ and B, among which at least 12 credits from List A:
List A
EASC3410 Hydrogeology (6)
EASC3415 Meteorology (6)
ENVS3313 Environmental oceanography (6)
List B
EASC3403 Sedimentary environments (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3412 Earth resources (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
EASC4408 Special topics in earth sciences (6)
EASC4999 Earth sciences project (12)
3. Capstone requirement ( 6 credits)

EASC4911
Earth system: contemporary issues (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112

Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Earth System Science <br> 2013 <br> admitted to Year 1 in

## Objectives:

Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, soil and water conservation and teaching.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : identify real life problems pertaining to the physical environment and find solutions to those problems (by means capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)
PLO 6 : work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences
Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses ( 12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (36 credits)
BIOL1309 Evolutionary diversity (6)
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
EASC2402 Field and laboratory methods (6) EASC2404 Introduction to atmosphere and hydrosphere (6)
2. Advanced level courses (42 credits)

Disciplinary Core Courses ( 6 credits)
EASC4403 Biogeochemical cycles (6)
Disciplinary Electives ( 36 credits)
At least 36 credits from Lists $A$ and B, among which at least 12 credits from List A:
List A
EASC3410 Hydrogeology (6)
EASC3415 Meteorology (6)
ENVS3313 Environmental oceanography (6)
List B
EASC3403 Sedimentary environments (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3412 Earth resources (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
EASC4408 Special topics in earth sciences (6)
EASC4999 Earth sciences project (12)
3. Capstone requirement ( 6 credits)

EASC4911
Earth system: contemporary issues (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112

Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Earth System Science <br> 2012 <br> admitted to Year 1 in

## Objectives:

Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, soil and water conservation and teaching.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : identify real life problems pertaining to the physical environment and find solutions to those problems (by means capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)
PLO 6 : work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences
Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (36 credits)
BIOL1309 Evolutionary diversity (6)
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
EASC2402 Field and laboratory methods (6) EASC2404 Introduction to atmosphere and hydrosphere (6)
2. Advanced level courses (42 credits)

Disciplinary Core Courses ( 6 credits)
EASC4403 Biogeochemical cycles (6)
Disciplinary Electives ( 36 credits)
At least 36 credits from Lists $A$ and B, among which at least 12 credits from List A:
List A:
EASC3410 Hydrogeology (6)
EASC3415 Meteorology (6)
ENVS3313 Environmental oceanography (6)
List B:
EASC3403 Sedimentary environments (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3412 Earth resources (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
EASC4408 Special topics in earth sciences (6)
EASC4999 Earth sciences project (12)
3. Capstone requirement ( 6 credits)

EASC4911
Earth system: contemporary issues (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112

Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 1}$ |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2: understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6: have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7: be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity (Intensive)
Minor in Ecology \& Biodiversity

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2306 Ecology and evolution (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( 36 credits)

Disciplinary Core Courses (18 credits)
BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3319 Tropical terrestrial ecology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3101 Animal behaviour (6)
BIOL3303 Conservation biology (6)
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)

| BIOL3322 | Marine invertebrate zoology (6) |
| :--- | :--- |
| BIOL3328 | Nearshore marine and estuarine ecology (6) |
| BIOL3419 | Insect ecology: the little things that run the world (6) |
| BIOL3506 | Evolutionary biology (6) |
| BIOL4301 | Fish and fisheries (6) |
| BIOL4302 | Environmental impact assessment (6) |
| BIOL4304 | Ecosystem functioning and services (6) |
| BIOL4505 | Oyster aquaculture: business and technology (6) |
| BIOL4861 | Ecology \& biodiversity internship (6) |
| ENVS3019 | Urban ecology (6) |
| ENVS3020 | Global change ecology (6) |

## 3. Capstone requirement ( 12 credits)

BIOL4991 Ecology \& biodiversity project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, two 6 -credit or a 12-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

5. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 0}$ |
| admitted to Year 1 in |  |

## Objectives:

This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2: understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6: have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity (Intensive)
Minor in Ecology \& Biodiversity

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2306 Ecology and evolution (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( 36 credits)

Disciplinary Core Courses (18 credits)
BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3319 Tropical terrestrial ecology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3101 Animal behaviour (6)
BIOL3303 Conservation biology (6)
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)

| BIOL3322 | Marine invertebrate zoology (6) |
| :--- | :--- |
| BIOL3328 | Nearshore marine and estuarine ecology (6) |
| BIOL3419 | Insect ecology: the little things that run the world (6) |
| BIOL3506 | Evolutionary biology (6) |
| BIOL4301 | Fish and fisheries (6) |
| BIOL4302 | Environmental impact assessment (6) |
| BIOL4304 | Ecosystem functioning and services (6) |
| BIOL4505 | Oyster aquaculture: business and technology (6) |
| BIOL4861 | Ecology \& biodiversity internship (6) |
| ENVS3019 | Urban ecology (6) |
| ENVS3020 | Global change ecology (6) |

## BIOL4991 Ecology \& biodiversity project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, two 6 -credit or a 12 -credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | 2019 |
| admitted to Year 1 in |  |

Objectives:
This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2: understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6: have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity (Intensive)
Minor in Ecology \& Biodiversity

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2306 Ecology and evolution (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( 36 credits)

Disciplinary Core Courses (18 credits)
BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3319 Tropical terrestrial ecology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3101 Animal behaviour (6)
BIOL3303 Conservation biology (6)
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)

| BIOL3322 | Marine invertebrate zoology (6) |  |
| :--- | :--- | :--- |
| BIOL3328 | Nearshore marine and estuarine ecology (6) |  |
| BIOL3419 | Insect ecology: the little things that run the world (6) |  |
| BIOL3506 | Evolutionary biology (6) |  |
| BIOL4301 | Fish and fisheries (6) |  |
| BIOL4302 | Environmental impact assessment (6) |  |
| BIOL4304 | Ecosystem functioning and services (6) |  |
| BIOL4505 | Oyster aquaculture: business and technology (6) | [previous title: Oyster aquaculture (6)] |
| BIOL4861 | Ecology \& biodiversity internship (6) |  |
| ENVS3019 | Urban ecology (6) |  |
| ENVS3020 | Global change ecology (6) |  |

## BIOL4991 <br> Ecology \& biodiversity project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, two 6 -credit or a 12-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional two 6 -credit or a 12 -credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2018 |

## Objectives:

This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2: understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6: have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity (Intensive)
Minor in Ecology \& Biodiversity

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2306 Ecology and evolution (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses (18 credits)
BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3319 Tropical terrestrial ecology (6)
Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:
BIOL3101 Animal behaviour (6)
BIOL3303 Conservation biology (6)
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)

| BIOL3322 | Marine invertebrate zoology (6) |
| :--- | :--- |
| BIOL3328 | Nearshore marine and estuarine ecology (6) |
| BIOL3419 | Insect ecology: the little things that run the world (6) |
| BIOL3506 | Evolutionary biology (6) |
| BIOL4301 | Fish and fisheries (6) |
| BIOL4302 | Environmental impact assessment (6) |
| BIOL4304 | Ecosystem functioning and services (6) |
| BIOL4505 | Oyster aquaculture: business and technology (6) |
| BIOL4861 | Ecology \& biodiversity internship (6) |
| ENVS3019 | Urban ecology (6) |
| ENVS3020 | Global change ecology (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| BIOL3991 | Directed studies in ecology \& biodiversity (6) |
| :--- | :--- |
| BIOL4911 | Conservation science in practice (6) |

BIOL4911 Conservation science in practice (6)
BIOL4991 Ecology \& biodiversity project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | 2017 |
| admitted to Year 1 in |  |

## Objectives:

This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6 : have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity (Intensive)
Minor in Ecology \& Biodiversity
Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2306 Ecology and evolution (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses (18 credits)
BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3319 Tropical terrestrial ecology (6)
Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:
BIOL3101 Animal behaviour (6)
BIOL3303 Conservation biology (6)
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)

| BIOL3322 | Marine invertebrate zoology (6) |
| :--- | :--- |
| BIOL3328 | Nearshore marine and estuarine ecology (6) |
| BIOL3419 | Insect ecology: the little things that run the world (6) |
| BIOL3506 | Evolutionary biology (6) |
| BIOL4301 | Fish and fisheries (6) |
| BIOL4302 | Environmental impact assessment (6) |
| BIOL4304 | Ecosystem functioning and services (6) |
| BIOL4505 | Oyster aquaculture: business and technology (6) |
| BIOL4861 | Ecology \& biodiversity internship (6) |
| ENVS3019 | Urban ecology (6) |
| ENVS3020 | Global change ecology (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| BIOL3991 | Directed studies in ecology \& biodiversity (6) |
| :--- | :--- |
| BIOL4911 | Conservation science in practice (6) |

BIOL4911 Conservation science in practice (6)
BIOL4991 Ecology \& biodiversity project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | 2016 |
| admitted to Year 1 in |  |

## Objectives:

This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2: understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6: have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity (Intensive)
Minor in Ecology \& Biodiversity

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2306 Ecology and evolution (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( $\mathbf{1 2}$ credits)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6) [previous title: Conservation ecology (6)]
Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
BIOL3101 Animal behaviour (6)
BIOL3109 Environmental microbiology (6)
BIOL3301 Marine biology (6)
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)
BIOL3319 Tropical terrestrial ecology (6)

BIOL3320 The biology of marine mammals (6)
BIOL3322 Marine invertebrate zoology (6)
BIOL3328 Nearshore marine and estuarine ecology (6)
BIOL3419 Insect ecology: the little things that run the world (6)
BIOL3505 Oyster aquaculture and restoration (6)
Take either BIOL3505 or BIOL4505 to fulfill this 30 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive.
BIOL3506 Evolutionary biology (6)
BIOL4301 Fish and fisheries (6)
BIOL4302 Environmental impact assessment (6)
BIOL4304 Ecosystem functioning and services (6)
BIOL4451 Cetacean behaviour, ecology and conservation: field research experience (6)
BIOL4505 Oyster aquaculture: business and technology (6)
Take either BIOL3505 or BIOL4505 to fulfill this 30 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive. [ previous title: Oyster aquaculture (6) ]
$\begin{array}{ll}\text { BIOL4861 } & \text { Ecology \& biodiversity internship (6) } \\ \text { ENVS3019 } & \text { Urban ecology (6) }\end{array}$
ENVS3020 Global change ecology (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOL3991 Directed studies in ecology \& biodiversity (6)

BIOL4911 Conservation science in practice (6)
BIOL4921 Animal behaviour and behavioural ecology: field course (6)
BIOL4991 Ecology \& biodiversity project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | 2015 |
| admitted to Year 1 in |  |

## Objectives:

This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2: understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6: have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7: be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity (Intensive)
Minor in Ecology \& Biodiversity

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2306 Ecology and evolution (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( $\mathbf{1 2}$ credits)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6) [previous title: Conservation ecology (6)]
Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:

BIOL3305 Tropical and temperate marine ecology field course (6)

BIOL3101 Animal behaviour (6)

BIOL3109 Environmental microbiology (6)
BIOL3301 Marine biology (6)
BIOL3313 Freshwater ecology (6)

Take either BIOL3101 or BIOL4303 to fulfill this 30 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.

| BIOL3314 | Plant structure and evolution (6) | [previous title: Terrestrail ecology (6)] |
| :---: | :---: | :---: |
| BIOL3318 | Experimental intertidal ecology (6) |  |
| BIOL3319 | Tropical terrestrial ecology (6) |  |
| BIOL3320 | The biology of marine mammals (6) |  |
| BIOL3322 | Marine invertebrate zoology (6) |  |
| BIOL3328 | Nearshore marine and estuarine ecology (6) |  |
| BIOL3419 | Insect ecology: the little things that run the world (6) |  |
| BIOL3505 | Oyster aquaculture and restoration (6) | Take either BIOL3505 or BIOL4505 to fulfill this 30 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive. |
| BIOL3506 | Evolutionary biology (6) |  |
| BIOL4301 | Fish and fisheries (6) |  |
| BIOL4302 | Environmental impact assessment (6) |  |
| BIOL4303 | Animal behaviour (6) | Take either BIOL3101 or BIOL4303 to fulfill this 30 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive. |
| BIOL4304 | Ecosystem functioning and services (6) |  |
| BIOL4451 | Cetacean behaviour, ecology and conservation: field research experience (6) |  |
| BIOL4505 | Oyster aquaculture: business and technology (6) | Take either BIOL3505 or BIOL4505 to fulfill this 30 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive. [ previous title: Oyster aquaculture (6) ] |
| BIOL4861 | Ecology \& biodiversity internship (6) |  |
| ENVS3019 | Urban ecology (6) |  |
| ENVS3020 | Global change ecology (6) |  |
| 3. Capstone requirement (6 credits) |  |  |
| At least 6 credits selected from the following courses: |  |  |
| BIOL3951 | Ecology \& biodiversity field course (6) | Take either BIOL3951 (subclass B) or BIOL4921 to fulfill this 6 credits requirement, but not both. BIOL3951 (subclass B) and BIOL4921 are mutually exclusive. |
| BIOL3991 | Directed studies in ecology \& biodiversity (6) |  |
| BIOL4911 | Conservation science in practice (6) |  |
| BIOL4921 | Animal behaviour and behavioural ecology: field course (6) | Take either BIOL3951 (subclass B) or BIOL4921 to fulfill this 6 credits requirement, but not both. BIOL3951 (subclass B) and BIOL4921 are mutually exclusive. |
| BIOL4991 | Ecology \& biodiversity project (12) |  |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning ( 6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | 2014 |
| admitted to Year 1 in |  |

Objectives:
This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2: understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6 : have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Minor in Ecology \& Biodiversity

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        BIOL1110 From molecules to cells (6)
        BIOL1309 Evolutionary diversity (6)
        BIOL2102 Biostatistics (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2306 Ecology and evolution (6)
        ENVS2002 Environmental data analysis (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (12 credits)
        BIOL3302 Systematics and phylogenetics (6)
    Disciplinary Electives (30 credits)
        At least 30 credits selected from the following courses:
        BIOL3101 Animal behaviour (6)
        BIOL3109 Environmental microbiology (6)
        BIOL3301 Marine biology (6)
        BIOL3305 Tropical and temperate marine ecology field course (6)
        BIOL3313 Freshwater ecology (6)
        BIOL3314 Plant structure and evolution (6)
```

        BIOL3303 Conservation biology (6) [previous title: Conservation ecology (6)]
    | BIOL3318 | Experimental intertidal ecology (6) |  |
| :---: | :---: | :---: |
| BIOL3319 | Tropical terrestrial ecology (6) | [previous title: Terrestrial ecology (6) ] |
| BIOL3320 | The biology of marine mammals (6) |  |
| BIOL3322 | Marine invertebrate zoology (6) |  |
| BIOL3328 | Nearshore marine and estuarine ecology (6) |  |
| BIOL3419 | Insect ecology: the little things that run the world (6) |  |
| BIOL3505 | Oyster aquaculture and restoration (6) | Take either BIOL3505 or BIOL4505 to fulfill this 30 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive. |
| BIOL4301 | Fish and fisheries (6) |  |
| BIOL4302 | Environmental impact assessment (6) |  |
| BIOL4303 | Animal behaviour (6) | Take either BIOL3101 or BIOL4303 to fulfill this 30 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive. |
| BIOL4304 | Ecosystem functioning and services (6) |  |
| BIOL4451 | Cetacean behaviour, ecology and conservation: field research experience (6) |  |
| BIOL4505 | Oyster aquaculture: business and technology (6) | Take either BIOL3505 or BIOL4505 to fulfill this 30 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive. [ previous title: Oyster aquaculture (6) ] |
| BIOL4861 | Ecology \& biodiversity internship (6) |  |
| ENVS3019 | Urban ecology (6) |  |
| ENVS3020 | Global change ecology (6) |  |
| 3. Capstone requirement (6 credits) |  |  |
| At least 6 credits selected from the following courses: |  |  |
| BIOL3951 | Ecology \& biodiversity field course (6) | Take either BIOL3951 (subclass B) or BIOL4921 to fulfill this 6 credits requirement, but not both. BIOL3951 (subclass B) and BIOL4921 are mutually exclusive. |
| BIOL3991 | Directed studies in ecology \& biodiversity (6) |  |
| BIOL4911 | Conservation science in practice (6) |  |
| BIOL4921 | Animal behaviour and behavioural ecology: field course (6) | Take either BIOL3951 (subclass B) or BIOL4921 to fulfill this 6 credits requirement, but not both. BIOL3951 (subclass B) and BIOL4921 are mutually exclusive. |
| BIOL4991 | Ecology \& biodiversity project (12) |  |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | 2013 |
| admitted to Year 1 in |  |

Objectives:
This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2: understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6: have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Minor in Ecology \& Biodiversity

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        BIOL1110 From molecules to cells (6)
        BIOL1309 Evolutionary diversity (6)
        BIOL2102 Biostatistics (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2306 Ecology and evolution (6)
        ENVS2002 Environmental data analysis (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (12 credits)
        BIOL3302 Systematics and phylogenetics (6)
    Disciplinary Electives (30 credits)
        At least 30 credits selected from the following courses:
        BIOL3101 Animal behaviour (6)
        BIOL3109 Environmental microbiology (6)
        BIOL3301 Marine biology (6)
        BIOL3305 Tropical and temperate marine ecology field course (6)
        BIOL3313 Freshwater ecology (6)
        BIOL3314 Plant structure and evolution (6)
```

        BIOL3303 Conservation biology (6) [previous title: Conservation ecology (6)]
    | BIOL3318 | Experimental intertidal ecology (6) |  |
| :---: | :---: | :---: |
| BIOL3319 | Tropical terrestrial ecology (6) | [previous title: Terrestrail ecology (6) ] |
| BIOL3320 | The biology of marine mammals (6) |  |
| BIOL3322 | Marine invertebrate zoology (6) |  |
| BIOL3328 | Nearshore marine and estuarine ecology (6) |  |
| BIOL3419 | Insect ecology: the little things that run the world (6) |  |
| BIOL3505 | Oyster aquaculture and restoration (6) | Take either BIOL3505 or BIOL4505 to fulfill this 30 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive. |
| BIOL4301 | Fish and fisheries (6) |  |
| BIOL4302 | Environmental impact assessment (6) |  |
| BIOL4303 | Animal behaviour (6) | Take either BIOL3101 or BIOL4303 to fulfill this 30 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive. |
| BIOL4304 | Ecosystem functioning and services (6) |  |
| BIOL4451 | Cetacean behaviour, ecology and conservation: field research experience (6) |  |
| BIOL4505 | Oyster aquaculture: business and technology (6) | Take either BIOL3505 or BIOL4505 to fulfill this 30 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive. [ previous title: Oyster aquaculture (6) ] |
| BIOL4861 | Ecology \& biodiversity internship (6) |  |
| ENVS3019 | Urban ecology (6) |  |
| ENVS3020 | Global change ecology (6) |  |
| 3. Capstone requirement (6 credits) |  |  |
| At least 6 credits selected from the following courses: |  |  |
| BIOL3951 | Ecology \& biodiversity field course (6) | Take either BIOL3951 (subclass B) or BIOL4921 to fulfill this 6 credits requirement, but not both. BIOL3951 (subclass B) and BIOL4921 are mutually exclusive. |
| BIOL3991 | Directed studies in ecology \& biodiversity (6) |  |
| BIOL4911 | Conservation science in practice (6) |  |
| BIOL4921 | Animal behaviour and behavioural ecology: field course (6) | Take either BIOL3951 (subclass B) or BIOL4921 to fulfill this 6 credits requirement, but not both. BIOL3951 (subclass B) and BIOL4921 are mutually exclusive. |
| BIOL4991 | Ecology \& biodiversity project (12) |  |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 2}$ |
| admitted to Year 1 in |  |

Objectives:
This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2: understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6: have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Minor in Ecology \& Biodiversity


| BIOL3319 | Tropical terrestrial ecology (6) | [previous title: Terrestrial ecology (6) ] |
| :---: | :---: | :---: |
| BIOL3320 | The biology of marine mammals (6) |  |
| BIOL3322 | Marine invertebrate zoology (6) |  |
| BIOL3328 | Nearshore marine and estuarine ecology (6) |  |
| BIOL3419 | Insect ecology: the little things that run the world (6) |  |
| BIOL3505 | Oyster aquaculture and restoration (6) | Take either BIOL3505 or BIOL4505 to fulfill this 36 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive. |
| BIOL4301 | Fish and fisheries (6) |  |
| BIOL4302 | Environmental impact assessment (6) |  |
| BIOL4303 | Animal behaviour (6) | Take either BIOL3101 or BIOL4303 to fulfill this 36 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive. |
| BIOL4304 | Ecosystem functioning and services (6) |  |
| BIOL4451 | Cetacean behaviour, ecology and conservation: field research experience (6) |  |
| BIOL4505 | Oyster aquaculture: business and technology (6) | Take either BIOL3505 or BIOL4505 to fulfill this 36 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive. [ previous title: Oyster aquaculture (6) ] |
| BIOL4861 | Ecology \& biodiversity internship (6) |  |
| ENVS3019 | Urban ecology (6) |  |
| ENVS3020 | Global change ecology (6) |  |
| 3. Capstone requirement (6 credits) |  |  |
| At least 6 credits selected from the following courses: |  |  |
| BIOL3951 | Ecology \& biodiversity field course (6) | Take either BIOL3951 (subclass B) or BIOL4921 to fulfill this 6 credits requirement, but not both. BIOL3951 (subclass B) and BIOL4921 are mutually exclusive. |
| BIOL3991 | Directed studies in ecology \& biodiversity (6) |  |
| BIOL4911 | Conservation science in practice (6) |  |
| BIOL4921 | Animal behaviour and behavioural ecology: field course (6) | Take either BIOL3951 (subclass B) or BIOL4921 to fulfill this 6 credits requirement, but not both. BIOL3951 (subclass B) and BIOL4921 are mutually exclusive. |
| BIOL4991 | Ecology \& biodiversity project (12) |  |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title Major in Ecology \& Biodiversity (Intensive) <br> Offered to students <br> 2021

admitted to Year 1 in

## Objectives:

This intensive major is directed at teaching students the 'rules of existence' for organisms in natural and human-modified environments, including major threats to biodiversity and the approaches adopted to conserve species and habitats. Special reference is made to the plants, animals and habitats of Hong Kong and Asia, the ways in which humans have altered the region's ecosystems, and the management or mitigation of those impacts. The range and scope of courses offered will provide students with a firm foundation in ecology, biodiversity and related disciplines, and equip them with the skills required for postgraduate research or employment with government and non-government organizations concerned with biodiversity conservation, nature preservation or habitat assessment and management.

The intensive major is based around an introductory core that emphasizes biology, ecology and evolution of plants and animals; it includes a compulsory residential field trip (as part of the Ecology and Evolution course), as well as instruction in data analysis and biostatistics. Many of the advanced courses in the major have a strong emphasis on field-work and on small projects performed by students. They teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial, freshwater and urban) and taxa (e.g. flowering plants, insects, fishes, marine mammals). Other courses focus on more applied topics, such as environmental impact assessment, conservation, and provide an opportunity for students to become familiar with specialised topics ranging from systematics to animal behaviour.

During their final year, students have an opportunity to conduct independent research in the form of an ecology and biodiversity research project or a directed-studies dissertation under the close supervision of an individual staff member. Students are able to make use of the facilities of the Swire Institute of Marine Science for such work. Strong emphasis is also placed upon experiential learning during overseas field trips that can be taken as part of the capstone requirement of this intensive major.

Ecology and biodiversity research requires extensive scientific knowledge as well as passion, and students are encouraged to take more than the requisite 12 -credit minimum of capstone courses. Through these courses, and the range of formal fieldbased options as well as various extra-curricular activities offered, students will be expected to develop expertise in one or a few groups of plants or animals; this is an important skill since an ability to identify species and major taxa is an essential prerequisite for biodiversity scientists or conservation biologists.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the local, regional and global environment, and how they interact; evaluate their role in ecosystem functioning and identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : assess, understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to assess, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6 : have the skill and knowledge to pursue postgraduate ecological research in top-level Universities around the world or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems in a changing world. (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity
Minor in Ecology \& Biodiversity

## Required courses (144 credits)

1. Introductory level courses ( 60 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses ( 42 credits)
BIOL1110 From molecules to cells (6) (Note 1)
BIOL1309 Evolutionary diversity (6) (Note 1)
BIOL2102 Biostatistics (6) (Note 1)
BIOL2103 Biological sciences laboratory course (6) (Note 1)

| BIOL2306 | Ecology and evolution (6) | (Note 1) |
| :--- | :--- | :--- |
| EASC1401 | Blue Planet (6) |  |
| ENVS2002 | Environmental data analysis (6) | (Note 1) |

## Disciplinary Electives ( 6 credits)

Plus at least 6 credits selected from the following courses:
CHEM1041 Foundations of chemistry (6)
CHEM1042 General chemistry I (6)
2. Advanced level courses ( $\mathbf{6 6}$ to 72 credits) (Note 2)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOL3101 Animal behaviour (6)
BIOL3301 Marine biology (6)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6)
BIOL3319 Tropical terrestrial ecology (6)
Disciplinary Electives ( 36 to 42 credits) (Note 2)
Plus at least 36 or 42 credits selected from the following courses:
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)
BIOL3322 Marine invertebrate zoology (6)
BIOL3328 Nearshore marine and estuarine ecology (6)
BIOL3408 Genetics (6)
BIOL3419 Insect ecology: the little things that run the world (6)
BIOL3506 Evolutionary biology (6)
BIOL4301 Fish and fisheries (6)
BIOL4302 Environmental impact assessment (6)
BIOL4304 Ecosystem functioning and services (6)
BIOL4505 Oyster aquaculture: business and technology (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
3. Capstone requirement ( 12 to 18 credits) (Note 2)

Disciplinary Core Courses (12 credits)
BIOL4991 Ecology \& biodiversity project (12)
Disciplinary Electives (6 credits)
BIOL3991 Directed studies in ecology \& biodiversity (6)
BIOL4911 Conservation science in practice (6)

## Notes:

1. These are core courses in the regular Ecology \& Biodiversity Major ( 96 credits) curriculum.
2. Within the $\mathrm{E} \& \mathrm{~B}$ accredited curriculum, students have to pass a total of 60 credits within the Introductory Level Courses spread across two Science Foundation Courses (Level 1; 12 credits), seven Disciplinary Core Courses (Levels 1 \& 2; 42 credits) and one chemistry (Level 1; 6 credits). For the chemistry course, students will have the choice between CHEM1041 and CHEM1042 in function of their prior chemistry background acquired during their upper secondary education. Students with no chemistry background should follow CHEM1041, while students with previous chemistry background should take CHEM1042.

Advanced Level Courses cover a total of 66 to 72 credits. Those are divided between five Disciplinary Core Courses (Level 3; 30 credits) and 6 to 7 Disciplinary Elective Courses (Level $3 \& 4 ; 36$ to 42 credits) among a choice of fourteen different courses. As eight of the Disciplinary Elective courses are being taught every other year, students must pay attention to the year during which these courses are taught and ensure that they have fulfilled the necessary requirements. There is a student mentorship programme in place that can assist them in this.

During their final year, students should complete a minimum of 12 credits as Capstone Courses (maximum of 18). The Ecology \& Biodiversity Project ( 12 credits) is mandatory and students can choose to complete one of the other two Elective Capstone Courses ( 6 credits). If students choose to complete 18 credits of Capstone Courses, then they are required to complete only 36 credits of Disciplinary Elective Courses within the Advanced Level Courses (instead of 42 credits)

Finally, students who participate in student exchange programme are expected to enquire, prior to their departure from HKU, about potential equivalences with the courses taken during exchange programmes to ensure that they match requirements for obtaining the RSB accredited programme.
3. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

4. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis

5. As this curriculum is accredited by the Royal Society of Biology (RSB), students must follow the curriculum in full (i.e. no replacement courses
are possible) in order to graduate with this accredited programme.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title Major in Ecology \& Biodiversity (Intensive) <br> Offered to students 2020

admitted to Year 1 in

## Objectives:

This intensive major is directed at teaching students the 'rules of existence' for organisms in natural and human-modified environments, including major threats to biodiversity and the approaches adopted to conserve species and habitats. Special reference is made to the plants, animals and habitats of Hong Kong and Asia, the ways in which humans have altered the region's ecosystems, and the management or mitigation of those impacts. The range and scope of courses offered will provide students with a firm foundation in ecology, biodiversity and related disciplines, and equip them with the skills required for postgraduate research or employment with government and non-government organizations concerned with biodiversity conservation, nature preservation or habitat assessment and management.

The intensive major is based around an introductory core that emphasizes biology, ecology and evolution of plants and animals; it includes a compulsory residential field trip (as part of the Ecology and Evolution course), as well as instruction in data analysis and biostatistics. Many of the advanced courses in the major have a strong emphasis on field-work and on small projects performed by students. They teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial, freshwater and urban) and taxa (e.g. flowering plants, insects, fishes, marine mammals). Other courses focus on more applied topics, such as environmental impact assessment, conservation, and provide an opportunity for students to become familiar with specialised topics ranging from systematics to animal behaviour.

During their final year, students have an opportunity to conduct independent research in the form of an ecology and biodiversity research project or a directed-studies dissertation under the close supervision of an individual staff member. Students are able to make use of the facilities of the Swire Institute of Marine Science for such work. Strong emphasis is also placed upon experiential learning during overseas field trips that can be taken as part of the capstone requirement of this intensive major.

Ecology and biodiversity research requires extensive scientific knowledge as well as passion, and students are encouraged to take more than the requisite 12 -credit minimum of capstone courses. Through these courses, and the range of formal fieldbased options as well as various extra-curricular activities offered, students will be expected to develop expertise in one or a few groups of plants or animals; this is an important skill since an ability to identify species and major taxa is an essential prerequisite for biodiversity scientists or conservation biologists.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the local, regional and global environment, and how they interact; evaluate their role in ecosystem functioning and identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : assess, understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to assess, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6 : have the skill and knowledge to pursue postgraduate ecological research in top-level Universities around the world or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems in a changing world. (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity
Minor in Ecology \& Biodiversity

## Required courses (144 credits)

1. Introductory level courses ( 60 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses ( 42 credits)
BIOL1110 From molecules to cells (6) (Note 1)
BIOL1309 Evolutionary diversity (6) (Note 1)
BIOL2102 Biostatistics (6) (Note 1)
BIOL2103 Biological sciences laboratory course (6) (Note 1)

| BIOL2306 | Ecology and evolution (6) | (Note 1) |
| :--- | :--- | :--- |
| EASC1401 | Blue Planet (6) |  |
| ENVS2002 | Environmental data analysis (6) | (Note 1) |

## Disciplinary Electives ( 6 credits)

Plus at least 6 credits selected from the following courses:
CHEM1041 Foundations of chemistry (6)
CHEM1042 General chemistry I (6)
2. Advanced level courses ( 66 to 72 credits) (Note 2)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOL3101 Animal behaviour (6)
BIOL3301 Marine biology (6)
(Note 1)
BIOL3302 Systematics and phylogenetics (6)
(Note 1)
BIOL3303 Conservation biology (6)
BIOL3319 Tropical terrestrial ecology (6)
(Note 1)
Disciplinary Electives ( $\mathbf{3 6}$ to $\mathbf{4 2}$ credits) (Note 2)
Plus at least 36 or 42 credits selected from the following courses:
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)
BIOL3322 Marine invertebrate zoology (6)
BIOL3328 Nearshore marine and estuarine ecology (6)
BIOL3408 Genetics (6)
BIOL3419 Insect ecology: the little things that run the world (6)
BIOL3506 Evolutionary biology (6)
BIOL4301 Fish and fisheries (6)
BIOL4302 Environmental impact assessment (6)
BIOL4304 Ecosystem functioning and services (6)
BIOL4505 Oyster aquaculture: business and technology (6) [previous title: Oyster aquaculture (6)]
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
3. Capstone requirement ( 12 to 18 credits) (Note 2)

Disciplinary Core Courses (12 credits)
BIOL4991 Ecology \& biodiversity project (12)
Disciplinary Electives (6 credits)
BIOL3991 Directed studies in ecology \& biodiversity (6)
BIOL4911 Conservation science in practice (6)

## Notes:

1. These are core courses in the regular Ecology \& Biodiversity Major (96 credits) curriculum.
2. Within the E\&B accredited curriculum, students have to pass a total of 60 credits within the Introductory Level Courses spread across two Science Foundation Courses (Level 1; 12 credits), seven Disciplinary Core Courses (Levels 1 \& 2; 42 credits) and one chemistry (Level 1; 6 credits). For the chemistry course, students will have the choice between CHEM1041 and CHEM1042 in function of their prior chemistry background acquired during their upper secondary education. Students with no chemistry background should follow CHEM1041, while students with previous chemistry background should take CHEM1042.

Advanced Level Courses cover a total of 66 to 72 credits. Those are divided between five Disciplinary Core Courses (Level 3; 30 credits) and 6 to 7 Disciplinary Elective Courses (Level $3 \& 4 ; 36$ to 42 credits) among a choice of fourteen different courses. As eight of the Disciplinary Elective courses are being taught every other year, students must pay attention to the year during which these courses are taught and ensure that they have fulfilled the necessary requirements. There is a student mentorship programme in place that can assist them in this.

During their final year, students should complete a minimum of 12 credits as Capstone Courses (maximum of 18). The Ecology \& Biodiversity Project ( 12 credits) is mandatory and students can choose to complete one of the other two Elective Capstone Courses ( $6 \mathrm{credits)}$ ). If students choose to complete 18 credits of Capstone Courses, then they are required to complete only 36 credits of Disciplinary Elective Courses within the Advanced Level Courses (instead of 42 credits)

Finally, students who participate in student exchange programme are expected to enquire, prior to their departure from HKU, about potential equivalences with the courses taken during exchange programmes to ensure that they match requirements for obtaining the RSB accredited programme.
3. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

4. As this curriculum is accredited by the Royal Society of Biology (RSB), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title Major in Ecology \& Biodiversity (Intensive) <br> Offered to students <br> 2019

admitted to Year 1 in

## Objectives:

This intensive major is directed at teaching students the 'rules of existence' for organisms in natural and human-modified environments, including major threats to biodiversity and the approaches adopted to conserve species and habitats. Special reference is made to the plants, animals and habitats of Hong Kong and Asia, the ways in which humans have altered the region's ecosystems, and the management or mitigation of those impacts. The range and scope of courses offered will provide students with a firm foundation in ecology, biodiversity and related disciplines, and equip them with the skills required for postgraduate research or employment with government and non-government organizations concerned with biodiversity conservation, nature preservation or habitat assessment and management.

The intensive major is based around an introductory core that emphasizes biology, ecology and evolution of plants and animals; it includes a compulsory residential field trip (as part of the Ecology and Evolution course), as well as instruction in data analysis and biostatistics. Many of the advanced courses in the major have a strong emphasis on field-work and on small projects performed by students. They teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial, freshwater and urban) and taxa (e.g. flowering plants, insects, fishes, marine mammals). Other courses focus on more applied topics, such as environmental impact assessment, conservation, and provide an opportunity for students to become familiar with specialised topics ranging from systematics to animal behaviour.

During their final year, students have an opportunity to conduct independent research in the form of an ecology and biodiversity research project or a directed-studies dissertation under the close supervision of an individual staff member. Students are able to make use of the facilities of the Swire Institute of Marine Science for such work. Strong emphasis is also placed upon experiential learning during overseas field trips that can be taken as part of the capstone requirement of this intensive major.

Ecology and biodiversity research requires extensive scientific knowledge as well as passion, and students are encouraged to take more than the requisite 12 -credit minimum of capstone courses. Through these courses, and the range of formal fieldbased options as well as various extra-curricular activities offered, students will be expected to develop expertise in one or a few groups of plants or animals; this is an important skill since an ability to identify species and major taxa is an essential prerequisite for biodiversity scientists or conservation biologists.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the local, regional and global environment, and how they interact; evaluate their role in ecosystem functioning and identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : assess, understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to assess, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6 : have the skill and knowledge to pursue postgraduate ecological research in top-level Universities around the world or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems in a changing world. (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity
Minor in Ecology \& Biodiversity

## Required courses (144 credits)

1. Introductory level courses ( 60 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses ( 42 credits)
BIOL1110 From molecules to cells (6) (Note 1)
BIOL1309 Evolutionary diversity (6) (Note 1)
BIOL2102 Biostatistics (6) (Note 1)
BIOL2103 Biological sciences laboratory course (6) (Note 1)

| BIOL2306 | Ecology and evolution (6) | (Note 1) |
| :--- | :--- | :--- |
| EASC1401 | Blue Planet (6) |  |
| ENVS2002 | Environmental data analysis (6) | (Note 1) |

## Disciplinary Electives ( 6 credits)

Plus at least 6 credits selected from the following courses:

| CHEM1041 | Foundations of chemistry (6) | Take either CHEM1041 or CHEM1042 to <br> fulfill this 6 credits requirement, but not both. |
| :--- | :--- | :--- |
| CHEM1042 | General chemistry I (6) | Take either CHEM1041 or CHEM1042 to |

2. Advanced level courses ( 66 to 72 credits) (Note 2)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOL3101 Animal behaviour (6)
BIOL3301 Marine biology (6)
(Note 1)
BIOL3302 Systematics and phylogenetics (6)
(Note 1)
BIOL3303 Conservation biology (6)
BIOL3319 Tropical terrestrial ecology (6)
(Note 1)
Disciplinary Electives ( $\mathbf{3 6}$ to $\mathbf{4 2}$ credits) (Note 2)
Plus at least 36 or 42 credits selected from the following courses:
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)
BIOL3322 Marine invertebrate zoology (6)
BIOL3328 Nearshore marine and estuarine ecology (6)
BIOL3408 Genetics (6)
BIOL3419 Insect ecology: the little things that run the world (6)
BIOL3506 Evolutionary biology (6)
BIOL4301 Fish and fisheries (6)
BIOL4302 Environmental impact assessment (6)
BIOL4304 Ecosystem functioning and services (6)
BIOL4505 Oyster aquaculture: business and technology (6) [ previous title: Oyster aquaculture (6)]
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
3. Capstone requirement ( 12 to 18 credits) (Note 2)

Disciplinary Core Courses (12 credits)
BIOL4991 Ecology \& biodiversity project (12)
Disciplinary Electives (6 credits)
BIOL3991 Directed studies in ecology \& biodiversity (6)
BIOL4911 Conservation science in practice (6)

## Notes:

1. These are core courses in the regular Ecology \& Biodiversity Major (96 credits) curriculum.
2. Within the E\&B accredited curriculum, students have to pass a total of 60 credits within the Introductory Level Courses spread across two Science Foundation Courses (Level 1; 12 credits), seven Disciplinary Core Courses (Levels 1 \& 2; 42 credits) and one chemistry (Level 1; 6 credits). For the chemistry course, students will have the choice between CHEM1041 and CHEM1042 in function of their prior chemistry background acquired during their upper secondary education. Students with no chemistry background should follow CHEM1041, while students with previous chemistry background should take CHEM1042.

Advanced Level Courses cover a total of 66 to 72 credits. Those are divided between five Disciplinary Core Courses (Level 3; 30 credits) and 6 to 7 Disciplinary Elective Courses (Level $3 \& 4 ; 36$ to 42 credits) among a choice of fourteen different courses. As eight of the Disciplinary Elective courses are being taught every other year, students must pay attention to the year during which these courses are taught and ensure that they have fulfilled the necessary requirements. There is a student mentorship programme in place that can assist them in this.

During their final year, students should complete a minimum of 12 credits as Capstone Courses (maximum of 18). The Ecology \& Biodiversity Project ( 12 credits) is mandatory and students can choose to complete one of the other two Elective Capstone Courses ( $6 \mathrm{credits)}$ ). If students choose to complete 18 credits of Capstone Courses, then they are required to complete only 36 credits of Disciplinary Elective Courses within the Advanced Level Courses (instead of 42 credits)

Finally, students who participate in student exchange programme are expected to enquire, prior to their departure from HKU, about potential equivalences with the courses taken during exchange programmes to ensure that they match requirements for obtaining the RSB accredited programme.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title Major in Ecology \& Biodiversity (Intensive) <br> Offered to students <br> 2018

admitted to Year 1 in

## Objectives:

This intensive major is directed at teaching students the 'rules of existence' for organisms in natural and human-modified environments, including major threats to biodiversity and the approaches adopted to conserve species and habitats. Special reference is made to the plants, animals and habitats of Hong Kong and Asia, the ways in which humans have altered the region's ecosystems, and the management or mitigation of those impacts. The range and scope of courses offered will provide students with a firm foundation in ecology, biodiversity and related disciplines, and equip them with the skills required for postgraduate research or employment with government and non-government organizations concerned with biodiversity conservation, nature preservation or habitat assessment and management.

The intensive major is based around an introductory core that emphasizes biology, ecology and evolution of plants and animals; it includes a compulsory residential field trip (as part of the Ecology and Evolution course), as well as instruction in data analysis and biostatistics. Many of the advanced courses in the major have a strong emphasis on field-work and on small projects performed by students. They teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial, freshwater and urban) and taxa (e.g. flowering plants, insects, fishes, marine mammals). Other courses focus on more applied topics, such as environmental impact assessment, conservation, and provide an opportunity for students to become familiar with specialised topics ranging from systematics to animal behaviour.

During their final year, students have an opportunity to conduct independent research in the form of an ecology and biodiversity research project or a directed-studies dissertation under the close supervision of an individual staff member. Students are able to make use of the facilities of the Swire Institute of Marine Science for such work. Strong emphasis is also placed upon experiential learning during overseas field trips that can be taken as part of the capstone requirement of this intensive major.

Ecology and biodiversity research requires extensive scientific knowledge as well as passion, and students are encouraged to take more than the requisite 12 -credit minimum of capstone courses. Through these courses, and the range of formal fieldbased options as well as various extra-curricular activities offered, students will be expected to develop expertise in one or a few groups of plants or animals; this is an important skill since an ability to identify species and major taxa is an essential prerequisite for biodiversity scientists or conservation biologists.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the local, regional and global environment, and how they interact; evaluate their role in ecosystem functioning and identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : assess, understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to assess, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6 : have the skill and knowledge to pursue postgraduate ecological research in top-level Universities around the world or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems in a changing world. (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity
Minor in Ecology \& Biodiversity

## Required courses (144 credits)

1. Introductory level courses ( 60 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses ( 42 credits)
BIOL1110 From molecules to cells (6) (Note 1)
BIOL1309 Evolutionary diversity (6) (Note 1)
BIOL2102 Biostatistics (6) (Note 1)
BIOL2103 Biological sciences laboratory course (6) (Note 1)

| BIOL2306 | Ecology and evolution (6) | (Note 1) |
| :--- | :--- | :--- |
| EASC1401 | Blue Planet (6) |  |
| ENVS2002 | Environmental data analysis (6) | (Note 1) |

## Disciplinary Electives ( 6 credits)

Plus at least 6 credits selected from the following courses:

| CHEM1041 | Foundations of chemistry (6) | Take either CHEM1041 or CHEM1042 to <br> fulfill this 6 credits requirement, but not both. |
| :--- | :--- | :--- |
| CHEM1042 | General chemistry I (6) | Take either CHEM1041 or CHEM1042 to |

2. Advanced level courses ( 66 to 72 credits) (Note 2)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOL3101 Animal behaviour (6)
BIOL3301 Marine biology (6)
(Note 1)
BIOL3302 Systematics and phylogenetics (6)
(Note 1)
BIOL3303 Conservation biology (6)
BIOL3319 Tropical terrestrial ecology (6)
(Note 1)
Disciplinary Electives ( $\mathbf{3 6}$ to $\mathbf{4 2}$ credits) (Note 2)
Plus at least 36 or 42 credits selected from the following courses:
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)
BIOL3322 Marine invertebrate zoology (6)
BIOL3328 Nearshore marine and estuarine ecology (6)
BIOL3408 Genetics (6)
BIOL3419 Insect ecology: the little things that run the world (6)
BIOL3506 Evolutionary biology (6)
BIOL4301 Fish and fisheries (6)
BIOL4302 Environmental impact assessment (6)
BIOL4304 Ecosystem functioning and services (6)
BIOL4505 Oyster aquaculture: business and technology (6) [ previous title: Oyster aquaculture (6)]
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
3. Capstone requirement ( 12 to 18 credits) (Note 2)

Disciplinary Core Courses (12 credits)
BIOL4991 Ecology \& biodiversity project (12)
Disciplinary Electives (6 credits)
BIOL3991 Directed studies in ecology \& biodiversity (6)
BIOL4911 Conservation science in practice (6)

## Notes:

1. These are core courses in the regular Ecology \& Biodiversity Major (96 credits) curriculum.
2. Within the E\&B accredited curriculum, students have to pass a total of 60 credits within the Introductory Level Courses spread across two Science Foundation Courses (Level 1; 12 credits), seven Disciplinary Core Courses (Levels 1 \& 2; 42 credits) and one chemistry (Level 1; 6 credits). For the chemistry course, students will have the choice between CHEM1041 and CHEM1042 in function of their prior chemistry background acquired during their upper secondary education. Students with no chemistry background should follow CHEM1041, while students with previous chemistry background should take CHEM1042.

Advanced Level Courses cover a total of 66 to 72 credits. Those are divided between five Disciplinary Core Courses (Level 3; 30 credits) and 6 to 7 Disciplinary Elective Courses (Level $3 \& 4 ; 36$ to 42 credits) among a choice of fourteen different courses. As eight of the Disciplinary Elective courses are being taught every other year, students must pay attention to the year during which these courses are taught and ensure that they have fulfilled the necessary requirements. There is a student mentorship programme in place that can assist them in this.

During their final year, students should complete a minimum of 12 credits as Capstone Courses (maximum of 18). The Ecology \& Biodiversity Project ( 12 credits) is mandatory and students can choose to complete one of the other two Elective Capstone Courses ( $6 \mathrm{credits)}$ ). If students choose to complete 18 credits of Capstone Courses, then they are required to complete only 36 credits of Disciplinary Elective Courses within the Advanced Level Courses (instead of 42 credits)

Finally, students who participate in student exchange programme are expected to enquire, prior to their departure from HKU, about potential equivalences with the courses taken during exchange programmes to ensure that they match requirements for obtaining the RSB accredited programme.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title Major in Ecology \& Biodiversity (Intensive) <br> Offered to students 2017

admitted to Year 1 in

## Objectives:

This intensive major is directed at teaching students the 'rules of existence' for organisms in natural and human-modified environments, including major threats to biodiversity and the approaches adopted to conserve species and habitats. Special reference is made to the plants, animals and habitats of Hong Kong and Asia, the ways in which humans have altered the region's ecosystems, and the management or mitigation of those impacts. The range and scope of courses offered will provide students with a firm foundation in ecology, biodiversity and related disciplines, and equip them with the skills required for postgraduate research or employment with government and non-government organizations concerned with biodiversity conservation, nature preservation or habitat assessment and management.

The intensive major is based around an introductory core that emphasizes biology, ecology and evolution of plants and animals; it includes a compulsory residential field trip (as part of the Ecology and Evolution course), as well as instruction in data analysis and biostatistics. Many of the advanced courses in the major have a strong emphasis on field-work and on small projects performed by students. They teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial, freshwater and urban) and taxa (e.g. flowering plants, insects, fishes, marine mammals). Other courses focus on more applied topics, such as environmental impact assessment, conservation, and provide an opportunity for students to become familiar with specialised topics ranging from systematics to animal behaviour.

During their final year, students have an opportunity to conduct independent research in the form of an ecology and biodiversity research project or a directed-studies dissertation under the close supervision of an individual staff member. Students are able to make use of the facilities of the Swire Institute of Marine Science for such work. Strong emphasis is also placed upon experiential learning during overseas field trips that can be taken as part of the capstone requirement of this intensive major.

Ecology and biodiversity research requires extensive scientific knowledge as well as passion, and students are encouraged to take more than the requisite 12 -credit minimum of capstone courses. Through these courses, and the range of formal fieldbased options as well as various extra-curricular activities offered, students will be expected to develop expertise in one or a few groups of plants or animals; this is an important skill since an ability to identify species and major taxa is an essential prerequisite for biodiversity scientists or conservation biologists.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the local, regional and global environment, and how they interact; evaluate their role in ecosystem functioning and identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : assess, understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to assess, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6 : have the skill and knowledge to pursue postgraduate ecological research in top-level Universities around the world or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems in a changing world. (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Biological Sciences (Intensive)
Major in Ecology \& Biodiversity
Minor in Ecology \& Biodiversity

## Required courses (144 credits)

1. Introductory level courses ( 60 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses ( 42 credits)
BIOL1110 From molecules to cells (6) (Note 1)
BIOL1309 Evolutionary diversity (6) (Note 1)
BIOL2102 Biostatistics (6) (Note 1)
BIOL2103 Biological sciences laboratory course (6) (Note 1)

| BIOL2306 | Ecology and evolution (6) | (Note 1) |
| :--- | :--- | :--- |
| EASC1401 | Blue Planet (6) |  |
| ENVS2002 | Environmental data analysis (6) | (Note 1) |

## Disciplinary Electives ( 6 credits)

Plus at least 6 credits selected from the following courses:

| CHEM1041 | Foundations of chemistry (6) | Take either CHEM1041 or CHEM1042 to <br> fulfill this 6 credits requirement, but not both. |
| :--- | :--- | :--- |
| CHEM1042 | General chemistry I (6) | Take either CHEM1041 or CHEM1042 to |

2. Advanced level courses ( 66 to 72 credits) (Note 2)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
BIOL3101 Animal behaviour (6)
BIOL3301 Marine biology (6)
(Note 1)
BIOL3302 Systematics and phylogenetics (6)
(Note 1)
BIOL3303 Conservation biology (6)
BIOL3319 Tropical terrestrial ecology (6)
(Note 1)
Disciplinary Electives ( $\mathbf{3 6}$ to $\mathbf{4 2}$ credits) (Note 2)
Plus at least 36 or 42 credits selected from the following courses:
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)
BIOL3322 Marine invertebrate zoology (6)
BIOL3328 Nearshore marine and estuarine ecology (6)
BIOL3408 Genetics (6)
BIOL3419 Insect ecology: the little things that run the world (6)
BIOL3506 Evolutionary biology (6)
BIOL4301 Fish and fisheries (6)
BIOL4302 Environmental impact assessment (6)
BIOL4304 Ecosystem functioning and services (6)
BIOL4505 Oyster aquaculture: business and technology (6) [ previous title: Oyster aquaculture (6)]
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
3. Capstone requirement ( 12 to 18 credits) (Note 2)

Disciplinary Core Courses (12 credits)
BIOL4991 Ecology \& biodiversity project (12)
Disciplinary Electives (6 credits)
BIOL3991 Directed studies in ecology \& biodiversity (6)
BIOL4911 Conservation science in practice (6)

## Notes:

1. These are core courses in the regular Ecology \& Biodiversity Major (96 credits) curriculum.
2. Within the E\&B accredited curriculum, students have to pass a total of 60 credits within the Introductory Level Courses spread across two Science Foundation Courses (Level 1; 12 credits), seven Disciplinary Core Courses (Levels 1 \& 2; 42 credits) and one chemistry (Level 1; 6 credits). For the chemistry course, students will have the choice between CHEM1041 and CHEM1042 in function of their prior chemistry background acquired during their upper secondary education. Students with no chemistry background should follow CHEM1041, while students with previous chemistry background should take CHEM1042.

Advanced Level Courses cover a total of 66 to 72 credits. Those are divided between five Disciplinary Core Courses (Level 3; 30 credits) and 6 to 7 Disciplinary Elective Courses (Level $3 \& 4 ; 36$ to 42 credits) among a choice of fourteen different courses. As eight of the Disciplinary Elective courses are being taught every other year, students must pay attention to the year during which these courses are taught and ensure that they have fulfilled the necessary requirements. There is a student mentorship programme in place that can assist them in this.

During their final year, students should complete a minimum of 12 credits as Capstone Courses (maximum of 18). The Ecology \& Biodiversity Project ( 12 credits) is mandatory and students can choose to complete one of the other two Elective Capstone Courses ( $6 \mathrm{credits)}$ ). If students choose to complete 18 credits of Capstone Courses, then they are required to complete only 36 credits of Disciplinary Elective Courses within the Advanced Level Courses (instead of 42 credits)

Finally, students who participate in student exchange programme are expected to enquire, prior to their departure from HKU, about potential equivalences with the courses taken during exchange programmes to ensure that they match requirements for obtaining the RSB accredited programme.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title Major in Ecology \& Biodiversity (Intensive) <br> Offered to students <br> 2016

admitted to Year 1 in

## Objectives:

This intensive major is directed at teaching students the 'rules of existence' for organisms in natural and human-modified environments, including major threats to biodiversity and the approaches adopted to conserve species and habitats. Special reference is made to the plants, animals and habitats of Hong Kong and Asia, the ways in which humans have altered the region's ecosystems, and the management or mitigation of those impacts. The range and scope of courses offered will provide students with a firm foundation in ecology, biodiversity and related disciplines, and equip them with the skills required for postgraduate research or employment with government and non-government organizations concerned with biodiversity conservation, nature preservation or habitat assessment and management.

The intensive major is based around an introductory core that emphasizes biology, ecology and evolution of plants and animals; it includes a compulsory residential field trip (as part of the Ecology and Evolution course), as well as instruction in data analysis and biostatistics. Many of the advanced courses in the major have a strong emphasis on field-work and on small projects performed by students. They teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial, freshwater and urban) and taxa (e.g. flowering plants, insects, fishes, marine mammals). Other courses focus on more applied topics, such as environmental impact assessment, conservation, and provide an opportunity for students to become familiar with specialised topics ranging from systematics to animal behaviour.

During their final year, students have an opportunity to conduct independent research in the form of an ecology and biodiversity research project or a directed-studies dissertation under the close supervision of an individual staff member. Students are able to make use of the facilities of the Swire Institute of Marine Science for such work. Strong emphasis is also placed upon experiential learning during overseas field trips that can be taken as part of the capstone requirement of this intensive major.

Ecology and biodiversity research requires extensive scientific knowledge as well as passion, and students are encouraged to take more than the requisite 12 -credit minimum of capstone courses. Through these courses, and the range of formal fieldbased options as well as various extra-curricular activities offered, students will be expected to develop expertise in one or a few groups of plants or animals; this is an important skill since an ability to identify species and major taxa is an essential prerequisite for biodiversity scientists or conservation biologists.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the local, regional and global environment, and how they interact; evaluate their role in ecosystem functioning and identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : assess, understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to assess, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6 : have the skill and knowledge to pursue postgraduate ecological research in top-level Universities around the world or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems in a changing world. (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Ecology \& Biodiversity
Minor in Ecology \& Biodiversity
Required courses ( 144 credits)

1. Introductory level courses ( 60 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)

SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses ( 42 credits)
BIOL1110 From molecules to cells (6) (Note 1)
BIOL1309 Evolutionary diversity (6) (Note 1)

BIOL2102 Biostatistics (6) (Note 1)
BIOL2103 Biological sciences laboratory course (6) (Note 1)
BIOL2306 Ecology and evolution (6) (Note 1)

| EASC1401 | Blue Planet (6) |
| :--- | :--- |
| ENVS2002 | Environmental data analysis (6) |

## Disciplinary Electives ( 6 credits)

Plus at least 6 credits selected from the following courses:
CHEM1041 Foundations of chemistry (6)
CHEM1042 General chemistry I (6)
2. Advanced level courses ( 66 to 72 credits) (Note 2)

Disciplinary Core Courses ( 30 credits)
BIOL3101 Animal behaviour (6)
BIOL3301 Marine biology (6) (Note 1)
BIOL3302 Systematics and phylogenetics (6) (Note 1)
BIOL3303 Conservation biology (6)
BIOL3319 Tropical terrestrial ecology (6)
(Note 1)
Disciplinary Electives ( $\mathbf{3 6}$ to $\mathbf{4 2}$ credits) (Note 2)
Plus at least 36 or 42 credits selected from the following courses:
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)
BIOL3322 Marine invertebrate zoology (6)
BIOL3328 Nearshore marine and estuarine ecology (6)
BIOL3408 Genetics (6)
BIOL3419 Insect ecology: the little things that run the world (6)
BIOL3506 Evolutionary biology (6)
BIOL4301 Fish and fisheries (6)
BIOL4302 Environmental impact assessment (6)
BIOL4304 Ecosystem functioning and services (6)
BIOL4505 Oyster aquaculture: business and technology (6) [previous title: Oyster aquaculture (6)]

| ENVS3019 | Urban ecology (6) |
| :--- | :--- |
| ENVS3020 | Global change ecology (6) |

3. Capstone requirement (12 to 18 credits) (Note 2)

Disciplinary Core Courses (12 credits)
BIOL4991 Ecology \& biodiversity project (12)
Disciplinary Electives (6 credits)
BIOL3991 Directed studies in ecology \& biodiversity (6)
BIOL4911 Conservation science in practice (6)

## Notes:

1. These are core courses in the regular Ecology \& Biodiversity Major ( 96 credits) curriculum.
2. Within the E\&B accredited curriculum, students have to pass a total of 60 credits within the Introductory Level Courses spread across two Science Foundation Courses (Level 1; 12 credits), seven Disciplinary Core Courses (Levels $1 \& 2 ; 42$ credits) and one chemistry (Level 1; 6 credits). For the chemistry course, students will have the choice between CHEM1041 and CHEM1042 in function of their prior chemistry background acquired during their upper secondary education. Students with no chemistry background should follow CHEM1041, while students with previous chemistry background should take CHEM1042.

Advanced Level Courses cover a total of 66 to 72 credits. Those are divided between five Disciplinary Core Courses (Level 3; 30 credits) and 6 to 7 Disciplinary Elective Courses (Level $3 \& 4 ; 36$ to 42 credits) among a choice of fourteen different courses. As eight of the Disciplinary Elective courses are being taught every other year, students must pay attention to the year during which these courses are taught and ensure that they have fulfilled the necessary requirements. There is a student mentorship programme in place that can assist them in this.

During their final year, students should complete a minimum of 12 credits as Capstone Courses (maximum of 18). The Ecology \& Biodiversity Project ( 12 credits) is mandatory and students can choose to complete one of the other two Elective Capstone Courses ( 6 credits). If students choose to complete 18 credits of Capstone Courses, then they are required to complete only 36 credits of Disciplinary Elective Courses within the Advanced Level Courses (instead of 42 credits)

Finally, students who participate in student exchange programme are expected to enquire, prior to their departure from HKU, about potential equivalences with the courses taken during exchange programmes to ensure that they match requirements for obtaining the RSB accredited programme.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title Major in Ecology \& Biodiversity (Intensive) <br> Offered to students <br> 2015

admitted to Year 1 in

## Objectives:

This intensive major is directed at teaching students the 'rules of existence' for organisms in natural and human-modified environments, including major threats to biodiversity and the approaches adopted to conserve species and habitats. Special reference is made to the plants, animals and habitats of Hong Kong and Asia, the ways in which humans have altered the region's ecosystems, and the management or mitigation of those impacts. The range and scope of courses offered will provide students with a firm foundation in ecology, biodiversity and related disciplines, and equip them with the skills required for postgraduate research or employment with government and non-government organizations concerned with biodiversity conservation, nature preservation or habitat assessment and management.

The intensive major is based around an introductory core that emphasizes biology, ecology and evolution of plants and animals; it includes a compulsory residential field trip (as part of the Ecology and Evolution course), as well as instruction in data analysis and biostatistics. Many of the advanced courses in the major have a strong emphasis on field-work and on small projects performed by students. They teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial, freshwater and urban) and taxa (e.g. flowering plants, insects, fishes, marine mammals). Other courses focus on more applied topics, such as environmental impact assessment, conservation, and provide an opportunity for students to become familiar with specialised topics ranging from systematics to animal behaviour.

During their final year, students have an opportunity to conduct independent research in the form of an ecology and biodiversity research project or a directed-studies dissertation under the close supervision of an individual staff member. Students are able to make use of the facilities of the Swire Institute of Marine Science for such work. Strong emphasis is also placed upon experiential learning during overseas field trips that can be taken as part of the capstone requirement of this intensive major.

Ecology and biodiversity research requires extensive scientific knowledge as well as passion, and students are encouraged to take more than the requisite 12 -credit minimum of capstone courses. Through these courses, and the range of formal fieldbased options as well as various extra-curricular activities offered, students will be expected to develop expertise in one or a few groups of plants or animals; this is an important skill since an ability to identify species and major taxa is an essential prerequisite for biodiversity scientists or conservation biologists.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and appreciate the major living and non-living components of the local, regional and global environment, and how they interact; evaluate their role in ecosystem functioning and identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : assess, understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to assess, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
PLO 6 : have the skill and knowledge to pursue postgraduate ecological research in top-level Universities around the world or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
PLO 7 : be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems in a changing world. (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Ecology \& Biodiversity
Minor in Ecology \& Biodiversity
Required courses ( 144 credits)

1. Introductory level courses ( 60 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)

SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses ( 42 credits)
BIOL1110 From molecules to cells (6) (Note 1)
BIOL1309 Evolutionary diversity (6) (Note 1)

BIOL2102 Biostatistics (6) (Note 1)
BIOL2103 Biological sciences laboratory course (6) (Note 1)
BIOL2306 Ecology and evolution (6) (Note 1)

| EASC1401 | Blue Planet (6) |  |
| :---: | :---: | :---: |
| ENVS2002 | Environmental data analysis (6) | (Note 1) |
| Disciplinary Electives (6 credits) |  |  |
| Plus at least 6 credits selected from the following courses: |  |  |
| CHEM1041 | Foundations of chemistry (6) | Take either CHEM1041 or CHEM1042 to fulfill this 6 credits requirement, but not both. |
| CHEM1042 | General chemistry I (6) | Take either CHEM1041 or CHEM1042 to fulfill this 6 credits requirement, but not both. |
| 2. Advanced level courses (66 to 72 credits) (Note 2) |  |  |
| Disciplinary Core Courses (30 credits) |  |  |
| BIOL3101 | Animal behaviour (6) |  |
| BIOL3301 | Marine biology (6) |  |
| BIOL3302 | Systematics and phylogenetics (6) | (Note 1) |
| BIOL3303 | Conservation biology (6) | (Note 1) |
| BIOL3319 | Tropical terrestrial ecology (6) |  |
| Disciplinary Electives (36 to 42 credits) (Note 2) |  |  |
| Plus at least 36 or 42 credits selected from the following courses: |  |  |
| BIOL3305 | Tropical and temperate marine ecology field course (6) |  |
| BIOL3313 | Freshwater ecology (6) |  |
| BIOL3314 | Plant structure and evolution (6) |  |
| BIOL3318 | Experimental intertidal ecology (6) |  |
| BIOL3322 | Marine invertebrate zoology (6) |  |
| BIOL3328 | Nearshore marine and estuarine ecology (6) |  |
| BIOL3419 | Insect ecology: the little things that run the world (6) |  |
| BIOL3506 | Evolutionary biology (6) |  |
| BIOL4301 | Fish and fisheries (6) |  |
| BIOL4302 | Environmental impact assessment (6) |  |
| BIOL4304 | Ecosystem functioning and services (6) |  |
| BIOL4505 | Oyster aquaculture: business and technology (6) | [ previous title: Oyster aquaculture (6) ] |
| ENVS3019 | Urban ecology (6) |  |
| ENVS3020 | Global change ecology (6) |  |
| 3. Capstone requirement (12 to 18 credits) (Note 2) |  |  |
| Disciplinary Core Courses (12 credits) |  |  |
| BIOL4991 | Ecology \& biodiversity project (12) |  |
| Disciplinary Electives (6 credits) |  |  |
| BIOL3991 | Directed studies in ecology \& biodiversity (6) |  |
| BIOL4911 | Conservation science in practice (6) |  |

## Notes:

1. These are core courses in the regular Ecology \& Biodiversity Major ( 96 credits) curriculum.
2. Within the $\mathrm{E} \& \mathrm{~B}$ accredited curriculum, students have to pass a total of 60 credits within the Introductory Level Courses spread across two Science Foundation Courses (Level 1; 12 credits), seven Disciplinary Core Courses (Levels $1 \& 2 ; 42$ credits) and one chemistry (Level 1; 6 credits). For the chemistry course, students will have the choice between CHEM1041 and CHEM1042 in function of their prior chemistry background acquired during their upper secondary education. Students with no chemistry background should follow CHEM1041, while students with previous chemistry background should take CHEM1042.

Advanced Level Courses cover a total of 66 to 72 credits. Those are divided between five Disciplinary Core Courses (Level 3; 30 credits) and 6 to 7 Disciplinary Elective Courses (Level $3 \& 4 ; 36$ to 42 credits) among a choice of fourteen different courses. As eight of the Disciplinary Elective courses are being taught every other year, students must pay attention to the year during which these courses are taught and ensure that they have fulfilled the necessary requirements. There is a student mentorship programme in place that can assist them in this.

During their final year, students should complete a minimum of 12 credits as Capstone Courses (maximum of 18). The Ecology \& Biodiversity Project ( 12 credits) is mandatory and students can choose to complete one of the other two Elective Capstone Courses ( 6 credits). If students choose to complete 18 credits of Capstone Courses, then they are required to complete only 36 credits of Disciplinary Elective Courses within the Advanced Level Courses (instead of 42 credits)

Finally, students who participate in student exchange programme are expected to enquire, prior to their departure from HKU, about potential equivalences with the courses taken during exchange programmes to ensure that they match requirements for obtaining the RSB accredited programme.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students Major in Environmental Science <br> admitted to Year 1 in

## Objectives:

The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2 : observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Minor in Environmental Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        CHEM1042 General chemistry I (6)
        ENVS1401 Introduction to environmental science (6)
        ENVS2001 Methods in environmental science (6)
        ENVS2002 Environmental data analysis (6)
```

    Disciplinary Electives ( 12 credits)
        At least 12 credits selected from the following courses (Level 1 \& 2):
        EASC1020 Introduction to climate science (6)
        EASC1401 Blue Planet (6)
        ENVS1301 Environmental life science (6) May take either ENVS1301 or BIOL2306 to
        BIOL2102 Biostatistics (6)
    BIOL2306 Ecology and evolution (6) May take either ENVS1301 or BIOL2306 to
    CHEM2241 Analytical chemistry I (6)
    2. Advanced level courses ( 42 credits)
    Disciplinary Core Courses ( 6 credits)
        ENVS3004 Environment, society and economics (6)
    Disciplinary Electives (36 credits)
        At least 36 credits selected from the following courses:
        BIOL3109 Environmental microbiology (6)
        BIOL3110 Environmental toxicology (6)
        BIOL3216 Food waste management (6)
        BIOL3217 Food, environment and health (6)
        BIOL3303 Conservation biology (6)
        CHEM3141 Environmental chemistry (6)
        CHEM3241 Analytical chemistry II: chemical instrumentation (6)
        EASC3020 Global change: anthropogenic impacts (6)
        EASC3405 Environmental remote sensing (6)
        EASC3419 Earth System Science Field Studies (6)
        ENVS3007 Natural hazards and mitigation (6)
        ENVS3010 Sustainable energy and environment (6)
        ENVS3019 Urban ecology (6)
        ENVS3020 Global change ecology (6)
        ENVS3022 Environmental science field course (6)
        ENVS3028 Coastal Sustainability (6)
    ```
    ENVS3042 Pollution (6)
    ENVS3202 Plant physiology and climate change (6)
    ENVS3313 Environmental oceanography (6)
    ENVS3401 Understanding tropical ecosystems in a changing world (6)
    ENVS3402 Qualitative data, social science methods and decision-making
        in environmental science (6)
    BIOL4302 Environmental impact assessment (6)
    ENVS4110 Environmental remediation (6)
```

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
ENVS3999 Directed studies in environmental science (6)
ENVS4966 Environmental science internship (6)
ENVS4999 Environmental science project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

5. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students Major in Environmental Science 2020 <br> admitted to Year 1 in

## Objectives:

The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2 : observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Minor in Environmental Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        CHEM1042 General chemistry I (6)
        ENVS1401 Introduction to environmental science (6)
        ENVS2001 Methods in environmental science (6)
        ENVS2002 Environmental data analysis (6)
```

    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses (Level 1 \& 2):
        EASC1020 Introduction to climate science (6)
        EASC1401 Blue Planet (6)
        ENVS1301 Environmental life science (6) May take either ENVS1301 or BIOL2306 to
        BIOL2102 Biostatistics (6)
    BIOL2306 Ecology and evolution (6) May take either ENVS1301 or BIOL2306 to
    CHEM2241 Analytical chemistry I (6)
    2. Advanced level courses ( 42 credits)
    Disciplinary Core Courses ( 6 credits)
        ENVS3004 Environment, society and economics (6)
    Disciplinary Electives (36 credits)
        At least 36 credits selected from the following courses:
        BIOL3109 Environmental microbiology (6)
        BIOL3110 Environmental toxicology (6)
        BIOL3216 Food waste management (6)
        BIOL3217 Food, environment and health (6)
        BIOL3303 Conservation biology (6)
        CHEM3141 Environmental chemistry (6)
        CHEM3241 Analytical chemistry II: chemical instrumentation (6)
        EASC3020 Global change: anthropogenic impacts (6)
        EASC3405 Environmental remote sensing (6)
        EASC3419 Earth System Science Field Studies (6)
        ENVS3007 Natural hazards and mitigation (6)
        ENVS3010 Sustainable energy and environment (6)
        ENVS3019 Urban ecology (6)
        ENVS3020 Global change ecology (6)
        ENVS3022 Environmental science field course (6)
        ENVS3028 Coastal Sustainability (6)
    ```
    ENVS3042 Pollution (6)
    ENVS3202 Plant physiology and climate change (6)
    ENVS3313 Environmental oceanography (6)
    ENVS3401 Understanding tropical ecosystems in a changing world (6)
    ENVS3402 Qualitative data, social science methods and decision-making
    in environmental science (6)
    BIOL4302 Environmental impact assessment (6)
    ENVS4110 Environmental remediation (6)
```

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
ENVS3999 Directed studies in environmental science (6)
ENVS4966 Environmental science internship (6)
ENVS4999 Environmental science project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Environmental Science <br> 2019 <br> admitted to Year 1 in

## Objectives:

The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2 : observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Minor in Environmental Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        CHEM1042 General chemistry I (6)
        ENVS1401 Introduction to environmental science (6)
        ENVS2001 Methods in environmental science (6)
        ENVS2002 Environmental data analysis (6)
```

    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses (Level 1 \& 2):
        EASC1020 Introduction to climate science (6)
        EASC1401 Blue Planet (6)
        ENVS1301 Environmental life science (6) May take either ENVS1301 or BIOL2306 to
        BIOL2102 Biostatistics (6)
        BIOL2306 Ecology and evolution (6) May take either ENVS1301 or BIOL2306 to
        CHEM2241 Analytical chemistry I (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses ( 6 credits)
        ENVS3004 Environment, society and economics (6)
    Disciplinary Electives (36 credits)
        At least 36 credits selected from the following courses:
        BIOL3109 Environmental microbiology (6)
        BIOL3110 Environmental toxicology (6)
        BIOL3216 Food waste management (6)
        BIOL3217 Food, environment and health (6)
        BIOL3303 Conservation biology (6)
        CHEM3141 Environmental chemistry (6)
        CHEM3241 Analytical chemistry II: chemical instrumentation (6)
        EASC3020 Global change: anthropogenic impacts (6)
        EASC3405 Environmental remote sensing (6)
        EASC3419 Earth System Science Field Studies (6)
        ENVS3007 Natural hazards and mitigation (6)
        ENVS3010 Sustainable energy and environment (6)
        ENVS3019 Urban ecology (6)
        ENVS3020 Global change ecology (6)
        ENVS3022 Environmental science field course (6)
        ENVS3028 Coastal Sustainability (6)
    ```
    ENVS3042 Pollution (6)
    ENVS3202 Plant physiology and climate change (6)
    ENVS3313 Environmental oceanography (6)
    ENVS3401 Understanding tropical ecosystems in a changing world (6)
    ENVS3402 Qualitative data, social science methods and decision-making
    in environmental science (6)
    BIOL4302 Environmental impact assessment (6)
    ENVS4110 Environmental remediation (6)
```

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
ENVS3999 Directed studies in environmental science (6)
ENVS4966 Environmental science internship (6)
ENVS4999 Environmental science project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Environmental Science <br> 2018 <br> admitted to Year 1 in

## Objectives:

The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2 : observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Minor in Environmental Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        CHEM1042 General chemistry I (6)
        ENVS1401 Introduction to environmental science (6)
        ENVS2001 Methods in environmental science (6)
        ENVS2002 Environmental data analysis (6)
```

    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses (Level 1 \& 2):
        EASC1020 Introduction to climate science (6)
        EASC1401 Blue Planet (6)
        ENVS1301 Environmental life science (6) May take either ENVS1301 or BIOL2306 to
        BIOL2102 Biostatistics (6)
        BIOL2306 Ecology and evolution (6) May take either ENVS1301 or BIOL2306 to
        CHEM2241 Analytical chemistry I (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses ( 6 credits)
        ENVS3004 Environment, society and economics (6)
    Disciplinary Electives (36 credits)
        At least 36 credits selected from the following courses:
        BIOL3109 Environmental microbiology (6)
        BIOL3110 Environmental toxicology (6)
        BIOL3216 Food waste management (6)
        BIOL3217 Food, environment and health (6)
        BIOL3303 Conservation biology (6)
        CHEM3141 Environmental chemistry (6)
        CHEM3241 Analytical chemistry II: chemical instrumentation (6)
        EASC3020 Global change: anthropogenic impacts (6)
        EASC3405 Environmental remote sensing (6)
        EASC3419 Earth System Science Field Studies (6)
        ENVS3007 Natural hazards and mitigation (6)
        ENVS3010 Sustainable energy and environment (6)
        ENVS3019 Urban ecology (6)
        ENVS3020 Global change ecology (6)
        ENVS3022 Environmental science field course (6)
        ENVS3028 Coastal Sustainability (6)
    ```
    ENVS3042 Pollution (6)
    ENVS3202 Plant physiology and climate change (6)
    ENVS3313 Environmental oceanography (6)
    ENVS3401 Understanding tropical ecosystems in a changing world (6)
    ENVS3402 Qualitative data, social science methods and decision-making
    in environmental science (6)
    BIOL4302 Environmental impact assessment (6)
    ENVS4110 Environmental remediation (6)
```

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
ENVS3999 Directed studies in environmental science (6)
ENVS4966 Environmental science internship (6)
ENVS4999 Environmental science project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Environmental Science <br> 2017 <br> admitted to Year 1 in

## Objectives:

The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2 : observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Minor in Environmental Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (18 credits)
        ENVS1401 Introduction to environmental science (6)
        ENVS2001 Methods in environmental science (6)
        ENVS2002 Environmental data analysis (6)
    Disciplinary Electives (18 credits)
        At least 18 credits selected from the following courses (Level 1 & 2):
        CHEM1042 General chemistry I (6)
        EASC1020 Introduction to climate science (6)
        EASC1401 Blue Planet (6)
        ENVS1301 Environmental life science (6)
        STAT1601 Elementary statistical methods (6)
        STAT1603 Introductory statistics (6)
BIOL2102 Biostatistics (6)
BIOL2306 Ecology and evolution (6)
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
2. Advanced level courses ( 42 credits)
Disciplinary Core Courses ( 6 credits) ENVS3004 Environment, society and economics (6)
Disciplinary Electives (36 credits)
At least 36 credits selected from the following courses:
BIOL3109 Environmental microbiology (6)
BIOL3110 Environmental toxicology (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3303 Conservation biology (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
CHEM3242 Food and water analysis (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
EASC3419 Earth System Science Field Studies (6)
ENVS3007 Natural hazards and mitigation (6)
```

May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both.

```
    ENVS3010 Sustainable energy and environment (6)
    ENVS3019 Urban ecology (6)
    ENVS3020 Global change ecology (6)
    ENVS3022 Environmental science field course (6)
    ENVS3028 Coastal Sustainability (6)
    ENVS3042 Pollution (6)
    ENVS3202 Plant physiology and climate change (6)
    ENVS3313 Environmental oceanography (6)
    ENVS3401 Understanding tropical ecosystems in a changing world (6)
    ENVS3402 Qualitative data, social science methods and decision-making
    MATH3408 in environmental science (6) 
    STAT3611 年 Complications (6)
    BIOL4302 Environmental impact assessment (6)
    ENVS4110 Environmental remediation (6)
```


## 3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
ENVS3999 Directed studies in environmental science (6)
ENVS4966 Environmental science internship (6)
ENVS4999 Environmental science project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Environmental Science <br> 2016 <br> admitted to Year 1 in

## Objectives:

The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2 : observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Minor in Environmental Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (18 credits)
        ENVS1401 Introduction to environmental science (6)
        ENVS2001 Methods in environmental science (6)
        ENVS2002 Environmental data analysis (6)
    Disciplinary Electives (18 credits)
        At least 18 credits selected from the following courses (Level 1 & 2):
        CHEM1042 General chemistry I (6)
        EASC1020 Introduction to climate science (6)
        EASC1401 Blue Planet (6)
        ENVS1301 Environmental life science (6)
        STAT1601 Elementary statistical methods (6)
        STAT1603 Introductory statistics (6)
BIOL2102 Biostatistics (6)
BIOL2306 Ecology and evolution (6)
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
2. Advanced level courses ( 42 credits)
Disciplinary Core Courses ( 6 credits) ENVS3004 Environment, society and economics (6)
Disciplinary Electives (36 credits)
At least 36 credits selected from the following courses:
BIOL3109 Environmental microbiology (6)
BIOL3110 Environmental toxicology (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3303 Conservation biology (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
CHEM3242 Food and water analysis (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
EASC3419 Earth System Science Field Studies (6)
ENVS3007 Natural hazards and mitigation (6)
```

May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both.

```
    ENVS3010 Sustainable energy and environment (6)
    ENVS3019 Urban ecology (6)
    ENVS3020 Global change ecology (6)
    ENVS3022 Environmental science field course (6)
    ENVS3028 Coastal Sustainability (6)
    ENVS3042 Pollution (6)
    ENVS3202 Plant physiology and climate change (6)
    ENVS3313 Environmental oceanography (6)
    ENVS3401 Understanding tropical ecosystems in a changing world (6)
    ENVS3402 Qualitative data, social science methods and decision-making
    MATH3408 in environmental science (6) 
    STAT3611 年 Complications (6)
    BIOL4302 Environmental impact assessment (6)
    ENVS4110 Environmental remediation (6)
```


## 3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
ENVS3999 Directed studies in environmental science (6)
ENVS4966 Environmental science internship (6)
ENVS4999 Environmental science project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Environmental Science <br> 2015 <br> admitted to Year 1 in

## Objectives:

The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2 : observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Minor in Environmental Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (18 credits)
        ENVS1401 Introduction to environmental science (6)
        ENVS2001 Methods in environmental science (6)
        ENVS2002 Environmental data analysis (6)
    Disciplinary Electives (18 credits)
        At least }18\mathrm{ credits selected from the following courses (Level 1 & 2):
        CHEM1042 General chemistry I (6)
        EASC1020 Introduction to climate science (6)
        EASC1401 Blue Planet (6)
        ENVS1301 Environmental life science (6)
        STAT1601 Elementary statistical methods (6)
        STAT1603 Introductory statistics (6)
        BIOL2102 Biostatistics (6)
        BIOL2306 Ecology and evolution (6)
        CHEM2041 Principles of chemistry (6)
        CHEM2241 Analytical chemistry I (6)
        CHEM2442 Fundamentals of organic chemistry (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (6 credits)
        ENVS3004 Environment, society and economics (6)
    Disciplinary Electives (36 credits)
        At least 36 credits selected from the following courses:
        BIOL3109 Environmental microbiology (6)
        BIOL3110 Environmental toxicology (6)
        BIOL3217 Food, environment and health (6)
        BIOL3303 Conservation biology (6)
        CHEM3141 Environmental chemistry (6)
        CHEM3241 Analytical chemistry II: chemical instrumentation (6)
        CHEM3242 Food and water analysis (6)
        EASC3020 Global change: anthropogenic impacts (6)
        EASC3405 Environmental remote sensing (6)
        EASC3419 Earth System Science Field Studies (6)
        ENVS3007 Natural hazards and mitigation (6)
        ENVS3010 Sustainable energy and environment (6)
```

May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both.

```
    ENVS3019 Urban ecology (6)
    ENVS3020 Global change ecology (6)
    ENVS3028 Coastal Sustainability (6)
    ENVS3022 Environmental science field course (6)
    ENVS3042 Pollution (6)
    ENVS3202 Plant physiology and climate change (6)
    ENVS3313 Environmental oceanography (6)
    ENVS3401 Understanding tropical ecosystems in a changing world (6)
    ENVS3402 Qualitative data, social science methods and decision-making
    MATH3408 Computational methods and differential equations with
        applications (6)
    STAT3611 Computer-aided data analysis (6)
    BIOL4302 Environmental impact assessment (6)
    ENVS4110 Environmental remediation (6)
```

3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
$\begin{array}{ll}\text { ENVS3999 } & \text { Directed studies in environmental science (6) } \\ \text { ENVS4966 } & \text { Environmental science internship (6) }\end{array}$
ENVS4966 Environmental science internship (6)
ENVS4999 Environmental science project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Environmental Science <br> 2014 <br> admitted to Year 1 in

## Objectives:

The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2 : observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Minor in Environmental Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (18 credits)
        ENVS1401 Introduction to environmental science (6)
        ENVS2001 Methods in environmental science (6)
        ENVS2002 Environmental data analysis (6)
    Disciplinary Electives (18 credits)
        At least }18\mathrm{ credits selected from the following courses (Level 1 & 2):
        CHEM1042 General chemistry I (6)
        EASC1020 Introduction to climate science (6)
        EASC1401 Blue Planet (6)
        ENVS1301 Environmental life science (6)
        STAT1601 Elementary statistical methods (6)
        STAT1603 Introductory statistics (6)
BIOL2102 Biostatistics (6)
BIOL2306 Ecology and evolution (6)
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
2. Advanced level courses ( 42 credits)
Disciplinary Core Courses ( 6 credits)
ENVS3004 Environment, society and economics (6)
Disciplinary Electives (36 credits)
At least 36 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
CHEM3242 Food and water analysis (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
ENVS3006 Environmental radiation (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3010 Sustainable energy and environment (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
```

May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both.

| ENVS3042 | Pollution (6) |
| :--- | :--- |
| ENVS3313 | Environmental oceanography (6) |
| MATH3408 | Computational methods and differential equations with |
|  | applications (6) |
| STAT3611 | Computer-aided data analysis (6) |
| BIOL4302 | Environmental impact assessment (6) |
| ENVS4110 | Environmental remediation (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| ENVS3999 | Directed studies in environmental science (6) |
| ENVS4955 | Environmental science in practice (6) |
| ENVS4966 | Environmental science internship (6) |
| ENVS4999 | Environmental science project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Environmental Science <br> 2013 <br> admitted to Year 1 in

## Objectives:

The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2 : observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Minor in Environmental Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (18 credits)
        ENVS1401 Introduction to environmental science (6)
        ENVS2001 Methods in environmental science (6)
        ENVS2002 Environmental data analysis (6)
    Disciplinary Electives (18 credits)
        At least }18\mathrm{ credits selected from the following courses (Level 1 & 2):
        CHEM1042 General chemistry I (6)
        EASC1020 Introduction to climate science (6)
        EASC1401 Blue Planet (6)
        ENVS1301 Environmental life science (6)
        STAT1601 Elementary statistical methods (6)
        STAT1603 Introductory statistics (6)
BIOL2102 Biostatistics (6)
BIOL2306 Ecology and evolution (6)
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
2. Advanced level courses ( 42 credits)
Disciplinary Core Courses ( 6 credits)
ENVS3004 Environment, society and economics (6)
Disciplinary Electives (36 credits)
At least 36 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
CHEM3242 Food and water analysis (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
ENVS3006 Environmental radiation (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3010 Sustainable energy and environment (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
```

May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both.

| ENVS3042 | Pollution (6) |
| :--- | :--- |
| ENVS3313 | Environmental oceanography (6) |
| MATH3408 | Computational methods and differential equations with |
|  | applications (6) |
| STAT3611 | Computer-aided data analysis (6) |
| BIOL4302 | Environmental impact assessment (6) |
| ENVS4110 | Environmental remediation (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| ENVS3999 | Directed studies in environmental science (6) |
| ENVS4955 | Environmental science in practice (6) |
| ENVS4966 | Environmental science internship (6) |
| ENVS4999 | Environmental science project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Environmental Science <br> 2012 <br> admitted to Year 1 in

## Objectives:

The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2 : observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Minor in Environmental Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (12 credits)
        ENVS1401 Introduction to environmental science (6)
        STAT1601 Elementary statistical methods (6)
        STAT1603 Introductory statistics (6)
```


## Disciplinary Electives (24 credits)

At least 12 credits selected from the following courses (Level 1) in List A: List A

| CHEM1042 | General chemistry I (6) |
| :--- | :--- |
| EASC1020 | Introduction to climate science (6) |
| EASC1401 | Blue Planet (6) |
| ENVS1301 | Environmental life science (6) |

At least 12 credits selected from the following courses (Level 2) in List B:
List B BIOL2102 Biostatistics (6) BIOL2306 Ecology and evolution (6) CHEM2041 Principles of chemistry (6) CHEM2241 Analytical chemistry I (6) CHEM2442 Fundamentals of organic chemistry (6) EASC2404 Introduction to atmosphere and hydrosphere (6) ENVS2001 Methods in environmental science (6) ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 6 credits) ENVS3004 Environment, society and economics (6)
Disciplinary Electives (36 credits)
At least 36 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6) CHEM3141 Environmental chemistry (6) CHEM3241 Analytical chemistry II: chemical instrumentation (6) CHEM3242 Food and water analysis (6) EASC3020 Global change: anthropogenic impacts (6) EASC3405 Environmental remote sensing (6) ENVS3006 Environmental radiation (6)

```
    ENVS3007 Natural hazards and mitigation (6)
    ENVS3010 Sustainable energy and environment (6)
    ENVS3019 Urban ecology (6)
    ENVS3020 Global change ecology (6)
    ENVS3042 Pollution (6)
    ENVS3313 Environmental oceanography (6)
    MATH3408 Computational methods and differential equations with
    STAT3611 Computer-aided data analysis (6)
    BIOL4302 Environmental impact assessment (6)
    ENVS4110 Environmental remediation (6)
```


## 3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
ENVS3999 Directed studies in environmental science (6)
ENVS4955 Environmental science in practice (6)
ENVS4966 Environmental science internship (6)
ENVS4999 Environmental science project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Food \& Nutritional Science <br> admitted to Year 1 in

## Objectives:

The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with: (a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma related to health sciences. The curriculum is designed for students to select studies in Nutrition and Public Health in preparation for postgraduate diploma in dietetics or human nutrition. Study in Food Security is an innovative programme that entails scientific and social approach in food, nutrition and environment, allowing students to relate global challenges in industry, society and government levels.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical and health sectors, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : analyze controversial food related issues such as GM foods, nutritional labeling and food sustainability (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences in nutrition, health and disease of a community using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a foodand/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)
PLO 6 : demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

## Impermissible Combinations:

Minor in Food \& Nutritional Science

| Required courses (96 credits) |  |  |
| :---: | :---: | :---: |
| 1. Introductory level courses (60 credits) |  |  |
| Disciplinary Core Courses: Science Foundation Courses (12 credits) |  |  |
| SCNC1111 | Scientific method and reasoning (6) |  |
| SCNC1112 | Fundamentals of modern science (6) |  |
| Disciplinary Core Courses (36 credits) |  |  |
| BIOL1110 | From molecules to cells (6) |  |
| BIOL1201 | Introduction to food and nutrition (6) |  |
| BIOL2101 | Principles of food chemistry (6) |  |
| BIOL2102 | Biostatistics (6) |  |
| BIOL2103 | Biological sciences laboratory course (6) |  |
| BIOL2220 | Principles of biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. |
| BIOC2600 | Basic biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. |
| Disciplinary Electives (12 credits) |  |  |
| At least 12 credits selected from the following courses: |  |  |
| CHEM1042 | General chemistry I (6) |  |
| CHEM2442 | Fundamentals of organic chemistry (6) |  |
| GEOG2013 | Sustainable development (6) |  |
| GEOG2030 | Global development (6) |  |
| GEOG2152 | Health and medical geography (6) |  |
| GEOG2154 | Healthy food, place, and sustainability (6) |  |
| 2. Advanced level courses (30 credits) |  |  |
| Disciplinary Core Courses (12 credits) |  |  |

```
    BIOL3202 Nutritional biochemistry (6)
    BIOL3203 Food microbiology (6)
```

Disciplinary Electives ( 18 credits)
At least 12 credits of advanced level BIOL3XXX and/or BIOL $4 X X X$ course from the list below:
BIOL3204 Nutrition and the life cycle (6)
BIOL3205 Human physiology (6)
BIOL3207 Principles of toxicology (6)
BIOL3209 Food and nutrient analysis (6)
BIOL3211 Nutrigenomics (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3218 Food hygiene and quality control (6)
BIOL3606 Diet and disease (6)
BIOL3608 Food commodities (6)
BIOL4201 Public health nutrition (6)
BIOL4202 Nutrition and sports performance (6)
BIOL4205 Food technology (6)
BIOL4209 Functional foods (6)
BIOL4411 Plant and food biotechnology (6)
BIOC3606 Molecular medicine (6)
STAT3617 Sample survey methods (6)
GEOG3202 GIS in environmental studies (6)
POLI3121 Environmental policy (6)
BBMS4004 Public health genetics (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| BIOL3992 | Directed studies in food \& nutritional science (6) |
| :--- | :--- |
| BIOL4922 | Food product development and evaluation (6) |
| BIOL4962 | Food \& nutritional science internship (6) |
| BIOL4992 | Food \& nutritional science project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Those who want to specialize in the Nutrition and Public Health Studies should pass the following course:

Introduction level courses - 2 Disciplinary Core Courses: Science Foundation: SCNC1111 and SCNC1112; 6 Disciplinary Core Courses: BIOL1110, BIOL1201, BIOL2101; BIOL2102, BIOL2103, BIOL2220 or BIOC2600; 2 Disciplinary Electives: CHEM1042 and CHEM2442.
Advanced level courses - 2 Disciplinary Core Courses: BIOL3202 and BIOL3203; any 3 Disciplinary Electives with at least 2 must be at BIOL3XXX and/or BIOL4XXX in the list: BIOL3204, BIOL3205, BIOL3207, BIOL3209, BIOL3211, BIOL3217, BIOL3606, BIOL4201, BIOL4202, BIOL4209, BIOC3606, STAT3617, and BBMS4004.
Capstone requirement: any 1 Capstone Course: BIOL3992, BIOL4922, BIOL4962, and BIOL4992.
5. Those who want to specialize in the Food Security Studies should pass the following course:

Introduction level courses - 2 Disciplinary Core Courses: Science Foundation: SCNC1111 and SCNC1112; 6 Disciplinary Core Courses: BIOL1110, BIOL1201, BIOL2101; BIOL2102, BIOL2103, BIOL2220 or BIOC2600; 2 Disciplinary Electives: GEOG2013, GEOG2030, GEOG2152 and GEOG2154.
Advanced level courses - 2 Disciplinary Core Courses: BIOL3202 and BIOL3203; any 3 Disciplinary Electives with at least 2 must be at BIOL3XXX and/or BIOL4XXX in the list: BIOL3207, BIOL3216, BIOL3217, BIOL3218, BIOL3606, BIOL3608, BIOL4201, BIOL4205, BIOL4209, BIOL4411, GEOG3202, POLI3121; STAT3617, and BBMS4004.
Capstone requirement: any 1 Capstone Course: BIOL3992, BIOL4922, BIOL4962, and BIOL4992.
6. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisor. Students are recommended to take BIOL1110, BIOL2103, CHEM1042 and CHEM2442 in Year 1/2 of the study. Students should also take BIOL3204, BIOL3503 and one Level 3/4 courses related to molecular biology.
7. Specialisation recognition will be allowed for 2014-2018 student intake. Students who already took any two of these CHEM1041, CHEM1042, CHEM1043, CHEM2441, CHEM2442 can be counted as two disciplinary electives for specialization in Nutrition and Public Health.
8. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

9. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are
exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Food \& Nutritional Science |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 0}$ |
| admitted to Year 1 in |  |

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with: (a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma related to health sciences. The curriculum is designed for students to select studies in Nutrition and Public Health in preparation for postgraduate diploma in dietetics or human nutrition. Study in Food Security is an innovative programme that entails scientific and social approach in food, nutrition and environment, allowing students to relate global challenges in industry, society and government levels.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical and health sectors, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : analyze controversial food related issues such as GM foods, nutritional labeling and food sustainability (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences in nutrition, health and disease of a community using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a foodand/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)
PLO 6 : demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

## Impermissible Combinations:

Minor in Food \& Nutritional Science

| Required courses (96 credits) |  |  |
| :---: | :---: | :---: |
| 1. Introductory level courses (60 credits) |  |  |
| Disciplinary Core Courses: Science Foundation Courses (12 credits) |  |  |
| SCNC1111 | Scientific method and reasoning (6) |  |
| SCNC1112 | Fundamentals of modern science (6) |  |
| Disciplinary Core Courses (36 credits) |  |  |
| BIOL1110 | From molecules to cells (6) |  |
| BIOL1201 | Introduction to food and nutrition (6) |  |
| BIOL2101 | Principles of food chemistry (6) |  |
| BIOL2102 | Biostatistics (6) |  |
| BIOL2103 | Biological sciences laboratory course (6) |  |
| BIOL2220 | Principles of biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. |
| BIOC2600 | Basic biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. |
| Disciplinary Electives (12 credits) |  |  |
| At least 12 credits selected from the following courses: |  |  |
| CHEM1042 General chemistry I (6) |  |  |
| CHEM2442 | Fundamentals of organic chemistry (6) |  |
| GEOG2013 | Sustainable development (6) |  |
| GEOG2030 | Global development (6) |  |
| GEOG2152 | Health and medical geography (6) |  |
| GEOG2154 | Healthy food, place, and sustainability (6) |  |
| 2. Advanced level courses ( 30 credits) |  |  |
| Disciplinary Core Courses (12 credits) |  |  |

```
    BIOL3202 Nutritional biochemistry (6)
    BIOL3203 Food microbiology (6)
```

Disciplinary Electives (18 credits)
At least 12 credits of advanced level BIOL3XXX and/or BIOL4XXX course from the list below:
BIOL3204 Nutrition and the life cycle (6)
BIOL3205 Human physiology (6)
BIOL3207 Principles of toxicology (6)
BIOL3209 Food and nutrient analysis (6)
BIOL3211 Nutrigenomics (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3218 Food hygiene and quality control (6)
BIOL3606 Diet and disease (6)
BIOL3608 Food commodities (6)
BIOL4201 Public health nutrition (6)
BIOL4202 Nutrition and sports performance (6)
BIOL4205 Food technology (6)
BIOL4209 Functional foods (6)
BIOL4411 Plant and food biotechnology (6)
BIOC3606 Molecular medicine (6)
STAT3617 Sample survey methods (6)
GEOG3202 GIS in environmental studies (6)
POLI3121 Environmental policy (6)
BBMS4004 Public health genetics (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| BIOL3992 | Directed studies in food \& nutritional science (6) |
| :--- | :--- |
| BIOL4922 | Food product development and evaluation (6) |
| BIOL4962 | Food \& nutritional science internship (6) |
| BIOL4992 | Food \& nutritional science project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Those who want to specialize in the Nutrition and Public Health Studies should pass the following course:

Introduction level courses - 2 Disciplinary Core Courses: Science Foundation: SCNC1111 and SCNC1112; 6 Disciplinary Core Courses: BIOL1110, BIOL1201, BIOL2101; BIOL2102, BIOL2103, BIOL2220 or BIOC2600; 2 Disciplinary Electives: CHEM1042 and CHEM2442.
Advanced level courses - 2 Disciplinary Core Courses: BIOL3202 and BIOL3203; any 3 Disciplinary Electives with at least 2 must be at BIOL3XXX and/or BIOL4XXX in the list: BIOL3204, BIOL3205, BIOL3207, BIOL3209, BIOL3211, BIOL3217, BIOL3606, BIOL4201, BIOL4202, BIOL4209, BIOC3606, STAT3617, and BBMS4004.
Capstone requirement: any 1 Capstone Course: BIOL3992, BIOL4922, BIOL4962, and BIOL4992.
5. Those who want to specialize in the Food Security Studies should pass the following course:

Introduction level courses - 2 Disciplinary Core Courses: Science Foundation: SCNC1111 and SCNC1112; 6 Disciplinary Core Courses: BIOL1110, BIOL1201, BIOL2101; BIOL2102, BIOL2103, BIOL2220 or BIOC2600; 2 Disciplinary Electives: GEOG2013, GEOG2030 and GEOG2152 and GEOG2154.
Advanced level courses - 2 Disciplinary Core Courses: BIOL3202 and BIOL3203; any 3 Disciplinary Electives with at least 2 must be at BIOL3XXX and/or BIOL4XXX in the list: BIOL3207, BIOL3216, BIOL3217, BIOL3218, BIOL3606, BIOL3608, BIOL4201, BIOL4205, BIOL4209, BIOL4411, GEOG3202, POLI3121; STAT3617, and BBMS4004.
Capstone requirement: any 1 Capstone Course: BIOL3992, BIOL4922, BIOL4962, and BIOL4992.
6. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisor. Students are recommended to take BIOL1110, BIOL2103, CHEM1042 and CHEM2442 in Year 1/2 of the study. Students should also take BIOL3204, BIOL3503 and one Level 3/4 courses related to molecular biology.
7. Specialisation recognition will be allowed for 2014-2018 student intake. Students who already took any two of these CHEM1041, CHEM1042, CHEM1043, CHEM2441, CHEM2442 can be counted as two disciplinary electives for specialization in Nutrition and Public Health.
8. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.

| Major Title | Major in Food \& Nutritional Science |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 9}$ |
| admitted to Year 1 in |  |

## Objectives:

The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with: (a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma related to health sciences. The curriculum is designed for students to select studies in Nutrition and Public Health in preparation for postgraduate diploma in dietetics or human nutrition. Study in Food Security is an innovative programme that entails scientific and social approach in food, nutrition and environment, allowing students to relate global challenges in industry, society and government levels.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical and health sectors, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : analyze controversial food related issues such as GM foods, nutritional labeling and food sustainability (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences in nutrition, health and disease of a community using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a foodand/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)
PLO 6 : demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

## Impermissible Combinations:

Minor in Food \& Nutritional Science

| Required courses (96 credits) |  |  |
| :---: | :---: | :---: |
| 1. Introductory level courses (60 credits) |  |  |
| Disciplinary Core Courses: Science Foundation Courses (12 credits) |  |  |
| SCNC1111 | Scientific method and reasoning (6) |  |
| SCNC1112 | Fundamentals of modern science (6) |  |
| Disciplinary Core Courses (36 credits) |  |  |
| BIOL1110 | From molecules to cells (6) |  |
| BIOL1201 | Introduction to food and nutrition (6) |  |
| BIOL2101 | Principles of food chemistry (6) |  |
| BIOL2102 | Biostatistics (6) |  |
| BIOL2103 | Biological sciences laboratory course (6) |  |
| BIOL2220 | Principles of biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. |
| BIOC2600 | Basic biochemistry (6) | Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. |
| Disciplinary Electives (12 credits) |  |  |
| At least 12 credits selected from the following courses: |  |  |
| CHEM1042 General chemistry I (6) |  |  |
| CHEM2442 | Fundamentals of organic chemistry (6) |  |
| GEOG2013 | Sustainable development (6) |  |
| GEOG2030 | Global development (6) |  |
| GEOG2152 | Health and medical geography (6) |  |
| GEOG2154 | Healthy food, place, and sustainability (6) |  |
| 2. Advanced level courses ( 30 credits) |  |  |
| Disciplinary Core Courses (12 credits) |  |  |

```
    BIOL3202 Nutritional biochemistry (6)
    BIOL3203 Food microbiology (6)
```

Disciplinary Electives (18 credits)
At least 12 credits of advanced level BIOL3XXX and/or BIOL4XXX course from the list below:
BIOL3204 Nutrition and the life cycle (6)
BIOL3205 Human physiology (6)
BIOL3207 Principles of toxicology (6)
BIOL3209 Food and nutrient analysis (6)
BIOL3211 Nutrigenomics (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3218 Food hygiene and quality control (6)
BIOL3606 Diet and disease (6)
BIOL3608 Food commodities (6)
BIOL4201 Public health nutrition (6)
BIOL4202 Nutrition and sports performance (6)
BIOL4205 Food technology (6)
BIOL4209 Functional foods (6)
BIOL4411 Plant and food biotechnology (6)
BIOC3606 Molecular medicine (6)
STAT3617 Sample survey methods (6)
GEOG3202 GIS in environmental studies (6)
POLI3121 Environmental policy (6)
BBMS4004 Public health genetics (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| BIOL3992 | Directed studies in food \& nutritional science (6) |
| :--- | :--- |
| BIOL4922 | Food product development and evaluation (6) |
| BIOL4962 | Food \& nutritional science internship (6) |
| BIOL4992 | Food \& nutritional science project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Those who want to specialize in the Nutrition and Public Health Studies should pass the following course:

Introduction level courses - 2 Disciplinary Core Courses: Science Foundation: SCNC1111 and SCNC1112; 6 Disciplinary Core Courses: BIOL1110, BIOL1201, BIOL2101; BIOL2102, BIOL2103, BIOL2220 or BIOC2600; 2 Disciplinary Electives: CHEM1042 and CHEM2442.
Advanced level courses - 2 Disciplinary Core Courses: BIOL3202 and BIOL3203; any 3 Disciplinary Electives with at least 2 must be at BIOL3XXX and/or BIOL4XXX in the list: BIOL3204, BIOL3205, BIOL3207, BIOL3209, BIOL3211, BIOL3217, BIOL3606, BIOL4201, BIOL4202, BIOL4209, BIOC3606, STAT3617, and BBMS4004.
Capstone requirement: any 1 Capstone Course: BIOL3992, BIOL4922, BIOL4962, and BIOL4992.
6. Those who want to specialize in the Food Security Studies should pass the following course:

Introduction level courses - 2 Disciplinary Core Courses: Science Foundation: SCNC1111 and SCNC1112; 6 Disciplinary Core Courses: BIOL1110, BIOL1201, BIOL2101; BIOL2102, BIOL2103, BIOL2220 or BIOC2600; 2 Disciplinary Electives: GEOG2013, GEOG2030, GEOG2152 and GEOG2154.
Advanced level courses - 2 Disciplinary Core Courses: BIOL3202 and BIOL3203; any 3 Disciplinary Electives with at least 2 must be at BIOL3XXX and/or BIOL4XXX in the list: BIOL3207, BIOL3216, BIOL3217, BIOL3218, BIOL3606, BIOL3608, BIOL4201, BIOL4205, BIOL4209, BIOL4411, GEOG3202, POLI3121; STAT3617, and BBMS4004.
Capstone requirement: any 1 Capstone Course: BIOL3992, BIOL4922, BIOL4962, and BIOL4992.
7. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisor. Students are recommended to take BIOL1110, BIOL2103, CHEM1042 and CHEM2442 in Year 1/2 of the study. Students should also take BIOL3204, BIOL3503 and one Level $3 / 4$ courses related to molecular biology.
8. Specialisation recognition will be allowed for 2014-2018 student intake. Students who already took any two of these CHEM1041, CHEM1042, CHEM1043, CHEM2441, CHEM2442 can be counted as two disciplinary electives for specialization in Nutrition and Public Health.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Food \& Nutritional Science |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 8}$ |

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with: (a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a foodand/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)
PLO 6 : demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

## Impermissible Combinations:

Minor in Food \& Nutritional Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        BIOL1110 From molecules to cells (6)
        BIOL1201 Introduction to food and nutrition (6)
        BIOL2101 Principles of food chemistry (6)
        BIOL2102 Biostatistics (6)
    BIOL2103 Biological sciences laboratory course (6)
    BIOL2220 Principles of biochemistry (6)
    BIOC2600 Basic biochemistry (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (18 credits)
        BIOL3202 Nutritional biochemistry (6)
        BIOL3203 Food microbiology (6)
        BIOL3209 Food and nutrient analysis (6)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
        BIOL3204 Nutrition and the life cycle (6)
        BIOL3205 Human physiology (6)
    BIOL3206 Clinical nutrition (6)

Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
```

2. Advanced level courses (42 credits)
Disciplinary Core Courses (18 credits)
BIOL3202
Food microbiology (6)
Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:
BIOL3205 Human physiology (6)
BIOL3206 Clinical nutrition (6)

BIOL3207
[previous title: Food and nutritional toxicology

BIOL3211
BIOL3215
BIOL3216
BIOL3217
BIOL3218
BIOL3606

BIOL3608
Food commodities (6)

BIOL4201 Public health nutrition (6)
BIOL4202 Nutrition and sports performance (6)
BIOL4205 Food technology (6)
BIOL4208 Meat, dairy and grain sciences (6)

BIOL4209 Functional foods (6)
BIOL4411 Plant and food biotechnology (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOL3992 Directed studies in food \& nutritional science (6)
BIOL4913 Advanced practicum on food and nutrient analysis (6)
BIOL4922 Food product development and evaluation (6)
BIOL4962 Food \& nutritional science internship (6)
BIOL4992 Food \& nutritional science project (12)
(6) ]

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive.

## [previous title: Food processing and

 engineering (6) ]Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive.

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
(a) Food Science and Technology: BIOL3608; BIOL3207; BIOL3209; BIOL3216; BIOL3218; BIOL4205; BIOL4208; BIOL4209; BIOL4411; BIOL4913; BIOL4922.
(b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3211; BIOL3215; BIOL3217; BIOL3218; BIOL3606; BIOL4201; BIOL4202.
6. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Food \& Nutritional Science |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2017 |

admitted to Year 1 in

## Objectives:

The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with: (a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a foodand/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)
PLO 6 : demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

## Impermissible Combinations:

Minor in Food \& Nutritional Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        BIOL1110 From molecules to cells (6)
        BIOL1201 Introduction to food and nutrition (6)
        BIOL2101 Principles of food chemistry (6)
        BIOL2102 Biostatistics (6)
    BIOL2103 Biological sciences laboratory course (6)
    BIOL2220 Principles of biochemistry (6)
    BIOC2600 Basic biochemistry (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (18 credits)
        BIOL3202 Nutritional biochemistry (6)
        BIOL3203 Food microbiology (6)
        BIOL3209 Food and nutrient analysis (6)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
        BIOL3204 Nutrition and the life cycle (6)
        BIOL3205 Human physiology (6)
    BIOL3206 Clinical nutrition (6)

Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
```

2. Advanced level courses (42 credits)
Disciplinary Core Courses (18 credits)
Food microbiology (6)
Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:
BIOL3205 Human physiology (6)
BIOL3206 Clinical nutrition (6)

BIOL3207
[previous title: Food and nutritional toxicology

BIOL3211
BIOL3215
BIOL3216
BIOL3217
BIOL3218
BIOL3606

BIOL3608
Food commodities (6)

BIOL4201 Public health nutrition (6)
BIOL4202 Nutrition and sports performance (6)
BIOL4205 Food technology (6)
BIOL4208 Meat, dairy and grain sciences (6)

BIOL4209 Functional foods (6)
BIOL4411 Plant and food biotechnology (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOL3992 Directed studies in food \& nutritional science (6)
BIOL4913 Advanced practicum on food and nutrient analysis (6)
BIOL4922 Food product development and evaluation (6)
BIOL4962 Food \& nutritional science internship (6)
BIOL4992 Food \& nutritional science project (12)
(6) ]

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive.

## [previous title: Food processing and

 engineering (6) ]Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive.

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
(a) Food Science and Technology: BIOL3608; BIOL3207; BIOL3209; BIOL3216; BIOL3218; BIOL4205; BIOL4208; BIOL4209; BIOL4411; BIOL4913; BIOL4922.
(b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3211; BIOL3215; BIOL3217; BIOL3218; BIOL3606; BIOL4201; BIOL4202.
6. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Food \& Nutritional Science |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 6}$ |

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with: (a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a foodand/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)
PLO 6 : demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

## Impermissible Combinations:

Minor in Food \& Nutritional Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        BIOL1110 From molecules to cells (6)
        BIOL1201 Introduction to food and nutrition (6)
        BIOL1309 Evolutionary diversity (6)
        BIOL2102 Biostatistics (6)
    BIOL2103 Biological sciences laboratory course (6)
    BIOL2220 Principles of biochemistry (6)
    BIOC2600 Basic biochemistry (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (18 credits)
        BIOL3201 Food chemistry (6)
        BIOL3202 Nutritional biochemistry (6)
        BIOL3203 Food microbiology (6)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
        BIOL3204 Nutrition and the life cycle (6)
        BIOL3205 Human physiology (6)
    BIOL3206 Clinical nutrition (6)

Take either BIOL2220 or BIOC2600 to fufill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fufill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
```

2. Advanced level courses ( 42 credits)
Disciplinary Core Courses ( 18 credits)
BIOL3202 Nutritional biochemistry (6)
BIOL3203 Food microbiology (6)
```

\section*{ciplinary Electives ( 24 credits)}
```

BIOL3204 Nutrition and the life cycle (6)
BIOL3206 Clinical nutrition (6)

```

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.

BIOL3207
BIOL3208 Food safety and quality management (6)
\begin{tabular}{|c|c|}
\hline BIOL3209 & Food and nutrient analysis (6) \\
\hline BIOL3210 & Grain production and utilization (6) \\
\hline BIOL3211 & Nutrigenomics (6) \\
\hline BIOL3215 & Principles of dietary assessment (6) \\
\hline BIOL3216 & Food waste management (6) \\
\hline BIOL3217 & Food, environment and health (6) \\
\hline BIOL3218 & Food hygiene and quality control (6) \\
\hline BIOL3606 & Diet and disease (6) \\
\hline BIOL3608 & Food commodities (6) \\
\hline BIOL4201 & Public health nutrition (6) \\
\hline BIOL4202 & Nutrition and sports performance (6) \\
\hline BIOL4204 & Diet, brain function and behavior (6) \\
\hline BIOL4205 & Food technology (6) \\
\hline BIOL4207 & Meat and dairy sciences (6) \\
\hline BIOL4208 & Meat, dairy and grain sciences (6) \\
\hline BIOL4209 & Functional foods (6) \\
\hline BIOL4411 & Plant and food biotechnology (6) \\
\hline \multicolumn{2}{|l|}{Capstone requirement (6 credits)} \\
\hline \multicolumn{2}{|l|}{At least 6 credits selected from the following courses:} \\
\hline BIOL3992 & Directed studies in food \& nutritional science (6) \\
\hline BIOL4912 & Sensory evaluation of food (6) \\
\hline BIOL4913 & Advanced practicum on food and nutrient analysis (6) \\
\hline BIOL4922 & Food product development and evaluation (6) \\
\hline BIOL4962 & Food \& nutritional science internship (6) \\
\hline BIOL4992 & Food \& nutritional science project (12) \\
\hline
\end{tabular}
[previous title: Food and nutritional toxicology (6) ]

Take either BIOL3208 or BIOL3218 to fufill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

Take either BIOL3210 or BIOL4208 to fufill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fufill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.
Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive.
[previous title: Food processing and engineering (6)]
Take either BIOL4207 or BIOL4208 to fufill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.
Take either BIOL3210 or BIOL4208; BIOL4207 or BIOL4208; BIOL3608 or BIOL4208 to fufill this 24 credits requirement, but not both. BIOL3210 and BIOL4208; BIOL4207 and BIOL4208; BIOL3608 and BIOL4208 are mutually exclusive.

\section*{Notes:}
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
(a) Food Science and Technology: BIOL3608; BIOL3207; BIOL3208 or BIOL3218; BIOL3209; BIOL3210 or BIOL4208; BIOL3216; BIOL4205; BIOL4207 or BIOL4208; BIOL4209; BIOL4411; BIOL4913; BIOL4922.
(b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3208 or BIOL3218; BIOL3211; BIOL3215; BIOL3217; BIOL3606; BIOL4201; BIOL4202.
6. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
\begin{tabular}{ll} 
Major Title & Major in Food \& Nutritional Science \\
\begin{tabular}{l} 
Offered to students \\
admitted to Year 1 in
\end{tabular} & \(\mathbf{2 0 1 5}\)
\end{tabular}

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with: (a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

\section*{Learning Outcomes:}

By the end of this programme, students should be able to:
PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a foodand/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)
PLO 6 : demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

\section*{Impermissible Combinations:}

Minor in Food \& Nutritional Science
```

Required courses (96 credits)
1. Introductory level courses (48 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (36 credits)
BIOL1110 From molecules to cells (6)
BIOL1201 Introduction to food and nutrition (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)
BIOC2600 Basic biochemistry (6)
2. Advanced level courses (42 credits)
Disciplinary Core Courses (18 credits)
BIOL3201 Food chemistry (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3203 Food microbiology (6)
Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:
BIOL3204 Nutrition and the life cycle (6)
BIOL3205 Human physiology (6)
BIOL3206 Clinical nutrition (6)

Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

```
2. Advanced level courses ( 42 credits)
Disciplinary Core Courses ( 18 credits)
BIOL3202 Nutritional biochemistry (6)
BIOL3203 Food microbiology (6)
```


## Disciplinary Electives ( 24 credits)

```
BIOL3204 Nutrition and the life cycle (6)
BIOL3206 Clinical nutrition (6)
```

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.

BIOL3207
BIOL3208 Food safety and quality management (6)

| BIOL3209 | Food and nutrient analysis (6) |
| :--- | :--- |
| BIOL3210 | Grain production and utilization (6) |
|  |  |
| BIOL3211 | Nutrigenomics (6) |
| BIOL3215 | Principles of dietary assessment (6) |
| BIOL3216 | Food waste management (6) |
| BIOL3217 | Food, environment and health (6) |
| BIOL3218 |  |
|  |  |
|  |  |
|  |  |
| BIOL360 hygiene and quality control (6) |  |

[previous title: Food and nutritional toxicology (6)]

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

Take either BIOL3210 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.
Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive.
[previous title: Food processing and engineering (6)]
Take either BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.
Take either BIOL3210 or BIOL4208; BIOL4207 or BIOL4208; BIOL3608 or BIOL4208 to fufill this 24 credits requirement, but not both. BIOL3210 and BIOL4208; BIOL4207 and BIOL4208; BIOL3608 and BIOL4208 are mutually exclusive.

## Notes:

1. BIOL4210 and BIOL4922 are mutually exclusive.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
(a) Food Science and Technology: BIOL3608; BIOL3207; BIOL3208 or BIOL3218; BIOL3209; BIOL3210 or BIOL4208; BIOL3216; BIOL4205; BIOL4207 or BIOL4208; BIOL4209; BIOL4210 or BIOL4922; BIOL4411; BIOL4913.
(b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3208 or BIOL3218; BIOL3211; BIOL3215; BIOL3217; BIOL3606; BIOL4201; BIOL4202.
7. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.
Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Food \& Nutritional Science |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 4}$ |

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with: (a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a foodand/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)
PLO 6 : demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

## Impermissible Combinations:

Minor in Food \& Nutritional Science

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        BIOL1110 From molecules to cells (6)
        BIOL1201 Introduction to food and nutrition (6)
        BIOL1309 Evolutionary diversity (6)
        BIOL2102 Biostatistics (6)
    BIOL2103 Biological sciences laboratory course (6)
    BIOL2220 Principles of biochemistry (6)
    BIOC2600 Basic biochemistry (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (18 credits)
        BIOL3201 Food chemistry (6)
        BIOL3202 Nutritional biochemistry (6)
        BIOL3203 Food microbiology (6)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
        BIOL3204 Nutrition and the life cycle (6)
        BIOL3205 Human physiology (6)
        BIOL3206 Clinical nutrition (6)

Take either BIOL2220 or BIOC2600 to fufill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fufill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
```

2. Advanced level courses ( 42 credits)
Disciplinary Core Courses ( 18 credits)
BIOL3202 Nutritional biochemistry (6)
BIOL3203 Food microbiology (6)
```

\section*{ciplinary Electives ( 24 credits)}
```

BIOL3204 Nutrition and the life cycle (6)
BIOL3206 Clinical nutrition (6)

```

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.

BIOL3207
BIOL3208 Food safety and quality management (6)
\begin{tabular}{|c|c|}
\hline BIOL3209 & Food and nutrient analysis (6) \\
\hline BIOL3210 & Grain production and utilization (6) \\
\hline BIOL3211 & Nutrigenomics (6) \\
\hline BIOL3215 & Principles of dietary assessment (6) \\
\hline BIOL3216 & Food waste management (6) \\
\hline BIOL3217 & Food, environment and health (6) \\
\hline BIOL3218 & Food hygiene and quality control (6) \\
\hline BIOL3606 & Diet and disease (6) \\
\hline BIOL3608 & Food commodities (6) \\
\hline BIOL4201 & Public health nutrition (6) \\
\hline BIOL4202 & Nutrition and sports performance (6) \\
\hline BIOL4204 & Diet, brain function and behavior (6) \\
\hline BIOL4205 & Food technology (6) \\
\hline BIOL4207 & Meat and dairy sciences (6) \\
\hline BIOL4208 & Meat, dairy and grain sciences (6) \\
\hline
\end{tabular}

BIOL4209 Functional foods (6)
BIOL4210 Food product development (6)
BIOL4411 Plant and food biotechnology (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOL3992 Directed studies in food \& nutritional science (6)
BIOL4912 Sensory evaluation of food (6)
BIOL4913 Advanced practicum on food and nutrient analysis (6)
BIOL4922 Food product development and evaluation (6)
BIOL4962 Food \& nutritional science internship (6)
BIOL4992 Food \& nutritional science project (12)
[previous title: Food and nutritional toxicology (6) ]

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusvie.

Take either BIOL3210 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.
Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive.
[previous title: Food processing and engineering (6)]
BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive. Take either BIOL3210 or BIOL4208; BIOL4207 or BIOL4208; BIOL3608 or BIOL4208 to fufill this 24 credits requirement, but not both. BIOL3210 and BIOL4208; BIOL4207 and BIOL4208; BIOL3608 and BIOL4208 are mutually exclusive.

\section*{Notes:}
1. BIOL4210 and BIOL4922 are mutually exclusive.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
(a) Food Science and Technology: BIOL3608; BIOL3207; BIOL3208 or BIOL3218; BIOL3209; BIOL3210 or BIOL4208; BIOL3216; BIOL4205; BIOL4207 or BIOL4208; BIOL4209; BIOL4210 or BIOL4922; BIOL4411; BIOL4913.
(b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3208 or BIOL3218; BIOL3211; BIOL3215; BIOL3217; BIOL3606; BIOL4201; BIOL4202.
7. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection
advisors regarding additional courses in Physiology and Biochemistry.

\section*{Remarks:}

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
\begin{tabular}{ll} 
Major Title & Major in Food \& Nutritional Science \\
\begin{tabular}{l} 
Offered to students \\
admitted to Year 1 in
\end{tabular} & \(\mathbf{2 0 1 3}\)
\end{tabular}

\section*{Objectives:}

The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with: (a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

\section*{Learning Outcomes:}

By the end of this programme, students should be able to:
PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a foodand/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)
PLO 6 : demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

\section*{Impermissible Combinations:}

Minor in Food \& Nutritional Science

\section*{Required courses (96 credits)}
1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( \(\mathbf{3 0}\) credits)
BIOL1110 From molecules to cells (6)
BIOL1201 Introduction to food and nutrition (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOC2600 Basic biochemistry (6)

Disciplinary Electives ( 6 credits)
BIOL1309 Evolutionary diversity (6)
BIOL2306 Ecology and evolution (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses (18 credits)
BIOL3201 Food chemistry (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3203 Food microbiology (6)

\section*{Disciplinary Electives ( \(\mathbf{2 4}\) credits)}

At least 24 credits selected from the following courses:
BIOL3204 Nutrition and the life cycle (6)
BIOL3205 Human physiology (6)
Clinical nutrition (6)

Take either BIOL2220 or BIOC2600 to fufill this 30 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fufill this 30 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both. Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.
\begin{tabular}{|c|c|c|}
\hline BIOL3206 & & Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive. \\
\hline BIOL3207 & Principles of toxicology (6) & [previous title: Food and nutritional toxicology (6) ] \\
\hline BIOL3208 & Food safety and quality management (6) & Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive. \\
\hline BIOL3209 & Food and nutrient analysis (6) & \\
\hline BIOL3210 & Grain production and utilization (6) & Take either BIOL3210 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 are mutually exclusive. \\
\hline BIOL3211 & Nutrigenomics (6) & \\
\hline BIOL3215 & Principles of dietary assessment (6) & \\
\hline BIOL3216 & Food waste management (6) & \\
\hline BIOL3217 & Food, environment and health (6) & \\
\hline BIOL3218 & Food hygiene and quality control (6) & Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive. \\
\hline BIOL3606 & Diet and disease (6) & Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive. \\
\hline BIOL3608 & Food commodities (6) & Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive. \\
\hline BIOL4201 & Public health nutrition (6) & \\
\hline BIOL4202 & Nutrition and sports performance (6) & \\
\hline BIOL4204 & Diet, brain function and behavior (6) & \\
\hline BIOL4205 & Food technology (6) & [previous title: Food processing and engineering (6) ] \\
\hline BIOL4207 & Meat and dairy sciences (6) & Take either BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive. \\
\hline BIOL4208 & Meat, dairy and grain sciences (6) & Take either BIOL3210 or BIOL4208; BIOL4207 or BIOL4208; BIOL3608 or BIOL4208 to fufill this 24 credits requirement, but not both. BIOL3210 and BIOL4208; BIOL4207 and BIOL4208; BIOL3608 and BIOL4208 are mutually exclusive. \\
\hline BIOL4209 & Functional foods (6) & \\
\hline BIOL4210 & Food product development (6) & \\
\hline BIOL4411 & Plant and food biotechnology (6) & \\
\hline \multicolumn{3}{|l|}{Capstone requirement (6 credits)} \\
\hline \multicolumn{3}{|l|}{At least 6 credits selected from the following courses:} \\
\hline BIOL3992 & Directed studies in food \& nutritional science (6) & \\
\hline BIOL4912 & Sensory evaluation of food (6) & \\
\hline BIOL4913 & Advanced practicum on food and nutrient analysis (6) & \\
\hline BIOL4922 & Food product development and evaluation (6) & \\
\hline BIOL4962 & Food \& nutritional science internship (6) & \\
\hline BIOL4992 & Food \& nutritional science project (12) & \\
\hline
\end{tabular}

\section*{Notes:}
1. BIOL4210 and BIOL4922 are mutually exclusive.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
(a) Food Science and Technology: BIOL3608; BIOL3207; BIOL3208 or BIOL3218; BIOL3209; BIOL3210 or BIOL4208; BIOL3216; BIOL4205;

BIOL4207 or BIOL4208; BIOL4209; BIOL4210 or BIOL4922; BIOL4411; BIOL4913.
(b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3208 or BIOL3218; BIOL3211; BIOL3215; BIOL3217; BIOL3606; BIOL4201; BIOL4202.
7. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.

\section*{Remarks:}

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
\begin{tabular}{ll} 
Major Title & Major in Food \& Nutritional Science \\
Offered to students \\
admitted to Year 1 in & \(\mathbf{2 0 1 2}\)
\end{tabular}

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with: (a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

\section*{Learning Outcomes:}

By the end of this programme, students should be able to:
PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5 : apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a foodand/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)
PLO 6 : demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

\section*{Impermissible Combinations:}

Minor in Food \& Nutritional Science
```

Required courses (96 credits)
1. Introductory level courses (48 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (36 credits)
BIOL1110 From molecules to cells (6)
BIOL1201 Introduction to food and nutrition (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6) Take either BIOL2220 or BIOC2600 to fulfill
this 36 credits, but not both. BIOL2220 and
BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill
this 36 credits, but not both. BIOL2220 and
BIOC2600 are mutually exclusive.
2. Advanced level courses (42 credits)
Disciplinary Core Courses (18 credits)
BIOL3201 Food chemistry (6)
BIOL3202 Nutritional biochemistry (6)
BIOL3203 Food microbiology (6)
Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:
BIOL3204 Nutrition and the life cycle (6)
BIOL3205 Human physiology (6)
BIOL3206 Clinical nutrition (6)
BIOL3207 Principles of toxicology (6)
Take either BIOL3206 or BIOL3606 to fulfill
this }24\mathrm{ credits requirement, but not both.
BIOL3206 and BIOL3606 are mutually
exclusive.
[previous title: Food and nutritional toxicology
(6) ]

| BIOL3208 |  |
| :---: | :---: |
| BIOL3209 | Food and nutrient analysis (6) |
| BIOL3210 | Grain production and utilization (6) |
| BIOL3211 | Nutrigenomics (6) |
| BIOL3215 | Principles of dietary assessment (6) |
| BIOL3216 | Food waste management (6) |
| BIOL3217 | Food, environment and health (6) |
| BIOL3218 | Food hygiene and quality control (6) |
| BIOL3606 | Diet and disease (6) |
| BIOL3608 | Food commodities (6) |
| BIOL4201 | Public health nutrition (6) |
| BIOL4202 | Nutrition and sports performance (6) |
| BIOL4204 | Diet, brain function and behavior (6) |
| BIOL4205 | Food technology (6) |
| BIOL4207 | Meat and dairy sciences (6) |
| BIOL4208 | Meat, dairy and grain sciences (6) |
| BIOL4209 | Functional foods (6) |
| BIOL4210 | Food product development (6) |
| BIOL4411 | Plant and food biotechnology (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| BIOL3992 | Directed studies in food \& nutritional science (6) |
| BIOL4912 | Sensory evaluation of food (6) |
| BIOL4913 | Advanced practicum on food and nutrient analysis (6) |
| BIOL4922 | Food product development and evaluation (6) |
| BIOL4962 | Food \& nutritional science internship (6) |
| BIOL4992 | Food \& nutritional science project (12) |

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

Take either BIOL3210 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.
Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive.
[previous title: Food processing and engineering (6) ]
Take either BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.
Take either BIOL3210 or BIOL4208;
BIOL4207 or BIOL4208; BIOL3608 or BIOL4208 to fufill this 24 credits requirement, but not both. BIOL3210 and BIOL4208; BIOL4207 and BIOL4208; BIOL3608 and BIOL4208 are mutually exclusive.

## Notes:

1. BIOL4210 and BIOL4922 are mutually exclusive.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
(a) Food Science and Technology: BIOL3608; BIOL3207; BIOL3208 or BIOL3218; BIOL3209; BIOL3210 or BIOL4208; BIOL3216; BIOL4205; BIOL4207 or BIOL4208; BIOL4209; BIOL4210 or BIOL4922; BIOL4411; BIOL4913.
(b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3208 or BIOL3218; BIOL3211; BIOL3215; BIOL3217; BIOL3606; BIOL4201; BIOL4202.
7. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 2 1}$ |

## Objectives:

Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology (Intensive)
Minor in Earth Sciences

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        EASC1402 Principles of geology (6)
        EASC2401 Fluid/solid interactions in earth processes (6)
        EASC2402 Field and laboratory methods (6)
        EASC2406 Geochemistry (6)
        EASC2407 Mineralogy (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (36 credits)
        EASC3402 Petrology (6)
        EASC3403 Sedimentary environments (6)
        EASC3404 Structural geology (6)
        EASC3408 Geophysics (6)
        EASC3409 Igneous and metamorphic petrogenesis (6)
        EASC4406 Earth dynamics & global tectonics (6)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            EASC3406 Reconstruction of past climate (6)
            EASC3410 Hydrogeology (6)
            EASC3412 Earth resources (6)
            EASC3413 Engineering geology (6)
            EASC3414 Soil and rock mechanics (6)
            EASC3416 Advanced geochemistry and geochronology (6)
            EASC3417 Earth through time (6)
            EASC3999 Directed studies in earth sciences (6)
            ENVS3007 Natural hazards and mitigation (6)
            EASC4403 Biogeochemical cycles (6)
            EASC4407 Regional geology (6)
            EASC4408 Special topics in earth sciences (6)
            EASC4999 Earth sciences project (12)
3. Capstone requirement (6 credits)
    EASC4955 Integrated field studies (6)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

5. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 2 0}$ |

## Objectives:

Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology (Intensive)
Minor in Earth Sciences

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        EASC1402 Principles of geology (6)
        EASC2401 Fluid/solid interactions in earth processes (6)
        EASC2402 Field and laboratory methods (6)
        EASC2406 Geochemistry (6)
        EASC2407 Mineralogy (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (36 credits)
        EASC3402 Petrology (6)
        EASC3403 Sedimentary environments (6)
        EASC3404 Structural geology (6)
        EASC3408 Geophysics (6)
        EASC3409 Igneous and metamorphic petrogenesis (6)
        EASC4406 Earth dynamics & global tectonics (6)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            EASC3406 Reconstruction of past climate (6)
            EASC3410 Hydrogeology (6)
            EASC3412 Earth resources (6)
            EASC3413 Engineering geology (6)
            EASC3414 Soil and rock mechanics (6)
            EASC3416 Advanced geochemistry and geochronology (6)
            EASC3417 Earth through time (6)
            EASC3999 Directed studies in earth sciences (6)
            ENVS3007 Natural hazards and mitigation (6)
            EASC4403 Biogeochemical cycles (6)
            EASC4407 Regional geology (6)
            EASC4408 Special topics in earth sciences (6)
            EASC4999 Earth sciences project (12)
3. Capstone requirement (6 credits)
    EASC4955 Integrated field studies (6)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology |
| :--- | :--- |
| Offered to students | 2019 |
| admitted to Year 1 in |  |

## Objectives:

Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology (Intensive)
Minor in Earth Sciences

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        EASC1402 Principles of geology (6)
        EASC2401 Fluid/solid interactions in earth processes (6)
        EASC2402 Field and laboratory methods (6)
        EASC2406 Geochemistry (6)
        EASC2407 Mineralogy (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (36 credits)
        EASC3402 Petrology (6)
        EASC3403 Sedimentary environments (6)
        EASC3404 Structural geology (6)
        EASC3408 Geophysics (6)
        EASC3409 Igneous and metamorphic petrogenesis (6)
        EASC4406 Earth dynamics & global tectonics (6)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            EASC3406 Reconstruction of past climate (6)
            EASC3410 Hydrogeology (6)
            EASC3412 Earth resources (6)
            EASC3413 Engineering geology (6)
            EASC3414 Soil and rock mechanics (6)
            EASC3416 Advanced geochemistry and geochronology (6)
            EASC3417 Earth through time (6)
            EASC3999 Directed studies in earth sciences (6)
            ENVS3007 Natural hazards and mitigation (6)
            EASC4403 Biogeochemical cycles (6)
            EASC4407 Regional geology (6)
            EASC4408 Special topics in earth sciences (6)
            EASC4999 Earth sciences project (12)
3. Capstone requirement (6 credits)
    EASC4955 Integrated field studies (6)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 8}$ |

## Objectives:

Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology (Intensive)
Minor in Earth Sciences

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        EASC1402 Principles of geology (6)
        EASC2401 Fluid/solid interactions in earth processes (6)
        EASC2402 Field and laboratory methods (6)
        EASC2406 Geochemistry (6)
        EASC2407 Mineralogy (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (36 credits)
        EASC3402 Petrology (6)
        EASC3403 Sedimentary environments (6)
        EASC3404 Structural geology (6)
        EASC3408 Geophysics (6)
        EASC3409 Igneous and metamorphic petrogenesis (6)
        EASC4406 Earth dynamics & global tectonics (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            EASC3406 Reconstruction of past climate (6)
            EASC3410 Hydrogeology (6)
            EASC3412 Earth resources (6)
            EASC3413 Engineering geology (6)
            EASC3414 Soil and rock mechanics (6)
            EASC3416 Advanced geochemistry and geochronology (6)
            EASC3417 Earth through time (6)
            EASC3999 Directed studies in earth sciences (6)
            ENVS3007 Natural hazards and mitigation (6)
            EASC4403 Biogeochemical cycles (6)
            EASC4407 Regional geology (6)
            EASC4408 Special topics in earth sciences (6)
            EASC4999 Earth sciences project (12)
3. Capstone requirement (6 credits)
    EASC4955 Integrated field studies (6)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2017 |

## Objectives:

Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology (Intensive)
Minor in Earth Sciences

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        EASC1402 Principles of geology (6)
        EASC2401 Fluid/solid interactions in earth processes (6)
        EASC2402 Field and laboratory methods (6)
        EASC2406 Geochemistry (6)
        EASC2407 Mineralogy (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (36 credits)
        EASC3402 Petrology (6)
        EASC3403 Sedimentary environments (6)
        EASC3404 Structural geology (6)
        EASC3408 Geophysics (6)
        EASC3409 Igneous and metamorphic petrogenesis (6)
        EASC4406 Earth dynamics & global tectonics (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            EASC3406 Reconstruction of past climate (6)
            EASC3410 Hydrogeology (6)
            EASC3412 Earth resources (6)
            EASC3413 Engineering geology (6)
            EASC3414 Soil and rock mechanics (6)
            EASC3416 Advanced geochemistry and geochronology (6)
            EASC3417 Earth through time (6)
            EASC3999 Directed studies in earth sciences (6)
            ENVS3007 Natural hazards and mitigation (6)
            EASC4403 Biogeochemical cycles (6)
            EASC4407 Regional geology (6)
            EASC4408 Special topics in earth sciences (6)
            EASC4999 Earth sciences project (12)
3. Capstone requirement (6 credits)
    EASC4955 Integrated field studies (6)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 6}$ |

## Objectives:

Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology (Intensive)
Minor in Earth Sciences

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        EASC1402 Principles of geology (6)
        EASC2401 Fluid/solid interactions in earth processes (6)
        EASC2402 Field and laboratory methods (6)
        EASC2406 Geochemistry (6)
        EASC2407 Mineralogy (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (36 credits)
        EASC3402 Petrology (6)
        EASC3403 Sedimentary environments (6)
        EASC3404 Structural geology (6)
        EASC3408 Geophysics (6)
        EASC3409 Igneous and metamorphic petrogenesis (6)
        EASC4406 Earth dynamics & global tectonics (6)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            EASC3406 Reconstruction of past climate (6)
            EASC3410 Hydrogeology (6)
            EASC3412 Earth resources (6)
            EASC3413 Engineering geology (6)
            EASC3414 Soil and rock mechanics (6)
            EASC3416 Advanced geochemistry and geochronology (6)
            EASC3417 Earth through time (6)
            EASC3999 Directed studies in earth sciences (6)
            ENVS3007 Natural hazards and mitigation (6)
            EASC4403 Biogeochemical cycles (6)
            EASC4407 Regional geology (6)
            EASC4408 Special topics in earth sciences (6)
            EASC4999 Earth sciences project (12)
3. Capstone requirement (6 credits)
    EASC4955 Integrated field studies (6)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 5}$ |

## Objectives:

Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology (Intensive)
Minor in Earth Sciences

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        EASC1402 Principles of geology (6)
        EASC2401 Fluid/solid interactions in earth processes (6)
        EASC2402 Field and laboratory methods (6)
        EASC2406 Geochemistry (6)
        EASC2407 Mineralogy (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (36 credits)
        EASC3402 Petrology (6)
        EASC3403 Sedimentary environments (6)
        EASC3404 Structural geology (6)
        EASC3408 Geophysics (6)
        EASC3409 Igneous and metamorphic petrogenesis (6)
        EASC4406 Earth dynamics & global tectonics (6)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            EASC3406 Reconstruction of past climate (6)
            EASC3410 Hydrogeology (6)
            EASC3412 Earth resources (6)
            EASC3413 Engineering geology (6)
            EASC3414 Soil and rock mechanics (6)
            EASC3416 Advanced geochemistry and geochronology (6)
            EASC3417 Earth through time (6)
            EASC3999 Directed studies in earth sciences (6)
            ENVS3007 Natural hazards and mitigation (6)
            EASC4403 Biogeochemical cycles (6)
            EASC4407 Regional geology (6)
            EASC4408 Special topics in earth sciences (6)
            EASC4999 Earth sciences project (12)
3. Capstone requirement (6 credits)
    EASC4955 Integrated field studies (6)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

Major Title
Offered to students
admitted to Year 1 in

## Objectives:

Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        EASC1402 Principles of geology (6)
        EASC2401 Fluid/solid interactions in earth processes (6)
        EASC2402 Field and laboratory methods (6)
        EASC2406 Geochemistry (6)
        EASC2407 Mineralogy (6)
```

    2. Advanced level courses ( 48 credits)
    Disciplinary Core Courses ( 36 credits)
        EASC3402 Petrology (6)
        EASC3403 Sedimentary environments (6)
        EASC3404 Structural geology (6)
        EASC3408 Geophysics (6)
        EASC3409 Igneous and metamorphic petrogenesis (6)
        EASC4406 Earth dynamics \& global tectonics (6)
    Disciplinary Electives ( 12 credits)
        At least 12 credits selected from the following courses:
            EASC3406 Reconstruction of past climate (6)
            EASC3410 Hydrogeology (6)
            EASC3412 Earth resources (6)
            EASC3413 Engineering geology (6)
            EASC3414 Soil and rock mechanics (6)
            EASC3416 Advanced geochemistry and geochronology (6)
            EASC3417 Earth through time (6)
            EASC3999 Directed studies in earth sciences (6)
            ENVS3007 \(\quad\) Natural hazards and mitigation (6)
            EASC4403 Biogeochemical cycles (6)
            EASC4407 Regional geology (6)
            EASC4408 Special topics in earth sciences (6)
            EASC4999 Earth sciences project (12)
    3. Capstone requirement ( 6 credits)
EASC4955 Integrated field studies (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112

Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

Major Title
Offered to students
admitted to Year 1 in

## Objectives:

Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        EASC1402 Principles of geology (6)
        EASC2401 Fluid/solid interactions in earth processes (6)
        EASC2402 Field and laboratory methods (6)
        EASC2406 Geochemistry (6)
        EASC2407 Mineralogy (6)
```

    2. Advanced level courses ( 48 credits)
    Disciplinary Core Courses ( 36 credits)
        EASC3402 Petrology (6)
        EASC3403 Sedimentary environments (6)
        EASC3404 Structural geology (6)
        EASC3408 Geophysics (6)
        EASC3409 Igneous and metamorphic petrogenesis (6)
        EASC4406 Earth dynamics \& global tectonics (6)
    Disciplinary Electives ( 12 credits)
        At least 12 credits selected from the following courses:
            EASC3406 Reconstruction of past climate (6)
            EASC3410 Hydrogeology (6)
            EASC3412 Earth resources (6)
            EASC3413 Engineering geology (6)
            EASC3414 Soil and rock mechanics (6)
            EASC3416 Advanced geochemistry and geochronology (6)
            EASC3417 Earth through time (6)
            EASC3999 Directed studies in earth sciences (6)
            ENVS3007 \(\quad\) Natural hazards and mitigation (6)
            EASC4403 Biogeochemical cycles (6)
            EASC4407 Regional geology (6)
            EASC4408 Special topics in earth sciences (6)
            EASC4999 Earth sciences project (12)
    3. Capstone requirement ( 6 credits)
EASC4955 Integrated field studies (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112

Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

Major Title
Offered to students
admitted to Year 1 in

## Objectives:

Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Minor in Earth Sciences

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        EASC1402 Principles of geology (6)
        EASC2401 Fluid/solid interactions in earth processes (6)
        EASC2402 Field and laboratory methods (6)
        EASC2406 Geochemistry (6)
        EASC2407 Mineralogy (6)
```

    2. Advanced level courses ( 48 credits)
    Disciplinary Core Courses ( 36 credits)
        EASC3402 Petrology (6)
        EASC3403 Sedimentary environments (6)
        EASC3404 Structural geology (6)
        EASC3408 Geophysics (6)
        EASC3409 Igneous and metamorphic petrogenesis (6)
        EASC4406 Earth dynamics \& global tectonics (6)
    Disciplinary Electives ( 12 credits)
        At least 12 credits selected from the following courses:
            EASC3406 Reconstruction of past climate (6)
            EASC3410 Hydrogeology (6)
            EASC3412 Earth resources (6)
            EASC3413 Engineering geology (6)
            EASC3414 Soil and rock mechanics (6)
            EASC3416 Advanced geochemistry and geochronology (6)
            EASC3417 Earth through time (6)
            EASC3999 Directed studies in earth sciences (6)
            ENVS3007 \(\quad\) Natural hazards and mitigation (6)
            EASC4403 Biogeochemical cycles (6)
            EASC4407 Regional geology (6)
            EASC4408 Special topics in earth sciences (6)
            EASC4999 Earth sciences project (12)
    3. Capstone requirement ( 6 credits)
EASC4955 Integrated field studies (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112

Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology (Intensive) |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 2 1}$ |

## Objectives:

To provide an education in Geology which meets the current minimum requirements of the Geological Society of London for accreditation.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3 : communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5 : work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology
Minor in Earth Sciences

## Required courses (150 credits)

1. Introductory level courses ( 54 to 66 credits) (Note 1)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (42 credits)
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6) (Note 1)
EASC2401 Fluid/solid interactions in earth processes (6) (Note 1)
EASC2402 Field and laboratory methods (6) (Note 1)
EASC2406 Geochemistry (6) (Note 1)
EASC2409 Regional field studies (6)
2. Advanced level courses ( 78 to 90 credits) (Note 1)

Disciplinary Core Courses (60 credits)
EASC3402 Petrology (6) (Note 1)

EASC3403 Sedimentary environments (6) (Note 1)
EASC3404 Structural geology (6) (Note 1)
EASC3408 Geophysics (6) (Note 1)
EASC3409 Igneous and metamorphic petrogenesis (6) (Note 1)
EASC3417 Earth through time (6)
EASC4406 Earth dynamics \& global tectonics (6) (Note 1)
EASC4407 Regional geology (6)
EASC4999 Earth sciences project (12) (Note 2)
Disciplinary Electives ( 30 credits)
At least 30 credits selected from the following introductory and advanced level courses in List A and List B, among which at least 6 credits from List A:
List A
EASC3405 Environmental remote sensing (6)
EASC3413
Engineering geology (6)
List B
EASC2404 Introduction to atmosphere and hydrosphere (6)
EASC2408 Planetary geology (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3406 Reconstruction of past climate (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3414 Soil and rock mechanics (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3313 Environmental oceanography (6)
EASC4403 Biogeochemical cycles (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)

## EASC4966

## Notes:

1. These are core courses in the regular Geology Major ( 96 credits) curriculum.
2. Requires approval to qualify for accredited pathway. EASC4999 Earth sciences project must have a significant 3D geological evolutionary component to meet Accredited Pathway requirements, as specified during our 2016 re-accreditation. Therefore, each EASC4999 project intended to qualify for the Accredited Pathway must be approved by the Geology major coordinator as satisfying this requirement. This policy is effective for all projects starting in 2017 and after.
3. In the list of disciplinary elective courses, two of them are introductory level courses while the others are advanced level courses. If students take all advanced level courses in the list, the total number of introductory level courses is 54 credits while that of advanced level courses is 90 credits. If students take 2 introductory level courses in the list and 3 advanced level courses, the total number of introductory level courses is 66 credits and that of advanced level courses is 78 credits.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

5. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology (Intensive) |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 2 0}$ |

## Objectives:

To provide an education in Geology which meets the current minimum requirements of the Geological Society of London for accreditation.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3 : communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5 : work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology
Minor in Earth Sciences

## Required courses (150 credits)

1. Introductory level courses ( 54 to 66 credits) (Note 1)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses ( 42 credits)
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6) (Note 1)
EASC2401 Fluid/solid interactions in earth processes (6) (Note 1)
EASC2402 Field and laboratory methods (6) (Note 1)
EASC2406 Geochemistry (6) (Note 1)
EASC2409 Regional field studies (6)
2. Advanced level courses ( 78 to 90 credits) (Note 1)

Disciplinary Core Courses ( 60 credits)
EASC3402 Petrology (6) (Note 1)

EASC3403 Sedimentary environments (6) (Note 1)
EASC3404 Structural geology (6) (Note 1)
EASC3408 Geophysics (6) (Note 1)
EASC3409 Igneous and metamorphic petrogenesis (6) (Note 1)
EASC3417 Earth through time (6)
EASC4406 Earth dynamics \& global tectonics (6) (Note 1)
EASC4407 Regional geology (6)
EASC4999 Earth sciences project (12) (Note 2)
Disciplinary Electives ( 30 credits)
At least 30 credits selected from the following introductory and advanced level courses in List A and List B, among which at least 6 credits from List A:
List A
EASC3405 Environmental remote sensing (6)
EASC3413
Engineering geology (6)
List B
EASC2404 Introduction to atmosphere and hydrosphere (6)
EASC2408 Planetary geology (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3406 Reconstruction of past climate (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3414 Soil and rock mechanics (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3313 Environmental oceanography (6)
EASC4403 Biogeochemical cycles (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)

## EASC4966

```
Earth sciences internship (6)
```


## 3. Capstone requirement ( 6 credits)

EASC4955 Integrated field studies (6)

## Notes:

1. These are core courses in the regular Geology Major ( 96 credits) curriculum.
2. Requires approval to qualify for accredited pathway. EASC4999 Earth sciences project must have a significant 3D geological evolutionary component to meet Accredited Pathway requirements, as specified during our 2016 re-accreditation. Therefore, each EASC4999 project intended to qualify for the Accredited Pathway must be approved by the Geology major coordinator as satisfying this requirement. This policy is effective for all projects starting in 2017 and after.
3. In the list of disciplinary elective courses, two of them are introductory level courses while the others are advanced level courses. If students take all advanced level courses in the list, the total number of introductory level courses is 54 credits while that of advanced level courses is 90 credits. If students take 2 introductory level courses in the list and 3 advanced level courses, the total number of introductory level courses is 66 credits and that of advanced level courses is 78 credits.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology (Intensive) |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 9}$ |

## Objectives:

To provide an education in Geology which meets the current minimum requirements of the Geological Society of London for accreditation.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3 : communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5 : work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology
Minor in Earth Sciences

## Required courses (150 credits)

1. Introductory level courses ( 54 to 66 credits) (Note 1)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (42 credits)
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6) (Note 1)
EASC2401 Fluid/solid interactions in earth processes (6) (Note 1)
EASC2402 Field and laboratory methods (6) (Note 1)
EASC2406 Geochemistry (6) (Note 1)
EASC2409 Regional field studies (6)
2. Advanced level courses ( 78 to 90 credits) (Note 1)

Disciplinary Core Courses (60 credits)
EASC3402 Petrology (6) (Note 1)

EASC3403 Sedimentary environments (6) (Note 1)
EASC3404 Structural geology (6) (Note 1)
EASC3408 Geophysics (6) (Note 1)
EASC3409 Igneous and metamorphic petrogenesis (6) (Note 1)
EASC3417 Earth through time (6)
EASC4406 Earth dynamics \& global tectonics (6) (Note 1)
EASC4407 Regional geology (6)
EASC4999 Earth sciences project (12) (Note 2)
Disciplinary Electives ( 30 credits)
At least 30 credits selected from the following introductory and advanced level courses in List A and List B, among which at least 6 credits from List A:
List A
EASC3405 Environmental remote sensing (6) EASC3413 Engineering geology (6)
List B
EASC2404 Introduction to atmosphere and hydrosphere (6)
EASC2408 Planetary geology (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3406 Reconstruction of past climate (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3414 Soil and rock mechanics (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3313 Environmental oceanography (6)
EASC4403 Biogeochemical cycles (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)

## EASC4966

3. Capstone requirement ( 6 credits)

EASC4955 Integrated field studies (6)

## Notes:

1. These are core courses in the regular Geology Major ( 96 credits) curriculum.
2. Requires approval to qualify for accredited pathway. EASC4999 Earth sciences project must have a significant 3D geological evolutionary component to meet Accredited Pathway requirements, as specified during our 2016 re-accreditation. Therefore, each EASC4999 project intended to qualify for the Accredited Pathway must be approved by the Geology major coordinator as satisfying this requirement. This policy is effective for all projects starting in 2017 and after.
3. In the list of disciplinary elective courses, two of them are introductory level courses while the others are advanced level courses. If students take all advanced level courses in the list, the total number of introductory level courses is 54 credits while that of advanced level courses is 90 credits. If students take 2 introductory level courses in the list and 3 advanced level courses, the total number of introductory level courses is 66 credits and that of advanced level courses is 78 credits.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology (Intensive) |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 8}$ |

## Objectives:

To provide an education in Geology which meets the current minimum requirements of the Geological Society of London for accreditation.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3 : communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5 : work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology
Minor in Earth Sciences

## Required courses (150 credits)

1. Introductory level courses ( 54 to 66 credits) (Note 1)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (42 credits)
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6) (Note 1)
EASC2401 Fluid/solid interactions in earth processes (6) (Note 1)
EASC2402 Field and laboratory methods (6) (Note 1)
EASC2406 Geochemistry (6) (Note 1)
EASC2409 Regional field studies (6)
2. Advanced level courses ( 78 to 90 credits) (Note 1)

Disciplinary Core Courses (60 credits)
EASC3402 Petrology (6) (Note 1)

EASC3403 Sedimentary environments (6) (Note 1)
EASC3404 Structural geology (6) (Note 1)
EASC3408 Geophysics (6) (Note 1)
EASC3409 Igneous and metamorphic petrogenesis (6) (Note 1)
EASC3417 Earth through time (6)
EASC4406 Earth dynamics \& global tectonics (6) (Note 1)
EASC4407 Regional geology (6)
EASC4999 Earth sciences project (12) (Note 2)
Disciplinary Electives ( 30 credits)
At least 30 credits selected from the following introductory and advanced level courses in List A and List B, among which at least 6 credits from List A:
List A
EASC3405 Environmental remote sensing (6)
EASC3413
Engineering geology (6)
List B
EASC2404 Introduction to atmosphere and hydrosphere (6)
EASC2408 Planetary geology (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3406 Reconstruction of past climate (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3414 Soil and rock mechanics (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3313 Environmental oceanography (6)
EASC4403 Biogeochemical cycles (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)

## EASC4966

3. Capstone requirement ( 6 credits)

EASC4955 Integrated field studies (6)

## Notes:

1. These are core courses in the regular Geology Major ( 96 credits) curriculum.
2. Requires approval to qualify for accredited pathway. EASC4999 Earth sciences project must have a significant 3D geological evolutionary component to meet Accredited Pathway requirements, as specified during our 2016 re-accreditation. Therefore, each EASC4999 project intended to qualify for the Accredited Pathway must be approved by the Geology major coordinator as satisfying this requirement. This policy is effective for all projects starting in 2017 and after.
3. In the list of disciplinary elective courses, two of them are introductory level courses while the others are advanced level courses. If students take all advanced level courses in the list, the total number of introductory level courses is 54 credits while that of advanced level courses is 90 credits. If students take 2 introductory level courses in the list and 3 advanced level courses, the total number of introductory level courses is 66 credits and that of advanced level courses is 78 credits.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology (Intensive) |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | 2017 |

## Objectives:

To provide an education in Geology which meets the current minimum requirements of the Geological Society of London for accreditation.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3 : communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5 : work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology
Minor in Earth Sciences

## Required courses (150 credits)

1. Introductory level courses ( 54 to 66 credits) (Note 1)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (42 credits)
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6) (Note 1)
EASC2401 Fluid/solid interactions in earth processes (6) (Note 1)
EASC2402 Field and laboratory methods (6) (Note 1)
EASC2406 Geochemistry (6) (Note 1)
EASC2409 Regional field studies (6)
2. Advanced level courses ( 78 to 90 credits) (Note 1)

Disciplinary Core Courses (60 credits)
EASC3402 Petrology (6) (Note 1)

EASC3403 Sedimentary environments (6) (Note 1)
EASC3404 Structural geology (6) (Note 1)
EASC3408 Geophysics (6) (Note 1)
EASC3409 Igneous and metamorphic petrogenesis (6) (Note 1)
EASC3417 Earth through time (6)
EASC4406 Earth dynamics \& global tectonics (6) (Note 1)
EASC4407 Regional geology (6)
EASC4999 Earth sciences project (12) (Note 2)
Disciplinary Electives ( 30 credits)
At least 30 credits selected from the following introductory and advanced level courses in List A and List B, among which at least 6 credits from List A:
List A
EASC3405 Environmental remote sensing (6)
EASC3413
Engineering geology (6)
List B
EASC2404 Introduction to atmosphere and hydrosphere (6)
EASC2408 Planetary geology (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3406 Reconstruction of past climate (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3414 Soil and rock mechanics (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3313 Environmental oceanography (6)
EASC4403 Biogeochemical cycles (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)

## EASC4966

3. Capstone requirement ( 6 credits)

EASC4955 Integrated field studies (6)

## Notes:

1. These are core courses in the regular Geology Major ( 96 credits) curriculum.
2. Requires approval to qualify for accredited pathway. EASC4999 Earth sciences project must have a significant 3D geological evolutionary component to meet Accredited Pathway requirements, as specified during our 2016 re-accreditation. Therefore, each EASC4999 project intended to qualify for the Accredited Pathway must be approved by the Geology major coordinator as satisfying this requirement. This policy is effective for all projects starting in 2017 and after.
3. In the list of disciplinary elective courses, two of them are introductory level courses while the others are advanced level courses. If students take all advanced level courses in the list, the total number of introductory level courses is 54 credits while that of advanced level courses is 90 credits. If students take 2 introductory level courses in the list and 3 advanced level courses, the total number of introductory level courses is 66 credits and that of advanced level courses is 78 credits.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology (Intensive) |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 6}$ |

## Objectives:

To provide an education in Geology which meets the current minimum requirements of the Geological Society of London for accreditation.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3 : communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5 : work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology
Minor in Earth Sciences

## Required courses (150 credits)

1. Introductory level courses ( 54 to 66 credits) (Note 1)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (42 credits)
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6) (Note 1)
EASC2401 Fluid/solid interactions in earth processes (6) (Note 1)
EASC2402 Field and laboratory methods (6) (Note 1)
EASC2406 Geochemistry (6) (Note 1)
EASC2409 Regional field studies (6)
2. Advanced level courses ( 78 to 90 credits) (Note 1)

Disciplinary Core Courses (60 credits)
EASC3402 Petrology (6) (Note 1)

EASC3403 Sedimentary environments (6) (Note 1)
EASC3404 Structural geology (6) (Note 1)
EASC3408 Geophysics (6) (Note 1)
EASC3409 Igneous and metamorphic petrogenesis (6) (Note 1)
EASC3417 Earth through time (6)
EASC4406 Earth dynamics \& global tectonics (6) (Note 1)
EASC4407 Regional geology (6)
EASC4999 Earth sciences project (12) (Note 2)
Disciplinary Electives ( 30 credits)
At least 30 credits selected from the following introductory and advanced level courses in List A and List B, among which at least 6 credits from List A:
List A
EASC3405 Environmental remote sensing (6)
EASC3413
Engineering geology (6)
List B
EASC2404 Introduction to atmosphere and hydrosphere (6)
EASC2408 Planetary geology (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3406 Reconstruction of past climate (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3414 Soil and rock mechanics (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3313 Environmental oceanography (6)
EASC4403 Biogeochemical cycles (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)

## EASC4966

3. Capstone requirement ( 6 credits)

EASC4955 Integrated field studies (6)

## Notes:

1. These are core courses in the regular Geology Major ( 96 credits) curriculum.
2. Requires approval to qualify for accredited pathway. EASC4999 Earth sciences project must have a significant 3D geological evolutionary component to meet Accredited Pathway requirements, as specified during our 2016 re-accreditation. Therefore, each EASC4999 project intended to qualify for the Accredited Pathway must be approved by the Geology major coordinator as satisfying this requirement. This policy is effective for all projects starting in 2017 and after.
3. In the list of disciplinary elective courses, two of them are introductory level courses while the others are advanced level courses. If students take all advanced level courses in the list, the total number of introductory level courses is 54 credits while that of advanced level courses is 90 credits. If students take 2 introductory level courses in the list and 3 advanced level courses, the total number of introductory level courses is 66 credits and that of advanced level courses is 78 credits.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Geology (Intensive) |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 5}$ |

## Objectives:

To provide an education in Geology which meets the current minimum requirements of the Geological Society of London for accreditation.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)
PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)
PLO 3 : communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)
PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)
PLO 5 : work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

## Impermissible Combinations:

Major in Geology
Minor in Earth Sciences

## Required courses (150 credits)

1. Introductory level courses ( 54 to 66 credits) (Note 1)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (42 credits)
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6) (Note 1)
EASC2401 Fluid/solid interactions in earth processes (6) (Note 1)
EASC2402 Field and laboratory methods (6) (Note 1)
EASC2406 Geochemistry (6) (Note 1)
EASC2409 Regional field studies (6)
2. Advanced level courses ( 78 to 90 credits) (Note 1)

Disciplinary Core Courses (60 credits)
EASC3402 Petrology (6) (Note 1)

EASC3403 Sedimentary environments (6) (Note 1)
EASC3404 Structural geology (6) (Note 1)
EASC3408 Geophysics (6) (Note 1)
EASC3409 Igneous and metamorphic petrogenesis (6) (Note 1)
EASC3417 Earth through time (6)
EASC4406 Earth dynamics \& global tectonics (6) (Note 1)
EASC4407 Regional geology (6)
EASC4999 Earth sciences project (12) (Note 2)
Disciplinary Electives ( 30 credits)
At least 30 credits selected from the following introductory and advanced level courses in List A and List B, among which at least 6 credits from List A:
List A
EASC3405 Environmental remote sensing (6) EASC3413 Engineering geology (6)
List B
EASC2404 Introduction to atmosphere and hydrosphere (6)
EASC2408 Planetary geology (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3406 Reconstruction of past climate (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3414 Soil and rock mechanics (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3313 Environmental oceanography (6)
EASC4403 Biogeochemical cycles (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)

## EASC4966

3. Capstone requirement ( 6 credits)

EASC4955 Integrated field studies (6)

## Notes:

1. These are core courses in the regular Geology Major ( 96 credits) curriculum.
2. Requires approval to qualify for accredited pathway. EASC4999 Earth sciences project must have a significant 3D geological evolutionary component to meet Accredited Pathway requirements, as specified during our 2016 re-accreditation. Therefore, each EASC4999 project intended to qualify for the Accredited Pathway must be approved by the Geology major coordinator as satisfying this requirement. This policy is effective for all projects starting in 2017 and after.
3. In the list of disciplinary elective courses, two of them are introductory level courses while the others are advanced level courses. If students take all advanced level courses in the list, the total number of introductory level courses is 54 credits while that of advanced level courses is 90 credits. If students take 2 introductory level courses in the list and 3 advanced level courses, the total number of introductory level courses is 66 credits and that of advanced level courses is 78 credits.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Mathematics
Offered to students
admitted to Year 1 in
Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to
nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to
conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the
curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure
and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided
studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations
are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and
data science, logistics, management, research and further studies.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)
PLO 2 : apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)
PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)
Impermissible Combinations:
Major in Mathematics (Intensive)
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112
        Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        MATH1013
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2101 Linear algebra I (6)
        MATH2102 Linear algebra II (6)
        MATH2211 Multivariable calculus (6)
        MATH2241
    Introduction to mathematical analysis (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Course (6 credits)
        MATH3401
Analysis I (6)
Disciplinary Electives ( 36 credits)
```

At least 36 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at least 12 credits are selected from List A and at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List $A$, List $B$ and those courses not selected to fulfill the capstone requirements, but excluding MATH4966 Mathematics Internship.
List A

MATH3301
MATH3403
MATH3601
MATH3603
MATH3904
List B
MATH3001
MATH3002
MATH3303
MATH3304
MATH3405
MATH3408
MATH3541 MATH3600 MATH3901 MATH3905 MATH3906 MATH3911 MATH3943 MATH4302 MATH4402 MATH4404

Algebra I (6)
Functions of a complex variable (6)
Numerical analysis (6)
Probability theory (6)
Introduction to optimization (6)
Development of mathematical ideas (6)
Mathematics seminar (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Operations research I (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)

MATH4406
MATH4501
MATH4511
MATH4602
MATH4902
MATH4907
MATH7101
MATH7201
MATH7202
MATH7217
MATH7219
MATH7224
MATH7501
MATH7502
MATH7503
MATH7504
MATH7505

Introduction to partial differential equations (6)
Geometry (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)
Topics in applied functional analysis (6)
Topics in advanced probability theory (6)
Topics in algebra (6)
Topics in applied discrete mathematics (6)
Topics in mathematical programming and optimization (6)
Geometric topology (6)
Real analysis (6)
3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:
MATH3999 Directed studies in mathematics (6)
MATH4910 Senior mathematics seminar (6)

MATH4911 Mathematics capstone project (6)
MATH4966 Mathematics internship (6)
MATH4999 Mathematics project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.
6. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

7. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6-credit disciplinary elective course of the science major in lieu

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title $\quad$ Major in Mathematics
Offered to students
admitted to Year 1 in
Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to
nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to
conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the
curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure
and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided
studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations
are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and
data science, logistics, management, research and further studies.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)
PLO 2 : apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)
PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)
Impermissible Combinations:
Major in Mathematics (Intensive)
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112
        Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        MATH1013
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2101 Linear algebra I (6)
        MATH2102 Linear algebra II (6)
        MATH2211 Multivariable calculus (6)
        MATH2241
    Introduction to mathematical analysis (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Course (6 credits)
        MATH3401
Analysis I (6)
Disciplinary Electives ( 36 credits)
```

At least 36 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at least 12 credits are selected from List A and at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List $A$, List $B$ and those courses not selected to fulfill the capstone requirements, but excluding MATH4966 Mathematics Internship.
List A

MATH3301
MATH3403
MATH3601
MATH3603
MATH3904
List B
MATH3001
MATH3002
MATH3303
MATH3304
MATH3405
MATH3408
MATH3541 MATH3600 MATH3901 MATH3905 MATH3906 MATH3911 MATH3943 MATH4302 MATH4402 MATH4404

Algebra I (6)
Functions of a complex variable (6)
Numerical analysis (6)
Probability theory (6)
Introduction to optimization (6)
Development of mathematical ideas (6)
Mathematics seminar (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Operations research I (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)

| MATH4406 | Introduction to partial differential equations (6) |
| :--- | :--- |
| MATH4501 | Geometry (6) |
| MATH4511 | Introduction to differentiable manifolds (6) |
| MATH4602 | Scientific computing (6) |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7101 | Intermediate complex analysis (6) |
| MATH7201 | Topics in geometry (6) |
| MATH7202 | Complex manifolds (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7219 | Topics in applied functional analysis (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.
6. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Mathematics
Offered to students
admitted to Year 1 in
Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to
nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to
conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the
curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure
and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided
studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations
are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and
data science, logistics, management, research and further studies.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)
PLO 2 : apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)
PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)
Impermissible Combinations:
Major in Mathematics (Intensive)
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112
        Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        MATH1013
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2101 Linear algebra I (6)
        MATH2102 Linear algebra II (6)
        MATH2211 Multivariable calculus (6)
        MATH2241
    Introduction to mathematical analysis (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Course (6 credits)
        MATH3401
Analysis I (6)
Disciplinary Electives ( 36 credits)
```

At least 36 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at least 12 credits are selected from List A and at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List $A$, List $B$ and those courses not selected to fulfill the capstone requirements, but excluding MATH4966 Mathematics Internship.
List A

MATH3301
MATH3403
MATH3601
MATH3603
MATH3904
List B
MATH3001
MATH3002
MATH3303
MATH3304
MATH3405
MATH3408
MATH3541 MATH3600 MATH3901 MATH3905 MATH3906 MATH3911 MATH3943 MATH4302 MATH4402 MATH4404

Algebra I (6)
Functions of a complex variable (6)
Numerical analysis (6)
Probability theory (6)
Introduction to optimization (6)
Development of mathematical ideas (6)
Mathematics seminar (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Operations research I (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)

| MATH4406 | Introduction to partial differential equations (6) |
| :--- | :--- |
| MATH4501 | Geometry (6) |
| MATH4511 | Introduction to differentiable manifolds (6) |
| MATH4602 | Scientific computing (6) |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7101 | Intermediate complex analysis (6) |
| MATH7201 | Topics in geometry (6) |
| MATH7202 | Complex manifolds (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7219 | Topics in applied functional analysis (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title $\quad$ Major in Mathematics
Offered to students
admitted to Year 1 in
Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to
nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to
conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the
curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure
and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided
studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations
are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and
data science, logistics, management, research and further studies.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)
PLO 2 : apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)
PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)
Impermissible Combinations:
Major in Mathematics (Intensive)
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112
        Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        MATH1013
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2101 Linear algebra I (6)
        MATH2102 Linear algebra II (6)
        MATH2211 Multivariable calculus (6)
        MATH2241
    Introduction to mathematical analysis (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Course (6 credits)
        MATH3401
Analysis I (6)
Disciplinary Electives ( 36 credits)
```

At least 36 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at least 12 credits are selected from List A and at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List $A$, List $B$ and those courses not selected to fulfill the capstone requirements, but excluding MATH4966 Mathematics Internship.
List A

MATH3301
MATH3403
MATH3601
MATH3603
MATH3904
List B
MATH3001
MATH3002
MATH3303
MATH3304
MATH3405
MATH3408
MATH3541 MATH3600 MATH3901 MATH3905 MATH3906 MATH3911 MATH3943 MATH4302 MATH4402 MATH4404

Algebra I (6)
Functions of a complex variable (6)
Numerical analysis (6)
Probability theory (6)
Introduction to optimization (6)
Development of mathematical ideas (6)
Mathematics seminar (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Operations research I (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)

| MATH4406 | Introduction to partial differential equations (6) |
| :--- | :--- |
| MATH4501 | Geometry (6) |
| MATH4511 | Introduction to differentiable manifolds (6) |
| MATH4602 | Scientific computing (6) |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7101 | Intermediate complex analysis (6) |
| MATH7201 | Topics in geometry (6) |
| MATH7202 | Complex manifolds (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7219 | Topics in applied functional analysis (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Mathematics
Offered to students
admitted to Year 1 in
Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to
nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to
conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the
curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure
and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided
studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations
are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and
data science, logistics, management, research and further studies.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)
PLO 2 : apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)
PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

## Impermissible Combinations:

Major in Mathematics (Intensive)
Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
    SCNC1111 Scientific method and reasoning (6)
    SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        MATH1013
        MATH2012
        Fundamental concepts of mathematics (6)
    MATH2101 Linear algebra I (6)
    MATH2102 Linear algebra II (6)
    MATH2211 Multivariable calculus (6)
    MATH2241
    Introduction to mathematical analysis (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Course (6 credits)
        MATH3401
    Analysis I (6)
```

    Disciplinary Electives ( \(\mathbf{3 6}\) credits)
        At least 36 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at
        least 12 credits are selected from List \(A\) and at least 12 credits should be from MATH4XXX or MATH7XXX level, subject
        to pre-requisite requirements. The current list includes courses in List \(A\), List \(B\) and those courses not selected to fulfill
        the capstone requirements, but excluding MATH4966 Mathematics Internship.
        List A
        MATH3301
        MATH3403
        MATH3601
        MATH3603
        MATH3904
        List B
        MATH3001
        MATH3002
        MATH3303
        MATH3304
        MATH3405
        MATH3408
        MATH3541
        MATH3600
        MATH3901
        MATH3905
        MATH3906
        MATH3911
        MATH3943
        MATH4302
        Algebra I (6)
        Functions of a complex variable (6)
        Numerical analysis (6)
    Probability theory (6)
    Introduction to optimization (6)
    Development of mathematical ideas (6)
    Mathematics seminar (6)
    Matrix theory and its applications (6)
    Introduction to number theory (6)
    Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Operations research I (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
MATH4402
Analysis II (6)

| MATH4404 | Functional analysis (6) |
| :--- | :--- |
| MATH4406 | Introduction to partial differential equations (6) |
| MATH4501 | Geometry (6) |
| MATH4511 | Introduction to differentiable manifolds (6) |
| MATH4602 | Scientific computing (6) |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7101 | Intermediate complex analysis (6) |
| MATH7201 | Topics in geometry (6) |
| MATH7202 | Complex manifolds (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7219 | Topics in applied functional analysis (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Mathematics
Offered to students
admitted to Year 1 in
Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to
nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to
conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the
curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure
and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided
studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations
are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and
data science, logistics, management, research and further studies.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)
PLO 2 : apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)
PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

## Impermissible Combinations:

Major in Mathematics (Intensive)
Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
    SCNC1111 Scientific method and reasoning (6)
    SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        MATH1013
        MATH2012
        Fundamental concepts of mathematics (6)
    MATH2101 Linear algebra I (6)
    MATH2102 Linear algebra II (6)
    MATH2211 Multivariable calculus (6)
    MATH2241
    Introduction to mathematical analysis (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Course (6 credits)
        MATH3401
    Analysis I (6)
```

    Disciplinary Electives ( \(\mathbf{3 6}\) credits)
        At least 36 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at
        least 12 credits are selected from List \(A\) and at least 12 credits should be from MATH4XXX or MATH7XXX level, subject
        to pre-requisite requirements. The current list includes courses in List \(A\), List \(B\) and those courses not selected to fulfill
        the capstone requirements, but excluding MATH4966 Mathematics Internship.
        List A
        MATH3301
        MATH3403
        MATH3601
        MATH3603
        MATH3904
        List B
        MATH3001
        MATH3002
        MATH3303
        MATH3304
        MATH3405
        MATH3408
        MATH3541
        MATH3600
        MATH3901
        MATH3905
        MATH3906
        MATH3911
        MATH3943
        MATH4302
        Algebra I (6)
        Functions of a complex variable (6)
        Numerical analysis (6)
    Probability theory (6)
    Introduction to optimization (6)
    Development of mathematical ideas (6)
    Mathematics seminar (6)
    Matrix theory and its applications (6)
    Introduction to number theory (6)
    Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Operations research I (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
MATH4402
Analysis II (6)

| MATH4404 | Functional analysis (6) |
| :--- | :--- |
| MATH4406 | Introduction to partial differential equations (6) |
| MATH4501 | Geometry (6) |
| MATH4511 | Introduction to differentiable manifolds (6) |
| MATH4602 | Scientific computing (6) |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7101 | Intermediate complex analysis (6) |
| MATH7201 | Topics in geometry (6) |
| MATH7202 | Complex manifolds (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7219 | Topics in applied functional analysis (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Mathematics
Offered to students $\quad 2015$
admitted to Year 1 in
Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to
nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to
conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the
curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure
and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided
studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations
are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and
data science, logistics, management, research and further studies.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)
PLO 2 : apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)
PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

## Impermissible Combinations:

Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112
        Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        MATH1013 University mathematics II (6)
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2101 Linear algebra I (6)
        MATH2102 Linear algebra II (6)
        MATH2211 Multivariable calculus (6)
        MATH2241
    Introduction to mathematical analysis (6)
    2. Advanced level courses (42 credits)
    Disciplinary Core Course (6 credits)
        MATH3401
Analysis I (6)
Disciplinary Electives ( 36 credits)
```

At least 36 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at least 12 credits are selected from List A and at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List $A$, List $B$ and those courses not selected to fulfill the capstone requirements, but excluding MATH4966 Mathematics Internship.
List A

MATH3301
MATH3403
MATH3601
MATH3603
MATH3904
List B
MATH3001
MATH3002
MATH3303
MATH3304
MATH3405
MATH3408
MATH3541 MATH3600 MATH3901 MATH3905 MATH3906 MATH3911 MATH3943 MATH4302 MATH4402 MATH4404

Algebra I (6)
Functions of a complex variable (6)
Numerical analysis (6)
Probability theory (6)
Introduction to optimization (6)
Development of mathematical ideas (6)
Mathematics seminar (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Operations research I (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)

| MATH4406 | Introduction to partial differential equations (6) |
| :--- | :--- |
| MATH4501 | Geometry (6) |
| MATH4511 | Introduction to differentiable manifolds (6) |
| MATH4602 | Scientific computing (6) |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7101 | Intermediate complex analysis (6) |
| MATH7201 | Topics in geometry (6) |
| MATH7202 | Complex manifolds (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7219 | Topics in applied functional analysis (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Mathematics
Offered to students
admitted to Year 1 in
Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to
nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to
conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the
curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure
and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided
studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations
are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and
data science, logistics, management, research and further studies.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)
PLO 2 : apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)
PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

## Impermissible Combinations:

Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        MATH1013 University mathematics II (6)
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2101 Linear algebra I (6)
        MATH2102 Linear algebra II (6)
        MATH2211 Multivariable calculus (6)
        MATH2241
    Disciplinary Core Courses (18 credits)
        MATH3301
        Algebra I (6)
        MATH3401 Analysis I (6)
        MATH3403 Functions of a complex variable (6)
    Disciplinary Electives (24 credits)
```

        At least 24 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at
        least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list
        includes courses in List A and those courses not selected to fulfill the capstone requirements, but excluding MATH4966
        Mathematics Internship.
        List A
    MATH3001
MATH3002
MATH3303
MATH3304
MATH3405
MATH3408
MATH3541
MATH3600
MATH3601
MATH3603
MATH3901
MATH3904
MATH3905
MATH3906
MATH3911
MATH3943
MATH4302
MATH4402
MATH4404
MATH4406

Development of mathematical ideas (6)
Mathematics seminar (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)

| MATH4501 | Geometry (6) |
| :--- | :--- |
| MATH4511 | Introduction to differentiable manifolds (6) |
| MATH4602 | Scientific computing (6) |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7101 | Intermediate complex analysis (6) |
| MATH7201 | Topics in geometry (6) |
| MATH7202 | Complex manifolds (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7219 | Topics in applied functional analysis (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Mathematics
Offered to students
admitted to Year 1 in
Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to
nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to
conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the
curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure
and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided
studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations
are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and
data science, logistics, management, research and further studies.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)
PLO 2 : apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)
PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

## Impermissible Combinations:

Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        MATH1013 University mathematics II (6)
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2101 Linear algebra I (6)
        MATH2102 Linear algebra II (6)
        MATH2211 Multivariable calculus (6)
        MATH2241
    Disciplinary Core Courses (18 credits)
        MATH3301
        Algebra I (6)
        MATH3401 Analysis I (6)
        MATH3403 Functions of a complex variable (6)
    Disciplinary Electives (24 credits)
```

        At least 24 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at
        least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list
        includes courses in List A and those courses not selected to fulfill the capstone requirements, but excluding MATH4966
        Mathematics Internship.
        List A
    MATH3001
MATH3002
MATH3303
MATH3304
MATH3405
MATH3408
MATH3541
MATH3600
MATH3601
MATH3603
MATH3901
MATH3904
MATH3905
MATH3906
MATH3911
MATH3943
MATH4302
MATH4402
MATH4404
MATH4406

Development of mathematical ideas (6)
Mathematics seminar (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)

| MATH4501 | Geometry (6) |
| :--- | :--- |
| MATH4511 | Introduction to differentiable manifolds (6) |
| MATH4602 | Scientific computing (6) |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7101 | Intermediate complex analysis (6) |
| MATH7201 | Topics in geometry (6) |
| MATH7202 | Complex manifolds (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7219 | Topics in applied functional analysis (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Mathematics
Offered to students
admitted to Year 1 in
Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to
nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to
conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the
curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure
and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided
studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations
are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and
data science, logistics, management, research and further studies.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)
PLO 2 : apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)
PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

## Impermissible Combinations:

Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Mathematics

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses ( 12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
MATH1013 University mathematics II (6)
MATH2012 Fundamental concepts of mathematics (6)
MATH2101 Linear algebral (6)
MATH2102 Linear algebra II (6)
MATH2211 Multivariable calculus (6)
MATH2241 Introduction to mathematical analysis (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 18 credits)
MATH3301
Algebra I (6)
MATH3401
Analysis I (6)
MATH3403
Functions of a complex variable (6)
Disciplinary Electives ( $\mathbf{2 4}$ credits)
At least 24 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone requirements, but exc/uding MATH4966 Mathematics Internship.
List A
MATH3001
Development of mathematical ideas (6)
MATH3002
MATH3303
MATH3304
MATH3405
MATH3408
MATH3541
MATH3600
MATH3601
MATH3603
MATH3901
MATH3904
MATH3905
MATH3906
MATH3911
MATH3943
Mathematics seminar (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
MATH4402
MATH4404
Functional analysis (6)
Introduction to partial differential equations (6)
MATH4406
Geometry (6)

| MATH4511 | Introduction to differentiable manifolds (6) |
| :--- | :--- |
| MATH4602 | Scientific computing (6) |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7101 | Intermediate complex analysis (6) |
| MATH7201 | Topics in geometry (6) |
| MATH7202 | Complex manifolds (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7219 | Topics in applied functional analysis (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Mathematics (Intensive) |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 1}$ |
| admitted to Year 1 in |  |

## Objectives:

The Intensive Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize a firm foundation in Mathematics. The strong emphasis on experiential learning in guided studies, projects, seminars or summer internships provides more opportunities for students to carry out research based studies and to develop their expertise. Graduates are expected to have strong academic ability to pursue graduate studies or professional careers that require in-depth mathematical training.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present a variety of concepts and theories in mathematics (by means of coursework and learning activities in the curriculum)
PLO 2 : apply mathematical theory and techniques to handle research-style questions, scrutinize problems, and appraise the related ethical issues (by means of coursework and learning activities in the curriculum)
PLO 3: communicate in mathematical language, and present mathematical ideas and scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

## Impermissible Combinations:

Major in Mathematics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

Required courses ( 144 credits)
1. Introductory level courses ( $\mathbf{4 8}$ credits)
isciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (36 credits)
MATH1013 University mathematics II (6) (Note 1)
MATH2012 Fundamental concepts of mathematics (6) (Note 1)
Linear algebra 1 (6)
$\begin{array}{lll}\text { MATH2102 } & \text { Linear algebra II (6) } & \text { (Note 1) } \\ \text { MATH2211 } & \text { Multivariable calculus (6) } & \text { (Note 1) }\end{array}$
MATH2241 Introduction to mathematical analysis (6) (Note 1)
2. Advanced level courses (84 credits)
Disciplinary Core Course (60 credits)
MATH3002 Mathematics seminar (6)
MATH3301 Algebra I (6)
MATH3403 Functions of a complex variable (6)
MATH3405 Differential equations (6)
MATH3603 Probability theory (6)
MATH3904 Introduction to optimization (6)
MATH4404 Functional analysis (6)
MATH4406 Introduction to partial differential equations (6)
Select Stream (A) or Stream (B):
(A) Pure Mathematics (at least 24 credits with 12 credits from MATH7XXX level, subject to pre-requisite requirement)
MATH3541 Introduction to topology (6)
- Algebra II (6)
MATH4402 Analysis II (6)
MATH4511 Introduction to differentiable manifolds (6)
MATH7101 Intermediate complex analysis (6)
MATH7201 Topics in geometry (6)
MATH7202 Complex manifolds (6)
Topics in algebra (6)
(B) Applied Mathematics (at least 24 credits with 12 credits from MATH4XXX or MATH7XXX level, subject to pre-
requisite requirement)

| MATH4602 | Scientific computing (6) |
| :--- | :--- |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |

## 3. Capstone requirement ( 12 credits)

At least 12 credits selected from the following courses:
MATH3999 $\quad$ Directed studies in mathematics (6)
MATH4910 Senior mathematics seminar (6)
MATH4911 Mathematics capstone project (6)
MATH4966 Mathematics internship (6)
MATH4999 Mathematics project (12)

## Notes:

1. These are core courses in the regular Mathematics Major ( 96 credits) curriculum.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

5. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Mathematics (Intensive) |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 0}$ |

admitted to Year 1 in

## Objectives:

The Intensive Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize a firm foundation in Mathematics. The strong emphasis on experiential learning in guided studies, projects, seminars or summer internships provides more opportunities for students to carry out research based studies and to develop their expertise. Graduates are expected to have strong academic ability to pursue graduate studies or professional careers that require in-depth mathematical training.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present a variety of concepts and theories in mathematics (by means of coursework and learning activities in the curriculum)
PLO 2 : apply mathematical theory and techniques to handle research-style questions, scrutinize problems, and appraise the related ethical issues (by means of coursework and learning activities in the curriculum)
PLO 3: communicate in mathematical language, and present mathematical ideas and scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

## Impermissible Combinations:

Major in Mathematics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

Required courses ( 144 credits)
1. Introductory level courses ( $\mathbf{4 8}$ credits)
isciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (36 credits)
MATH1013 University mathematics II (6) (Note 1)
MATH2012 Fundamental concepts of mathematics (6) (Note 1)

$\begin{array}{lll}\text { MATH2102 } & \text { Linear algebra II (6) } & \text { (Note 1) } \\ \text { MATH2211 } & \text { Multivariable calculus (6) } & \text { (Note 1) }\end{array}$
MATH2241 Introduction to mathematical analysis (6) (Note 1)
2. Advanced level courses (84 credits)
Disciplinary Core Course (60 credits)
MATH3002 Mathematics seminar (6)
MATH3301 Algebral (6)
MATH3403 Functions of a complex variable (6)
MATH3405 Differential equations (6)
MATH3603 Probability theory (6)
MATH3904 Introduction to optimization (6)
MATH4404 Functional analysis (6)
MATH4406 Introduction to partial differential equations (6)
Select Stream (A) or Stream (B):
(A) Pure Mathematics (at least 24 credits with 12 credits from MATH7XXX level, subject to pre-requisite requirement)
MATH3541 Introduction to topology (6)
Algebra II (6)
MATH4402 Analysis II (6)
MATH4511 Introduction to differentiable manifolds (6)
MATH7101 Intermediate complex analysis (6)
MATH7201 Topics in geometry (6)
MATH7202 Complex manifolds (6)
MATH7501 Topics in algebra (6)
(B) Applied Mathematics (at least 24 credits with 12 credits from MATH4XXX or MATH7XXX level, subject to pre-
requisite requirement)

| MATH4602 | Scientific computing (6) |
| :--- | :--- |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| 3. Capstone requirement (12 credits) |  |
| At least 12 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. These are core courses in the regular Mathematics Major ( 96 credits) curriculum.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Mathematics (Intensive) |
| :--- | :--- |
| Offered to students | 2019 |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Intensive Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize a firm foundation in Mathematics. The strong emphasis on experiential learning in guided studies, projects, seminars or summer internships provides more opportunities for students to carry out research based studies and to develop their expertise. Graduates are expected to have strong academic ability to pursue graduate studies or professional careers that require in-depth mathematical training.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present a variety of concepts and theories in mathematics (by means of coursework and learning activities in the curriculum)
PLO 2 : apply mathematical theory and techniques to handle research-style questions, scrutinize problems, and appraise the related ethical issues (by means of coursework and learning activities in the curriculum)
PLO 3: communicate in mathematical language, and present mathematical ideas and scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

## Impermissible Combinations:

Major in Mathematics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

Required courses ( 144 credits)
1. Introductory level courses ( $\mathbf{4 8}$ credits)
isciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1112 Fundamentals of modern science (6) (Note 1)
isciplinary Core Courses (36 credits)
MATH1013 University mathematics II (6)
MATH2012 Fundamental concepts of mathematics (6) (Note 1)
,
MATH2211 Multivariable calculus (6) (Note 1)
MATH2241 Introduction to mathematical analysis (6) (Note 1)
2. Advanced level courses ( 84 credits)
sciplinary Core Course (60 credits)
Algebra (6)
MATH3403 Functions of a complex variable (6)
MATH3405 Differential equations (6)
MATH3603
MATH3904 Introduction to optimization (6)
MATH4404 Functional analysis (6)
MATH4406 Introduction to partial differential equations (6)
Select Stream (A) or Stream (B):
(A) Pure Mathematics (at least 24 credits with 12 credits from MATH7XXX level, subject to pre-requisite requirement)
MATH3541 Introduction to topology (6)
—
Analysis II (6)
MATH4511 Introduction to differentiable manifolds (6)
MATH7101 Intermediate complex analysis (6)
MATH7201 Topics in geometry (6)
MATH7202 Complex manifolds (6)
Topics in algebra (6)
(B) Applied Mathematics (at least 24 credits with 12 credits from MATH4XXX or MATH7XXX level, subject to pre-
requisite requirement)

| MATH4602 | Scientific computing (6) |
| :--- | :--- |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| 3. Capstone requirement (12 credits) |  |
| At least 12 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. These are core courses in the regular Mathematics Major ( 96 credits) curriculum.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Mathematics (Intensive) |
| :--- | :--- |
| Offered to students | 2018 |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Intensive Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize a firm foundation in Mathematics. The strong emphasis on experiential learning in guided studies, projects, seminars or summer internships provides more opportunities for students to carry out research based studies and to develop their expertise. Graduates are expected to have strong academic ability to pursue graduate studies or professional careers that require in-depth mathematical training.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present a variety of concepts and theories in mathematics (by means of coursework and learning activities in the curriculum)
PLO 2 : apply mathematical theory and techniques to handle research-style questions, scrutinize problems, and appraise the related ethical issues (by means of coursework and learning activities in the curriculum)
PLO 3: communicate in mathematical language, and present mathematical ideas and scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

## Impermissible Combinations:

Major in Mathematics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

Required courses ( 144 credits)
1. Introductory level courses ( 48 credits)
isciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1112 Fundamentals of modern science (6) [ Note 1)
isciplinary Core Courses (36 credits)
MATH1013 University mathematics II (6)
MATH2012 Fundamental concepts of mathematics (6) (Note 1)
-
MATH2211 Multivariable calculus (6) (Note 1)
MATH2241 Introduction to mathematical analysis (6) (Note 1)
2. Advanced level courses ( 84 credits)
sciplinary Core Course (60 credits)
MATH3301 Algebral (6)
MATH3403 Functions of a complex variable (6)
MATH3405 Differential equations (6)
MATH3603
MATH3904 Introduction to optimization (6)
MATH4404 Functional analysis (6)
MATH4406 Introduction to partial differential equations (6)
Select Stream (A) or Stream (B):
(A) Pure Mathematics (at least 24 credits with 12 credits from MATH7XXX level, subject to pre-requisite requirement)
MATH3541 Introduction to topology (6)
A
MATH4511 Introduction to differentiable manifolds (6)
MATH7101 Intermediate complex analysis (6)
MATH7201 Topics in geometry (6)
MATH7202 Complex manifolds (6)
Topics in algebra (6)
(B) Applied Mathematics (at least 24 credits with 12 credits from MATH4XXX or MATH7XXX level, subject to pre-
requisite requirement)

| MATH4602 | Scientific computing (6) |
| :--- | :--- |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| 3. Capstone requirement (12 credits) |  |
| At least 12 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. These are core courses in the regular Mathematics Major ( 96 credits) curriculum.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Mathematics (Intensive) |
| :--- | :--- |
| Offered to students | 2017 |
| admitted to Year 1 in |  |

## Objectives:

The Intensive Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize a firm foundation in Mathematics. The strong emphasis on experiential learning in guided studies, projects, seminars or summer internships provides more opportunities for students to carry out research based studies and to develop their expertise. Graduates are expected to have strong academic ability to pursue graduate studies or professional careers that require in-depth mathematical training.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present a variety of concepts and theories in mathematics (by means of coursework and learning activities in the curriculum)
PLO 2 : apply mathematical theory and techniques to handle research-style questions, scrutinize problems, and appraise the related ethical issues (by means of coursework and learning activities in the curriculum)
PLO 3 : communicate in mathematical language, and present mathematical ideas and scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4: collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (144 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6) (Note 1)
        SCNC1112 Fundamentals of modern science (6) (Note 1)
    Disciplinary Core Courses (36 credits)
        MATH1013 University mathematics II (6)}\mathrm{ (Note 1)
        MATH2012 Fundamental concepts of mathematics (6) (Note 1)
        MATH2101 Linear algebra I (6) (Note 1)
        MATH2102 Linear algebra II (6)
        MATH2211 Multivariable calculus (6)
        MATH2241 Introduction to mathematical analysis (6) (Note 1)
    2. Advanced level courses (84 credits)
    Disciplinary Core Course (60 credits)
        MATH3002 Mathematics seminar (6)
        MATH3301 Algebra I (6)
        MATH3401 Analysis I (6) (Note 1)
        MATH3403 Functions of a complex variable (6)
        MATH3405 Differential equations (6)
        MATH3600 Discrete mathematics (6)
        MATH3603 Probability theory (6)
        MATH3904 Introduction to optimization (6)
        MATH4404 Functional analysis (6)
        MATH4406 Introduction to partial differential equations (6)
    Disciplinary Electives (24 credits)
        Select Stream (A) or Stream (B):
        (A) Pure Mathematics (at least 24 credits with 12 credits from MATH7XXX level, subject to pre-requisite requirement)
        MATH3541 Introduction to topology (6)
        MATH4302 Algebra II (6)
        MATH4402 Analysis II (6)
        MATH4501 Geometry (6)
        MATH4511 Introduction to differentiable manifolds (6)
        MATH7101 Intermediate complex analysis (6)
        MATH7201 Topics in geometry (6)
        MATH7202 Complex manifolds (6)
        MATH7501 Topics in algebra (6)
        MATH7505 Real analysis (6)
        (B) Applied Mathematics (at least 24 credits with 12 credits from MATH4XXX or MATH7XXX level, subject to pre-
        requisite requirement)
        MATH3601 Numerical analysis (6)
        MATH3901 Operations research I (6)
        MATH3906 Financial calculus (6)
        MATH3911 Game theory and strategy (6)
```

| MATH3943 | Network models in operations research (6) |
| :--- | :--- |
| MATH4602 | Scientific computing (6) |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| 3. Capstone requirement (12 credits) |  |
| At least 12 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |

## Notes:

1. These are core courses in the regular Mathematics Major (96 credits) curriculum.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Mathematics (Intensive) |
| :--- | :--- |
| Offered to students | 2016 |

admitted to Year 1 in

## Objectives:

The Intensive Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize a firm foundation in Mathematics. The strong emphasis on experiential learning in guided studies, projects, seminars or summer internships provides more opportunities for students to carry out research based studies and to develop their expertise. Graduates are expected to have strong academic ability to pursue graduate studies or professional careers that require in-depth mathematical training.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and present a variety of concepts and theories in mathematics (by means of coursework and learning activities in the curriculum)
PLO 2 : apply mathematical theory and techniques to handle research-style questions, scrutinize problems, and appraise the related ethical issues (by means of coursework and learning activities in the curriculum)
PLO 3: communicate in mathematical language, and present mathematical ideas and scientific arguments (by means of coursework, seminars, guided studies and projects)
PLO 4 : collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
PLO 5 : appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (144 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6) (Note 1)
        SCNC1112 Fundamentals of modern science (6) (Note 1)
    Disciplinary Core Courses (36 credits)
        MATH1013 University mathematics II (6) (Note 1)
        MATH2012 Fundamental concepts of mathematics (6) (Note 1)
        MATH2101 Linear algebra I (6) (Note 1)
        MATH2102 Linear algebra II (6)
        MATH2211 Multivariable calculus (6)
        MATH2241 Introduction to mathematical analysis (6) (Note 1)
    2. Advanced level courses (84 credits)
    Disciplinary Core Course (60 credits)
        MATH3002 Mathematics seminar (6)
        MATH3301 Algebra I (6)
        MATH3401 Analysis I (6) (Note 1)
        MATH3403 Functions of a complex variable (6)
        MATH3405 Differential equations (6)
        MATH3600 Discrete mathematics (6)
        MATH3603 Probability theory (6)
        MATH3904 Introduction to optimization (6)
        MATH4404 Functional analysis (6)
        MATH4406 Introduction to partial differential equations (6)
    Disciplinary Electives (24 credits)
        Select Stream (A) or Stream (B):
        (A) Pure Mathematics (at least }24\mathrm{ credits with 12 credits from MATH7XXX level, subject to pre-requisite requirement)
        MATH3541 Introduction to topology (6)
        MATH4302 Algebra II (6)
        MATH4402 Analysis II (6)
        MATH4501 Geometry (6)
        MATH4511 Introduction to differentiable manifolds (6)
        MATH7101 Intermediate complex analysis (6)
        MATH7201 Topics in geometry (6)
        MATH7202 Complex manifolds (6)
        MATH7501 Topics in algebra (6)
        MATH7505 Real analysis (6)
        (B) Applied Mathematics (at least 24 credits with 12 credits from MATH4XXX or MATH7XXX level, subject to pre-
        requisite requirement)
        MATH3601 Numerical analysis (6)
        MATH3901 Operations research I (6)
        MATH3906 Financial calculus (6)
        MATH3911 Game theory and strategy (6)
```

| MATH3943 | Network models in operations research (6) |
| :--- | :--- |
| MATH4602 | Scientific computing (6) |
| MATH4902 | Operations research II (6) |
| MATH4907 | Numerical methods for financial calculus (6) |
| MATH7217 | Topics in financial mathematics (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| 3. Capstone requirement (12 credits) |  |
| At least 12 credits selected from the following courses: |  |
| MATH3999 | Directed studies in mathematics (6) |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4999 | Mathematics project (12) |
| MATH4966 | Mathematics internship (6) |

## Notes:

1. These are core courses in the regular Mathematics Major ( 96 credits) curriculum.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Mathematics/Physics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | 2017 |

## Objectives:

The Major in Mathematics/Physics aims to provide students with a solid foundation in both physics and mathematics. This major is catered especially for students interested in the more theoretical aspects of physics. It covers a wide range of core areas in both disciplines which form the blocks of fundamental knowledge for further specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics, electrodynamics, linear algebra, mathematical analysis, abstract algebra, complex variables, differential equations, modern differential geometry, etc. A large selection of elective courses is provided for students to pursue a broad spectrum of professional knowledge in mathematical and theoretical physics. Analytical thinking, quantitative reasoning and innovative ideas are fostered through the effective design of courses and research projects. The curriculum emphasizes experiential learning through internships, field studies and research projects supervised by experts. With the comprehensive training received, graduates are expected to be well-prepared for further studies and to pursue careers in many fields of science and engineering.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with a rigorous representation using their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle physical problems with intellectual rigor theoretically (by means of coursework, tutorial classes and assessments in the curriculum)
PLO 3 : apply mathematical theory and techniques to analyze physical problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Mathematics
Major in Physics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming
Minor in Physics

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
MATH1013 University mathematics II (6)
MATH2101 Linear algebral (6)
MATH2211 Multivariable calculus (6)
PHYS1250 Fundamental physics (6)
PHYS2265 Introductory quantum physics (6)
Disciplinary Electives ( 6 credits)
At least 6 credits selected from the following courses:
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2160 Introductory computational physics (6)
PHYS2250 Introductory mechanics (6)
PHYS2255 Introductory electricity and magnetism (6)
PHYS2260 Heat and waves (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
MATH3301 Algebral (6)
MATH3401 Analysis I (6)
MATH4501 Geometry (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS4351 Advanced quantum mechanics (6)
Disciplinary Electives ( 6 credits)
At least 6 credits of advanced level Mathematics or Physics courses (MATH3XXX or MATH4XXX or MATH7XXX or PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list of courses include courses in List A and those courses not selected to fulfill the capstone requirement, but excluding MATH4966 Mathematics Internship.
List A

MATH3001
MATH3002
MATH3303
MATH3304
MATH3403
MATH3405
MATH3408
MATH3541
MATH3600
MATH3601
MATH3603
MATH3901
MATH3904
MATH3905
MATH3906
MATH3911
MATH3943
MATH4302
MATH4402
MATH4404
MATH4406
MATH4511
MATH4602
MATH4902
MATH4907
MATH7101
MATH7201
MATH7202
MATH7217
MATH7219
MATH7224
MATH7501
MATH7502
MATH7503
MATH7504
MATH7505
PHYS3150
PHYS3151
PHYS3450
PHYS3550
PHYS3551
PHYS3650
PHYS3651
PHYS3652
PHYS3653
PHYS3660
PHYS3750
PHYS3751
PHYS3760
PHYS3850
PHYS3851
PHYS4150
PHYS4151
PHYS4350
PHYS4450
PHYS4550
PHYS4551
PHYS4650
PHYS4651
PHYS4652
PHYS4653
PHYS4654
PHYS4655
PHYS4656
PHYS4750
PHYS4850
PHYS7350
PHYS7351
PHYS7450
PHYS7550
PHYS7551
PHYS7650
PHYS7750

Development of mathematical ideas (6)
Mathematics seminar (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)
Topics in applied functional analysis (6)
Topics in advanced probability theory (6)
Topics in algebra (6)
Topics in applied discrete mathematics (6)
Topics in mathematical programming and optimization (6)
Geometric topology (6)
Real analysis (6)
Theoretical physics (6)
Machine learning in physics (6)
Electromagnetism (6)
Statistical mechanics \& thermodynamics (6)
Introductory solid state physics (6)
Observational astronomy (6)
The physical universe (6)
Principles of astronomy (6)
Astrophysics (6)
Astronomy laboratory (6)
Laser and spectroscopy (6)
Physics of nanomaterials (6)
Physics laboratory (6)
Physical Optics (6)
[previous title: Waves and optics
(6) ]
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| MATH3999 | Directed studies in mathematics (6) |
| :--- | :--- |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |
| PHYS3999 | Directed studies in physics (6) |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. (a) Students must have level 3 or above in HKDSE Physics or HKDSE Combined Science with Physics component or equivalent to take this major. Students who do not fufill this requirement are advised to take PHYS1240 Physics by inquiry; and
(b) Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fufill this requirement are advised to take MATH1011 University mathematics I.
7. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Mathematics/Physics <br> Offered to students 2016 <br> admitted to Year 1 in

## Objectives:

The Major in Mathematics/Physics aims to provide students with a solid foundation in both physics and mathematics. This major is catered especially for students interested in the more theoretical aspects of physics. It covers a wide range of core areas in both disciplines which form the blocks of fundamental knowledge for further specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics, electrodynamics, linear algebra, mathematical analysis, abstract algebra, complex variables, differential equations, modern differential geometry, etc. A large selection of elective courses is provided for students to pursue a broad spectrum of professional knowledge in mathematical and theoretical physics. Analytical thinking, quantitative reasoning and innovative ideas are fostered through the effective design of courses and research projects. The curriculum emphasizes experiential learning through internships, field studies and research projects supervised by experts. With the comprehensive training received, graduates are expected to be well-prepared for further studies and to pursue careers in many fields of science and engineering.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with a rigorous representation using their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle physical problems with intellectual rigor theoretically (by means of coursework, tutorial classes and assessments in the curriculum)
PLO 3: apply mathematical theory and techniques to analyze physical problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Mathematics
Major in Physics
Minor in Computational \& Financial Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming
Minor in Physics

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
MATH1013 University mathematics II (6)
MATH2101 Linear algebra $I$ (6)
MATH2211 Multivariable calculus (6)
PHYS1250 Fundamental physics (6)
PHYS2265 Introductory quantum physics (6)
Disciplinary Electives ( 6 credits)
At least 6 credits selected from the following courses:
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2250 Introductory mechanics (6)
PHYS2255 Introductory electricity and magnetism (6)
PHYS2260 Heat and waves (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses ( 36 credits)
MATH3301 Algebral (6)
MATH3401 Analysis I (6)
MATH4501 Geometry (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS4351 Advanced quantum mechanics (6)
Disciplinary Electives ( 6 credits)
At least 6 credits of advanced level Mathematics or Physics courses (MATH3XXX or MATH4XXX or MATH7XXX or PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list of courses include courses in List A and those courses not selected to fulfill the capstone requirement, but excluding MATH4966 Mathematics Internship.
List A
MATH3001 Development of mathematical ideas (6)

MATH3002
MATH3303
MATH3304
MATH3403
MATH3405
MATH3408
MATH3541
MATH3600
MATH3601
MATH3603
MATH3901
MATH3904
MATH3905
MATH3906
MATH3911
MATH3943
MATH4302
MATH4402
MATH4404
MATH4406
MATH4511
MATH4602
MATH4902
MATH4907
MATH7101
MATH7201
MATH7202
MATH7217
MATH7219
MATH7224 MATH7501 MATH7502 MATH7503 MATH7504 MATH7505 PHYS3150 PHYS3151 PHYS3450 PHYS3550 PHYS3551 PHYS3650 PHYS3651 PHYS3652 PHYS3653 PHYS3660 PHYS3750 PHYS3751 PHYS3760 PHYS3850

PHYS3851 PHYS4150 PHYS4151 PHYS4350 PHYS4450 PHYS4550 PHYS4551 PHYS4650 PHYS4651 PHYS4652 PHYS4653 PHYS4654 PHYS4655 PHYS4656 PHYS4750 PHYS4850 PHYS7350 PHYS7351 PHYS7450 PHYS7550 PHYS7551 PHYS7650

Mathematics seminar (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)
Topics in applied functional analysis (6)
Topics in advanced probability theory (6)
Topics in algebra (6)
Topics in applied discrete mathematics (6)
Topics in mathematical programming and optimization (6)
Geometric topology (6)
Real analysis (6)
Theoretical physics (6)
Machine learning in physics (6)
Electromagnetism (6)
Statistical mechanics \& thermodynamics (6)
Introductory solid state physics (6)
Observational astronomy (6)
The physical universe (6)
Principles of astronomy (6)
Astrophysics (6)
Astronomy laboratory (6)
Laser and spectroscopy (6)
Physics of nanomaterials (6)
Physics laboratory (6)
Physical Optics (6)
Atomic and nuclear physics (6)
Computational physics (6)
Data analysis and modeling in physics (6)
Advanced classical mechanics (6)
Advanced electromagnetism (6)
Advanced statistical mechanics (6)
Solid state physics (6)
Stellar physics (6)
Selected topics in astrophysics (6)
Planetary science (6)
Cosmology (6)
General relativity (6)
Interstellar medium (6)
Advanced astrophysics (6)
Experimental physics (6)
Particle physics (6)
Graduate classical mechanics (6)
Graduate quantum mechanics (6)
Graduate electromagnetism (6)
Graduate statistical mechanics (6)
Graduate solid state physics (6)
Stellar atmospheres (6)
Nanophysics (6)
[previous title: Waves and optics (6)]

## 3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| MATH3999 | Directed studies in mathematics (6) |
| :--- | :--- |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |
| PHYS3999 | Directed studies in physics (6) |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. (a) Students must have level 3 or above in HKDSE Physics or HKDSE Combined Science with Physics component or equivalent to take this major. Students who do not fufill this requirement are advised to take PHYS1240 Physics by inquiry; and
(b) Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fufill this requirement are advised to take MATH1011 University mathematics I.
7. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Mathematics/Physics
Offered to students $\quad 2015$
admitted to Year 1 in
Objectives:
The Major in Mathematics/Physics aims to provide students with a solid foundation in both physics and mathematics. This major
is catered especially for students interested in the more theoretical aspects of physics. It covers a wide range of core areas in
both disciplines which form the blocks of fundamental knowledge for further specializations, e.g. quantum mechanics, statistical
mechanics, classical mechanics, electrodynamics, linear algebra, mathematical analysis, abstract algebra, complex variables,
differential equations, modern differential geometry, etc. A large selection of elective courses is provided for students to pursue
a broad spectrum of professional knowledge in mathematical and theoretical physics. Analytical thinking, quantitative reasoning
and innovative ideas are fostered through the effective design of courses and research projects. The curriculum emphasizes
experiential learning through internships, field studies and research projects supervised by experts. With the comprehensive
training received, graduates are expected to be well-prepared for further studies and to pursue careers in many fields of science
and engineering.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with a rigorous representation using their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle physical problems with intellectual rigor theoretically (by means of coursework, tutorial classes and assessments in the curriculum)
PLO 3 : apply mathematical theory and techniques to analyze physical problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Mathematics
Major in Physics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming
Minor in Physics

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
MATH1013 University mathematics II (6)
MATH2101 Linear algebra I (6)
MATH2211 Multivariable calculus (6)
PHYS1250 Fundamental physics (6)
PHYS2265 Introductory quantum physics (6)
Disciplinary Electives ( 6 credits)
At least 6 credits selected from the following courses:
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2250 Introductory mechanics (6) PHYS2255 Introductory electricity and magnetism (6) PHYS2260 Heat and waves (6)
2. Advanced level courses (42 credits)

Disciplinary Core Courses (36 credits)
MATH3301 Algebra I (6)

MATH3401 Analysis I (6)
MATH4501 Geometry (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS4351 Advanced quantum mechanics (6)
Disciplinary Electives ( 6 credits)
At least 6 credits of advanced level Mathematics or Physics courses (MATH3XXX or MATH4XXX or MATH7XXX or PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list of courses include courses in List A and those courses not selected to fulfill the capstone requirement, but excluding MATH4966 Mathematics Internship.
List A

| MATH3001 | Development of mathematical ideas (6) |
| :--- | :--- |
| MATH3002 | Mathematics seminar (6) |

MATH3303
MATH3304
MATH3403
MATH3405
MATH3408
MATH3541
MATH3600
MATH3601
MATH3603
MATH3901
MATH3904
MATH3905
MATH3906
MATH3911
MATH3943
MATH4302
MATH4402
MATH4404
MATH4406
MATH4511
MATH4602
MATH4902
MATH4907
MATH7101
MATH7201
MATH7202
MATH7217
MATH7219
MATH7224
MATH7501
MATH7502
MATH7503
MATH7504
MATH7505
PHYS3150
PHYS3151
PHYS3450
PHYS3550
PHYS3551
PHYS3650
PHYS3651
PHYS3652
PHYS3653
PHYS3660
PHYS3750
PHYS3751
PHYS3760
PHYS3850
PHYS3851
PHYS4150
PHYS4151
PHYS4350
PHYS4450
PHYS4550
PHYS4551
PHYS4650
PHYS4651
PHYS4652
PHYS4653
PHYS4654
PHYS4655
PHYS4656
PHYS4750
PHYS4850
PHYS7350
PHYS7351
PHYS7450
PHYS7550
PHYS7551
PHYS7650
PHYS7750

Matrix theory and its applications (6)
Introduction to number theory (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)
Topics in applied functional analysis (6)
Topics in advanced probability theory (6)
Topics in algebra (6)
Topics in applied discrete mathematics (6)
Topics in mathematical programming and optimization (6)
Geometric topology (6)
Real analysis (6)
Theoretical physics (6)
Machine learning in physics (6)
Electromagnetism (6)
Statistical mechanics \& thermodynamics (6)
Introductory solid state physics (6)
Observational astronomy (6)
The physical universe (6)
Principles of astronomy (6)
Astrophysics (6)
Astronomy laboratory (6)
Laser and spectroscopy (6)
Physics of nanomaterials (6)
Physics laboratory (6)
Physical Optics (6)
[previous title: Waves and optics (6) ]
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
MATH3999 Directed studies in mathematics (6)

| MATH4910 | Senior mathematics seminar (6) |
| :--- | :--- |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |
| PHYS3999 | Directed studies in physics (6) |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. (a) Students must have level 3 or above in HKDSE Physics or HKDSE Combined Science with Physics component or equivalent to take this major. Students who do not fufill this requirement are advised to take PHYS1240 Physics by inquiry; and
(b) Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fufill this requirement are advised to take MATH1011 University mathematics I.
7. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Mathematics/Physics
Offered to students $\quad 2014$
admitted to Year 1 in
Objectives:
The Major in Mathematics/Physics aims to provide students with a solid foundation in both physics and mathematics. This major
is catered especially for students interested in the more theoretical aspects of physics. It covers a wide range of core areas in
both disciplines which form the blocks of fundamental knowledge for further specializations, e.g. quantum mechanics, statistical
mechanics, classical mechanics, electrodynamics, linear algebra, mathematical analysis, abstract algebra, complex variables,
differential equations, modern differential geometry, etc. A large selection of elective courses is provided for students to pursue
a broad spectrum of professional knowledge in mathematical and theoretical physics. Analytical thinking, quantitative reasoning
and innovative ideas are fostered through the effective design of courses and research projects. The curriculum emphasizes
experiential learning through internships, field studies and research projects supervised by experts. With the comprehensive
training received, graduates are expected to be well-prepared for further studies and to pursue careers in many fields of science
and engineering.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with a rigorous representation using their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle physical problems with intellectual rigor theoretically (by means of coursework, tutorial classes and assessments in the curriculum)
PLO 3 : apply mathematical theory and techniques to analyze physical problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Mathematics
Major in Physics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming
Minor in Physics

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
MATH1013 University mathematics II (6)
MATH2101 Linear algebra I (6)
MATH2211 Multivariable calculus (6)
PHYS1250 Fundamental physics (6)
PHYS2250 Introductory mechanics (6)
PHYS2265 Introductory quantum physics (6)
2. Advanced level courses (42 credits)

Disciplinary Core Courses (36 credits)
MATH3301 Algebra I (6)
MATH3401 Analysis I (6)
MATH4501 Geometry (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS4351 Advanced quantum mechanics (6)
Disciplinary Electives (6 credits)
At least 6 credits of advanced level Mathematics or Physics courses (MATH3XXX or MATH4XXX or MATH7XXX or PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list of courses include courses in List A and those courses not selected to fulfill the capstone requirement, but excluding MATH4966 Mathematics Internship.
List A
MATH3001
Development of mathematical ideas (6)
MATH3002 Mathematics seminar (6)
MATH3303 Matrix theory and its applications (6)
MATH3304 Introduction to number theory (6)
MATH3403 Functions of a complex variable (6)
MATH3405 Differential equations (6)
MATH3408 Computational methods and differential equations with
applications (6)
MATH3541 Introduction to topology (6)
MATH3600 Discrete mathematics (6)
MATH3601 Numerical analysis (6)

MATH3603
MATH3901
MATH3904
MATH3905
MATH3906
MATH3911
MATH3943
MATH4302
MATH4402
MATH4404
MATH4406
MATH4511
MATH4602
MATH4902
MATH4907
MATH7101
MATH7201
MATH7202
MATH7217
MATH7219
MATH7224
MATH7501
MATH7502
MATH7503
MATH7504
MATH7505
PHYS3150
PHYS3450
PHYS3550
PHYS3551
PHYS3650
PHYS3651
PHYS3652
PHYS3750
PHYS3751
PHYS3850
PHYS3851
PHYS4150
PHYS4151
PHYS4350
PHYS4450
PHYS4550
PHYS4551
PHYS4650
PHYS4651
PHYS4652
PHYS4653
PHYS4654
PHYS4655
PHYS4750
PHYS4850
PHYS7350
PHYS7351
PHYS7450
PHYS7550
PHYS7551
PHYS7650
PHYS7750

Probability theory (6)
Operations research $I$ (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)
Topics in applied functional analysis (6)
Topics in advanced probability theory (6)
Topics in algebra (6)
Topics in applied discrete mathematics (6)
Topics in mathematical programming and optimization (6)
Geometric topology (6)
Real analysis (6)
Theoretical physics (6)
Electromagnetism (6)
Statistical mechanics \& thermodynamics (6)
Introductory solid state physics (6)
Observational astronomy (6)
The physical universe (6)
Principles of astronomy (6)
Laser and spectroscopy (6)
Physics of nanomaterials (6)
Physical Optics (6)
Atomic and nuclear physics (6)
Computational physics (6)
Data analysis and modeling in physics (6)
Advanced classical mechanics (6)
Advanced electromagnetism (6)
Advanced statistical mechanics (6)
Solid state physics (6)
Stellar physics (6)
Selected topics in astrophysics (6)
Planetary science (6)
Cosmology (6)
General relativity (6)
Interstellar medium (6)
Experimental physics (6)
Particle physics (6)
Graduate classical mechanics (6)
Graduate quantum mechanics (6)
Graduate electromagnetism (6)
Graduate statistical mechanics (6)
Graduate solid state physics (6)
Stellar atmospheres (6)
Nanophysics (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| MATH3999 | Directed studies in mathematics (6) |
| :--- | :--- |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |
| PHYS3999 | Directed studies in physics (6) |
| PHYS466 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. (a) Students must have level 3 or above in HKDSE Physics or HKDSE Combined Science with Physics component or equivalent to take this major. Students who do not fufill this requirement are advised to take PHYS1240 Physics by inquiry; and
(b) Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fufill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Mathematics/Physics
Offered to students
admitted to Year 1 in
Objectives:
The Major in Mathematics/Physics aims to provide students with a solid foundation in both physics and mathematics. This major
is catered especially for students interested in the more theoretical aspects of physics. It covers a wide range of core areas in
both disciplines which form the blocks of fundamental knowledge for further specializations, e.g. quantum mechanics, statistical
mechanics, classical mechanics, electrodynamics, linear algebra, mathematical analysis, abstract algebra, complex variables,
differential equations, modern differential geometry, etc. A large selection of elective courses is provided for students to pursue
a broad spectrum of professional knowledge in mathematical and theoretical physics. Analytical thinking, quantitative reasoning
and innovative ideas are fostered through the effective design of courses and research projects. The curriculum emphasizes
experiential learning through internships, field studies and research projects supervised by experts. With the comprehensive
training received, graduates are expected to be well-prepared for further studies and to pursue careers in many fields of science
and engineering.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with a rigorous representation using their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle physical problems with intellectual rigor theoretically (by means of coursework, tutorial classes and assessments in the curriculum)
PLO 3 : apply mathematical theory and techniques to analyze physical problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Mathematics
Major in Physics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming
Minor in Physics

## Required courses (96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
MATH1013 University mathematics II (6)
MATH2101 Linear algebra I (6)
MATH2211 Multivariable calculus (6)
PHYS1250 Fundamental physics (6)
PHYS2250 Introductory mechanics (6)
PHYS2265 Introductory quantum physics (6)
2. Advanced level courses (42 credits)

Disciplinary Core Courses (36 credits)
MATH3301 Algebra I (6)
MATH3401 Analysis I (6)
MATH4501 Geometry (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS4351 Advanced quantum mechanics (6)
Disciplinary Electives (6 credits)
At least 6 credits of advanced level Mathematics or Physics courses (MATH3XXX or MATH4XXX or MATH7XXX or PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list of courses include courses in List A and those courses not selected to fulfill the capstone requirement, but excluding MATH4966 Mathematics Internship.
List A
MATH3001
Development of mathematical ideas (6)
MATH3002 Mathematics seminar (6)
MATH3303 Matrix theory and its applications (6)
MATH3304 Introduction to number theory (6)
MATH3403 Functions of a complex variable (6)
MATH3405 Differential equations (6)
MATH3408 Computational methods and differential equations with
applications (6)
MATH3541 Introduction to topology (6)
MATH3600 Discrete mathematics (6)
MATH3601 Numerical analysis (6)

MATH3603
MATH3901
MATH3904
MATH3905
MATH3906
MATH3911
MATH3943
MATH4302
MATH4402
MATH4404
MATH4406
MATH4511
MATH4602
MATH4902
MATH4907
MATH7101
MATH7201
MATH7202
MATH7217
MATH7219
MATH7224
MATH7501
MATH7502
MATH7503
MATH7504
MATH7505
PHYS3150
PHYS3450
PHYS3550
PHYS3551
PHYS3650
PHYS3651
PHYS3652
PHYS3750
PHYS3751
PHYS3850
PHYS3851
PHYS4150
PHYS4151
PHYS4350
PHYS4450
PHYS4550
PHYS4551
PHYS4650
PHYS4651
PHYS4652
PHYS4653
PHYS4654
PHYS4655
PHYS4750
PHYS4850
PHYS7350
PHYS7351
PHYS7450
PHYS7550
PHYS7551
PHYS7650
PHYS7750

Probability theory (6)
Operations research $I$ (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)
Topics in applied functional analysis (6)
Topics in advanced probability theory (6)
Topics in algebra (6)
Topics in applied discrete mathematics (6)
Topics in mathematical programming and optimization (6)
Geometric topology (6)
Real analysis (6)
Theoretical physics (6)
Electromagnetism (6)
Statistical mechanics \& thermodynamics (6)
Introductory solid state physics (6)
Observational astronomy (6)
The physical universe (6)
Principles of astronomy (6)
Laser and spectroscopy (6)
Physics of nanomaterials (6)
Physical Optics (6)
Atomic and nuclear physics (6)
Computational physics (6)
Data analysis and modeling in physics (6)
Advanced classical mechanics (6)
Advanced electromagnetism (6)
Advanced statistical mechanics (6)
Solid state physics (6)
Stellar physics (6)
Selected topics in astrophysics (6)
Planetary science (6)
Cosmology (6)
General relativity (6)
Interstellar medium (6)
Experimental physics (6)
Particle physics (6)
Graduate classical mechanics (6)
Graduate quantum mechanics (6)
Graduate electromagnetism (6)
Graduate statistical mechanics (6)
Graduate solid state physics (6)
Stellar atmospheres (6)
Nanophysics (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| MATH3999 | Directed studies in mathematics (6) |
| :--- | :--- |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |
| PHYS3999 | Directed studies in physics (6) |
| PHYS466 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. (a) Students must have level 3 or above in HKDSE Physics or HKDSE Combined Science with Physics component or equivalent to take this major. Students who do not fufill this requirement are advised to take PHYS1240 Physics by inquiry; and
(b) Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fufill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Mathematics/Physics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 2}$ |

## Objectives:

The Major in Mathematics/Physics aims to provide students with a solid foundation in both physics and mathematics. This major is catered especially for students interested in the more theoretical aspects of physics. It covers a wide range of core areas in both disciplines which form the blocks of fundamental knowledge for further specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics, electrodynamics, linear algebra, mathematical analysis, abstract algebra, complex variables, differential equations, modern differential geometry, etc. A large selection of elective courses is provided for students to pursue a broad spectrum of professional knowledge in mathematical and theoretical physics. Analytical thinking, quantitative reasoning and innovative ideas are fostered through the effective design of courses and research projects. The curriculum emphasizes experiential learning through internships, field studies and research projects supervised by experts. With the comprehensive training received, graduates are expected to be well-prepared for further studies and to pursue careers in many fields of science and engineering.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with a rigorous representation using their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle physical problems with intellectual rigor theoretically (by means of coursework, tutorial classes and assessments in the curriculum)
PLO 3 : apply mathematical theory and techniques to analyze physical problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Mathematics
Major in Physics
Minor in Mathematics
Minor in Physics

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
MATH1013 University mathematics II (6)
MATH2101 Linear algebra I (6)
MATH2211 Multivariable calculus (6)
PHYS1250 Fundamental physics (6)
PHYS2250 Introductory mechanics (6)
PHYS2265 Introductory quantum physics (6)
2. Advanced level courses ( $\mathbf{4} 2$ credits)

Disciplinary Core Courses ( $\mathbf{3 6}$ credits)
MATH3301 Algebral (6)
MATH3401 Analysis I (6)
MATH4501 Geometry (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS4351 Advanced quantum mechanics (6)
Disciplinary Electives ( 6 credits)
At least 6 credits of advanced level Mathematics or Physics courses (MATH3XXX or MATH4XXX or MATH7XXX or PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list of courses include courses in List A and those courses not selected to fulfill the capstone requirement, but excluding MATH4966 Mathematics Internship.
List A
MATH3001
Development of mathematical ideas (6)
MATH3002
Mathematics seminar (6)
Matrix theory and its applications (6)
MATH3303
Introduction to number theory (6)
$\begin{array}{ll}\text { MATH3304 } & \text { Introduction to number theory (6) } \\ \text { MATH3403 } & \text { Functions of a complex variable (6) }\end{array}$
MATH3405 Differential equations (6)
MATH3408 Computational methods and differential equations with
MATH3541 Introduction to topology (6)
MATH3600 Discrete mathematics (6)
MATH3601 Numerical analysis (6)
MATH3603 Probability theory (6)

MATH3901
MATH3904
MATH3905
MATH3906
MATH3911
MATH3943
MATH4302
MATH4402
MATH4404
MATH4406
MATH4511
MATH4602
MATH4902
MATH4907
MATH7101
MATH7201
MATH7202
MATH7217
MATH7219
MATH7224
MATH7501
MATH7502
MATH7503
MATH7504
MATH7505
PHYS3150
PHYS3450
PHYS3550
PHYS3551
PHYS3650
PHYS3651
PHYS3652
PHYS3750
PHYS3751
PHYS3850
PHYS3851
PHYS4150
PHYS4151
PHYS4350
PHYS4450
PHYS4550
PHYS4551
PHYS4650
PHYS4651
PHYS4652
PHYS4653
PHYS4654
PHYS4655
PHYS4750
PHYS4850
PHYS7350
PHYS7351
PHYS7450
PHYS7550
PHYS7551
PHYS7650
PHYS7750

Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)
Topics in applied functional analysis (6)
Topics in advanced probability theory (6)
Topics in algebra (6)
Topics in applied discrete mathematics (6)
Topics in mathematical programming and optimization (6)
Geometric topology (6)
Real analysis (6)
Theoretical physics (6)
Electromagnetism (6)
Statistical mechanics \& thermodynamics (6)
Introductory solid state physics (6)
Observational astronomy (6)
The physical universe (6)
Principles of astronomy (6)
Laser and spectroscopy (6)
Physics of nanomaterials (6)
Physical Optics (6)
[previous title: Waves and optics (6) ]

## 3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

| MATH3999 | Directed studies in mathematics (6) |
| :--- | :--- |
| MATH4910 | Senior mathematics seminar (6) |
| MATH4911 | Mathematics capstone project (6) |
| MATH4966 | Mathematics internship (6) |
| MATH4999 | Mathematics project (12) |
| PHYS3999 | Directed studies in physics (6) |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. (a) Students must have level 3 or above in HKDSE Physics or HKDSE Combined Science with Physics component or equivalent to take this major. Students who do not fufill this requirement are advised to take PHYS1240 Physics by inquiry; and
(b) Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fufill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Molecular Biology \& Biotechnology <br> Offered to students <br> 2021 <br> admitted to Year 1 in

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5 : gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Molecular Biology \& Biotechnology (Intensive)
Minor in Molecular Biology \& Biotechnology

## Required courses ( 96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{2 4}$ credits)
BIOL1110 From molecules to cells (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOC2600 Basic biochemistry (6)

Disciplinary Electives ( 6 credits)
At least 6 credits selected from the following courses:
BIOL1309 Evolutionary diversity (6)
BIOL2409 Biotechnology industry and entrepreneurship (6)
2. Advanced level courses ( 48 credits)

Disciplinary Core Courses ( $\mathbf{2 4}$ credits)
BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
Disciplinary Electives ( $\mathbf{2 4}$ credits)
At least 24 credits selected from the following courses:
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3406 Reproduction and reproductive biotechnology (6)
BIOL3408 Genetics (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4409 General virology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
ENVS4110 Environmental remediation (6)

Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

## 3. Capstone requirement ( 6 credits)

| At least 6 credits selected from the following courses: |  |
| :--- | :--- |
| BIOL3993 | Directed studies in Molecular biology \& biotechnology (6) |
| BIOL4963 | Molecular biology \& biotechnology internship (6) |
| BIOL4993 | Molecular biology \& biotechnology project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

5. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Molecular Biology \& Biotechnology <br> admitted to Year 1 in <br> 2020

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5 : gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Molecular Biology \& Biotechnology (Intensive)
Minor in Molecular Biology \& Biotechnology

## Required courses ( 96 credits)

## 1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{2 4}$ credits)
BIOL1110 From molecules to cells (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOC2600 Basic biochemistry (6)

Disciplinary Electives (6 credits)

| BIOL1309 | Evolutionary diversity (6) |
| :--- | :--- |
| BIOL2306 | Ecology and evolution (6) |

2. Advanced level courses ( $\mathbf{4 8}$ credits)

Disciplinary Core Courses ( 24 credits)
BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3406 Reproduction and reproductive biotechnology (6)
BIOL3408 Genetics (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4401 Medical microbiology and applied immunology (6)
BIOL4409 General virology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)

Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both. Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.

## ENVS4110 Environmental remediation (6)

## 3. Capstone requirement ( 6 credits)

| At least 6 credits selected from the following courses: |  |
| :--- | :--- |
| BIOL3993 | Directed studies in Molecular biology \& biotechnology (6) |
| BIOL4963 | Molecular biology \& biotechnology internship (6) |
| BIOL4993 | Molecular biology \& biotechnology project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Molecular Biology \& Biotechnology <br> Offered to students 2019 <br> admitted to Year 1 in

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2: apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5 : gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Molecular Biology \& Biotechnology (Intensive)
Minor in Molecular Biology \& Biotechnology

## Required courses ( 96 credits)

## 1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{2 4}$ credits)
BIOL1110 From molecules to cells (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOC2600 Basic biochemistry (6)

Disciplinary Electives (6 credits)

| BIOL1309 | Evolutionary diversity (6) |
| :--- | :--- |
| BIOL2306 | Ecology and evolution (6) |

2. Advanced level courses ( $\mathbf{4 8}$ credits)

Disciplinary Core Courses ( 24 credits)
BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3406 Reproduction and reproductive biotechnology (6)
BIOL3408 Genetics (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4401 Medical microbiology and applied immunology (6)
BIOL4409 General virology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)

Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both. Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.

## ENVS4110 Environmental remediation (6)

## 3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOL3993 Directed studies in Molecular biology \& biotechnology (6)
BIOL4963 Molecular biology \& biotechnology internship (6)
BIOL4993 Molecular biology \& biotechnology project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Molecular Biology \& Biotechnology <br> Offered to students 2018 <br> admitted to Year 1 in

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5 : gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Molecular Biology \& Biotechnology (Intensive)
Minor in Molecular Biology \& Biotechnology

## Required courses ( 96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{2 4}$ credits)
BIOL1110 From molecules to cells (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOC2600 Basic biochemistry (6)

Disciplinary Electives (6 credits)

| BIOL1309 | Evolutionary diversity (6) |
| :--- | :--- |
| BIOL2306 | Ecology and evolution (6) |

2. Advanced level courses ( 48 credits)

Disciplinary Core Courses ( 24 credits)
BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3406 Reproduction and reproductive biotechnology (6)
BIOL3408 Genetics (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4401 Medical microbiology and applied immunology (6)
BIOL4409 General virology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)

Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both. Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.

## ENVS4110 Environmental remediation (6)

## 3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOL3993 Directed studies in Molecular biology \& biotechnology (6)
BIOL4963 Molecular biology \& biotechnology internship (6)
BIOL4993 Molecular biology \& biotechnology project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Offered to students <br> Major in Molecular Biology \& Biotechnology <br> admitted to Year 1 in <br> 2017

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5 : gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences (Intensive)
Major in Molecular Biology \& Biotechnology (Intensive)
Minor in Molecular Biology \& Biotechnology

## Required courses ( 96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{2 4}$ credits)
BIOL1110 From molecules to cells (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOC2600 Basic biochemistry (6)

Disciplinary Electives (6 credits)

| BIOL1309 | Evolutionary diversity (6) |
| :--- | :--- |
| BIOL2306 | Ecology and evolution (6) |

2. Advanced level courses ( 48 credits)

Disciplinary Core Courses ( 30 credits)
BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3406 Reproduction and reproductive biotechnology (6)
BIOL3408 Genetics (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL4401 Medical microbiology and applied immunology (6)
BIOL4409 General virology (6)
BIOL4416 Stem cells and regenerative biology (6)

Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both. Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.

```
    BIOL4417 'Omics' and systems biology (6)
    ENVS4110 Environmental remediation (6)
```

3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
BIOL3993 Directed studies in Molecular biology \& biotechnology (6)
BIOL4963 Molecular biology \& biotechnology internship (6)
BIOL4993 Molecular biology \& biotechnology project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Molecular Biology \& Biotechnology <br> Offered to students 2016 <br> admitted to Year 1 in

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5 : gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

## Impermissible Combinations:

Major in Molecular Biology \& Biotechnology (Intensive)
Minor in Molecular Biology \& Biotechnology

## Required courses ( 96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{2 4}$ credits)
BIOL1110 From molecules to cells (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOC2600 Basic biochemistry (6)

Disciplinary Electives ( $\mathbf{6}$ credits)
BIOL1309 Evolutionary diversity (6)
BIOL2306 Ecology and evolution (6)
2. Advanced level courses ( 48 credits)

Disciplinary Core Courses ( 30 credits)
BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3406 Reproduction and reproductive biotechnology (6)
BIOL3408 Genetics (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL4401 Medical microbiology and applied immunology (6)
BIOL4409 General virology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)

Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both. Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.

## ENVS4110 Environmental remediation (6)

## 3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
BIOL3993 Directed studies in Molecular biology \& biotechnology (6)
BIOL4963 Molecular biology \& biotechnology internship (6)
BIOL4993 Molecular biology \& biotechnology project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.


#### Abstract

Major Title Offered to students Major in Molecular Biology \& Biotechnology admitted to Year 1 in 2015

\section*{Objectives:}

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.


## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5 : gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

## Impermissible Combinations:

Major in Molecular Biology \& Biotechnology (Intensive)
Minor in Molecular Biology \& Biotechnology

## Required courses ( 96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (24 credits)
BIOL1110 From molecules to cells (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOC2600 Basic biochemistry (6)

Disciplinary Electives ( $\mathbf{6}$ credits)
BIOL1309 Evolutionary diversity (6)
BIOL2306 Ecology and evolution (6)
2. Advanced level courses ( 48 credits)

Disciplinary Core Courses ( 30 credits)
BIOL3401 Molecular biology (6)
BIOL3402 Cell biology and cell technology (6)
BIOL3508 Microbial physiology and biotechnology (6)

BIOL4402 Microbial biotechnology (6)

BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
Disciplinary Electives ( 18 credits)
At least 18 credits selected from the following courses:
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3405 Molecular microbiology (6)

Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both. Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.

Take either BIOL3508 or BIOL4402 to fulfill this 30 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.
Take either BIOL3508 or BIOL4402 to fulfill this 30 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

| BIOL3406 | Reproduction and reproductive biotechnology (6) |
| :--- | :--- |
| BIOL3408 | Genetics (6) |
| BIOL3409 | Business aspects of biotechnology (6) |
| BIOL4401 | Medical microbiology and applied immunology (6) |
| BIOL4409 | General virology (6) |
| BIOL4416 | Stem cells and regenerative biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| ENVS4110 | Environmental remediation (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| BIOL3993 | Directed studies in Molecular biology \& biotechnology (6) |
| BIOL4963 | Molecular biology \& biotechnology internship (6) |
| BIOL4993 | Molecular biology \& biotechnology project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.


#### Abstract

Major Title Major in Molecular Biology \& Biotechnology Offered to students 2014 admitted to Year 1 in

\section*{Objectives:}

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.


## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5 : gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

## Impermissible Combinations:

Minor in Molecular Biology \& Biotechnology

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credit)
        BIOL1110 From molecules to cells (6)
        BIOL2102 Biostatistics (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
        BIOC2600 Basic biochemistry (6)
    Disciplinary Electives (6 credits)
    BIOL1309 Evolutionary diversity (6)
    BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (30 credits)
        BIOL3401 Molecular biology (6)
        BIOL3402 Cell biology and cell technology (6)
        BIOL3508 Microbial physiology and biotechnology (6)
    BIOL4402 Microbial biotechnology (6)
    BIOL4411 Plant and food biotechnology (6)
    BIOL4415 Healthcare biotechnology (6)
    Disciplinary Electives (18 credit)
        At least }18\mathrm{ credits selected from the following courses:
        BIOL3403 Immunology (6)
        BIOL3404 Protein structure and function (6)
        BIOL3405 Molecular microbiology (6)
        BIOL3406 Reproduction and reproductive biotechnology (6)
```

Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both. Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.

```
2. Advanced level courses (48 credits)
Disciplinary Core Courses (30 credits)
BIOL3402 Cell biology and cell technology (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4402 Microbial biotechnology (6) this 30 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.
Take either BIOL3508 or BIOL4402 to fulfill this 30 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.
```

| BIOL3408 | Genetics (6) |
| :--- | :--- |
| BIOL3409 | Business aspects of biotechnology (6) |
| BIOL4401 | Medical microbiology and applied immunology (6) |
| BIOL4409 | General virology (6) |
| BIOL4416 | Stem cells and regenerative biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| ENVS4110 | Environmental remediation (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| BIOL3993 | Directed studies in Molecular biology \& biotechnology (6) |
| :--- | :--- |
| BIOL4963 | Molecular biology \& biotechnology internship (6) |
| BIOL4993 | Molecular biology \& biotechnology project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Molecular Biology \& Biotechnology |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | 2013 |

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5 : gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

## Impermissible Combinations:

Minor in Molecular Biology \& Biotechnology

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        BIOL1110 From molecules to cells (6)
        BIOL2102 Biostatistics (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
        BIOC2600 Basic biochemistry (6)
    Disciplinary Electives (6 credits)
    BIOL1309 Evolutionary diversity (6)
    BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (30 credits)
        BIOL3401 Molecular biology (6)
        BIOL3402 Cell biology and cell technology (6)
        BIOL3508 Microbial physiology and biotechnology (6)
    BIOL4402 Microbial biotechnology (6)
    BIOL4411 Plant and food biotechnology (6)
    BIOL4415 Healthcare biotechnology (6)
    Disciplinary Electives (18 credits)
        At least }18\mathrm{ credits selected from the following courses:
        BIOL3403 Immunology (6)
        BIOL3404 Protein structure and function (6)
        BIOL3405 Molecular microbiology (6)
        BIOL3406 Reproduction and reproductive biotechnology (6)
```

Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both. Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.

```
2. Advanced level courses (48 credits)
Disciplinary Core Courses (30 credits)
BIOL3402 Cell biology and cell technology (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4402 Microbial biotechnology (6) this 30 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.
Take either BIOL3508 or BIOL4402 to fulfill this 30 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.
```

| BIOL3408 | Genetics (6) |
| :--- | :--- |
| BIOL3409 | Business aspects of biotechnology (6) |
| BIOL4401 | Medical microbiology and applied immunology (6) |
| BIOL4409 | General virology (6) |
| BIOL4416 | Stem cells and regenerative biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| ENVS4110 | Environmental remediation (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| BIOL3993 | Directed studies in Molecular biology \& biotechnology (6) |
| :--- | :--- |
| BIOL4963 | Molecular biology \& biotechnology internship (6) |
| BIOL4993 | Molecular biology \& biotechnology project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Molecular Biology \& Biotechnology |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 2}$ |
| admitted to Year 1 in |  |

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2: apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5 : gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

## Impermissible Combinations:

Minor in Molecular Biology \& Biotechnology

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        BIOL1110 From molecules to cells (6)
        BIOL2102 Biostatistics (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
        BIOC2600 Basic biochemistry (6)
    Disciplinary Electives (6 credits)
    BIOL1309 Evolutionary diversity (6)
    BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (30 credits)
        BIOL3401 Molecular biology (6)
        BIOL3402 Cell biology and cell technology (6)
        BIOL3508 Microbial physiology and biotechnology (6)
    BIOL4402 Microbial biotechnology (6)
    BIOL4411 Plant and food biotechnology (6)
    BIOL4415 Healthcare biotechnology (6)
    Disciplinary Electives (18 credits)
        At least }18\mathrm{ credits selected from the following courses:
        BIOL3403 Immunology (6)
        BIOL3404 Protein structure and function (6)
        BIOL3405 Molecular microbiology (6)
        BIOL3406 Reproduction and reproductive biotechnology (6)
```

Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both. Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.

```
2. Advanced level courses (48 credits)
Disciplinary Core Courses (30 credits)
BIOL3402 Cell biology and cell technology (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4402 Microbial biotechnology (6) this 30 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.
Take either BIOL3508 or BIOL4402 to fulfill this 30 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.
```

| BIOL3408 | Genetics (6) |
| :--- | :--- |
| BIOL3409 | Business aspects of biotechnology (6) |
| BIOL4401 | Medical microbiology and applied immunology (6) |
| BIOL4409 | General virology (6) |
| BIOL4416 | Stem cells and regenerative biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| ENVS4110 | Environmental remediation (6) |

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| BIOL3993 | Directed studies in Molecular biology \& biotechnology (6) |
| :--- | :--- |
| BIOL4963 | Molecular biology \& biotechnology internship (6) |
| BIOL4993 | Molecular biology \& biotechnology project (12) |

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Molecular Biology \& Biotechnology (Intensive) <br> Offered to students <br> 2021 <br> admitted to Year 1 in

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major aims to provide comprehensive training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

The intensive major involves additional coursework and research/capstone experience. It is designed for students with interest on a fuller scope of the discipline or planning to pursue research studies for a higher degree in any area of life science.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)
PLO 6 : equip with knowledges in chemistry, mathematics, statistics, or computer programming, with sufficient depth and breadth to apply these knowledges within a biological context (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 7 : solve a scientific question empirically by designing and implementing experiments, learning new experimental skills and tackling experimental errors, reporting results unbiasedly and systematically (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Biological Sciences (Intensive)
Major in Molecular Biology \& Biotechnology
Minor in Molecular Biology \& Biotechnology

## Required courses ( 144 credits)

1. Introductory level courses ( 66 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (42 credits)
BIOL1110 From molecules to cells (6)
CHEM1042 General chemistry I (6)
CHEM1043 General chemistry II (6)
BIOL2102 Biostatistics (6) (Note 1)
BIOL2103 Biological sciences laboratory course (6) (Note 1)
BIOL2220 Principles of biochemistry (6)

BIOL2409 Biotechnology industry and entrepreneurship (6)
BIOC2600 Basic biochemistry (6)

Disciplinary Electives (12 credits)
Plus at least 12 credits selected from the following courses: BIOL1309

Evolutionary diversity (6)

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
(Note 1)

BIOL2408 Green earth-plants and mankind (6)
COMP1117 Computer programming (6)
MATH1011 University mathematics I (6)
MATH1013 University mathematics II (6)
2. Advanced level courses ( 66 credits)

Disciplinary Core Courses (30 credits)

| BIOL3401 | Molecular biology (6) | (Note 1) |
| :--- | :--- | :--- |
| BIOL3402 | Cell biology and cell technology (6) | (Note 1) |
| BIOL4411 | Plant and food biotechnology (6) | (Note 1) |

BIOL4411 Plant and food biotechnology (6) (Note 1)
BIOL4415 Healthcare biotechnology (6) (Note 1)
BIOL4417 'Omics' and systems biology (6)

## Disciplinary Electives ( 36 credits)

Plus at least 36 credits selected from the following courses:
BIOL3205 Human physiology (6)
BIOL3403 Immunology (6)
BIOL3404 Protein structure and function (6)
BIOL3406 Reproduction and reproductive biotechnology (6)
BIOL3408 Genetics (6)
BIOL3508 Microbial physiology and biotechnology (6)
ENVS3202 Plant physiology and climate change (6)
BIOL4409 General virology (6)
BIOL4416 Stem cells and regenerative biology (6)
ENVS4110 Environmental remediation (6)
3. Capstone requirement ( 12 credits)

BIOL4993 Molecular biology \& biotechnology project (12)

## Notes:

1. These are core courses in the regular Molecular Biology and Biotechnology Major ( 96 credits) curriculum.
2. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

3. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis

4. As this curriculum is accredited by the Royal Society of Biology (RSB), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Molecular Biology \& Biotechnology (Intensive) <br> Offered to students <br> 2020 <br> admitted to Year 1 in

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major aims to provide comprehensive training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

The intensive major involves additional coursework and research/capstone experience. It is designed for students with interest on a fuller scope of the discipline or planning to pursue research studies for a higher degree in any area of life science.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)
PLO 6 : equip with knowledges in chemistry, mathematics, statistics, or computer programming, with sufficient depth and breadth to apply these knowledges within a biological context (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 7 : solve a scientific question empirically by designing and implementing experiments, learning new experimental skills and tackling experimental errors, reporting results unbiasedly and systematically (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Biological Sciences (Intensive)
Major in Molecular Biology \& Biotechnology
Minor in Molecular Biology \& Biotechnology

## Required courses ( 144 credits)

1. Introductory level courses ( 66 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (42 credits)
BIOL1110 From molecules to cells (6)
CHEM1042 General chemistry I (6)
CHEM1043 General chemistry II (6)
BIOL2102 Biostatistics (6) (Note 1)
BIOL2103 Biological sciences laboratory course (6) (Note 1)
BIOL2220 Principles of biochemistry (6)

BIOL2409 Biotechnology industry and entrepreneurship (6)
BIOC2600 Basic biochemistry (6)

Disciplinary Electives (12 credits)
Plus at least 12 credits selected from the following courses: BIOL1309

Evolutionary diversity (6)

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
(Note 1)

| BIOL2408 | Green earth-plants and mankind (6) |
| :--- | :--- |
| COMP1117 | Computer programming (6) |
| MATH1011 | University mathematics I (6) |
| MATH1013 | University mathematics II (6) |

2. Advanced level courses ( 66 credits)

Disciplinary Core Courses ( $\mathbf{3 0}$ credits)

| BIOL3401 | Molecular biology (6) | (Note 1) |
| :--- | :--- | :--- |
| BIOL3402 | Cell biology and cell technology (6) | (Note 1) |
| BIOL4411 | Plant and food biotechnology (6) | (Note 1) |
| BIOL4415 | Healthcare biotechnology (6) | (Note 1) |
| BIOL4417 | 'Omics' and systems biology (6) |  |

## Disciplinary Electives ( 36 credits)

Plus at least 36 credits selected from the following courses:

| BIOL3205 | Human physiology (6) |
| :--- | :--- |
| BIOL3403 | Immunology (6) |
| BIOL3404 | Protein structure and function (6) |
| BIOL3406 | Reproduction and reproductive biotechnology (6) |
| BIOL3408 | Genetics (6) |
| BIOL3508 | Microbial physiology and biotechnology (6) |
| ENVS3202 | Plant physiology and climate change (6) |
| BIOL4401 | Medical microbiology and applied immunology (6) |
| BIOL4409 | General virology (6) |
| BIOL4416 | Stem cells and regenerative biology (6) |
| ENVS4110 | Environmental remediation (6) |

3. Capstone requirement ( 12 credits)

BIOL4993 Molecular biology \& biotechnology project (12)

## Notes:

1. These are core courses in the regular Molecular Biology and Biotechnology Major ( 96 credits) curriculum.
2. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

3. As this curriculum is accredited by the Royal Society of Biology (RSB), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Molecular Biology \& Biotechnology (Intensive) <br> Offered to students 2019 <br> admitted to Year 1 in

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major aims to provide comprehensive training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

The intensive major involves additional coursework and research/capstone experience. It is designed for students with interest on a fuller scope of the discipline or planning to pursue research studies for a higher degree in any area of life science.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)
PLO 6 : equip with knowledges in chemistry, mathematics, statistics, or computer programming, with sufficient depth and breadth to apply these knowledges within a biological context (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 7 : solve a scientific question empirically by designing and implementing experiments, learning new experimental skills and tackling experimental errors, reporting results unbiasedly and systematically (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Biological Sciences (Intensive)
Major in Molecular Biology \& Biotechnology
Minor in Molecular Biology \& Biotechnology

## Required courses ( 144 credits)

1. Introductory level courses ( 66 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (42 credits)
BIOL1110 From molecules to cells (6)
CHEM1042 General chemistry I (6)
CHEM1043 General chemistry II (6)
BIOL2102 Biostatistics (6) (Note 1)
BIOL2103 Biological sciences laboratory course (6) (Note 1)
BIOL2220 Principles of biochemistry (6)

BIOL2409 Biotechnology industry and entrepreneurship (6)
BIOC2600 Basic biochemistry (6)

Disciplinary Electives (12 credits)
Plus at least 12 credits selected from the following courses: BIOL1309

Evolutionary diversity (6)

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
(Note 1)

BIOL2408 Green earth-plants and mankind (6)
COMP1117 Computer programming (6)
MATH1011 University mathematics I (6)
MATH1013 University mathematics II (6)
2. Advanced level courses ( 66 credits)

Disciplinary Core Courses (30 credits)

| BIOL3401 | Molecular biology (6) | (Note 1) |
| :--- | :--- | :--- |
| BIOL3402 | Cell biology and cell technology (6) | (Note 1) |
| BIOL4411 | Plant and food biotechnology (6) | (Note 1) |
| BIOL4415 | Healthcare biotechnology (6) | (Note 1) |

BIOL4415 Healthcare biotechnology (6)
BIOL4417 'Omics' and systems biology (6)

## Disciplinary Electives ( 36 credits)

Plus at least 36 credits selected from the following courses:
BIOL3107 Plant physiology (6)

BIOL3205 Human physiology (6)
BIOL3403
BIOL3404
Immunology (6)

BIOL3408 Genetics (6)
BIOL3508 Microbial physiology and biotechnology (6)
ENVS3202 Plant physiology and climate change (6)

BIOL4401 Medical microbiology and applied immunology (6)
BIOL4409 General virology (6)
BIOL4416 Stem cells and regenerative biology (6)
ENVS4110 Environmental remediation (6)
3. Capstone requirement ( 12 credits)

BIOL4993 Molecular biology \& biotechnology project (12)

## Notes:

1. These are core courses in the regular Molecular Biology and Biotechnology Major ( 96 credits) curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Molecular Biology \& Biotechnology (Intensive) <br> Offered to students <br> 2018 <br> admitted to Year 1 in

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major aims to provide comprehensive training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

The intensive major involves additional coursework and research/capstone experience. It is designed for students with interest on a fuller scope of the discipline or planning to pursue research studies for a higher degree in any area of life science.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)
PLO 6 : equip with knowledges in chemistry, mathematics, statistics, or computer programming, with sufficient depth and breadth to apply these knowledges within a biological context (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 7 : solve a scientific question empirically by designing and implementing experiments, learning new experimental skills and tackling experimental errors, reporting results unbiasedly and systematically (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Biological Sciences (Intensive)
Major in Molecular Biology \& Biotechnology
Minor in Molecular Biology \& Biotechnology

## Required courses ( 144 credits)

1. Introductory level courses ( 66 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (42 credits)
BIOL1110 From molecules to cells (6)
CHEM1042 General chemistry I (6)
CHEM1043 General chemistry II (6)
BIOL2102 Biostatistics (6) (Note 1)
BIOL2103 Biological sciences laboratory course (6) (Note 1)
BIOL2220 Principles of biochemistry (6)

BIOL2409 Biotechnology industry and entrepreneurship (6)
BIOC2600 Basic biochemistry (6)

Disciplinary Electives (12 credits)
Plus at least 12 credits selected from the following courses: BIOL1309

Evolutionary diversity (6)

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
(Note 1)

BIOL2408 Green earth-plants and mankind (6)
COMP1117 Computer programming (6)
MATH1011 University mathematics I (6)
MATH1013 University mathematics II (6)
2. Advanced level courses ( 66 credits)

Disciplinary Core Courses (30 credits)

| BIOL3401 | Molecular biology (6) | (Note 1) |
| :--- | :--- | :--- |
| BIOL3402 | Cell biology and cell technology (6) | (Note 1) |
| BIOL4411 | Plant and food biotechnology (6) | (Note 1) |
| BIOL4415 | Healthcare biotechnology (6) | (Note 1) |

BIOL4415 Healthcare biotechnology (6)
BIOL4417 'Omics' and systems biology (6)

## Disciplinary Electives ( 36 credits)

Plus at least 36 credits selected from the following courses:
BIOL3107 Plant physiology (6)

BIOL3205 Human physiology (6)
BIOL3403
BIOL3404
Immunology (6)

BIOL3408 Genetics (6)
BIOL3508 Microbial physiology and biotechnology (6)
ENVS3202 Plant physiology and climate change (6)

BIOL4401 Medical microbiology and applied immunology (6)
BIOL4409 General virology (6)
BIOL4416 Stem cells and regenerative biology (6)
ENVS4110 Environmental remediation (6)
3. Capstone requirement ( 12 credits)

BIOL4993 Molecular biology \& biotechnology project (12)

## Notes:

1. These are core courses in the regular Molecular Biology and Biotechnology Major ( 96 credits) curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Molecular Biology \& Biotechnology (Intensive) <br> Offered to students <br> 2017 <br> admitted to Year 1 in

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major aims to provide comprehensive training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

The intensive major involves additional coursework and research/capstone experience. It is designed for students with interest on a fuller scope of the discipline or planning to pursue research studies for a higher degree in any area of life science.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3 : communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)
PLO 6 : equip with knowledges in chemistry, mathematics, statistics, or computer programming, with sufficient depth and breadth to apply these knowledges within a biological context (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 7 : solve a scientific question empirically by designing and implementing experiments, learning new experimental skills and tackling experimental errors, reporting results unbiasedly and systematically (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Biological Sciences (Intensive)
Major in Molecular Biology \& Biotechnology
Minor in Molecular Biology \& Biotechnology

## Required courses ( 144 credits)

1. Introductory level courses ( 66 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (42 credits)
BIOL1110 From molecules to cells (6)
CHEM1042 General chemistry I (6)
CHEM1043 General chemistry II (6)
BIOL2102 Biostatistics (6) (Note 1)
BIOL2103 Biological sciences laboratory course (6) (Note 1)
BIOL2220 Principles of biochemistry (6)

BIOL2409 Biotechnology industry and entrepreneurship (6)
BIOC2600 Basic biochemistry (6)

Disciplinary Electives (12 credits)
Plus at least 12 credits selected from the following courses: BIOL1309

Evolutionary diversity (6)

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
(Note 1)

BIOL2408 Green earth-plants and mankind (6)
COMP1117 Computer programming (6)
MATH1011 University mathematics I (6)
MATH1013 University mathematics II (6)
2. Advanced level courses ( 66 credits)

Disciplinary Core Courses (30 credits)

| BIOL3401 | Molecular biology (6) | (Note 1) |
| :--- | :--- | :--- |
| BIOL3402 | Cell biology and cell technology (6) | (Note 1) |
| BIOL4411 | Plant and food biotechnology (6) | (Note 1) |
| BIOL4415 | Healthcare biotechnology (6) | (Note 1) |

BIOL4415 Healthcare biotechnology (6)
BIOL4417 'Omics' and systems biology (6)

## Disciplinary Electives ( 36 credits)

Plus at least 36 credits selected from the following courses:
BIOL3107 Plant physiology (6)

BIOL3205 Human physiology (6)
BIOL3403
BIOL3404
Immunology (6)

BIOL3408 Genetics (6)
BIOL3508 Microbial physiology and biotechnology (6)
ENVS3202 Plant physiology and climate change (6)

BIOL4401 Medical microbiology and applied immunology (6)
BIOL4409 General virology (6)
BIOL4416 Stem cells and regenerative biology (6)
ENVS4110 Environmental remediation (6)
3. Capstone requirement ( 12 credits)

BIOL4993 Molecular biology \& biotechnology project (12)

## Notes:

1. These are core courses in the regular Molecular Biology and Biotechnology Major ( 96 credits) curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title Major in Molecular Biology \& Biotechnology (Intensive) <br> Offered to students 2016 <br> admitted to Year 1 in

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major aims to provide comprehensive training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

The intensive major involves additional coursework and research/capstone experience. It is designed for students with interest on a fuller scope of the discipline or planning to pursue research studies for a higher degree in any area of life science.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)
PLO 6 : equip with knowledges in chemistry, mathematics, statistics, or computer programming, with sufficient depth and breadth to apply these knowledges within a biological context (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 7: solve a scientific question empirically by designing and implementing experiments, learning new experimental skills and tackling experimental errors, reporting results unbiasedly and systematically (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Molecular Biology \& Biotechnology
Minor in Molecular Biology \& Biotechnology

```
Required courses (144 credits)
    1. Introductory level courses (66 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6) (Note 1)
        SCNC1112 Fundamentals of modern science (6) (Note 1)
    Disciplinary Core Courses (42 credits)
        BIOL1110 From molecules to cells (6)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        BIOL2102 Biostatistics (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
    BIOL2409 Biotechnology industry and entrepreneurship (6)
    BIOC2600 Basic biochemistry (6)
```

Disciplinary Electives (12 credits)
Plus at least 12 credits selected from the following courses:
BIOL1309 Evolutionary diversity (6)
BIOL2306 Ecology and evolution (6)
May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both. May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.

| BIOL2408 | Green earth-plants and mankind (6) |  |
| :---: | :---: | :---: |
| COMP1117 | Computer programming (6) |  |
| MATH1011 | University mathematics I (6) |  |
| MATH1013 | University mathematics II (6) |  |
| 2. Advanced level courses (66 credits) |  |  |
| Disciplinary Core Courses (30 credits) |  |  |
| BIOL3401 | Molecular biology (6) | (Note 1) |
| BIOL3402 | Cell biology and cell technology (6) | (Note 1) |
| BIOL4411 | Plant and food biotechnology (6) | (Note 1) |
| BIOL4415 | Healthcare biotechnology (6) | (Note 1) |
| BIOL4417 | 'Omics' and systems biology (6) |  |
| Disciplinary Electives (36 credits) |  |  |
| Plus at least 36 credits selected from the following courses: |  |  |
| BIOL3107 | Plant physiology (6) | Take either BIOL3107 or ENVS3202 to fulfill this 36 credits requirement, but not both. BIOL3107 and ENVS3202 are mutually exclusive. |
| BIOL3205 | Human physiology (6) |  |
| BIOL3403 | Immunology (6) |  |
| BIOL3404 | Protein structure and function (6) |  |
| BIOL3406 | Reproduction and reproductive biotechnology (6) |  |
| BIOL3408 | Genetics (6) |  |
| BIOL3508 | Microbial physiology and biotechnology (6) |  |
| ENVS3202 | Plant physiology and climate change (6) | Take either BIOL3107 or ENVS3202 to fulfill this 36 credits requirement, but not both. BIOL3107 and ENVS3202 are mutually exclusive. |
| BIOL4401 | Medical microbiology and applied immunology (6) |  |
| BIOL4409 | General virology (6) |  |
| BIOL4416 | Stem cells and regenerative biology (6) |  |
| ENVS4110 | Environmental remediation (6) |  |
| 3. Capstone requirement (12 credits) |  |  |
| BIOL4993 | Molecular biology \& biotechnology project (12) |  |

## Notes:

1. These are core courses in the regular Molecular Biology and Biotechnology Major ( 96 credits) curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Molecular Biology \& Biotechnology (Intensive) <br> Offered to students 2015 <br> admitted to Year 1 in

## Objectives:

Recent advancements in Molecular Biology \& Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major aims to provide comprehensive training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

The intensive major involves additional coursework and research/capstone experience. It is designed for students with interest on a fuller scope of the discipline or planning to pursue research studies for a higher degree in any area of life science.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 2 : apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
PLO 4 : acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)
PLO 6 : equip with knowledges in chemistry, mathematics, statistics, or computer programming, with sufficient depth and breadth to apply these knowledges within a biological context (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
PLO 7: solve a scientific question empirically by designing and implementing experiments, learning new experimental skills and tackling experimental errors, reporting results unbiasedly and systematically (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

## Impermissible Combinations:

Major in Biological Sciences
Major in Molecular Biology \& Biotechnology
Minor in Molecular Biology \& Biotechnology

```
Required courses (144 credits)
    1. Introductory level courses (66 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6) (Note 1)
        SCNC1112 Fundamentals of modern science (6) (Note 1)
    Disciplinary Core Courses (42 credits)
        BIOL1110 From molecules to cells (6)
        CHEM1042 General chemistry I (6)
        CHEM1043 General chemistry II (6)
        BIOL2102 Biostatistics (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
    BIOL2409 Biotechnology industry and entrepreneurship (6)
    BIOC2600 Basic biochemistry (6)
```

Disciplinary Electives (12 credits)
Plus at least 12 credits selected from the following courses:
BIOL1309 Evolutionary diversity (6)
BIOL2306 Ecology and evolution (6)
May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both. May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.

| BIOL2408 | Green earth-plants and mankind (6) |  |
| :--- | :--- | :--- |
| COMP1117 | Computer programming (6) |  |
| MATH1011 | University mathematics I (6) |  |
| MATH1013 | University mathematics II (6) |  |
| 2. Advanced level courses (66 credits) | (Note 1) |  |
| Disciplinary Core Courses (30 credits) | (Note 1) |  |
| BIOL3401 | Molecular biology (6) | (Note 1) |
| BIOL3402 | Cell biology and cell technology (6) | (Note 1) |
| BIOL4411 | Plant and food biotechnology (6) |  |
| BIOL4415 | Healthcare biotechnology (6) |  |
| BIOL4417 | 'Omics' and systems biology (6) |  |
| Disciplinary Electives (36 credits) |  |  |
| Plus at least 36 credits selected from the following courses: |  |  |
| BIOL3107 | Plant physiology (6) |  |
| BIOL3205 | Human physiology (6) |  |
| BIOL3403 | Immunology (6) |  |
| BIOL3404 | Protein structure and function (6) |  |
| BIOL3406 | Reproduction and reproductive biotechnology (6) |  |
| BIOL3408 | Genetics (6) |  |
| BIOL3508 | Microbial physiology and biotechnology (6) |  |
| BIOL4401 | Medical microbiology and applied immunology (6) |  |
| BIOL4409 | General virology (6) |  |
| BIOL4416 | Stem cells and regenerative biology (6) |  |
| ENVS4110 | Environmental remediation (6) |  |
| 3. Capstone requirement (12 credits) |  |  |
| BIOL4993 | Molecular biology \& biotechnology project (12) |  |

## Notes:

1. These are core courses in the regular Molecular Biology and Biotechnology Major ( 96 credits) curriculum.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Physics |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 2 1}$ |

## Objectives:

The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate effectively with people of different background, culture, gender and nationality in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Physics (Intensive)
Minor in Physics

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        PHYS2250 Introductory mechanics (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2261 Introductory heat and thermodynamics (6)
        PHYS2265 Introductory quantum physics (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
        PHYS1150 Problem solving in physics (6)
        PHYS2055 Introductory relativity (6)
        PHYS2150 Methods in physics I (6)
        PHYS2155 Methods in physics II (6)
        PHYS2160 Introductory computational physics (6)
    2. Advanced level courses (42 credits)
    Disciplinary Electives (42credits)
        At least }24\mathrm{ credits selected from courses in List A:
        List A
        PHYS3150 Theoretical physics (6)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
        PHYS3450 Electromagnetism (6)
        PHYS3550 Statistical mechanics & thermodynamics (6)
        PHYS3760 Physics laboratory (6)
```

        Plus at least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current list includes courses in Lists \(A\) and \(B\) and those courses not selected to fulfill the
        capstone requirements.
        List B
        PHYS3151
        Machine learning in physics (6)
        PHYS3650 Observational astronomy (6)
        PHYS3653 Astrophysics (6)
        PHYS3660 Astronomy laboratory (6)
        PHYS3750 Laser and spectroscopy (6)
        PHYS3850 Physical Optics (6)
        PHYS3851 Atomic and nuclear physics (6)
        PHYS4150 Computational physics (6)
        PHYS4151 Data analysis and modeling in physics (6)
        PHYS4351 Advanced quantum mechanics (6)
        PHYS4450 Advanced electromagnetism (6)
        PHYS4550 Advanced statistical mechanics (6)
    | PHYS4551 | Solid state physics (6) |
| :--- | :--- |
| PHYS4650 | Stellar physics (6) |
| PHYS4652 | Planetary science (6) |
| PHYS4653 | Cosmology (6) |
| PHYS4654 | General relativity (6) |
| PHYS4655 | Interstellar medium (6) |
| PHYS4656 | Advanced astrophysics (6) |
| PHYS4850 | Particle physics (6) |
| PHYS7350 | Graduate classical mechanics (6) |
| PHYS7351 | Graduate quantum mechanics (6) |
| PHYS7450 | Graduate electromagnetism (6) |
| PHYS7550 | Graduate statistical mechanics (6) |
| PHYS7750 | Nanophysics (6) |

## 3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| PHYS3999 | Directed studies in physics (6) |
| :--- | :--- |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.
6. Those who want to specialize in the astrophysics theme should pass any three of the following courses: PHYS3650 Observational astronomy, PHYS3653 Astrophysics, PHYS3660 Astronomy laboratory, PHYS4652 Planetary science, PHYS4653 Cosmology, PHYS4654 General relativity, PHYS4655 Interstellar medium, and PHYS4656 Advanced astrophysics, out of which at least one must be a $4000+$ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in astrophysics.
7. Those who want to specialize in the computational physics theme should pass any three of the following courses: PHYS3150 Theoretical physics, PHYS3151 Machine learning in physics, PHYS4150 Computational physics, and PHYS4151 Data analysis and modeling in physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in computational physics.
8. Those who want to specialize in the experimental physics theme should pass PHYS3760 Physics laboratory, plus any two of the following courses: PHYS3660 Astronomy laboratory, PHYS3750 Laser and spectroscopy, PHYS3850 Physical optics, PHYS3851 Atomic and nuclear physics, PHYS4151 Data analysis and modeling in physics, PHYS4551 Solid state physics, and PHYS4850 Particle physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in experimental physics.
9. Those who want to specialize in the theoretical physics theme should pass any four of the following courses: PHYS3150 Theoretical physics, PHYS3350 Classical mechanics, PHYS3351 Quantum mechanics, PHYS3450 Electromagnetism, PHYS3550 Statistical mechanics \& thermodynamics, PHYS4351 Advanced quantum mechanics, PHYS4450 Advanced electromagnetism, PHYS4551 Solid state physics, PHYS4654 General relativity, PHYS4850 Particle physics, PHYS7351 Graduate quantum mechanics, PHYS7450 Graduate electromagnetism, PHYS7550 Graduate statistical mechanics out of which at least two must be 4000+ level courses, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in theoretical physics.
10. Upon prior approval, one may use PHYS4966 Physics internship to replace PHYS3999 Directed studies or PHYS4999 Physics project to fulfill the specialization in a theme.
11. No double counting is allowed if one wants to specialize in more than one theme. In this case, one is allowed to replace the PHYS3999 Directed studies in physics or PHYS4999 Physics project requirement in one of the theme specializations by a regular course in the same theme of specialization.
12. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

13. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit
disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Physics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 2 0}$ |

## Objectives:

The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3 : analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate effectively with people of different background, culture, gender and nationality in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Physics (Intensive)
Minor in Physics

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        PHYS2250 Introductory mechanics (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2261 Introductory heat and thermodynamics (6)
        PHYS2265 Introductory quantum physics (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
        PHYS1150 Problem solving in physics (6)
        PHYS2055 Introductory relativity (6)
        PHYS2150 Methods in physics I (6)
        PHYS2155 Methods in physics II (6)
        PHYS2160 Introductory computational physics (6)
    2. Advanced level courses (42 credits)
    Disciplinary Electives (42credits)
        At least }24\mathrm{ credits selected from courses in List A:
        List A
        PHYS3150 Theoretical physics (6)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
        PHYS3450 Electromagnetism (6)
        PHYS3550 Statistical mechanics & thermodynamics (6)
        PHYS3760 Physics laboratory (6)
```

        Plus at least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current list includes courses in Lists \(A\) and \(B\) and those courses not selected to fulfill the
        capstone requirements.
        List B
        PHYS3151
        Machine learning in physics (6)
        PHYS3650 Observational astronomy (6)
        PHYS3653 Astrophysics (6)
        PHYS3660 Astronomy laboratory (6)
        PHYS3750 Laser and spectroscopy (6)
        PHYS3850 Physical Optics (6)
        PHYS3851 Atomic and nuclear physics (6)
        PHYS4150 Computational physics (6)
        PHYS4151 Data analysis and modeling in physics (6)
        PHYS4351 Advanced quantum mechanics (6)
        PHYS4450 Advanced electromagnetism (6)
        PHYS4550 Advanced statistical mechanics (6)
    PHYS4551 Solid state physics (6)
PHYS4650
Stellar physics (6)
PHYS4652
Planetary science (6)
PHYS4653
Cosmology (6)
PHYS4654
PHYS4655
PHYS4656
PHYS4850
General relativity (6)
Interstellar medium (6)
Advanced astrophysics (6)
Particle physics (6)
Graduate classical mechanics (6)
Graduate quantum mechanics (6)
Graduate electromagnetism (6)
Graduate statistical mechanics (6)
Nanophysics (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| PHYS3999 | Directed studies in physics (6) |
| :--- | :--- |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

## Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.
6. Those who want to specialize in the astrophysics theme should pass any three of the following courses: PHYS3650 Observational astronomy, PHYS3653 Astrophysics, PHYS3660 Astronomy laboratory, PHYS4652 Planetary science, PHYS4653 Cosmology, PHYS4654 General relativity, PHYS4655 Interstellar medium, and PHYS4656 Advanced astrophysics, out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in astrophysics.
7. Those who want to specialize in the computational physics theme should pass any three of the following courses: PHYS3150 Theoretical physics, PHYS3151 Machine learning in physics, PHYS4150 Computational physics, and PHYS4151 Data analysis and modeling in physics out of which at least one must be a $4000+$ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in computational physics.
8. Those who want to specialize in the experimental physics theme should pass PHYS3760 Physics laboratory, plus any two of the following courses: PHYS3660 Astronomy laboratory, PHYS3750 Laser and spectroscopy, PHYS3850 Physical optics, PHYS3851 Atomic and nuclear physics, PHYS4151 Data analysis and modeling in physics, PHYS4551 Solid state physics, and PHYS4850 Particle physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in experimental physics.
9. Those who want to specialize in the theoretical physics theme should pass any four of the following courses: PHYS3150 Theoretical physics, PHYS3350 Classical mechanics, PHYS3351 Quantum mechanics, PHYS3450 Electromagnetism, PHYS3550 Statistical mechanics \& thermodynamics, PHYS4351 Advanced quantum mechanics, PHYS4450 Advanced electromagnetism, PHYS4551 Solid state physics, PHYS4654 General relativity, PHYS4850 Particle physics, PHYS7351 Graduate quantum mechanics, PHYS7450 Graduate electromagnetism, PHYS7550 Graduate statistical mechanics out of which at least two must be 4000+ level courses, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in theoretical physics.
10. Upon prior approval, one may use PHYS4966 Physics internship to replace PHYS3999 Directed studies or PHYS4999 Physics project to fulfill the specialization in a theme.
11. No double counting is allowed if one wants to specialize in more than one theme. In this case, one is allowed to replace the PHYS3999 Directed studies in physics or PHYS4999 Physics project requirement in one of the theme specializations by a regular course in the same theme of specialization.
12. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.

| Major Title | Major in Physics |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 9}$ |
| admitted to Year 1 in |  |

## Objectives:

The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate effectively with people of different background, culture, gender and nationality in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Physics (Intensive)
Minor in Physics

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC11111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        PHYS2250 Introductory mechanics (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2261 Introductory heat and thermodynamics (6)
        PHYS2265 Introductory quantum physics (6)
```

    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
        PHYS1150 Problem solving in physics (6)
        PHYS2055 Introductory relativity (6)
        PHYS2150 Methods in physics I (6)
        PHYS2155 Methods in physics II (6)
        PHYS2160 Introductory computational physics (6)
    2. Advanced level courses (42 credits)
    Disciplinary Electives (42credits)
        At least 24 credits selected from courses in List A:
        List A
        PHYS3150 Theoretical physics (6)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
        PHYS3450 Electromagnetism (6)
        PHYS3550 Statistical mechanics \& thermodynamics (6)
        PHYS3760 Physics laboratory (6)
        Plus at least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current list includes courses in Lists \(A\) and \(B\) and those courses not selected to fulfill the
        capstone requirements.
        List B
        PHYS3151 Machine learning in physics (6)
        PHYS3650 Observational astronomy (6)
        PHYS3653 Astrophysics (6)
        PHYS3660 Astronomy laboratory (6)
        PHYS3750 Laser and spectroscopy (6)
        PHYS3850 Physical Optics (6) [previous title: Waves and optics
        PHYS3851 Atomic and nuclear physics (6)
        PHYS4150 Computational physics (6)
        PHYS4151 Data analysis and modeling in physics (6)
        PHYS4351 Advanced quantum mechanics (6)
        PHYS4450 Advanced electromagnetism (6)
        PHYS4550 Advanced statistical mechanics (6)
    ```
    PHYS4551 Solid state physics (6)
    PHYS4650 Stellar physics (6)
    PHYS4652 Planetary science (6)
    PHYS4653 Cosmology (6)
    PHYS4654 General relativity (6)
    PHYS4655 Interstellar medium (6)
    PHYS4656 Advanced astrophysics (6)
    PHYS4850 Particle physics (6)
    PHYS7350 Graduate classical mechanics (6)
    PHYS7351 Graduate quantum mechanics (6)
    PHYS7450 Graduate electromagnetism (6)
    PHYS7550 Graduate statistical mechanics (6)
    PHYS7750 Nanophysics (6)
```

3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:

| PHYS3999 | Directed studies in physics (6) |
| :--- | :--- |
| PHYS4966 | Physics internship (6) |

    PHYS4999 Physics project (12)
    
## Notes:

## Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.
7. Those who want to specialize in the astrophysics theme should pass any three of the following courses: PHYS3650 Observational astronomy, PHYS3653 Astrophysics, PHYS3660 Astronomy laboratory, PHYS4652 Planetary science, PHYS4653 Cosmology, PHYS4654 General relativity, PHYS4655 Interstellar medium, and PHYS4656 Advanced astrophysics, out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in astrophysics.
8. Those who want to specialize in the computational physics theme should pass any three of the following courses: PHYS3150 Theoretical physics, PHYS3151 Machine learning in physics, PHYS4150 Computational physics, and PHYS4151 Data analysis and modeling in physics out of which at least one must be a $4000+$ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in computational physics.
9. Those who want to specialize in the experimental physics theme should pass PHYS3760 Physics laboratory, plus any two of the following courses: PHYS3660 Astronomy laboratory, PHYS3750 Laser and spectroscopy, PHYS3850 Physical optics, PHYS3851 Atomic and nuclear physics, PHYS4151 Data analysis and modeling in physics, PHYS4551 Solid state physics, and PHYS4850 Particle physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in experimental physics.
10. Those who want to specialize in the theoretical physics theme should pass any four of the following courses: PHYS3150 Theoretical physics, PHYS3350 Classical mechanics, PHYS3351 Quantum mechanics, PHYS3450 Electromagnetism, PHYS3550 Statistical mechanics \& thermodynamics, PHYS4351 Advanced quantum mechanics, PHYS4450 Advanced electromagnetism, PHYS4551 Solid state physics, PHYS4654 General relativity, PHYS4850 Particle physics, PHYS7351 Graduate quantum mechanics, PHYS7450 Graduate electromagnetism, PHYS7550 Graduate statistical mechanics out of which at least two must be 4000+ level courses, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in theoretical physics.
11. Upon prior approval, one may use PHYS4966 Physics internship to replace PHYS3999 Directed studies or PHYS4999 Physics project to fulfill the specialization in a theme.
12. No double counting is allowed if one wants to specialize in more than one theme. In this case, one is allowed to replace the PHYS3999 Directed studies in physics or PHYS4999 Physics project requirement in one of the theme specializations by a regular course in the same theme of specialization.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Physics |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 8}$ |

## Objectives:

The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3 : analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate effectively with people of different background, culture, gender and nationality in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Physics (Intensive)
Minor in Physics

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (24 credits)
        PHYS2250 Introductory mechanics (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2261 Introductory heat and thermodynamics (6)
```

        PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
        \(\begin{array}{lll}\text { PHYS1150 } & \text { Problem solving in physics (6) } & \\ \text { PHYS2055 } & \text { Introductory relativity (6) } & \text { [previous title: Introduction to relativity }\end{array}\)
        PHYS2150 Methods in physics I (6)
        PHYS2155 Methods in physics II (6)
        PHYS2160 Introductory computational physics (6)
    2. Advanced level courses (42 credits)
    Disciplinary Electives (42credits)
        At least 24 credits selected from courses in List A:
        List A
        PHYS3150 Theoretical physics (6)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
        PHYS3450 Electromagnetism (6)
        PHYS3550 Statistical mechanics \& thermodynamics (6)
        PHYS3760 Physics laboratory (6)
        Plus at least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current list includes courses in Lists \(A\) and \(B\) and those courses not selected to fulfill the
        capstone requirements.
        List B
        PHYS3151
        Machine learning in physics (6)
        PHYS3650
        Observational astronomy (6)
        Astrophysics (6)
        Astronomy laboratory (6)
        Laser and spectroscopy (6)
        Physical Optics (6)
    Atomic and nuclear physics (6)
    Computational physics (6)
    Data analysis and modeling in physics (6)
    Advanced quantum mechanics (6)
    Advanced electromagnetism (6)
    Advanced statistical mechanics (6)
    PHYS4551 Solid state physics (6)
PHYS4650
Stellar physics (6)
PHYS4652
Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654
General relativity (6)
PHYS4655
Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)
PHYS4850 Particle physics (6)
PHYS7350 Graduate classical mechanics (6)
PHYS7351 Graduate quantum mechanics (6)
PHYS7450 Graduate electromagnetism (6)
PHYS7550 Graduate statistical mechanics (6)
PHYS7750 Nanophysics (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
PHYS3999 Directed studies in physics (6)
PHYS4966 Physics internship (6)
PHYS4999 Physics project (12)

## Notes:

## Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning ( 6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.
7. Those who want to specialize in the astrophysics theme should pass any three of the following courses: PHYS3650 Observational astronomy, PHYS3653 Astrophysics, PHYS3660 Astronomy laboratory, PHYS4652 Planetary science, PHYS4653 Cosmology, PHYS4654 General relativity, PHYS4655 Interstellar medium, and PHYS4656 Advanced astrophysics, out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in astrophysics.
8. Those who want to specialize in the computational physics theme should pass any three of the following courses: PHYS3150 Theoretical physics, PHYS3151 Machine learning in physics, PHYS4150 Computational physics, and PHYS4151 Data analysis and modeling in physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in computational physics.
9. Those who want to specialize in the experimental physics theme should pass PHYS3760 Physics laboratory, plus any two of the following courses: PHYS3660 Astronomy laboratory, PHYS3750 Laser and spectroscopy, PHYS3850 Physical optics, PHYS3851 Atomic and nuclear physics, PHYS4151 Data analysis and modeling in physics, PHYS4551 Solid state physics, and PHYS4850 Particle physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in experimental physics.
10. Those who want to specialize in the theoretical physics theme should pass any four of the following courses: PHYS3150 Theoretical physics, PHYS3350 Classical mechanics, PHYS3351 Quantum mechanics, PHYS3450 Electromagnetism, PHYS3550 Statistical mechanics \& thermodynamics, PHYS4351 Advanced quantum mechanics, PHYS4450 Advanced electromagnetism, PHYS4551 Solid state physics, PHYS4654 General relativity, PHYS4850 Particle physics, PHYS7351 Graduate quantum mechanics, PHYS7450 Graduate electromagnetism, PHYS7550 Graduate statistical mechanics out of which at least two must be 4000+ level courses, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in theoretical physics.
11. Upon prior approval, one may use PHYS4966 Physics internship to replace PHYS3999 Directed studies or PHYS4999 Physics project to fulfill the specialization in a theme.
12. No double counting is allowed if one wants to specialize in more than one theme. In this case, one is allowed to replace the PHYS3999 Directed studies in physics or PHYS4999 Physics project requirement in one of the theme specializations by a regular course in the same theme of specialization.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Physics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 7}$ |

## Objectives:

The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Mathematics/Physics
Major in Physics (Intensive)
Minor in Physics

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
PHYS1250 Fundamental physics (6)
PHYS2250 Introductory mechanics (6)
PHYS2255 Introductory electricity and magnetism (6)
PHYS2260 Heat and waves (6)
PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
Disciplinary Electives ( 6 credits)
At least 6 credits selected from the following courses:
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6) [previous title: Introduction to relativity
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2160 Introductory computational physics (6)
2. Advanced level courses (42 credits)

Disciplinary Core Courses ( 24 credits)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics \& thermodynamics (6)
Disciplinary Electives (18 credits)
At least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone requirements.
List A

PHYS3150
PHYS3151
PHYS3551
PHYS3650
PHYS3651
PHYS3652
PHYS3653
PHYS3660
PHYS3750
PHYS3751
PHYS3760
PHYS3850
PHYS3851

Theoretical physics (6)
Machine learning in physics (6)
Introductory solid state physics (6)
Observational astronomy (6)
The physical universe (6)
Principles of astronomy (6)
Astrophysics (6)
Astronomy laboratory (6)
Laser and spectroscopy (6)
Physics of nanomaterials (6)
Physics laboratory (6)
Physical Optics (6)
Atomic and nuclear physics (6)

| PHYS4150 | Computational physics (6) |
| :--- | :--- |
| PHYS4151 | Data analysis and modeling in physics (6) |
| PHYS4350 | Advanced classical mechanics (6) |
| PHYS4351 | Advanced quantum mechanics (6) |
| PHYS4450 | Advanced electromagnetism (6) |
| PHYS4550 | Advanced statistical mechanics (6) |
| PHYS4551 | Solid state physics (6) |
| PHYS4650 | Stellar physics (6) |
| PHYS4651 | Selected topics in astrophysics (6) |
| PHYS4652 | Planetary science (6) |
| PHYS4653 | Cosmology (6) |
| PHYS4654 | General relativity (6) |
| PHYS4655 | Interstellar medium (6) |
| PHYS4656 | Advanced astrophysics (6) |
| PHYS4750 | Experimental physics (6) |
| PHYS4850 | Particle physics (6) |
| PHYS7350 | Graduate classical mechanics (6) |
| PHYS7351 | Graduate quantum mechanics (6) |
| PHYS7450 | Graduate electromagnetism (6) |
| PHYS7550 | Graduate statistical mechanics (6) |
| PHYS7551 | Graduate solid state physics (6) |
| PHYS7650 | Stellar atmospheres (6) |
| PHYS7750 | Nanophysics (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| PHYS3999 | Directed studies in physics (6) |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |
|  |  |

## Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning ( 6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Physics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 6}$ |

## Objectives:

The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Mathematics/Physics
Major in Physics (Intensive)
Minor in Physics

## Required courses ( 96 credits)

1. Introductory level courses ( 48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
PHYS1250 Fundamental physics (6)
PHYS2250 Introductory mechanics (6)
PHYS2255 Introductory electricity and magnetism (6)
PHYS2260 Heat and waves (6)
PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
Disciplinary Electives ( 6 credits)
At least 6 credits selected from the following courses:

| PHYS1150 | Problem solving in physics (6) |  |
| :--- | :--- | :--- |
| PHYS2055 | Introductory relativity (6) | [previous title: Introduction to relativity |

PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
2. Advanced level courses ( 42 credits)

Disciplinary Core Courses (24 credits)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics \& thermodynamics (6)
Disciplinary Electives (18 credits)
At least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone requirements.
List A
PHYS3150 Theoretical physics (6)
PHYS3151 Machine learning in physics (6)
PHYS3551 Introductory solid state physics (6)
PHYS3650 Observational astronomy (6)
PHYS3651 The physical universe (6)
PHYS3652 Principles of astronomy (6)
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS3750 Laser and spectroscopy (6)
PHYS3751 Physics of nanomaterials (6)
PHYS3760 Physics laboratory (6)
PHYS3850 Physical Optics (6) [previous title: Waves and optics (6)]
PHYS3851 Atomic and nuclear physics (6)
PHYS4150 Computational physics (6)
[previous title: Introduction to relativity (6) ]

| PHYS4151 | Data analysis and modeling in physics (6) |
| :--- | :--- |
| PHYS4350 | Advanced classical mechanics (6) |
| PHYS4351 | Advanced quantum mechanics (6) |
| PHYS4450 | Advanced electromagnetism (6) |
| PHYS4550 | Advanced statistical mechanics (6) |
| PHYS4551 | Solid state physics (6) |
| PHYS4650 | Stellar physics (6) |
| PHYS4651 | Selected topics in astrophysics (6) |
| PHYS4652 | Planetary science (6) |
| PHYS4653 | Cosmology (6) |
| PHYS4654 | General relativity (6) |
| PHYS4655 | Interstellar medium (6) |
| PHYS4656 | Advanced astrophysics (6) |
| PHYS4750 | Experimental physics (6) |
| PHYS4850 | Particle physics (6) |
| PHYS7350 | Graduate classical mechanics (6) |
| PHYS7351 | Graduate quantum mechanics (6) |
| PHYS7450 | Graduate electromagnetism (6) |
| PHYS7550 | Graduate statistical mechanics (6) |
| PHYS7551 | Graduate solid state physics (6) |
| PHYS7650 | Stellar atmospheres (6) |
| PHYS7750 | Nanophysics (6) |
| 3. Capstone requirement (6 credits) |  |
| At least 6 credits selected from the following courses: |  |
| PHYS3999 | Directed studies in physics (6) |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |
|  |  |

## Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Physics |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 5}$ |

## Objectives:

The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Mathematics/Physics
Minor in Physics

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        PHYS1250 Fundamental physics (6)
        PHYS2250 Introductory mechanics (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2260 Heat and waves (6)
```

        PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
    Disciplinary Electives (6 credits)
        At least 6 credits selected from the following courses:
        PHYS1150 Problem solving in physics (6)
        PHYS2055 Introductory relativity (6) [previous title: Introduction to relativity
        PHYS2150 Methods in physics I (6)
        PHYS2155 Methods in physics II (6)
    2. Advanced level courses ( 42 credits)
    Disciplinary Core Courses (24 credits)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
        PHYS3450 Electromagnetism (6)
        PHYS3550 Statistical mechanics \& thermodynamics (6)
    Disciplinary Electives (18 credits)
        At least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone
        requirements.
        List A
        PHYS3150
        Theoretical physics (6)
        PHYS3151 Machine learning in physics (6)
        PHYS3551 Introductory solid state physics (6)
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
        PHYS3653 Astrophysics (6)
        PHYS3660 Astronomy laboratory (6)
        PHYS3750 Laser and spectroscopy (6)
        PHYS3751 Physics of nanomaterials (6)
        PHYS3760 Physics laboratory (6)
        PHYS3850 Physical Optics (6)
        PHYS4150 Computational physics (6)
        PHYS4151 Data analysis and modeling in physics (6)
    | PHYS4350 | Advanced classical mechanics (6) |
| :--- | :--- |
| PHYS4351 | Advanced quantum mechanics (6) |
| PHYS4450 | Advanced electromagnetism (6) |
| PHYS4550 | Advanced statistical mechanics (6) |
| PHYS4551 | Solid state physics (6) |
| PHYS4650 | Stellar physics (6) |
| PHYS4651 | Selected topics in astrophysics (6) |
| PHYS4652 | Planetary science (6) |
| PHYS4653 | Cosmology (6) |
| PHYS4654 | General relativity (6) |
| PHYS4655 | Interstellar medium (6) |
| PHYS4656 | Advanced astrophysics (6) |
| PHYS4750 | Experimental physics (6) |
| PHYS4850 | Particle physics (6) |
| PHYS7350 | Graduate classical mechanics (6) |
| PHYS7351 | Graduate quantum mechanics (6) |
| PHYS7450 | Graduate electromagnetism (6) |
| PHYS7550 | Graduate statistical mechanics (6) |
| PHYS7551 | Graduate solid state physics (6) |
| PHYS7650 | Stellar atmospheres (6) |
| PHYS7750 | Nanophysics (6) |

## 3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| PHYS3999 | Directed studies in physics (6) |
| :--- | :--- |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Physics |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 4}$ |

## Objectives:

The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Mathematics/Physics
Minor in Physics

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        PHYS1150 Problem solving in physics (6)
        PHYS1250 Fundamental physics (6)
        PHYS2250 Introductory mechanics (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2260 Heat and waves (6)
```

        PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (24 credits)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
        PHYS3450 Electromagnetism (6)
        PHYS3550 Statistical mechanics \& thermodynamics (6)
    Disciplinary Electives ( 18 credits)
    At least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current list includes courses in List \(A\) and those courses not selected to fulfill the capstone
        requirements.
        List A
        PHYS3150
        Theoretical physics (6)
        PHYS3551 Introductory solid state physics (6)
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
        PHYS3750 Laser and spectroscopy (6)
        PHYS3751 Physics of nanomaterials (6)
        PHYS3850 Physical Optics (6)
        [previous title: Waves and optics
        (6) ]
        PHYS3851 Atomic and nuclear physics (6)
        Computational physics (6)
        PHYS4150
        PHYS4151 Data analysis and modeling in physics (6)
        PHYS4350 Advanced classical mechanics (6)
        PHYS4351 Advanced quantum mechanics (6)
        PHYS4450 Advanced electromagnetism (6)
        PHYS4550 Advanced statistical mechanics (6)
        PHYS4551 Solid state physics (6)
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
    ```
    PHYS4654 General relativity (6)
    PHYS4655 Interstellar medium (6)
    PHYS4750 Experimental physics (6)
    PHYS4850 Particle physics (6)
    PHYS7350 Graduate classical mechanics (6)
    PHYS7351 Graduate quantum mechanics (6)
    PHYS7450 Graduate electromagnetism (6)
    PHYS7550 Graduate statistical mechanics (6)
    PHYS7551 Graduate solid state physics (6)
    PHYS7650 Stellar atmospheres (6)
    PHYS7750 Nanophysics (6)
3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
    PHYS3999 Directed studies in physics (6)
    PHYS4966 Physics internship (6)
    PHYS4999 Physics project (12)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning ( 6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Physics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 3}$ |

## Objectives:

The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Mathematics/Physics
Minor in Physics

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        PHYS1150 Problem solving in physics (6)
        PHYS1250 Fundamental physics (6)
        PHYS2250 Introductory mechanics (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2260 Heat and waves (6)
```

        PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (24 credits)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
        PHYS3450 Electromagnetism (6)
        PHYS3550 Statistical mechanics \& thermodynamics (6)
    Disciplinary Electives ( 18 credits)
    At least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current list includes courses in List \(A\) and those courses not selected to fulfill the capstone
        requirements.
        List A
        PHYS3150
        Theoretical physics (6)
        PHYS3551 Introductory solid state physics (6)
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
        PHYS3750 Laser and spectroscopy (6)
        PHYS3751 Physics of nanomaterials (6)
        PHYS3850 Physical Optics (6)
        [previous title: Waves and optics
        (6) ]
        PHYS3851 Atomic and nuclear physics (6)
        Computational physics (6)
        PHYS4150
        PHYS4151 Data analysis and modeling in physics (6)
        PHYS4350 Advanced classical mechanics (6)
        PHYS4351 Advanced quantum mechanics (6)
        PHYS4450 Advanced electromagnetism (6)
        PHYS4550 Advanced statistical mechanics (6)
        PHYS4551 Solid state physics (6)
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
    ```
    PHYS4654 General relativity (6)
    PHYS4655 Interstellar medium (6)
    PHYS4750 Experimental physics (6)
    PHYS4850 Particle physics (6)
    PHYS7350 Graduate classical mechanics (6)
    PHYS7351 Graduate quantum mechanics (6)
    PHYS7450 Graduate electromagnetism (6)
    PHYS7550 Graduate statistical mechanics (6)
    PHYS7551 Graduate solid state physics (6)
    PHYS7650 Stellar atmospheres (6)
    PHYS7750 Nanophysics (6)
3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
    PHYS3999 Directed studies in physics (6)
    PHYS4966 Physics internship (6)
    PHYS4999 Physics project (12)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning ( 6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Physics |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 2}$ |

## Objectives:

The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Mathematics/Physics
Minor in Physics

```
Required courses (96 credits)
    1. Introductory level courses (48 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (36 credits)
        PHYS1150 Problem solving in physics (6)
        PHYS1250 Fundamental physics (6)
        PHYS2250 Introductory mechanics (6)
        PHYS2255 Introductory electricity and magnetism (6)
        PHYS2260 Heat and waves (6)
```

        PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
    2. Advanced level courses (42 credits)
    Disciplinary Core Courses (24 credits)
        PHYS3350 Classical mechanics (6)
        PHYS3351 Quantum mechanics (6)
        PHYS3450 Electromagnetism (6)
        PHYS3550 Statistical mechanics \& thermodynamics (6)
    Disciplinary Electives ( 18 credits)
    At least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to
        prerequisite requirements. The current list includes courses in List \(A\) and those courses not selected to fulfill the capstone
        requirements.
        List A
        PHYS3150
        Theoretical physics (6)
        PHYS3551 Introductory solid state physics (6)
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
        PHYS3750 Laser and spectroscopy (6)
        PHYS3751 Physics of nanomaterials (6)
        PHYS3850 Physical Optics (6)
        [previous title: Waves and optics
        (6) ]
        PHYS3851 Atomic and nuclear physics (6)
        Computational physics (6)
        PHYS4150
        PHYS4151 Data analysis and modeling in physics (6)
        PHYS4350 Advanced classical mechanics (6)
        PHYS4351 Advanced quantum mechanics (6)
        PHYS4450 Advanced electromagnetism (6)
        PHYS4550 Advanced statistical mechanics (6)
        PHYS4551 Solid state physics (6)
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
    ```
    PHYS4654 General relativity (6)
    PHYS4655 Interstellar medium (6)
    PHYS4750 Experimental physics (6)
    PHYS4850 Particle physics (6)
    PHYS7350 Graduate classical mechanics (6)
    PHYS7351 Graduate quantum mechanics (6)
    PHYS7450 Graduate electromagnetism (6)
    PHYS7550 Graduate statistical mechanics (6)
    PHYS7551 Graduate solid state physics (6)
    PHYS7650 Stellar atmospheres (6)
    PHYS7750 Nanophysics (6)
3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
    PHYS3999 Directed studies in physics (6)
    PHYS4966 Physics internship (6)
    PHYS4999 Physics project (12)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning ( 6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Capstone requirement for BEd\&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Physics (Intensive)
Offered to students $\quad 2021$
admitted to Year 1 in
Objectives:
The Major in Physics (Intensive) aims to provide students with a solid foundation on the subject in breadth and depth. It covers a
wide range of core areas which provides the intensive preparation to pursue learning in specializations, e.g. quantum
mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for
students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology).
Students will attain professional knowledge and competencies in physics and research experience plus the training of analytical
thinking, quantitative reasoning, and problem solving methods during their studies. Graduates are expected to be well-prepared
for further studies in physics and related disciplines and to pursue careers in scientific or technical fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively based on a broad foundation of theoretical and experimental knowledge in physics, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people of different background, culture, gender and nationality effectively in scientific issues (by means of group project, tutorial session, presentation, exchange, internship and capstone opportunities in the curriculum)
PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting in an advanced level which can position them to pursue postgraduate studies in scientific and technical fields (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Physics
Minor in Physics
Required courses ( 144 credits)

1. Introductory level courses ( 72 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
(Note 1)
SCNC1112 Fundamentals of modern science (6)

> (Note 1)

Disciplinary Core Courses (48 credits)
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2250 Introductory mechanics (6) (Note 1)
PHYS2255 Introductory electricity and magnetism (6) (Note 1)
PHYS2261 Introductory heat and thermodynamics (6) (Note 1)
PHYS2265 Introductory quantum physics (6) (Note 1)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
COMP1117 Computer programming (6)
MATH1013 University mathematics II (6)
PHYS1650 Nature of the universe (6)
PHYS2160 Introductory computational physics (6)
PHYS2650 Modern astronomy (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 60 credits)

Disciplinary Core Courses (36 credits)
PHYS3150 Theoretical physics (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics \& thermodynamics (6)
PHYS3760
Physics laboratory (6)
Disciplinary Electives ( $\mathbf{2 4}$ credits)
All 24 credits should be advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List $A$ and those courses not selected to fulfill the capstone requirements.
List A
PHYS3151 Machine learning in physics (6)
PHYS3650 Observational astronomy (6)
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS3750 Laser and spectroscopy (6)

| PHYS3850 | Physical Optics (6) |
| :--- | :--- |
| PHYS3851 | Atomic and nuclear physics (6) |
| PHYS4150 | Computational physics (6) |
| PHYS4151 | Data analysis and modeling in physics (6) |
| PHYS4351 | Advanced quantum mechanics (6) |
| PHYS4450 | Advanced electromagnetism (6) |
| PHYS4550 | Advanced statistical mechanics (6) |
| PHYS4551 | Solid state physics (6) |
| PHYS4650 | Stellar physics (6) |
| PHYS4652 | Planetary science (6) |
| PHYS4653 | Cosmology (6) |
| PHYS4654 | General relativity (6) |
| PHYS4655 | Interstellar medium (6) |
| PHYS4656 | Advanced astrophysics (6) |
| PHYS4850 | Particle physics (6) |
| PHYS7350 | Graduate classical mechanics (6) |
| PHYS7351 | Graduate quantum mechanics (6) |
| PHYS7450 | Graduate electromagnetism (6) |
| PHYS7550 | Graduate statistical mechanics (6) |
| PHYS7750 | Nanophysics (6) |

3. Capstone requirement ( 12 credits)

At least 12 credits selected from the following courses:

| PHYS3999 | Directed studies in physics (6) |
| :--- | :--- |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. These are core courses in the regular Physics-Major ( 96 credits) curriculum.
2. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
3. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.
4. Those who want to specialize in the astrophysics theme should pass any three of the following courses: PHYS3650 Observational astronomy, PHYS3653 Astrophysics, PHYS3660 Astronomy laboratory, PHYS4652 Planetary science, PHYS4653 Cosmology, PHYS4654 General relativity, PHYS4655 Interstellar medium, and PHYS4656 Advanced astrophysics, out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in astrophysics.
5. Those who want to specialize in the computational physics theme should pass any three of the following courses: PHYS3150 Theoretical physics, PHYS3151 Machine learning in physics, PHYS4150 Computational physics, and PHYS4151 Data analysis and modeling in physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in computational physics.
6. Those who want to specialize in the experimental physics theme should pass PHYS3760 Physics laboratory, plus any two of the following courses: PHYS3660 Astronomy laboratory, PHYS3750 Laser and spectroscopy, PHYS3850 Physical optics, PHYS3851 Atomic and nuclear physics, PHYS4151 Data analysis and modeling in physics, PHYS4551 Solid state physics, and PHYS4850 Particle physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in experimental physics.
7. Those who want to specialize in the theoretical physics theme should pass any four of the following courses: PHYS3150 Theoretical physics, PHYS3350 Classical mechanics, PHYS3351 Quantum mechanics, PHYS3450 Electromagnetism, PHYS3550 Statistical mechanics \& thermodynamics, PHYS4351 Advanced quantum mechanics, PHYS4450 Advanced electromagnetism, PHYS4551 Solid state physics, PHYS4654 General relativity, PHYS4850 Particle physics, PHYS7351 Graduate quantum mechanics, PHYS7450 Graduate electromagnetism, PHYS7550 Graduate statistical mechanics out of which at least two must be 4000+ level courses, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in theoretical physics.
8. Upon prior approval, one may use PHYS4966 Physics internship to replace PHYS3999 Directed studies or PHYS4999 Physics project to fulfill the specialization in a theme.
9. No double counting is allowed if one wants to specialize in more than one theme. In this case, one is allowed to replace the PHYS3999 Directed studies in physics or PHYS4999 Physics project requirement in one of the theme specializations by a regular course in the same theme of specialization.
10. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

11. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

 Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.Major Title Major in Physics (Intensive)
Offered to students $\quad 2020$
admitted to Year 1 in
Objectives:
The Major in Physics (Intensive) aims to provide students with a solid foundation on the subject in breadth and depth. It covers a
wide range of core areas which provides the intensive preparation to pursue learning in specializations, e.g. quantum
mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for
students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology).
Students will attain professional knowledge and competencies in physics and research experience plus the training of analytical
thinking, quantitative reasoning, and problem solving methods during their studies. Graduates are expected to be well-prepared
for further studies in physics and related disciplines and to pursue careers in scientific or technical fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively based on a broad foundation of theoretical and experimental knowledge in physics, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people of different background, culture, gender and nationality effectively in scientific issues (by means of group project, tutorial session, presentation, exchange, internship and capstone opportunities in the curriculum)
PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting in an advanced level which can position them to pursue postgraduate studies in scientific and technical fields (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Physics
Minor in Physics
Required courses ( 144 credits)

1. Introductory level courses ( 72 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
(Note 1)
SCNC1112 Fundamentals of modern science (6)

> (Note 1)

Disciplinary Core Courses (48 credits)
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2250 Introductory mechanics (6) (Note 1)
PHYS2255 Introductory electricity and magnetism (6) (Note 1)
PHYS2261 Introductory heat and thermodynamics (6) (Note 1)
PHYS2265 Introductory quantum physics (6) (Note 1)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
COMP1117 Computer programming (6)
MATH1013 University mathematics II (6)
PHYS1650 Nature of the universe (6)
PHYS2160 Introductory computational physics (6)
PHYS2650 Modern astronomy (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 60 credits)

Disciplinary Core Courses (36 credits)
PHYS3150 Theoretical physics (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics \& thermodynamics (6)
PHYS3760
Physics laboratory (6)
Disciplinary Electives ( $\mathbf{2 4}$ credits)
All 24 credits should be advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List $A$ and those courses not selected to fulfill the capstone requirements.
List A
PHYS3151 Machine learning in physics (6)
PHYS3650 Observational astronomy (6)
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS3750 Laser and spectroscopy (6)

| PHYS3850 | Physical Optics (6) |
| :--- | :--- |
| PHYS3851 | Atomic and nuclear physics (6) |
| PHYS4150 | Computational physics (6) |
| PHYS4151 | Data analysis and modeling in physics (6) |
| PHYS4351 | Advanced quantum mechanics (6) |
| PHYS4450 | Advanced electromagnetism (6) |
| PHYS4550 | Advanced statistical mechanics (6) |
| PHYS4551 | Solid state physics (6) |
| PHYS4650 | Stellar physics (6) |
| PHYS4652 | Planetary science (6) |
| PHYS4653 | Cosmology (6) |
| PHYS4654 | General relativity (6) |
| PHYS4655 | Interstellar medium (6) |
| PHYS4656 | Advanced astrophysics (6) |
| PHYS4850 | Particle physics (6) |
| PHYS7350 | Graduate classical mechanics (6) |
| PHYS7351 | Graduate quantum mechanics (6) |
| PHYS7450 | Graduate electromagnetism (6) |
| PHYS7550 | Graduate statistical mechanics (6) |
| PHYS7750 | Nanophysics (6) |

3. Capstone requirement ( 12 credits)

At least 12 credits selected from the following courses:

| PHYS3999 | Directed studies in physics (6) |
| :--- | :--- |
| PHYS4966 | Physics internship (6) |
| PHYS4999 | Physics project (12) |

## Notes:

1. These are core courses in the regular Physics-Major ( 96 credits) curriculum.
2. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
3. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.
4. Those who want to specialize in the astrophysics theme should pass any three of the following courses: PHYS3650 Observational astronomy, PHYS3653 Astrophysics, PHYS3660 Astronomy laboratory, PHYS4652 Planetary science, PHYS4653 Cosmology, PHYS4654 General relativity, PHYS4655 Interstellar medium, and PHYS4656 Advanced astrophysics, out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in astrophysics.
5. Those who want to specialize in the computational physics theme should pass any three of the following courses: PHYS3150 Theoretical physics, PHYS3151 Machine learning in physics, PHYS4150 Computational physics, and PHYS4151 Data analysis and modeling in physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in computational physics.
6. Those who want to specialize in the experimental physics theme should pass PHYS3760 Physics laboratory, plus any two of the following courses: PHYS3660 Astronomy laboratory, PHYS3750 Laser and spectroscopy, PHYS3850 Physical optics, PHYS3851 Atomic and nuclear physics, PHYS4151 Data analysis and modeling in physics, PHYS4551 Solid state physics, and PHYS4850 Particle physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in experimental physics.
7. Those who want to specialize in the theoretical physics theme should pass any four of the following courses: PHYS3150 Theoretical physics, PHYS3350 Classical mechanics, PHYS3351 Quantum mechanics, PHYS3450 Electromagnetism, PHYS3550 Statistical mechanics \& thermodynamics, PHYS4351 Advanced quantum mechanics, PHYS4450 Advanced electromagnetism, PHYS4551 Solid state physics, PHYS4654 General relativity, PHYS4850 Particle physics, PHYS7351 Graduate quantum mechanics, PHYS7450 Graduate electromagnetism, PHYS7550 Graduate statistical mechanics out of which at least two must be 4000+ level courses, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in theoretical physics.
8. Upon prior approval, one may use PHYS4966 Physics internship to replace PHYS3999 Directed studies or PHYS4999 Physics project to fulfill the specialization in a theme.
9. No double counting is allowed if one wants to specialize in more than one theme. In this case, one is allowed to replace the PHYS3999 Directed studies in physics or PHYS4999 Physics project requirement in one of the theme specializations by a regular course in the same theme of specialization.
10. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Physics (Intensive)
Offered to students $\quad 2019$
admitted to Year 1 in
Objectives:
The Major in Physics (Intensive) aims to provide students with a solid foundation on the subject in breadth and depth. It covers a
wide range of core areas which provides the intensive preparation to pursue learning in specializations, e.g. quantum
mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for
students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology).
Students will attain professional knowledge and competencies in physics and research experience plus the training of analytical
thinking, quantitative reasoning, and problem solving methods during their studies. Graduates are expected to be well-prepared
for further studies in physics and related disciplines and to pursue careers in scientific or technical fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively based on a broad foundation of theoretical and experimental knowledge in physics, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people of different background, culture, gender and nationality effectively in scientific issues (by means of group project, tutorial session, presentation, exchange, internship and capstone opportunities in the curriculum)
PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting in an advanced level which can position them to pursue postgraduate studies in scientific and technical fields (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Physics
Minor in Physics
Required courses ( 144 credits)

1. Introductory level courses ( 72 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (48 credits)
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2250 Introductory mechanics (6) (Note 1)
PHYS2255 Introductory electricity and magnetism (6) (Note 1)
PHYS2261 Introductory heat and thermodynamics (6) (Note 1)
PHYS2265 Introductory quantum physics (6) (Note 1)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
COMP1117 Computer programming (6)
MATH1013 University mathematics II (6)
PHYS1650 Nature of the universe (6)
PHYS2160 Introductory computational physics (6)
PHYS2650 Modern astronomy (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 60 credits)

Disciplinary Core Courses ( 36 credits)
PHYS3150 Theoretical physics (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics \& thermodynamics (6)
PHYS3760 Physics laboratory (6)
Disciplinary Electives ( $\mathbf{2 4}$ credits)
All 24 credits should be advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List $A$ and those courses not selected to fulfill the capstone requirements.
List A
PHYS3151 Machine learning in physics (6)
PHYS3650 Observational astronomy (6)
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS3750 Laser and spectroscopy (6)
[previous title: Waves and optics
PHYS3851 Atomic and nuclear physics (6)
PHYS4150 Computational physics (6)
PHYS4151 Data analysis and modeling in physics (6)
PHYS4351 Advanced quantum mechanics (6)
PHYS4450 Advanced electromagnetism (6)
PHYS4550 Advanced statistical mechanics (6)
PHYS4551 Solid state physics (6)
PHYS4650 Stellar physics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)
PHYS4850 Particle physics (6)
PHYS7350 Graduate classical mechanics (6)
PHYS7351 Graduate quantum mechanics (6)
PHYS7450 Graduate electromagnetism (6)
PHYS7550 Graduate statistical mechanics (6)
PHYS7750 Nanophysics (6)
3. Capstone requirement ( 12 credits)

At least 12 credits selected from the following courses:
PHYS3999 Directed studies in physics (6)
PHYS4966 Physics internship (6)
PHYS4999 Physics project (12)

## Notes:

1. These are core courses in the regular Physics-Major ( 96 credits) curriculum.
2. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
3. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.
4. Those who want to specialize in the astrophysics theme should pass any three of the following courses: PHYS3650 Observational astronomy, PHYS3653 Astrophysics, PHYS3660 Astronomy laboratory, PHYS4652 Planetary science, PHYS4653 Cosmology, PHYS4654 General relativity, PHYS4655 Interstellar medium, and PHYS4656 Advanced astrophysics, out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in astrophysics.
5. Those who want to specialize in the computational physics theme should pass any three of the following courses: PHYS3150 Theoretical physics, PHYS3151 Machine learning in physics, PHYS4150 Computational physics, and PHYS4151 Data analysis and modeling in physics out of which at least one must be a $4000+$ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in computational physics.
6. Those who want to specialize in the experimental physics theme should pass PHYS3760 Physics laboratory, plus any two of the following courses: PHYS3660 Astronomy laboratory, PHYS3750 Laser and spectroscopy, PHYS3850 Physical optics, PHYS3851 Atomic and nuclear physics, PHYS4151 Data analysis and modeling in physics, PHYS4551 Solid state physics, and PHYS4850 Particle physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in experimental physics.
7. Those who want to specialize in the theoretical physics theme should pass any four of the following courses: PHYS3150 Theoretical physics, PHYS3350 Classical mechanics, PHYS3351 Quantum mechanics, PHYS3450 Electromagnetism, PHYS3550 Statistical mechanics \& thermodynamics, PHYS4351 Advanced quantum mechanics, PHYS4450 Advanced electromagnetism, PHYS4551 Solid state physics, PHYS4654 General relativity, PHYS4850 Particle physics, PHYS7351 Graduate quantum mechanics, PHYS7450 Graduate electromagnetism, PHYS7550 Graduate statistical mechanics out of which at least two must be 4000+ level courses, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in theoretical physics.
8. Upon prior approval, one may use PHYS4966 Physics internship to replace PHYS3999 Directed studies or PHYS4999 Physics project to fulfill the specialization in a theme.
9. No double counting is allowed if one wants to specialize in more than one theme. In this case, one is allowed to replace the PHYS3999 Directed studies in physics or PHYS4999 Physics project requirement in one of the theme specializations by a regular course in the same theme of specialization.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Physics (Intensive)
Offered to students
admitted to Year 1 in
Objectives:
The Major in Physics (Intensive) aims to provide students with a solid foundation on the subject in breadth and depth. It covers a
wide range of core areas which provides the intensive preparation to pursue learning in specializations, e.g. quantum
mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for
students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology).
Students will attain professional knowledge and competencies in physics and research experience plus the training of analytical
thinking, quantitative reasoning, and problem solving methods during their studies. Graduates are expected to be well-prepared
for further studies in physics and related disciplines and to pursue careers in scientific or technical fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively based on a broad foundation of theoretical and experimental knowledge in physics, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people of different background, culture, gender and nationality effectively in scientific issues (by means of group project, tutorial session, presentation, exchange, internship and capstone opportunities in the curriculum)
PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting in an advanced level which can position them to pursue postgraduate studies in scientific and technical fields (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Physics
Minor in Physics
Required courses ( 144 credits)

1. Introductory level courses ( 72 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (48 credits)
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2250 Introductory mechanics (6) (Note 1)
PHYS2255 Introductory electricity and magnetism (6) (Note 1)
PHYS2261 Introductory heat and thermodynamics (6) (Note 1)
PHYS2265 Introductory quantum physics (6) (Note 1)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
COMP1117 Computer programming (6)
MATH1013 University mathematics II (6)
PHYS1650 Nature of the universe (6)
PHYS2160 Introductory computational physics (6)
PHYS2650 Modern astronomy (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 60 credits)

Disciplinary Core Courses ( 36 credits)
PHYS3150 Theoretical physics (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics \& thermodynamics (6)
PHYS3760 Physics laboratory (6)
Disciplinary Electives ( $\mathbf{2 4}$ credits)
All 24 credits should be advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List $A$ and those courses not selected to fulfill the capstone requirements.
List A
PHYS3151 Machine learning in physics (6)
PHYS3650 Observational astronomy (6)
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS3750 Laser and spectroscopy (6)
[previous title: Waves and optics
PHYS3851 Atomic and nuclear physics (6)
PHYS4150 Computational physics (6)
PHYS4151 Data analysis and modeling in physics (6)
PHYS4351 Advanced quantum mechanics (6)
PHYS4450 Advanced electromagnetism (6)
PHYS4550 Advanced statistical mechanics (6)
PHYS4551 Solid state physics (6)
PHYS4650 Stellar physics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)
PHYS4850 Particle physics (6)
PHYS7350 Graduate classical mechanics (6)
PHYS7351 Graduate quantum mechanics (6)
PHYS7450 Graduate electromagnetism (6)
PHYS7550 Graduate statistical mechanics (6)
PHYS7750 Nanophysics (6)
3. Capstone requirement ( 12 credits)

At least 12 credits selected from the following courses:
PHYS3999 Directed studies in physics (6)
PHYS4966 Physics internship (6)
PHYS4999 Physics project (12)

## Notes:

1. These are core courses in the regular Physics-Major ( 96 credits) curriculum.
2. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
3. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.
4. Those who want to specialize in the astrophysics theme should pass any three of the following courses: PHYS3650 Observational astronomy, PHYS3653 Astrophysics, PHYS3660 Astronomy laboratory, PHYS4652 Planetary science, PHYS4653 Cosmology, PHYS4654 General relativity, PHYS4655 Interstellar medium, and PHYS4656 Advanced astrophysics, out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in astrophysics.
5. Those who want to specialize in the computational physics theme should pass any three of the following courses: PHYS3150 Theoretical physics, PHYS3151 Machine learning in physics, PHYS4150 Computational physics, and PHYS4151 Data analysis and modeling in physics out of which at least one must be a $4000+$ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in computational physics.
6. Those who want to specialize in the experimental physics theme should pass PHYS3760 Physics laboratory, plus any two of the following courses: PHYS3660 Astronomy laboratory, PHYS3750 Laser and spectroscopy, PHYS3850 Physical optics, PHYS3851 Atomic and nuclear physics, PHYS4151 Data analysis and modeling in physics, PHYS4551 Solid state physics, and PHYS4850 Particle physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in experimental physics.
7. Those who want to specialize in the theoretical physics theme should pass any four of the following courses: PHYS3150 Theoretical physics, PHYS3350 Classical mechanics, PHYS3351 Quantum mechanics, PHYS3450 Electromagnetism, PHYS3550 Statistical mechanics \& thermodynamics, PHYS4351 Advanced quantum mechanics, PHYS4450 Advanced electromagnetism, PHYS4551 Solid state physics, PHYS4654 General relativity, PHYS4850 Particle physics, PHYS7351 Graduate quantum mechanics, PHYS7450 Graduate electromagnetism, PHYS7550 Graduate statistical mechanics out of which at least two must be 4000+ level courses, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in theoretical physics.
8. Upon prior approval, one may use PHYS4966 Physics internship to replace PHYS3999 Directed studies or PHYS4999 Physics project to fulfill the specialization in a theme.
9. No double counting is allowed if one wants to specialize in more than one theme. In this case, one is allowed to replace the PHYS3999 Directed studies in physics or PHYS4999 Physics project requirement in one of the theme specializations by a regular course in the same theme of specialization.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Physics (Intensive)
Offered to students
admitted to Year 1 in
Objectives:
The Major in Physics (Intensive) aims to provide students with a solid foundation on the subject in breadth and depth. It covers a
wide range of core areas which provides the intensive preparation to pursue learning in specializations, e.g. quantum
mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for
students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology).
Students will attain professional knowledge and competencies in physics and research experience plus the training of analytical
thinking, quantitative reasoning, and problem solving methods during their studies. Graduates are expected to be well-prepared
for further studies in physics and related disciplines and to pursue careers in scientific or technical fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively based on a broad foundation of theoretical and experimental knowledge in physics, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people of different background, culture, gender and nationality effectively in scientific issues (by means of group project, tutorial session, presentation, exchange, internship and capstone opportunities in the curriculum)
PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting in an advanced level which can position them to pursue postgraduate studies in scientific and technical fields (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Physics
Minor in Physics
Required courses ( 144 credits)

1. Introductory level courses ( 72 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (48 credits)
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2250 Introductory mechanics (6) (Note 1)
PHYS2255 Introductory electricity and magnetism (6) (Note 1)
PHYS2261 Introductory heat and thermodynamics (6)
PHYS2265 Introductory quantum physics (6)
(Note 1)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
COMP1117 Computer programming (6)
MATH1013 University mathematics II (6)
PHYS1650 Nature of the universe (6)
PHYS2160 Introductory computational physics (6)
PHYS2650 Modern astronomy (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 60 credits)

Disciplinary Core Courses ( 36 credits)
PHYS3150 Theoretical physics (6)
PHYS3350 Classical mechanics (6) (Note 1)
PHYS3351 Quantum mechanics (6) (Note 1)
PHYS3450 Electromagnetism (6) (Note 1)
PHYS3550 Statistical mechanics \& thermodynamics (6) (Note 1)
PHYS3760 Physics laboratory (6)
Disciplinary Electives ( $\mathbf{2 4}$ credits)
All 24 credits should be advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List $A$ and those courses not selected to fulfill the capstone requirements.
List A
PHYS3151 Machine learning in physics (6)
PHYS3650 Observational astronomy (6)
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS3750 Laser and spectroscopy (6)
[previous title: Waves and optics
PHYS3851 Atomic and nuclear physics (6)
PHYS4150 Computational physics (6)
PHYS4151 Data analysis and modeling in physics (6)
PHYS4351 Advanced quantum mechanics (6)
PHYS4450 Advanced electromagnetism (6)
PHYS4550 Advanced statistical mechanics (6)
PHYS4551 Solid state physics (6)
PHYS4650 Stellar physics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)
PHYS4850 Particle physics (6)
PHYS7350 Graduate classical mechanics (6)
PHYS7351 Graduate quantum mechanics (6)
PHYS7450 Graduate electromagnetism (6)
PHYS7550 Graduate statistical mechanics (6)
PHYS7750 Nanophysics (6)
3. Capstone requirement ( 12 credits)

At least 12 credits selected from the following courses:
PHYS3999 Directed studies in physics (6)
PHYS4966 Physics internship (6)
PHYS4999 Physics project (12)

## Notes:

1. These are core courses in the regular Physics-Major ( 96 credits) curriculum.
2. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
3. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.
4. Those who want to specialize in the astrophysics theme should pass any three of the following courses: PHYS3650 Observational astronomy, PHYS3653 Astrophysics, PHYS3660 Astronomy laboratory, PHYS4652 Planetary science, PHYS4653 Cosmology, PHYS4654 General relativity, PHYS4655 Interstellar medium, and PHYS4656 Advanced astrophysics, out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in astrophysics.
5. Those who want to specialize in the computational physics theme should pass any three of the following courses: PHYS3150 Theoretical physics, PHYS3151 Machine learning in physics, PHYS4150 Computational physics, and PHYS4151 Data analysis and modeling in physics out of which at least one must be a $4000+$ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in computational physics.
6. Those who want to specialize in the experimental physics theme should pass PHYS3760 Physics laboratory, plus any two of the following courses: PHYS3660 Astronomy laboratory, PHYS3750 Laser and spectroscopy, PHYS3850 Physical optics, PHYS3851 Atomic and nuclear physics, PHYS4151 Data analysis and modeling in physics, PHYS4551 Solid state physics, and PHYS4850 Particle physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in experimental physics.
7. Those who want to specialize in the theoretical physics theme should pass any four of the following courses: PHYS3150 Theoretical physics, PHYS3350 Classical mechanics, PHYS3351 Quantum mechanics, PHYS3450 Electromagnetism, PHYS3550 Statistical mechanics \& thermodynamics, PHYS4351 Advanced quantum mechanics, PHYS4450 Advanced electromagnetism, PHYS4551 Solid state physics, PHYS4654 General relativity, PHYS4850 Particle physics, PHYS7351 Graduate quantum mechanics, PHYS7450 Graduate electromagnetism, PHYS7550 Graduate statistical mechanics out of which at least two must be 4000+ level courses, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in theoretical physics.
8. Upon prior approval, one may use PHYS4966 Physics internship to replace PHYS3999 Directed studies or PHYS4999 Physics project to fulfill the specialization in a theme.
9. No double counting is allowed if one wants to specialize in more than one theme. In this case, one is allowed to replace the PHYS3999 Directed studies in physics or PHYS4999 Physics project requirement in one of the theme specializations by a regular course in the same theme of specialization.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Physics (Intensive)
Offered to students $\quad 2016$
admitted to Year 1 in
Objectives:
The Major in Physics (Intensive) aims to provide students with a solid foundation on the subject in breadth and depth. It covers a
wide range of core areas which provides the intensive preparation to pursue learning in specializations, e.g. quantum
mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for
students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology).
Students will attain professional knowledge and competencies in physics and research experience plus the training of analytical
thinking, quantitative reasoning, and problem solving methods during their studies. Graduates are expected to be well-prepared
for further studies in physics and related disciplines and to pursue careers in scientific or technical fields.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2 : have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively based on a broad foundation of theoretical and experimental knowledge in physics, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people of different background, culture, gender and nationality effectively in scientific issues (by means of group project, tutorial session, presentation, exchange, internship and capstone opportunities in the curriculum)
PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting in an advanced level which can position them to pursue postgraduate studies in scientific and technical fields (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

## Impermissible Combinations:

Major in Physics
Minor in Physics
Required courses ( 144 credits)

1. Introductory level courses ( 72 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6) (Note 1)
SCNC1112 Fundamentals of modern science (6) (Note 1)
Disciplinary Core Courses (48 credits)
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2250 Introductory mechanics (6) (Note 1)
PHYS2255 Introductory electricity and magnetism (6) (Note 1)
PHYS2261 Introductory heat and thermodynamics (6)
PHYS2265 Introductory quantum physics (6)
(Note 1)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
COMP1117 Computer programming (6)
MATH1013 University mathematics II (6)
PHYS1650 Nature of the universe (6)
PHYS2160 Introductory computational physics (6)
PHYS2650 Modern astronomy (6)
STAT1603 Introductory statistics (6)
2. Advanced level courses ( 60 credits)

Disciplinary Core Courses ( 36 credits)
PHYS3150 Theoretical physics (6)
PHYS3350 Classical mechanics (6) (Note 1)
PHYS3351 Quantum mechanics (6) (Note 1)
PHYS3450 Electromagnetism (6) (Note 1)
PHYS3550 Statistical mechanics \& thermodynamics (6) (Note 1)
PHYS3760 Physics laboratory (6)
Disciplinary Electives (24 credits)
All 24 credits should be advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List $A$ and those courses not selected to fulfill the capstone requirements.
List A
PHYS3151 Machine learning in physics (6)
PHYS3650 Observational astronomy (6)
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS3750 Laser and spectroscopy (6)
[previous title: Waves and optics
PHYS3851 Atomic and nuclear physics (6)
PHYS4150 Computational physics (6)
PHYS4151 Data analysis and modeling in physics (6)
PHYS4351 Advanced quantum mechanics (6)
PHYS4450 Advanced electromagnetism (6)
PHYS4550 Advanced statistical mechanics (6)
PHYS4551 Solid state physics (6)
PHYS4650 Stellar physics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)
PHYS4850 Particle physics (6)
PHYS7350 Graduate classical mechanics (6)
PHYS7351 Graduate quantum mechanics (6)
PHYS7450 Graduate electromagnetism (6)
PHYS7550 Graduate statistical mechanics (6)
PHYS7750 Nanophysics (6)
3. Capstone requirement ( 12 credits)

At least 12 credits selected from the following courses:
PHYS3999 Directed studies in physics (6)
PHYS4966 Physics internship (6)
PHYS4999 Physics project (12)

## Notes:

1. These are core courses in the regular Physics-Major ( 96 credits) curriculum.
2. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
3. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.
4. Those who want to specialize in the astrophysics theme should pass any three of the following courses: PHYS3650 Observational astronomy, PHYS3653 Astrophysics, PHYS3660 Astronomy laboratory, PHYS4652 Planetary science, PHYS4653 Cosmology, PHYS4654 General relativity, PHYS4655 Interstellar medium, and PHYS4656 Advanced astrophysics, out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in astrophysics.
5. Those who want to specialize in the computational physics theme should pass any three of the following courses: PHYS3150 Theoretical physics, PHYS3151 Machine learning in physics, PHYS4150 Computational physics, and PHYS4151 Data analysis and modeling in physics out of which at least one must be a $4000+$ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in computational physics.
6. Those who want to specialize in the experimental physics theme should pass PHYS3760 Physics laboratory, plus any two of the following courses: PHYS3660 Astronomy laboratory, PHYS3750 Laser and spectroscopy, PHYS3850 Physical optics, PHYS3851 Atomic and nuclear physics, PHYS4151 Data analysis and modeling in physics, PHYS4551 Solid state physics, and PHYS4850 Particle physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in experimental physics.
7. Those who want to specialize in the theoretical physics theme should pass any four of the following courses: PHYS3150 Theoretical physics, PHYS3350 Classical mechanics, PHYS3351 Quantum mechanics, PHYS3450 Electromagnetism, PHYS3550 Statistical mechanics \& thermodynamics, PHYS4351 Advanced quantum mechanics, PHYS4450 Advanced electromagnetism, PHYS4551 Solid state physics, PHYS4654 General relativity, PHYS4850 Particle physics, PHYS7351 Graduate quantum mechanics, PHYS7450 Graduate electromagnetism, PHYS7550 Graduate statistical mechanics out of which at least two must be 4000+ level courses, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in theoretical physics.
8. Upon prior approval, one may use PHYS4966 Physics internship to replace PHYS3999 Directed studies or PHYS4999 Physics project to fulfill the specialization in a theme.
9. No double counting is allowed if one wants to specialize in more than one theme. In this case, one is allowed to replace the PHYS3999 Directed studies in physics or PHYS4999 Physics project requirement in one of the theme specializations by a regular course in the same theme of specialization.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Risk Management <br> Offered to students 2021 <br> admitted to Year 1 in

## Objectives:

The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6 : gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (18 credits)
    STAT3600 Linear statistical analysis (6)
    STAT3609 The statistics of investment risk (6)
    STAT3615 Practical mathematics for investment (6)
Disciplinary Electives (30 credits)
    At least 30 credits selected from the following courses:
    STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
    STAT3610 Risk management and insurance (6)
    STAT3612 Statistical machine learning (6)
    STAT3618 Derivatives and risk management (6)
    STAT3655 Survival analysis (6)
    STAT3911 Financial economics II (6)
    STAT4601 Time-series analysis (6)
    STAT4603 Current topics in risk management (6)
    STAT4606 Risk management and Basel Accords in banking and finance
    (6)
    STAT4607 Credit risk analysis (6)
    STAT4608 Market risk analysis (6)
3. Capstone requirement (6 credits)
    At least 6 credits selected from the following courses:
        STAT3799 Directed studies in statistics (6)
        STAT4710 Capstone experience for statistics undergraduates (6)
        STAT4766 Statistics internship (6)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.
6. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

7. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Risk Management <br> Offered to students 2020 <br> admitted to Year 1 in

## Objectives:

The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6 : gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (18 credits)
    STAT3600 Linear statistical analysis (6)
    STAT3609 The statistics of investment risk (6)
    STAT3615 Practical mathematics for investment (6)
Disciplinary Electives (30 credits)
    At least 30 credits selected from the following courses:
    STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
    STAT3610 Risk management and insurance (6)
    STAT3612 Statistical machine learning (6)
    STAT3618 Derivatives and risk management (6)
    STAT3655 Survival analysis (6)
    STAT3911 Financial economics II (6)
    STAT4601 Time-series analysis (6)
    STAT4603 Current topics in risk management (6)
    STAT4606 Risk management and Basel Accords in banking and finance
    (6)
    STAT4607 Credit risk analysis (6)
    STAT4608 Market risk analysis (6)
3. Capstone requirement (6 credits)
    At least 6 credits selected from the following courses:
        STAT3799 Directed studies in statistics (6)
        STAT4710 Capstone experience for statistics undergraduates (6)
        STAT4766 Statistics internship (6)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.
6. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Risk Management <br> Offered to students 2019 <br> admitted to Year 1 in

## Objectives:

The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6 : gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (18 credits)
    STAT3600 Linear statistical analysis (6)
    STAT3609 The statistics of investment risk (6)
    STAT3615 Practical mathematics for investment (6)
Disciplinary Electives (30 credits)
    At least 30 credits selected from the following courses:
    STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
    STAT3610 Risk management and insurance (6)
    STAT3612 Statistical machine learning (6)
    STAT3618 Derivatives and risk management (6)
    STAT3655 Survival analysis (6)
    STAT3911 Financial economics II (6)
    STAT4601 Time-series analysis (6)
    STAT4603 Current topics in risk management (6)
    STAT4606 Risk management and Basel Accords in banking and finance
    (6)
    STAT4607 Credit risk analysis (6)
    STAT4608 Market risk analysis (6)
3. Capstone requirement (6 credits)
    At least 6 credits selected from the following courses:
        STAT3799 Directed studies in statistics (6)
        STAT4710 Capstone experience for statistics undergraduates (6)
        STAT4766 Statistics internship (6)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Risk Management <br> Offered to students 2018 <br> admitted to Year 1 in

## Objectives:

The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (18 credits)
    STAT3600 Linear statistical analysis (6)
    STAT3609 The statistics of investment risk (6)
    STAT3615 Practical mathematics for investment (6)
Disciplinary Electives (30 credits)
    At least 30 credits selected from the following courses:
    STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
    STAT3610 Risk management and insurance (6)
    STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
    STAT3618 Derivatives and risk management (6)
    STAT3655 Survival analysis (6)
    STAT3911 Financial economics II (6)
    STAT4601 Time-series analysis (6)
    STAT4603 Current topics in risk management (6)
    STAT4606 Risk management and Basel Accords in banking and finance
        (6)
    STAT4607 Credit risk analysis (6)
    STAT4608 Market risk analysis (6)
3. Capstone requirement (6 credits)
    At least 6 credits selected from the following courses:
        STAT3799 Directed studies in statistics (6)
        STAT4710 Capstone experience for statistics undergraduates (6)
        STAT4766 Statistics internship (6)
```


## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Risk Management <br> 2017 <br> students

## Objectives:

The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (18 credits)
    STAT3600 Linear statistical analysis (6)
    STAT3609 The statistics of investment risk (6)
    STAT3615 Practical mathematics for investment (6)
Disciplinary Electives (30 credits)
    At least 30 credits selected from the following courses:
    STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
    STAT3610 Risk management and insurance (6)
    STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
    STAT3618 Derivatives and risk management (6)
    STAT3655 Survival analysis (6)
    STAT3911 Financial economics II (6)
    STAT4601 Time-series analysis (6)
    STAT4603 Current topics in risk management (6)
    STAT4606 Risk management and Basel Accords in banking and finance
        (6)
    STAT4607 Credit risk analysis (6)
    STAT4608 Market risk analysis (6)
```

3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Risk Management <br> 2016 <br> students

## Objectives:

The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (18 credits)
    STAT3600 Linear statistical analysis (6)
    STAT3609 The statistics of investment risk (6)
    STAT3615 Practical mathematics for investment (6)
Disciplinary Electives (30 credits)
    At least 30 credits selected from the following courses:
    STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
    STAT3610 Risk management and insurance (6)
    STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
    STAT3618 Derivatives and risk management (6)
    STAT3655 Survival analysis (6)
    STAT3911 Financial economics II (6)
    STAT4601 Time-series analysis (6)
    STAT4603 Current topics in risk management (6)
    STAT4606 Risk management and Basel Accords in banking and finance
        (6)
    STAT4607 Credit risk analysis (6)
    STAT4608 Market risk analysis (6)
```

3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Risk Management <br> 2015 <br> students

## Objectives:

The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (24 credits)
    STAT3600 Linear statistical analysis (6)
    STAT3609 The statistics of investment risk (6)
    STAT3615 Practical mathematics for investment (6)
    STAT4601 Time-series analysis (6)
Disciplinary Electives (24 credits)
    At least 24 credits selected from the following courses:
        STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
        STAT3610 Risk management and insurance (6)
        STAT3612 Statistical machine learning (6)
        STAT3618 Derivatives and risk management (6)
        STAT3911 Financial economics II (6)
        STAT4603 Current topics in risk management (6)
        STAT4606 Risk management and Basel Accords in banking and finance
        STAT4607 Credit risk analysis (6)
        STAT4608 Market risk analysis (6)
```

    3. Capstone requirement ( 6 credits)
        At least 6 credits selected from the following courses:
        STAT3799 Directed studies in statistics (6)
        STAT4710 Capstone experience for statistics undergraduates (6)
        STAT4766 Statistics internship (6)
        STAT4799 Statistics project (12)
    
## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning ( 6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Risk Management <br> Offered to students <br> 2014 <br> admitted to Year 1 in

## Objectives:

The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6 : gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (24 credits)
    STAT3600 Linear statistical analysis (6)
    STAT3609 The statistics of investment risk (6)
    STAT3615 Practical mathematics for investment (6)
    STAT4601 Time-series analysis (6)
Disciplinary Electives (24 credits)
    At least 24 credits selected from the following courses:
        STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
        STAT3610 Risk management and insurance (6)
        STAT3612 Statistical machine learning (6)
        STAT3618 Derivatives and risk management (6)
        STAT3911 Financial economics II (6)
        STAT4603 Current topics in risk management (6)
        STAT4606 Risk management and Basel Accords in banking and finance
        STAT4607 Credit risk analysis (6)
        STAT4608 Market risk analysis (6)
```

    3. Capstone requirement ( 6 credits)
        At least 6 credits selected from the following courses:
        STAT3799 Directed studies in statistics (6)
        STAT4710 Capstone experience for statistics undergraduates (6)
        STAT4766 Statistics internship (6)
        STAT4799 Statistics project (12)
    
## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning ( 6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Risk Management <br> Offered to students 2013 <br> admitted to Year 1 in

## Objectives:

The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6 : gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

## Required courses ( 96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
MATH1013 University mathematics II (6)
STAT1600 Statistics: ideas and concepts (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2603 Data management with SAS (6)
2. Advanced level courses ( 48 credits)

Disciplinary Core Courses ( $\mathbf{2 4}$ credits)
STAT3600 Linear statistical analysis (6)
STAT3609 The statistics of investment risk (6)
STAT3615 Practical mathematics for investment (6)
STAT4601 Time-series analysis (6)
Disciplinary Electives ( $\mathbf{2 4}$ credits)
At least 24 credits selected from the following courses:
STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
STAT3610 Risk management and insurance (6)
STAT3612 Statistical machine learning (6)
[previous title: Data mining (6)]
STAT3618 Derivatives and risk management (6)
STAT3911 Financial economics II (6)
STAT4603 Current topics in risk management (6)
STAT4606 Risk management and Basel Accords in banking and finance (6)

STAT4607 Credit risk analysis (6)
STAT4608 Market risk analysis (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title <br> Major in Risk Management <br> 2012 <br> students

## Objectives:

The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4 : make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

## Required courses ( 96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
MATH1013 University mathematics II (6)
STAT1600 Statistics: ideas and concepts (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2603 Data management with SAS (6)
2. Advanced level courses ( 48 credits)

Disciplinary Core Courses ( $\mathbf{2 4}$ credits)
STAT3600 Linear statistical analysis (6)
STAT3609 The statistics of investment risk (6)
STAT3615 Practical mathematics for investment (6)
STAT4601 Time-series analysis (6)
Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:
STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
STAT3610 Risk management and insurance (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
STAT3618 Derivatives and risk management (6)
STAT3911 Financial economics II (6)
STAT4603 Current topics in risk management (6)
STAT4606 Risk management and Basel Accords in banking and finance (6)

STAT4607 Credit risk analysis (6)
STAT4608 Market risk analysis (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Statistics |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 1}$ |
| admitted to Year 1 in |  |

## Objectives:

The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : equip with hands-on experience in data analysis using statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (12 credits)
        STAT3600 Linear statistical analysis (6)
        STAT4602 Multivariate data analysis (6)
    Disciplinary Electives (36 credits)
        At least 36 credits from Lists A and B, among which at least 12 credits from List A:
        List A
            STAT3602
            STAT3603
            Modern nonparametric statistics (6)
            Statistical data analysis (6)
            Survival analysis (6)
            STAT4601 Time-series analysis (6)
            List B
            STAT3604
            STAT3605 Quality control and management (6)
            STAT3606 Business logistics (6)
            STAT3607 Statistics in clinical medicine and bio-medical research (6)
            STAT3608 Statistical genetics (6)
            STAT3612 Statistical machine learning (6)
            STAT3613 Marketing analytics (6)
```

```
STAT3617 Sample survey methods (6)
STAT4610 Bayesian learning (6)
```

3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:

| STAT3799 | Directed studies in statistics (6) |
| :--- | :--- |
| STAT4710 | Capstone experience for statistics undergraduates (6) |
| STAT4766 | Statistics internship (6) |
| STAT4799 | Statistics project (12) |

## Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613 and STAT3621. Note that students who wish to take STAT3621 are strongly recommended to take STAT2603 or STAT2604 first.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.
7. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

8. Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Statistics |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 0}$ |
| admitted to Year 1 in |  |

## Objectives:

The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : equip with hands-on experience in data analysis using statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
    2. Advanced level courses (48 credits)
    Disciplinary Core Courses (12 credits)
        STAT3600 Linear statistical analysis (6)
        STAT4602 Multivariate data analysis (6)
    Disciplinary Electives (36 credits)
        At least 36 credits from Lists A and B, among which at least 12 credits from List A:
        List A
            STAT3602
            STAT3603
            Modern nonparametric statistics (6)
            Statistical data analysis (6)
            Survival analysis (6)
            STAT4601 Time-series analysis (6)
            List B
            STAT3604
            STAT3605 Quality control and management (6)
            STAT3606 Business logistics (6)
            STAT3607 Statistics in clinical medicine and bio-medical research (6)
            STAT3608 Statistical genetics (6)
            STAT3612 Statistical machine learning (6)
            STAT3613 Marketing analytics (6)
```

```
    STAT3617 Sample survey methods (6)
    STAT4610 Bayesian learning (6)
```

3. Capstone requirement ( 6 credits)
At least 6 credits selected from the following courses:

| STAT3799 | Directed studies in statistics (6) |
| :--- | :--- |
| STAT4710 | Capstone experience for statistics undergraduates (6) |
| STAT4766 | Statistics internship (6) |
| STAT4799 | Statistics project (12) |

## Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613 and STAT3621. Note that students who wish to take STAT3621 are strongly recommended to take STAT2603 or STAT2604 first.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.
7. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis


## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title

Offered to students
admitted to Year 1 in

## Objectives:

The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : equip with hands-on experience in data analysis using statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
```

    2. Advanced level courses ( \(\mathbf{4 8}\) credits)
    Disciplinary Core Courses ( 12 credits)
        STAT3600 Linear statistical analysis (6)
        STAT4602 Multivariate data analysis (6)
    Disciplinary Electives ( \(\mathbf{3 6}\) credits)
        At least 36 credits from Lists \(A\) and \(B\), among which at least 12 credits from List \(A\) :
        List A
            STAT3602
            STAT3620 Modern nonparametric statistics (6)
            STAT3621 Statistical data analysis (6)
            STAT3655 Survival analysis (6) Take either STAT3655 or STAT3955 to fulfill
    Statistical inference (6)
Stochastic processes (6)
Modern nonparametric statistics (6)

Survival analysis (6)

Survival analysis (6)
the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive. Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.
[previous title: Probability modelling (6)]

Take either STAT3655 or STAT3955 to fulfill

STAT4601
List B
STAT3604
Design and analysis of experiments (6)
STAT3606
Time-series analysis (6)
Design and analysis of experiments (6) Business logistics (6)

```
    STAT3607 Statistics in clinical medicine and bio-medical research (6)
    STAT3608 Statistical genetics (6)
    STAT3612 Statistical machine learning (6)
    STAT3613 Marketing analytics (6)
    STAT3617 Sample survey methods (6)
    STAT4610 Bayesian learning (6)
3. Capstone requirement (6 credits)
    At least 6 credits selected from the following courses:
    STAT3799 Directed studies in statistics (6)
    STAT4710 Capstone experience for statistics undergraduates (6)
    STAT4766 Statistics internship (6)
    STAT4799 Statistics project (12)
```


## Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613 and STAT3621. Note that students who wish to take STAT3621 are strongly recommended to take STAT2603 or STAT2604 first.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Statistics |
| :--- | :--- |
| Offered to students | 2018 |
| admitted to Year 1 in |  |

## Objectives:

The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : equip with hands-on experience in data analysis using statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
    SCNC11111 Scientific method and reasoning (6)
    SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
```

    2. Advanced level courses ( \(\mathbf{4 8}\) credits)
    Disciplinary Core Courses ( 12 credits)
        STAT3600 Linear statistical analysis (6)
        STAT4602 Multivariate data analysis (6)
    Disciplinary Electives ( \(\mathbf{3 6}\) credits)
        At least 36 credits from Lists \(A\) and \(B\), among which at least 12 credits from List \(A\) :
        List A
    STAT3602
STAT3603
STAT3620
STAT3621
STAT3655

STAT3955 Survival analysis (6)

STAT4601
List B
STAT3604
STAT3606

Quality control and management (6)
Statistical inference (6)
Stochastic processes (6)
Modern nonparametric statistics (6)
Statistical data analysis (6)
Survival analysis (6)

Time-series analysis (6)
Design and analysis of experiments (6) Business logistics (6)
[previous title: Probability modelling (6)]

Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive. Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.

```
    STAT3607 Statistics in clinical medicine and bio-medical research (6)
    STAT3608 Statistical genetics (6)
    STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
    STAT3613 Marketing analytics (6)}[\mp@code{Mrevious title: Marketing engineering (6)]
    STAT3617 Sample survey methods (6)
    STAT4610 Bayesian learning (6)
3. Capstone requirement (6 credits)
    At least 6 credits selected from the following courses:
    STAT3799 Directed studies in statistics (6)
    STAT4710 Capstone experience for statistics undergraduates (6)
    STAT4766 Statistics internship (6)
    STAT4799 Statistics project (12)
```


## Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613 and STAT3621. Note that students who wish to take STAT3621 are strongly recommended to take STAT2603 or STAT2604 first.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Statistics |
| :--- | :--- |
| Offered to students | 2017 |
| admitted to Year 1 in |  |

## Objectives:

The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : equip with hands-on experience in data analysis using statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
```

    2. Advanced level courses ( \(\mathbf{4 8}\) credits)
    Disciplinary Core Courses ( 12 credits)
        STAT3600 Linear statistical analysis (6)
        STAT4602 Multivariate data analysis (6)
    Disciplinary Electives ( 36 credits)
        At least 36 credits from Lists \(A\) and \(B\), among which at least 12 credits from List \(A\) :
        List A
    STAT3602
STAT3603
STAT3620
STAT3621
STAT3655

STAT3955 Survival analysis (6)

STAT4601
List B
STAT3604
STAT3606

Quality control and management (6)
Statistical inference (6)
Stochastic processes (6)
Modern nonparametric statistics (6)
Statistical data analysis (6)
Survival analysis (6)

Time-series analysis (6)
Design and analysis of experiments (6) Business logistics (6)
[previous title: Probability modelling (6)]

Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive. Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.

```
    STAT3607 Statistics in clinical medicine and bio-medical research (6)
    STAT3608 Statistical genetics (6)
    STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
    STAT3613 Marketing analytics (6)}[\mathrm{ [previous title: Marketing engineering (6)]
    STAT3616 Advanced SAS programming (6)
    STAT3617 Sample survey methods (6)
    STAT4610 Bayesian learning (6)
3. Capstone requirement (6 credits)
At least }6\mathrm{ credits selected from the following courses:
    STAT3799 Directed studies in statistics (6)
    STAT4710 Capstone experience for statistics undergraduates (6)
    STAT4766 Statistics internship (6)
    STAT4799 Statistics project (12)
```


## Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612 STAT3613, STAT3616 and STAT3621. Note that students who wish to take STAT3616 and STAT3621 are strongly recommended to take STAT2603 or STAT2604 first.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title

Offered to students
admitted to Year 1 in

## Objectives:

The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : equip with hands-on experience in data analysis using statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

```
Required courses (96 credits)
    1. Introductory level courses (42 credits)
    Disciplinary Core Courses: Science Foundation Courses (12 credits)
        SCNC1111 Scientific method and reasoning (6)
        SCNC1112 Fundamentals of modern science (6)
    Disciplinary Core Courses (30 credits)
        MATH1013 University mathematics II (6)
        STAT1600 Statistics: ideas and concepts (6)
        MATH2014 Multivariable calculus and linear algebra (6)
        STAT2601 Probability and statistics I (6)
        STAT2602 Probability and statistics II (6)
```

    2. Advanced level courses ( \(\mathbf{4 8}\) credits)
    Disciplinary Core Courses ( 12 credits)
        STAT3600 Linear statistical analysis (6)
        STAT4602 Multivariate data analysis (6)
    Disciplinary Electives ( \(\mathbf{3 6}\) credits)
        At least 36 credits from Lists \(A\) and \(B\), among which at least 12 credits from List \(A\) :
        List A
            STAT3602
            STAT3620 Modern nonparametric statistics (6)
            STAT3621 Statistical data analysis (6)
            STAT3655 Survival analysis (6) Take either STAT3655 or STAT3955 to fulfill
    Statistical inference (6)
Stochastic processes (6)
Modern nonparametric statistics (6)

Survival analysis (6)

Survival analysis (6)
the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive. Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.
[previous title: Probability modelling (6)]

Take either STAT3655 or STAT3955 to fulfill

STAT4601
List B
STAT3604
Design and analysis of experiments (6)
STAT3606
Time-series analysis (6)
Design and analysis of experiments (6) Business logistics (6)

```
    STAT3607 Statistics in clinical medicine and bio-medical research (6)
    STAT3608 Statistical genetics (6)
    STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
    STAT3613 Marketing analytics (6)}[\mathrm{ [previous title: Marketing engineering (6)]
    STAT3616 Advanced SAS programming (6)
    STAT3617 Sample survey methods (6)
    STAT4610 Bayesian learning (6)
3. Capstone requirement (6 credits)
At least }6\mathrm{ credits selected from the following courses:
    STAT3799 Directed studies in statistics (6)
    STAT4710 Capstone experience for statistics undergraduates (6)
    STAT4766 Statistics internship (6)
    STAT4799 Statistics project (12)
```


## Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612 STAT3613, STAT3616 and STAT3621. Note that students who wish to take STAT3616 and STAT3621 are strongly recommended to take STAT2603 or STAT2604 first.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary elective) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary elective) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title

Offered to students
admitted to Year 1 in

## Objectives:

The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : equip with hands-on experience in data analysis using commercial statistical software, and be competent for dataanalytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or projectbased learning in the curriculum)
PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics
Required courses ( 96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses ( $\mathbf{3 0}$ credits)
MATH1013 University mathematics II (6)
STAT1600 Statistics: ideas and concepts (6)
MATH2014 Multivariable calculus and linear algebra (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
2. Advanced level courses ( 48 credits)

Disciplinary Core Courses ( $\mathbf{2 4}$ credits)
STAT3600 Linear statistical analysis (6)
STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
STAT4601 Time-series analysis (6)
STAT4602 Multivariate data analysis (6)
Disciplinary Electives ( 24 credits)
At least 24 credits from Lists $A$ and $B$, among which at least 6 credits from List A:
List A
STAT3602
STAT3604 Design and analysis of experiments (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
List B
STAT3605
STAT3606
Quality control and management (6)
Business logistics (6)
Statistics in clinical medicine and bio-medical research (6)
Statistical genetics (6)
STAT3612 Statistical machine learning (6)
STAT3613 Marketing analytics (6)
STAT3616 Advanced SAS programming (6)
[previous title: Data mining (6)] [previous title: Marketing engineering (6)]

STAT3955 Survival analysis (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613, STAT3616 and STAT3621. Note that students who wish to take STAT3616 and STAT3621 are strongly recommended to take STAT2603 first.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning ( 6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Major Title

Offered to students
admitted to Year 1 in

## Objectives:

The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : equip with hands-on experience in data analysis using commercial statistical software, and be competent for dataanalytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or projectbased learning in the curriculum)
PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics
Required courses ( 96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Courses ( $\mathbf{3 0}$ credits)
MATH1013 University mathematics II (6)
STAT1600 Statistics: ideas and concepts (6)
MATH2014 Multivariable calculus and linear algebra (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
2. Advanced level courses ( 48 credits)

Disciplinary Core Courses ( 24 credits)
STAT3600 Linear statistical analysis (6)
STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
STAT4601 Time-series analysis (6)
STAT4602 Multivariate data analysis (6)
Disciplinary Electives ( 24 credit)
At least 24 credits from Lists $A$ and $B$, among which at least 6 credits from List A:
List A
STAT3602
STAT3604 Design and analysis of experiments (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
List B
STAT3605
STAT3606
Quality control and management (6)
Business logistics (6)
STAT3607 Statistics in clinical medicine and bio-medical research (6)
STAT3608 Statistical genetics (6)
STAT3612 Statistical machine learning (6)
STAT3613 Marketing analytics (6)
STAT3616 Advanced SAS programming (6)
[previous title: Data mining (6)] [previous title: Marketing engineering (6)]

STAT3955 Survival analysis (6)
3. Capstone requirement ( 6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613, STAT3616 and STAT3621. Note that students who wish to take STAT3616 and STAT3621 are strongly recommended to take STAT2603 first.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning ( 6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Statistics |
| :--- | :--- |
| Offered to students | 2013 |
| admitted to Year 1 in |  |

## Objectives:

The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2 : conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : equip with hands-on experience in data analysis using commercial statistical software, and be competent for dataanalytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or projectbased learning in the curriculum)
PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

## Required courses (96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (30 credits)
MATH1013 University mathematics II (6)
STAT1600 Statistics: ideas and concepts (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2603 Data management with SAS (6)
2. Advanced level courses ( 48 credits)

Disciplinary Core Courses (24 credits)
STAT3600 Linear statistical analysis (6)
STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
STAT4601 Time-series analysis (6)
STAT4602 Multivariate data analysis (6)
Disciplinary Electives ( $\mathbf{2 4}$ credits)
At least 24 credits from Lists $A$ and $B$, among which at least 6 credits from List $A$ :
List A
STAT3602 Statistical inference (6)
STAT3604 Design and analysis of experiments (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
List B
STAT3605
STAT3606
Quality control and management (6)
STAT3606 Business logistics (6)
STAT3607 Statistics in clinical medicine and bio-medical research (6)
STAT3608 Statistical genetics (6)
STAT3612 Statistical machine learning (6)
[previous title: Data mining (6)]
$\begin{array}{ll}\text { STAT3613 } & \text { Marketing analytics (6) } \\ \text { STAT3616 } & \text { Advanced SAS programming (6) }\end{array}$
STAT3617 Sample survey methods (6) [previous title: Marketing engineering (6)]

Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.
STAT3955 Survival analysis (6)
Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.

## 3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613, STAT3616 and STAT3621. Note that students who wish to take STAT3616 and STAT3621 are strongly recommended to take STAT2603 first.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Major Title | Major in Statistics |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 2}$ |
| admitted to Year 1 in |  |

## Objectives:

The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3 : equip with hands-on experience in data analysis using commercial statistical software, and be competent for dataanalytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or projectbased learning in the curriculum)
PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5 : communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

## Impermissible Combinations:

Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

## Required courses (96 credits)

1. Introductory level courses ( 42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (30 credits)
MATH1013 University mathematics II (6)
STAT1600 Statistics: ideas and concepts (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2603 Data management with SAS (6)
2. Advanced level courses ( 48 credits)

Disciplinary Core Courses (24 credits)
STAT3600 Linear statistical analysis (6)
STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
STAT4601 Time-series analysis (6)
STAT4602 Multivariate data analysis (6)
Disciplinary Electives ( $\mathbf{2 4}$ credits)
At least 24 credits from Lists $A$ and $B$, among which at least 6 credits from List $A$ :
List A
STAT3602 Statistical inference (6)
STAT3604 Design and analysis of experiments (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
List B
STAT3605
STAT3606
Quality control and management (6)
STAT3606 Business logistics (6)
STAT3607 Statistics in clinical medicine and bio-medical research (6)
STAT3608 Statistical genetics (6)
STAT3612 Statistical machine learning (6)
[previous title: Data mining (6)]
$\begin{array}{ll}\text { STAT3613 } & \text { Marketing analytics (6) } \\ \text { STAT3616 } & \text { Advanced SAS programming (6) }\end{array}$
STAT3617 Sample survey methods (6) [previous title: Marketing engineering (6)]
Sample survey methods (6)

Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.
STAT3955 Survival analysis (6)
Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.

## 3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

## Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613, STAT3616 and STAT3621. Note that students who wish to take STAT3616 and STAT3621 are strongly recommended to take STAT2603 first.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science ( 6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
6. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Science Minors 2021-2022

## Minors offered by Science Faculty

## Minors

Actuarial Studies (not for BSc(ActuarSc) students)
Astronomy
Biochemistry
Chemistry
Computational \& Financial Mathematics
Earth Sciences
Ecology \& Biodiversity
Environmental Science
Food \& Nutritional Science
Marine Biology
Mathematics
Molecular Biology \& Biotechnology
Operations Research \& Mathematical Programming
Physics
Plant Science
Risk Management
Science Entrepreneurship (for 2016 cohort and thereafter)
Statistics

| Minor Title | Minor in Actuarial Studies |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 1}$ |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)
PLO 2 : develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

## Impermissible Combinations:

Bachelor of Science in Actuarial Science

## Required courses ( 42 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
FINA1310 Corporate finance (6)
MATH1013 University mathematics II (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2605 Demographic and socio-economic statistics (6)
2. Advanced level courses ( $\mathbf{3 0}$ credits)

Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3615 Practical mathematics for investment (6)
STAT3901 Life contingencies I (6)
STAT3904 Corporate finance for actuarial science (6)
STAT3906 Risk theory I (6)
STAT3908 Credibility theory and loss distributions (6)
STAT3910 Financial economics I (6)
STAT3911 Financial economics II (6)
STAT3953 Fundamentals of actuarial practice (6)
STAT4903 Actuarial techniques for general insurance (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Actuarial Studies |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 0}$ |

admitted to Year 1 in

## Objectives:

The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)
PLO 2 : develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

## Impermissible Combinations:

Bachelor of Science in Actuarial Science

## Required courses ( 42 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
FINA1310 Corporate finance (6)
MATH1013 University mathematics II (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2605 Demographic and socio-economic statistics (6)
STAT2901 Probability and statistics: foundations of actuarial science (6)
2. Advanced level courses ( $\mathbf{3 0}$ credits)

Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3615 Practical mathematics for investment (6)
STAT3901 Life contingencies I (6)
STAT3904 Corporate finance for actuarial science (6)
STAT3906 Risk theory I (6)
STAT3908 Credibility theory and loss distributions (6)
STAT3910 Financial economics I (6)
STAT3911 Financial economics II (6)
STAT3953 Fundamentals of actuarial practice (6)
STAT4903 Actuarial techniques for general insurance (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Actuarial Studies |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 9}$ |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)
PLO 2 : develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

## Impermissible Combinations:

Bachelor of Science in Actuarial Science

## Required courses ( 42 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
FINA1310 Corporate finance (6)
MATH1013 University mathematics II (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2605 Demographic and socio-economic statistics (6)
STAT2901 Probability and statistics: foundations of actuarial science (6)
2. Advanced level courses ( $\mathbf{3 0}$ credits)

Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3615 Practical mathematics for investment (6)
STAT3901 Life contingencies I (6)
STAT3904 Corporate finance for actuarial science (6)
STAT3906 Risk theory I (6)
STAT3908 Credibility theory and loss distributions (6)
STAT3910 Financial economics I (6)
STAT3911 Financial economics II (6)
STAT3953 Fundamentals of actuarial practice (6)
STAT4903 Actuarial techniques for general insurance (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Actuarial Studies |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 8}$ |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)
PLO 2 : develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

## Impermissible Combinations:

Bachelor of Science in Actuarial Science

## Required courses ( 42 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
FINA1310 Corporate finance (6)
MATH1013 University mathematics II (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2605 Demographic and socio-economic statistics (6)
STAT2901 Probability and statistics: foundations of actuarial science (6)
2. Advanced level courses ( $\mathbf{3 0}$ credits)

Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3615 Practical mathematics for investment (6)
STAT3901 Life contingencies I (6)
STAT3904 Corporate finance for actuarial science (6)
STAT3906 Risk theory I (6)
STAT3908 Credibility theory and loss distributions (6)
STAT3910 Financial economics I (6)
STAT3911 Financial economics II (6)
STAT3953 Fundamentals of actuarial practice (6)
STAT4903 Actuarial techniques for general insurance (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Actuarial Studies |
| :--- | :--- |
| Offered to students | 2017 |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)
PLO 2 : develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

## Impermissible Combinations:

Bachelor of Science in Actuarial Science

## Required courses ( 42 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
FINA1310 Corporate finance (6)
MATH1013 University mathematics II (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2605 Demographic and socio-economic statistics (6)
STAT2901 Probability and statistics: foundations of actuarial science (6)
2. Advanced level courses ( $\mathbf{3 0}$ credits)

Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3615 Practical mathematics for investment (6)
STAT3901 Life contingencies I (6)
STAT3904 Corporate finance for actuarial science (6)
STAT3906 Risk theory I (6)
STAT3908 Credibility theory and loss distributions (6)
STAT3910 Financial economics I (6)
STAT3911 Financial economics II (6)
STAT3953 Fundamentals of actuarial practice (6)
STAT4903 Actuarial techniques for general insurance (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Actuarial Studies |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 6}$ |

admitted to Year 1 in

## Objectives:

The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)
PLO 2 : develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

## Impermissible Combinations:

Bachelor of Science in Actuarial Science

## Required courses ( 42 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
FINA1310 Corporate finance (6)
MATH1013 University mathematics II (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2605 Demographic and socio-economic statistics (6)
STAT2901 Probability and statistics: foundations of actuarial science (6)
2. Advanced level courses ( $\mathbf{3 0}$ credits)

Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3615 Practical mathematics for investment (6)
STAT3901 Life contingencies I (6)
STAT3904 Corporate finance for actuarial science (6)
STAT3906 Risk theory I (6)
STAT3908 Credibility theory and loss distributions (6)
STAT3910 Financial economics I (6)
STAT3911 Financial economics II (6)
STAT3953 Fundamentals of actuarial practice (6)
STAT4903 Actuarial techniques for general insurance (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Actuarial Studies |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 5}$ |

admitted to Year 1 in

## Objectives:

The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)
PLO 2 : develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

## Impermissible Combinations:

Bachelor of Science in Actuarial Science

## Required courses ( 42 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
FINA1310 Corporate finance (6)
MATH1013 University mathematics II (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2605 Demographic and socio-economic statistics (6)
STAT2901 Probability and statistics: foundations of actuarial science (6)
2. Advanced level courses ( $\mathbf{3 0}$ credits)

Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3615 Practical mathematics for investment (6)
STAT3901 Life contingencies I (6)
STAT3904 Corporate finance for actuarial science (6)
STAT3906 Risk theory I (6)
STAT3908 Credibility theory and loss distributions (6)
STAT3910 Financial economics I (6)
STAT3911 Financial economics II (6)
STAT3953 Fundamentals of actuarial practice (6)
STAT4903 Actuarial techniques for general insurance (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Actuarial Studies |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 4}$ |

admitted to Year 1 in

## Objectives:

The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)
PLO 2 : develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

## Impermissible Combinations:

Bachelor of Science in Actuarial Science

## Required courses ( 42 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
FINA1310 Corporate finance (6)
MATH1013 University mathematics II (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2605 Demographic and socio-economic statistics (6)
STAT2901 Probability and statistics: foundations of actuarial science (6)
2. Advanced level courses ( $\mathbf{3 0}$ credits)

Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3615 Practical mathematics for investment (6)
STAT3901 Life contingencies I (6)
STAT3904 Corporate finance for actuarial science (6)
STAT3906 Risk theory I (6)
STAT3908 Credibility theory and loss distributions (6)
STAT3910 Financial economics I (6)
STAT3911 Financial economics II (6)
STAT3953 Fundamentals of actuarial practice (6)
STAT4903 Actuarial techniques for general insurance (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Actuarial Studies |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 3}$ |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)
PLO 2 : develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

## Impermissible Combinations:

Bachelor of Science in Actuarial Science

## Required courses ( 42 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
FINA1310 Corporate finance (6)
MATH1013 University mathematics II (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2605 Demographic and socio-economic statistics (6)
STAT2901 Probability and statistics: foundations of actuarial science (6)
2. Advanced level courses ( $\mathbf{3 0}$ credits)

Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3615 Practical mathematics for investment (6)
STAT3901 Life contingencies I (6)
STAT3904 Corporate finance for actuarial science (6)
STAT3906 Risk theory I (6)
STAT3908 Credibility theory and loss distributions (6)
STAT3910 Financial economics I (6)
STAT3911 Financial economics II (6)
STAT3953 Fundamentals of actuarial practice (6)
STAT4903 Actuarial techniques for general insurance (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Actuarial Studies |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 2}$ |

## Objectives:

The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)
PLO 2 : develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

## Impermissible Combinations:

Bachelor of Science in Actuarial Science

## Required courses ( 42 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
FINA1310 Corporate finance (6)
MATH1013 University mathematics II (6)
STAT2601 Probability and statistics I (6)
STAT2602 Probability and statistics II (6)
STAT2605 Demographic and socio-economic statistics (6)
STAT2901 Probability and statistics: foundations of actuarial science (6)
2. Advanced level courses ( $\mathbf{3 0}$ credits)

Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3615 Practical mathematics for investment (6)
STAT3901 Life contingencies I (6)
STAT3904 Corporate finance for actuarial science (6)
STAT3906 Risk theory I (6)
STAT3908 Credibility theory and loss distributions (6)
STAT3910 Financial economics I (6)
STAT3911 Financial economics II (6)
STAT3953 Fundamentals of actuarial practice (6)
STAT4903 Actuarial techniques for general insurance (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Astronomy |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 1}$ |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

NIL

## Required courses (36 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 12 credits)

| PHYS1650 | Nature of the universe (6) |
| :--- | :--- |
| PHYS2650 | Modern astronomy (6) |

Disciplinary Electives ( 6 credits)
At least 6 credits selected from the following courses:
PHYS1250 Fundamental physics (6)

PHYS2055 Introductory relativity (6)
PHYS2160 Introductory computational physics (6)
EASC2408 Planetary geology (6)
2. Advanced level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
PHYS3650
Observational astronomy (6)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS4650 Stellar physics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Astronomy |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 0}$ |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

NIL

## Required courses (36 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 12 credits)

| PHYS1650 | Nature of the universe (6) |
| :--- | :--- |
| PHYS2650 | Modern astronomy (6) |

Disciplinary Electives ( 6 credits)
At least 6 credits selected from the following courses:
PHYS1250 Fundamental physics (6)

PHYS2055 Introductory relativity (6)
PHYS2160 Introductory computational physics (6)
EASC2408 Planetary geology (6)
2. Advanced level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
PHYS3650
Observational astronomy (6)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS4650 Stellar physics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Astronomy |
| :--- | :--- |
| Offered to students | 2019 |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

NIL

## Required courses (36 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 12 credits)

| PHYS1650 | Nature of the universe (6) |
| :--- | :--- |
| PHYS2650 | Modern astronomy (6) |

Disciplinary Electives ( 6 credits)
At least 6 credits selected from the following courses:
PHYS1250 Fundamental physics (6)

PHYS2055 Introductory relativity (6)
PHYS2160 Introductory computational physics (6)
EASC2408 Planetary geology (6)
2. Advanced level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
PHYS3650
Observational astronomy (6)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS4650 Stellar physics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Astronomy |
| :--- | :--- |
| Offered to students | 2018 |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

NIL

## Required courses (36 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 12 credits)

| PHYS1650 | Nature of the universe (6) |
| :--- | :--- |
| PHYS2650 | Modern astronomy (6) |

Disciplinary Electives ( 6 credits)
At least 6 credits selected from the following courses:

| PHYS1250 | Fundamental physics (6) |  |
| :--- | :--- | :--- |
| PHYS2055 | Introductory relativity (6) | [previous title: Introduction to relativity (6)] |
| EASC2408 | Planetary geology (6) |  |

Planetary geology (6)
2. Advanced level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
PHYS3650 Observational astronomy (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS4650 Stellar physics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Astronomy |
| :--- | :--- |
| Offered to students | 2017 |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Astronomy

```
Required courses (42 credits)
    1. Introductory level courses (18 credits)
    Disciplinary Core Courses (18 credits)
        PHYS1250 Fundamental physics (6)
        PHYS1650 Nature of the universe (6)
        PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
    2. Advanced level courses ( }\mathbf{24}\mathrm{ credits)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
        PHYS3653 Astrophysics (6)
        PHYS3660 Astronomy laboratory (6)
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
        PHYS4654 General relativity (6)
        PHYS4655 Interstellar medium (6)
        PHYS4656 Advanced astrophysics (6)
        PHYS7650 Stellar atmospheres (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Astronomy |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 6}$ |

## Objectives:

The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Astronomy

```
Required courses (42 credits)
    1. Introductory level courses (18 credits)
    Disciplinary Core Courses (18 credits)
        PHYS1250 Fundamental physics (6)
        PHYS1650 Nature of the universe (6)
        PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
    2. Advanced level courses ( }\mathbf{24}\mathrm{ credits)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
        PHYS3653 Astrophysics (6)
        PHYS3660 Astronomy laboratory (6)
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
        PHYS4654 General relativity (6)
        PHYS4655 Interstellar medium (6)
        PHYS4656 Advanced astrophysics (6)
        PHYS7650 Stellar atmospheres (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Astronomy |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 5}$ |

## Objectives:

The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Astronomy

```
Required courses (42 credits)
    1. Introductory level courses (18 credits)
    Disciplinary Core Courses (18 credits)
        PHYS1250 Fundamental physics (6)
        PHYS1650 Nature of the universe (6)
        PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
    2. Advanced level courses ( }\mathbf{24}\mathrm{ credits)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
        PHYS3653 Astrophysics (6)
        PHYS3660 Astronomy laboratory (6)
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
        PHYS4654 General relativity (6)
        PHYS4655 Interstellar medium (6)
        PHYS4656 Advanced astrophysics (6)
        PHYS7650 Stellar atmospheres (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Astronomy |
| :--- | :--- |
| Offered to students | 2014 |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Astronomy

```
Required courses (42 credits)
    1. Introductory level courses (18 credits)
    Disciplinary Core Courses (18 credits)
        PHYS1250 Fundamental physics (6)
        PHYS1650 Nature of the universe (6)
        PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
    2. Advanced level courses ( }\mathbf{24}\mathrm{ credits)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
        PHYS4654 General relativity (6)
        PHYS4655 Interstellar medium (6)
        PHYS7650 Stellar atmospheres (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Astronomy |
| :--- | :--- |
| Offered to students | 2013 |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Astronomy

```
Required courses (42 credits)
    1. Introductory level courses (18 credits)
    Disciplinary Core Courses (18 credits)
        PHYS1250 Fundamental physics (6)
        PHYS1650 Nature of the universe (6)
        PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
    2. Advanced level courses ( }\mathbf{24}\mathrm{ credits)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
        PHYS4654 General relativity (6)
        PHYS4655 Interstellar medium (6)
        PHYS7650 Stellar atmospheres (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Astronomy |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 2}$ |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Astronomy

```
Required courses (42 credits)
    1. Introductory level courses (18 credits)
    Disciplinary Core Courses (18 credits)
        PHYS1250 Fundamental physics (6)
        PHYS1650 Nature of the universe (6)
        PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
    2. Advanced level courses ( }\mathbf{24}\mathrm{ credits)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
        PHYS3650 Observational astronomy (6)
        PHYS3651 The physical universe (6)
        PHYS3652 Principles of astronomy (6)
        PHYS4650 Stellar physics (6)
        PHYS4651 Selected topics in astrophysics (6)
        PHYS4652 Planetary science (6)
        PHYS4653 Cosmology (6)
        PHYS4654 General relativity (6)
        PHYS4655 Interstellar medium (6)
        PHYS7650 Stellar atmospheres (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Biochemistry |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 1}$ |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Biochemistry

## Required courses (36 credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives ( 12 credits)

At least 12 credits selected from the following courses:
BIOC1600 Perspectives in biochemistry (6)
BIOL1110 From molecules to cells (6)
BIOC2600 Basic biochemistry (6)

BIOL2220 Principles of biochemistry (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:

| BIOC3601 | Basic metabolism (6) |
| :--- | :--- |
| BIOC3604 | Essential techniques in biochemistry and molecular biology (6) |
| BIOC3605 | Sequence bioinformatics (6) |
| BIOC3606 | Molecular medicine (6) |
| BIOL3202 | Nutritional biochemistry (6) |
| BIOL3401 | Molecular biology (6) |
| BIOL3402 | Cell biology and cell technology (6) |
| BIOL3403 | Immunology (6) |
| BIOL3404 | Protein structure and function (6) |
| BIOC4610 | Advanced biochemistry (6) |
| BIOC4612 | Molecular biology of the gene (6) |
| BIOC4613 | Advanced techniques in biochemistry \& molecular biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| CHEM4444 | Chemical biology (6) |

Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Biochemistry |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 2 0}$ |

## Objectives:

The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

## Major in Biochemistry

## Required courses (36 credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives ( 12 credits)

At least 12 credits selected from the following courses:
BIOC1600 Perspectives in biochemistry (6)
BIOL1110 From molecules to cells (6)
BIOC2600 Basic biochemistry (6)

BIOL2220 Principles of biochemistry (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:

| BIOC3601 | Basic metabolism (6) |
| :--- | :--- |
| BIOC3604 | Essential techniques in biochemistry and molecular biology (6) |
| BIOC3605 | Sequence bioinformatics (6) |
| BIOC3606 | Molecular medicine (6) |
| BIOL3202 | Nutritional biochemistry (6) |
| BIOL3401 | Molecular biology (6) |
| BIOL3402 | Cell biology and cell technology (6) |
| BIOL3403 | Immunology (6) |
| BIOL3404 | Protein structure and function (6) |
| BIOC4610 | Advanced biochemistry (6) |
| BIOC4612 | Molecular biology of the gene (6) |
| BIOC4613 | Advanced techniques in biochemistry \& molecular biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| CHEM4444 | Chemical biology (6) |

Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Biochemistry |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 9}$ |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Biochemistry

## Required courses ( $\mathbf{3 6}$ credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives ( 12 credits)

At least 12 credits selected from the following courses:
BIOC1600 Perspectives in biochemistry (6)
BIOL1110 From molecules to cells (6)
BIOC2600 Basic biochemistry (6)

BIOL2220 Principles of biochemistry (6) this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
2. Advanced level courses ( 24 credits)

Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:

| BIOC3601 | Basic metabolism (6) |
| :--- | :--- |
| BIOC3604 | Essential techniques in biochemistry and molecular biology (6) |
| BIOC3605 | Sequence bioinformatics (6) |
| BIOC3606 | Molecular medicine (6) |
| BIOL3202 | Nutritional biochemistry (6) |
| BIOL3401 | Molecular biology (6) |
| BIOL3402 | Cell biology and cell technology (6) |
| BIOL3403 | Immunology (6) |
| BIOL3404 | Protein structure and function (6) |
| BIOC4610 | Advanced biochemistry (6) |
| BIOC4612 | Molecular biology of the gene (6) |
| BIOC4613 | Advanced techniques in biochemistry \& molecular biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| CHEM4444 | Chemical biology (6) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Biochemistry |
| :--- | :--- |
| Offered to students | 2018 |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Biochemistry

## Required courses ( $\mathbf{3 6}$ credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives ( 12 credits)

At least 12 credits selected from the following courses:
BIOC1600 Perspectives in biochemistry (6)
BIOL1110 From molecules to cells (6)
BIOC2600 Basic biochemistry (6)

BIOL2220 Principles of biochemistry (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:

| BIOC3601 | Basic metabolism (6) |
| :--- | :--- |
| BIOC3604 | Essential techniques in biochemistry and molecular biology (6) |
| BIOC3605 | Sequence bioinformatics (6) |
| BIOC3606 | Molecular medicine (6) |
| BIOL3202 | Nutritional biochemistry (6) |
| BIOL3401 | Molecular biology (6) |
| BIOL3402 | Cell biology and cell technology (6) |
| BIOL3403 | Immunology (6) |
| BIOL3404 | Protein structure and function (6) |
| BIOC4610 | Advanced biochemistry (6) |
| BIOC4612 | Molecular biology of the gene (6) |
| BIOC4613 | Advanced techniques in biochemistry \& molecular biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| CHEM4444 | Chemical biology (6) |

Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Biochemistry |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2017 |

## Objectives:

The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Biochemistry

## Required courses (36 credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives ( 12 credits)

At least 12 credits selected from the following courses:
BIOC1600 Perspectives in biochemistry (6)
BIOL1110 From molecules to cells (6)
BIOC2600 Basic biochemistry (6)

BIOL2220 Principles of biochemistry (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:

| BIOC3601 | Basic metabolism (6) |
| :--- | :--- |
| BIOC3604 | Essential techniques in biochemistry and molecular biology (6) |
| BIOC3605 | Sequence bioinformatics (6) |
| BIOC3606 | Molecular medicine (6) |
| BIOL3202 | Nutritional biochemistry (6) |
| BIOL3401 | Molecular biology (6) |
| BIOL3402 | Cell biology and cell technology (6) |
| BIOL3403 | Immunology (6) |
| BIOL3404 | Protein structure and function (6) |
| BIOC4610 | Advanced biochemistry (6) |
| BIOC4612 | Molecular biology of the gene (6) |
| BIOC4613 | Advanced techniques in biochemistry \& molecular biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| CHEM4444 | Chemical biology (6) |

Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Biochemistry |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 6}$ |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Biochemistry

## Required courses ( $\mathbf{3 6}$ credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives ( 12 credits)

At least 12 credits selected from the following courses:
BIOC1600 Perspectives in biochemistry (6)
BIOL1110 From molecules to cells (6)
BIOC2600 Basic biochemistry (6)

BIOL2220 Principles of biochemistry (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:

| BIOC3601 | Basic metabolism (6) |
| :--- | :--- |
| BIOC3604 | Essential techniques in biochemistry and molecular biology (6) |
| BIOC3605 | Sequence bioinformatics (6) |
| BIOC3606 | Molecular medicine (6) |
| BIOL3202 | Nutritional biochemistry (6) |
| BIOL3401 | Molecular biology (6) |
| BIOL3402 | Cell biology and cell technology (6) |
| BIOL3403 | Immunology (6) |
| BIOL3404 | Protein structure and function (6) |
| BIOC4610 | Advanced biochemistry (6) |
| BIOC4612 | Molecular biology of the gene (6) |
| BIOC4613 | Advanced techniques in biochemistry \& molecular biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| CHEM4444 | Chemical biology (6) |

Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Biochemistry |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 5}$ |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Biochemistry

## Required courses ( $\mathbf{3 6}$ credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives ( 12 credits)

At least 12 credits selected from the following courses:
BIOC1600 Perspectives in biochemistry (6)
BIOL1110 From molecules to cells (6)
BIOC2600 Basic biochemistry (6)

BIOL2220 Principles of biochemistry (6) this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
2. Advanced level courses ( 24 credits)

Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:

| BIOC3601 | Basic metabolism (6) |
| :--- | :--- |
| BIOC3604 | Essential techniques in biochemistry and molecular biology (6) |
| BIOC3605 | Sequence bioinformatics (6) |
| BIOC3606 | Molecular medicine (6) |
| BIOL3202 | Nutritional biochemistry (6) |
| BIOL3401 | Molecular biology (6) |
| BIOL3402 | Cell biology and cell technology (6) |
| BIOL3403 | Immunology (6) |
| BIOL3404 | Protein structure and function (6) |
| BIOC4610 | Advanced biochemistry (6) |
| BIOC4612 | Molecular biology of the gene (6) |
| BIOC4613 | Advanced techniques in biochemistry \& molecular biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| CHEM4444 | Chemical biology (6) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Biochemistry |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 4}$ |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Biochemistry

## Required courses ( $\mathbf{3 6}$ credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives ( 12 credits)

At least 12 credits selected from the following courses:
BIOC1600 Perspectives in biochemistry (6)
BIOL1110 From molecules to cells (6)
BIOC2600 Basic biochemistry (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:

| BIOC3601 | Basic metabolism (6) |
| :--- | :--- |
| BIOC3604 | Essential techniques in biochemistry and molecular biology (6) |
| BIOC3605 | Sequence bioinformatics (6) |
| BIOC3606 | Molecular medicine (6) |
| BIOL3202 | Nutritional biochemistry (6) |
| BIOL3401 | Molecular biology (6) |
| BIOL3402 | Cell biology and cell technology (6) |
| BIOL3403 | Immunology (6) |
| BIOL3404 | Protein structure and function (6) |
| BIOC4610 | Advanced biochemistry (6) |
| BIOC4612 | Molecular biology of the gene (6) |
| BIOC4613 | Advanced techniques in biochemistry \& molecular biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| CHEM4444 | Chemical biology (6) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Biochemistry |
| :--- | :--- |
| Offered to students | 2013 |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Biochemistry

## Required courses ( $\mathbf{3 6}$ credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives ( 12 credits)

At least 12 credits selected from the following courses:
BIOC1600 Perspectives in biochemistry (6)
BIOL1110 From molecules to cells (6)
BIOC2600 Basic biochemistry (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives ( 24 credits)
At least 24 credits selected from the following courses:

| BIOC3601 | Basic metabolism (6) |
| :--- | :--- |
| BIOC3604 | Essential techniques in biochemistry and molecular biology (6) |
| BIOC3605 | Sequence bioinformatics (6) |
| BIOC3606 | Molecular medicine (6) |
| BIOL3202 | Nutritional biochemistry (6) |
| BIOL3401 | Molecular biology (6) |
| BIOL3402 | Cell biology and cell technology (6) |
| BIOL3403 | Immunology (6) |
| BIOL3404 | Protein structure and function (6) |
| BIOC4610 | Advanced biochemistry (6) |
| BIOC4612 | Molecular biology of the gene (6) |
| BIOC4613 | Advanced techniques in biochemistry \& molecular biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| CHEM4444 | Chemical biology (6) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Biochemistry |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 2}$ |

## Objectives:

The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Biochemistry

## Required courses ( $\mathbf{3 6}$ credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives ( 12 credits)

At least 12 credits selected from the following courses:
BIOC1600 Perspectives in biochemistry (6)
BIOL1110 From molecules to cells (6)
BIOC2600 Basic biochemistry (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:

| BIOC3601 | Basic metabolism (6) |
| :--- | :--- |
| BIOC3604 | Essential techniques in biochemistry and molecular biology (6) |
| BIOC3605 | Sequence bioinformatics (6) |
| BIOC3606 | Molecular medicine (6) |
| BIOL3202 | Nutritional biochemistry (6) |
| BIOL3401 | Molecular biology (6) |
| BIOL3402 | Cell biology and cell technology (6) |
| BIOL3403 | Immunology (6) |
| BIOL3404 | Protein structure and function (6) |
| BIOC4610 | Advanced biochemistry (6) |
| BIOC4612 | Molecular biology of the gene (6) |
| BIOC4613 | Advanced techniques in biochemistry \& molecular biology (6) |
| BIOL4417 | 'Omics' and systems biology (6) |
| CHEM4444 | Chemical biology (6) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

Minor Title
Offered to students admitted to Year 1 in

## Objectives:

The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Chemistry
Major in Chemistry (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 24 credits)

Disciplinary Core Courses ( 12 credits)
CHEM1042 General chemistry I (6)
CHEM1043 General chemistry II (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
CHEM2541 Introductory physical chemistry (6)
2. Advanced level courses ( $\mathbf{1 8}$ credits)

Disciplinary Electives (18 credits)
At least 18 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
CHEM3141
CHEM3142
CHEM3143
CHEM3146
CHEM3241
CHEM3242
CHEM3243
CHEM3341
CHEM3342
CHEM3441
CHEM3442
CHEM3443 CHEM3445 CHEM3541 CHEM3542

CHEM3999
CHEM4142
CHEM4143
CHEM4144
CHEM4145
CHEM4147
CHEM4148
CHEM4241 CHEM4242
CHEM4341 CHEM4342 CHEM4441 CHEM4443 CHEM4444 CHEM4542 CHEM4543 CHEM4544 CHEM4910 CHEM4911

Environmental chemistry (6)
Chemical process industries and analysis (6)
Introduction to materials chemistry (6)
Principles and applications of spectroscopic and
analytical techniques (6)
Analytical chemistry II: chemical instrumentation (6)
Food and water analysis (6)
Introductory instrumental chemical analysis (6)
Inorganic chemistry II (6)
Bioinorganic chemistry (6)
Organic chemistry II (6)
Organic chemistry of biomolecules (6)
Organic chemistry laboratory (6)
Integrated laboratory (6)
Physical chemistry: Introduction to quantum chemistry (6)
Physical chemistry: statistical thermodynamics and
kinetics theory (6)
Directed studies in chemistry (6)
Symmetry, group theory and applications (6)
Interfacial science and technology (6)
Advanced materials (6)
Medicinal chemistry (6)
Supramolecular chemistry (6)
Frontiers in Modern Chemical Science (6)
Modern chemical instrumentation and applications (6)
Analytical chemistry (6)
Advanced inorganic chemistry (6)
Organometallic chemistry (6)
Advanced organic chemistry (6)
Integrated organic synthesis (6)
Chemical biology (6)
Computational chemistry (6)
Advanced physical chemistry (6)
Electrochemical science and technology (6)
Chemistry literacy and research (6)

Capstone experience for chemistry undergraduates:
HKUtopia (6)
Chemistry internship (6)
Chemistry project (12)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fuifill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

Minor Title
Offered to students admitted to Year 1 in

## Objectives:

The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Chemistry
Major in Chemistry (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 24 credits)

Disciplinary Core Courses ( 12 credits)
CHEM1042 General chemistry I (6)
CHEM1043 General chemistry II (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
CHEM2541 Introductory physical chemistry (6)
2. Advanced level courses ( $\mathbf{1 8}$ credits)

Disciplinary Electives (18 credits)
At least 18 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
CHEM3141
CHEM3142 Chemical process industries and analysis (6)
CHEM3143 Introduction to materials chemistry (6)
CHEM3146 Principles and applications of spectroscopic and
analytical techniques (6)
Analytical chemistry II: chemical instrumentation (6)
Food and water analysis (6)
Introductory instrumental chemical analysis (6)
Analytical techniques for pharmacy students (6)
Inorganic chemistry II (6)
Bioinorganic chemistry (6)
Organic chemistry II (6)
Organic chemistry of biomolecules (6)
Organic chemistry laboratory (6)
Integrated laboratory (6)
Physical chemistry: Introduction to quantum chemistry (6)
Physical chemistry: statistical thermodynamics and
kinetics theory (6)
Directed studies in chemistry (6)
Symmetry, group theory and applications (6)
Interfacial science and technology (6)
Advanced materials (6)
Medicinal chemistry (6)
Supramolecular chemistry (6)
Frontiers in Modern Chemical Science (6)
Modern chemical instrumentation and applications (6)
Analytical chemistry (6)
Advanced inorganic chemistry (6)
Organometallic chemistry (6)
Advanced organic chemistry (6)
Integrated organic synthesis (6)
Chemical biology (6)
Computational chemistry (6)
Advanced physical chemistry (6)
Electrochemical science and technology (6)
Chemistry literacy and research (6)

CHEM2441 and CHEM2442 are mutually exclusive.
CHEM2441 and CHEM2442 are mutually exclusive.

324
CHEM3243 CHEM3441 CHEM3442 CHEM3443 CHEM3445 CHEM3541 CHEM3542

CHEM3999
CHEM4142 CHEM4143 CHEM4144 CHEM4145 CHEM4147 CHEM4148 CHEM424 CHEM4242 CHEM4341 CHEM4342 CHEM4441 CHEM4443 CHEM4444 CHEM4542 CHEM4543 CHEM4544 CHEM4910

```
CHEM4911 Capstone experience for chemistry undergraduates:
HKUtopia (6)
CHEM4966
CHEM4999
M
Chemistry project (12)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fuifill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Chemistry <br> 2019 <br> admitted to Year 1 in

## Objectives:

The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Chemistry
Major in Chemistry (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 24 credits)

Disciplinary Core Courses ( 12 credits)
CHEM1042 General chemistry I (6)
CHEM1043 General chemistry II (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6)
CHEM2441 and CHEM2442 are mutually exclusive.
CHEM2442 Fundamentals of organic chemistry (6) CHEM2441 and CHEM2442 are mutually exclusive.
CHEM2541 Introductory physical chemistry (6)
2. Advanced level courses (18 credits)

Disciplinary Electives (18 credits)
At least 18 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List $A$ :
List A

CHEM3141
CHEM3142 CHEM3143 CHEM3146

CHEM3241
CHEM3242
CHEM3243
CHEM3244
CHEM3341
CHEM3342
CHEM3441
CHEM3442 CHEM3443 CHEM3445 CHEM3541 CHEM3542

## CHEM3999

CHEM4142 CHEM4143 CHEM4144 CHEM4145 CHEM4147 CHEM4148 CHEM4241 CHEM4242 CHEM4341 CHEM4342 CHEM4441 CHEM4443 CHEM4444 CHEM4542 CHEM4543 CHEM4544 CHEM4910

Environmental chemistry (6)
Chemical process industries and analysis (6)
Introduction to materials chemistry (6)
Principles and applications of spectroscopic and
analytical techniques (6)
Analytical chemistry II: chemical instrumentation (6)
Food and water analysis (6)
Introductory instrumental chemical analysis (6)
Analytical techniques for pharmacy students (6)
Inorganic chemistry II (6)
Bioinorganic chemistry (6)
Organic chemistry II (6)
Organic chemistry of biomolecules (6)
Organic chemistry laboratory (6)
Integrated laboratory (6)
Physical chemistry: Introduction to quantum chemistry (6)
Physical chemistry: statistical thermodynamics and
kinetics theory (6)
Directed studies in chemistry (6)
Symmetry, group theory and applications (6)
Interfacial science and technology (6)
Advanced materials (6)
Medicinal chemistry (6)
Supramolecular chemistry (6)
Frontiers in Modern Chemical Science (6)
Modern chemical instrumentation and applications (6)
Analytical chemistry (6)
Advanced inorganic chemistry (6)
Organometallic chemistry (6)
Advanced organic chemistry (6)
Integrated organic synthesis (6)
Chemical biology (6)
Computational chemistry (6)
Advanced physical chemistry (6)
Electrochemical science and technology (6)
Chemistry literacy and research (6)

```
CHEM4911 Capstone experience for chemistry undergraduates:
HKUtopia (6)
CHEM4966
CHEM4999
M
Chemistry project (12)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fuifill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Chemistry <br> 2018 <br> admitted to Year 1 in

## Objectives:

The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Chemistry
Major in Chemistry (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 24 credits)

Disciplinary Core Courses ( 12 credits)
CHEM1042 General chemistry I (6)
CHEM1043 General chemistry II (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6)
CHEM2441 and CHEM2442 are mutually exclusive.
CHEM2442 Fundamentals of organic chemistry (6) CHEM2441 and CHEM2442 are mutually exclusive.
CHEM2541 Introductory physical chemistry (6)
2. Advanced level courses (18 credits)

Disciplinary Electives (18 credits)
At least 18 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List $A$ :
List A

CHEM3141
CHEM3142 CHEM3143 CHEM3146

CHEM3241
CHEM3242
CHEM3243
CHEM3244
CHEM3341
CHEM3342
CHEM3441
CHEM3442 CHEM3443 CHEM3445 CHEM3541 CHEM3542

## CHEM3999

CHEM4142 CHEM4143 CHEM4144 CHEM4145 CHEM4147 CHEM4148 CHEM4241 CHEM4242 CHEM4341 CHEM4342 CHEM4441 CHEM4443 CHEM4444 CHEM4542 CHEM4543 CHEM4544 CHEM4910

Environmental chemistry (6)
Chemical process industries and analysis (6)
Introduction to materials chemistry (6)
Principles and applications of spectroscopic and
analytical techniques (6)
Analytical chemistry II: chemical instrumentation (6)
Food and water analysis (6)
Introductory instrumental chemical analysis (6)
Analytical techniques for pharmacy students (6)
Inorganic chemistry II (6)
Bioinorganic chemistry (6)
Organic chemistry II (6)
Organic chemistry of biomolecules (6)
Organic chemistry laboratory (6)
Integrated laboratory (6)
Physical chemistry: Introduction to quantum chemistry (6)
Physical chemistry: statistical thermodynamics and
kinetics theory (6)
Directed studies in chemistry (6)
Symmetry, group theory and applications (6)
Interfacial science and technology (6)
Advanced materials (6)
Medicinal chemistry (6)
Supramolecular chemistry (6)
Frontiers in Modern Chemical Science (6)
Modern chemical instrumentation and applications (6)
Analytical chemistry (6)
Advanced inorganic chemistry (6)
Organometallic chemistry (6)
Advanced organic chemistry (6)
Integrated organic synthesis (6)
Chemical biology (6)
Computational chemistry (6)
Advanced physical chemistry (6)
Electrochemical science and technology (6)
Chemistry literacy and research (6)

```
CHEM4911 Capstone experience for chemistry undergraduates:
HKUtopia (6)
CHEM4966
CHEM4999
M
Chemistry project (12)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fuifill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Chemistry <br> 2017 <br> admitted to Year 1 in

## Objectives:

The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Chemistry
Major in Chemistry (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 24 credits)

Disciplinary Core Courses ( 12 credits)
CHEM1042 General chemistry I (6)
CHEM1043 General chemistry II (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6)
CHEM2441 and CHEM2442 are mutually exclusive.
CHEM2442 Fundamentals of organic chemistry (6) CHEM2441 and CHEM2442 are mutually exclusive.
CHEM2541 Introductory physical chemistry (6)
2. Advanced level courses (18 credits)

Disciplinary Electives (18 credits)
At least 18 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List $A$ :
List A

CHEM3141
CHEM3142 CHEM3143 CHEM3146

CHEM3241
CHEM3242
CHEM3243
CHEM3244
CHEM3341
CHEM3342
CHEM3441
CHEM3442 CHEM3443 CHEM3445 CHEM3541 CHEM3542

## CHEM3999

CHEM4142 CHEM4143 CHEM4144 CHEM4145 CHEM4147 CHEM4148 CHEM4241 CHEM4242 CHEM4341 CHEM4342 CHEM4441 CHEM4443 CHEM4444 CHEM4542 CHEM4543 CHEM4544 CHEM4910

Environmental chemistry (6)
Chemical process industries and analysis (6)
Introduction to materials chemistry (6)
Principles and applications of spectroscopic and
analytical techniques (6)
Analytical chemistry II: chemical instrumentation (6)
Food and water analysis (6)
Introductory instrumental chemical analysis (6)
Analytical techniques for pharmacy students (6)
Inorganic chemistry II (6)
Bioinorganic chemistry (6)
Organic chemistry II (6)
Organic chemistry of biomolecules (6)
Organic chemistry laboratory (6)
Integrated laboratory (6)
Physical chemistry: Introduction to quantum chemistry (6)
Physical chemistry: statistical thermodynamics and
kinetics theory (6)
Directed studies in chemistry (6)
Symmetry, group theory and applications (6)
Interfacial science and technology (6)
Advanced materials (6)
Medicinal chemistry (6)
Supramolecular chemistry (6)
Frontiers in Modern Chemical Science (6)
Modern chemical instrumentation and applications (6)
Analytical chemistry (6)
Advanced inorganic chemistry (6)
Organometallic chemistry (6)
Advanced organic chemistry (6)
Integrated organic synthesis (6)
Chemical biology (6)
Computational chemistry (6)
Advanced physical chemistry (6)
Electrochemical science and technology (6)
Chemistry literacy and research (6)

```
CHEM4911 Capstone experience for chemistry undergraduates:
HKUtopia (6)
CHEM4966
CHEM4999
M
Chemistry project (12)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fuifill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Chemistry <br> 2016 <br> admitted to Year 1 in

## Objectives:

The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Chemistry
Major in Chemistry (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 24 credits)

Disciplinary Core Courses ( 12 credits)
CHEM1042 General chemistry I (6)
CHEM1043 General chemistry II (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6) CHEM2441 and CHEM2442 are mutually
CHEM2442 Fundamentals of organic chemistry (6) exclusive.
CHEM2441 and CHEM2442 are mutually exclusive.
CHEM2541 Introductory physical chemistry (6)
2. Advanced level courses ( 18 credits)

Disciplinary Electives ( 18 credits)
At least 18 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
CHEM3141
CHEM3142
CHEM3143
Environmental chemistry (6)
Chemical process industries and analysis (6)
Introduction to materials chemistry (6)
CHEM3146 Principles and applications of spectroscopic and
analytical techniques (6)
CHEM3241
CHEM3242
CHEM3243
CHEM3244
Analytical chemistry II: chemical instrumentation (6)
Food and water analysis (6)
Introductory instrumental chemical analysis (6)
Analytical techniques for pharmacy students (6)
CHEM3341 Inorganic chemistry II (6)
CHEM3342 Bioinorganic chemistry (6)
CHEM3441 Organic chemistry II (6)
CHEM3442
CHEM3443
CHEM3445
CHEM3541
CHEM3542
Organic chemistry of biomolecules (6)
Organic chemistry laboratory (6)
Integrated laboratory (6)
Physical chemistry: Introduction to quantum chemistry (6)
Physical chemistry: statistical thermodynamics and
kinetics theory (6)
CHEM3999
CHEM4142
CHEM4143
Directed studies in chemistry (6)
Symmetry, group theory and applications (6)
Interfacial science and technology (6)
Advanced materials (6)
CHEM4144
Medicinal chemistry (6)
CHEM4145
Supramolecular chemistry (6)
Frontiers in Modern Chemical Science (6)
CHEM4241 Modern chemical instrumentation and applications (6)
CHEM4242 Analytical chemistry (6)
CHEM4341 Advanced inorganic chemistry (6)
CHEM4342
CHEM4441
Organometallic chemistry (6)
Advanced organic chemistry (6)
Integrated organic synthesis (6)
CHEM4443
Chemical biology (6)
CHEM4542 Computational chemistry (6)
CHEM4543 Advanced physical chemistry (6)
CHEM4544 Electrochemical science and technology (6)

| CHEM4910 | Chemistry literacy and research (6) |
| :--- | :--- |
| CHEM4911 | Capstone experience for chemistry undergraduates: |
|  | HKUtopia (6) |
| CHEM4966 | Chemistry internship (6) |
| CHEM4999 | Chemistry project (12) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fuifill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

Minor Title
Offered to students admitted to Year 1 in

## Objectives:

The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Chemistry
Major in Chemistry (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 24 credits)

Disciplinary Core Courses ( 12 credits)
CHEM1042 General chemistry I (6)
CHEM1043 General chemistry II (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6) CHEM2441 and CHEM2442 are mutually
CHEM2442 Fundamentals of organic chemistry (6)
CHEM2541 Introductory physical chemistry (6) exclusive.
CHEM2441 and CHEM2442 are mutually exclusive.
2. Advanced level courses ( 18 credits)

Disciplinary Electives ( 18 credits)
At least 18 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List $A$ :
List A
CHEM3141
CHEM3142
CHEM3143
Environmental chemistry (6)
Chemical process industries and analysis (6)
Introduction to materials chemistry (6)
CHEM3146 Principles and applications of spectroscopic and
analytical techniques (6)
CHEM3241
CHEM3242
CHEM3243
CHEM3244
Analytical chemistry II: chemical instrumentation (6)
Food and water analysis (6)
Introductory instrumental chemical analysis (6)
Analytical techniques for pharmacy students (6)
CHEM3341 Inorganic chemistry II (6)
CHEM3342 Bioinorganic chemistry (6)
CHEM3441 Organic chemistry II (6)
CHEM3442
CHEM3443
CHEM3445
CHEM3541
CHEM3542
Organic chemistry of biomolecules (6)
Organic chemistry laboratory (6)
Integrated laboratory (6)
Physical chemistry: Introduction to quantum chemistry (6)
Physical chemistry: statistical thermodynamics and
kinetics theory (6)
CHEM3999
CHEM4142
CHEM4143
Directed studies in chemistry (6)
Symmetry, group theory and applications (6)
Interfacial science and technology (6)
Advanced materials (6)
CHEM4144
Medicinal chemistry (6)
CHEM4145
Supramolecular chemistry (6)
CHEM4147
Frontiers in Modern Chemical Science (6)
CHEM4241 Modern chemical instrumentation and applications (6)
CHEM4242 Analytical chemistry (6)
CHEM4341 Advanced inorganic chemistry (6)
CHEM4342
CHEM4441
Advanced inorganic chemistry (6)
Organometallic chemistry (6)
Advanced organic chemistry (6)
Integrated organic synthesis (6)
Chemical biology (6)
CHEM4444
$\begin{array}{ll}\text { CHEM4542 } & \text { Computational chemistry (6) } \\ \text { CHEM4543 } & \text { Advanced physical chemistry (6) }\end{array}$
CHEM4544 Electrochemical science and technology (6)

| CHEM4910 | Chemistry literacy and research (6) |
| :--- | :--- |
| CHEM4911 | Capstone experience for chemistry undergraduates: |
|  | HKUtopia (6) |
| CHEM4966 | Chemistry internship (6) |
| CHEM4999 | Chemistry project (12) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fuifill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

Minor Title
Offered to students admitted to Year 1 in
Objectives:
The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Chemistry
Major in Chemistry (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
CHEM1042 General chemistry I (6) [ previous title: General chemistry (6)]
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6)
CHEM2441 and CHEM2442 are mutually exclusive.
CHEM242 Fundamentals of organic chemistry (6)
2. Advanced level courses ( 24 credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
CHEM3141
Chemical process industries and analysis (6)
Introduction to materials chemistry (6)
CHEM3146 Principles and applications of spectroscopic and analytical techniques (6)
CHEM3241 Analytical chemistry II: chemical instrumentation
CHEM3242 Food and water analysis (6)
CHEM3243 Introductory instrumental chemical analysis (6)
CHEM3244 Analytical techniques for pharmacy students (6)
CHEM3341 Inorganic chemistry II (6)
CHEM3342 Bioinorganic chemistry (6)
CHEM3441 Organic chemistry II (6)
CHEM3442 Organic chemistry of biomolecules (6)
CHEM3443 Organic chemistry laboratory (6)
CHEM3445
CHEM3541
CHEM3542
CHEM3999
CHEM4142
CHEM4143
CHEM4144
CHEM4145
CHEM4147
CHEM4148
CHEM4241
CHEM4242 Analytical chemistry (6)
CHEM4341 Advanced inorganic chemistry (6)
CHEM4342 Organometallic chemistry (6)
CHEM4441 Advanced organic chemistry (6)
CHEM4443 Integrated organic synthesis (6)
CHEM4444 Chemical biology (6)
CHEM4542 Computational chemistry (6)
CHEM4543 Advanced physical chemistry (6)
CHEM4544 Electrochemical science and technology (6)
[ previous title: Physical chemistry II: Introduction to quantum chemistry (6) ]

| CHEM4910 | Chemistry literacy and research (6) <br> CHEpstone experience for chemistry |
| :--- | :--- |
| CHEM4966 | undergraduates: HKUtopia (6) |
| CHEmistry internship (6) |  |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fuifill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

Minor Title
Offered to students admitted to Year 1 in

## Objectives:

The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Chemistry
Major in Chemistry (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
CHEM1042 General chemistry I (6) [previous title: General chemistry (6)]
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6)
CHEM2441 and CHEM2442 are mutually exclusive
Fundamentals of organic chemistry (6)
2. Advanced level courses ( 24 credits)

Disciplinary Electives ( $\mathbf{2 4}$ credits)
At least 24 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
CHEM3141
Chemical process industries and analysis (6)
Introduction to materials chemistry (6)
CHEM3146 Principles and applications of spectroscopic and analytical techniques (6)
CHEM3241 Analytical chemistry II: chemical instrumentation
CHEM3242 Food and water analysis (6)
CHEM3243 Introductory instrumental chemical analysis (6)
CHEM3244 Analytical techniques for pharmacy students (6)
CHEM3341 Inorganic chemistry II (6)
CHEM3342 Bioinorganic chemistry (6)
CHEM3441 Organic chemistry II (6)
CHEM3442 Organic chemistry of biomolecules (6)
CHEM3443
CHEM3445
CHEM3541
CHEM3542
CHEM3999
CHEM4142
CHEM4143
CHEM4144
CHEM4145
CHEM4147
CHEM4148
CHEM4241
CHEM4242 Analytical chemistry (6)
CHEM4341 Advanced inorganic chemistry (6)
CHEM4342
CHEM4441
CHEM4443
CHEM4444
CHEM4541 Physical chemistry III: statistical thermodynamics
CHEM4542
[ previous title: Physical chemistry II: Introduction to quantum chemistry (6) ]

| CHEM4543 | Advanced physical chemistry (6) |
| :--- | :--- |
| CHEM4544 | Electrochemical science and technology (6) |
| CHEM4910 | Chemistry literacy and research (6) |
| CHEM4911 | Capstone experience for chemistry |
|  | undergraduates: HKUtopia (6) |
| CHEM4966 | Chemistry internship (6) |
| CHEM4999 | Chemistry project (12) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fuifill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Chemistry <br> 2012 <br> admitted to Year 1 in

## Objectives:

The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)
PLO 3 : transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Chemistry
Major in Chemistry (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
CHEM1042 General chemistry I (6) [previous title: General chemistry (6)]
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2341 Inorganic chemistry I (6)
CHEM2441 Organic chemistry I (6)
CHEM2441 and CHEM2442 are mutually exclusive
Fundamentals of organic chemistry (6)
CHEM2441 and CHEM2442 are mutually exclusive. [ previous title: Physical chemistry I (6)]
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A

CHEM3141
CHEM3142
CHEM3143
CHEM3146
CHEM3241
CHEM3242
CHEM3243
CHEM3244
CHEM3341
CHEM3342
CHEM3441
CHEM3442
CHEM3443
CHEM3445
CHEM3541
CHEM3542
CHEM3999
CHEM4142
CHEM4143
CHEM4144
CHEM4145
CHEM4147
CHEM4148
CHEM4241
CHEM4242
CHEM4342
CHEM4441
CHEM4443
CHEM4444

CHEM4542

Advanced inorganic chemistry (6)

CHEM4541 Physical chemistry III: statistical thermodynamics
Environmental chemistry (6)
Chemical process industries and analysis (6)
Introduction to materials chemistry (6)
Principles and applications of spectroscopic and analytical techniques (6)
Analytical chemistry II: chemical instrumentation
(6)

Food and water analysis (6)
Introductory instrumental chemical analysis (6)
Analytical techniques for pharmacy students (6)
Inorganic chemistry II (6)
Bioinorganic chemistry (6)
Organic chemistry II (6)
Organic chemistry of biomolecules (6) Organic chemistry laboratory (6) Integrated laboratory (6)
Physical chemistry: Introduction to quantum chemistry (6)
Physical chemistry: statistical thermodynamics and kinetics theory (6)
Directed studies in chemistry (6)
Symmetry, group theory and applications (6) Interfacial science and technology (6) Advanced materials (6)
Medicinal chemistry (6)
Supramolecular chemistry (6)
Frontiers in Modern Chemical Science (6)
Modern chemical instrumentation and applications (6)
Analytical chemistry (6)

Organometallic chemistry (6)
Advanced organic chemistry (6)
Integrated organic synthesis (6)
Chemical biology (6)
and kinetics theory (6) Computational chemistry (6)
[ previous title: Physical chemistry II: Introduction to quantum chemistry (6) ]

| CHEM4543 | Advanced physical chemistry (6) |
| :--- | :--- |
| CHEM4544 | Electrochemical science and technology (6) |
| CHEM4910 | Chemistry literacy and research (6) |
| CHEM4911 | Capstone experience for chemistry |
|  | undergraduates: HKUtopia (6) |
| CHEM4966 | Chemistry internship (6) |
| CHEM4999 | Chemistry project (12) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fuifill this requirement are advised to take CHEM1041 Foundations of chemistry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Minor in Computational \& Financial Mathematics <br> 2021 <br> Offered to students <br> admitted to Year 1 in

## Objectives:

The Minor in Computational \& Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
        MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
            MATH2101 Linear algebra I (6)
            MATH2211 Multivariable calculus (6)
            List B
            MATH2012 Fundamental concepts of mathematics (6)
            MATH2014 Multivariable calculus and linear algebra (6)
2. Advanced level courses (24 credits)
Disciplinary Core Courses (12 credits)
            MATH3601 Numerical analysis (6)
            MATH3906 Financial calculus (6)
Disciplinary Electives (12 credits)
At least }12\mathrm{ credits selected from the following courses:
            MATH3408 Computational methods and differential equations with
            applications (6)
            MATH3603 Probability theory (6)
            MATH3904 Introduction to optimization (6)
            MATH3911 Game theory and strategy (6)
            MATH4602 Scientific computing (6)
            MATH4907 Numerical methods for financial calculus (6)
            MATH7217 Topics in financial mathematics (6)
            MATH7224 Topics in advanced probability theory (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Computational \& Financial Mathematics <br> admitted to Year 1 in

## Objectives:

The Minor in Computational \& Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3 : communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
        MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
            MATH2101 Linear algebra I (6)
            MATH2211 Multivariable calculus (6)
            List B
            MATH2012 Fundamental concepts of mathematics (6)
            MATH2014 Multivariable calculus and linear algebra (6)
2. Advanced level courses (24 credits)
Disciplinary Core Courses (12 credits)
            MATH3601 Numerical analysis (6)
            MATH3906 Financial calculus (6)
Disciplinary Electives (12 credits)
At least }12\mathrm{ credits selected from the following courses:
            MATH3408 Computational methods and differential equations with
            applications (6)
            MATH3603 Probability theory (6)
            MATH3904 Introduction to optimization (6)
            MATH3911 Game theory and strategy (6)
            MATH4602 Scientific computing (6)
            MATH4907 Numerical methods for financial calculus (6)
            MATH7217 Topics in financial mathematics (6)
            MATH7224 Topics in advanced probability theory (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Computational \& Financial Mathematics <br> 2019 <br> admitted to Year 1 in

## Objectives:

The Minor in Computational \& Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
        MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
            MATH2101 Linear algebra I (6)
            MATH2211 Multivariable calculus (6)
            List B
            MATH2012 Fundamental concepts of mathematics (6)
            MATH2014 Multivariable calculus and linear algebra (6)
2. Advanced level courses (24 credits)
Disciplinary Core Courses (12 credits)
            MATH3601 Numerical analysis (6)
            MATH3906 Financial calculus (6)
Disciplinary Electives (12 credits)
At least }12\mathrm{ credits selected from the following courses:
            MATH3408 Computational methods and differential equations with
            applications (6)
            MATH3603 Probability theory (6)
            MATH3904 Introduction to optimization (6)
            MATH3911 Game theory and strategy (6)
            MATH4602 Scientific computing (6)
            MATH4907 Numerical methods for financial calculus (6)
            MATH7217 Topics in financial mathematics (6)
            MATH7224 Topics in advanced probability theory (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Computational \& Financial Mathematics <br> 2018 <br> admitted to Year 1 in

## Objectives:

The Minor in Computational \& Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
        MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
            MATH2101 Linear algebra I (6)
            MATH2211 Multivariable calculus (6)
            List B
            MATH2012 Fundamental concepts of mathematics (6)
            MATH2014 Multivariable calculus and linear algebra (6)
2. Advanced level courses (24 credits)
Disciplinary Core Courses (12 credits)
            MATH3601 Numerical analysis (6)
            MATH3906 Financial calculus (6)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
            MATH3408 Computational methods and differential equations with
            applications (6)
            MATH3603 Probability theory (6)
            MATH3904 Introduction to optimization (6)
            MATH3911 Game theory and strategy (6)
            MATH4602 Scientific computing (6)
            MATH4907 Numerical methods for financial calculus (6)
            MATH7217 Topics in financial mathematics (6)
            MATH7224 Topics in advanced probability theory (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students Minor in Computational \& Financial Mathematics 2017

admitted to Year 1 in

## Objectives:

The Minor in Computational \& Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Major in Mathematics/Physics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
        MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
        MATH2101 Linear algebra I (6)
        MATH2211 Multivariable calculus (6)
        List B
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2014 Multivariable calculus and linear algebra (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
        MATH3601 Numerical analysis (6)
        MATH3906 Financial calculus (6)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
        MATH3408 Computational methods and differential equations with
        applications (6)
        MATH3603 Probability theory (6)
        MATH3904 Introduction to optimization (6)
        MATH3911 Game theory and strategy (6)
        MATH4602 Scientific computing (6)
        MATH4907 Numerical methods for financial calculus (6)
        MATH7217 Topics in financial mathematics (6)
        MATH7224 Topics in advanced probability theory (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Computational \& Financial Mathematics <br> 2016 <br> admitted to Year 1 in

## Objectives:

The Minor in Computational \& Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Major in Mathematics/Physics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
        MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
        MATH2101 Linear algebra I (6)
        MATH2211 Multivariable calculus (6)
        List B
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2014 Multivariable calculus and linear algebra (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
        MATH3601 Numerical analysis (6)
        MATH3906 Financial calculus (6)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
        MATH3408 Computational methods and differential equations with
        applications (6)
        MATH3603 Probability theory (6)
        MATH3904 Introduction to optimization (6)
        MATH3911 Game theory and strategy (6)
        MATH4602 Scientific computing (6)
        MATH4907 Numerical methods for financial calculus (6)
        MATH7217 Topics in financial mathematics (6)
        MATH7224 Topics in advanced probability theory (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Computational \& Financial Mathematics <br> 2015 <br> admitted to Year 1 in

## Objectives:

The Minor in Computational \& Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
        MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
        MATH2101 Linear algebra I (6)
        MATH2211 Multivariable calculus (6)
        List B
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2014 Multivariable calculus and linear algebra (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
        MATH3601 Numerical analysis (6)
        MATH3906 Financial calculus (6)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
        MATH3408 Computational methods and differential equations with
        applications (6)
        MATH3603 Probability theory (6)
        MATH3904 Introduction to optimization (6)
        MATH3911 Game theory and strategy (6)
        MATH4602 Scientific computing (6)
        MATH4907 Numerical methods for financial calculus (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Computational \& Financial Mathematics <br> admitted to Year 1 in <br> 2014

## Objectives:

The Minor in Computational \& Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Courses (18 credits)
        MATH1013 University mathematics II (6)
        MATH2101 Linear algebra I (6)
        MATH2211 Multivariable calculus (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
        MATH3601 Numerical analysis (6)
        MATH3906 Financial calculus (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            MATH3408 Computational methods and differential equations with
            applications (6)
            MATH3603 Probability theory (6)
            MATH3904 Introduction to optimization (6)
            MATH3911 Game theory and strategy (6)
            MATH4602 Scientific computing (6)
            MATH4907 Numerical methods for financial calculus (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Computational \& Financial Mathematics <br> admitted to Year 1 in <br> 2013

## Objectives:

The Minor in Computational \& Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3 : communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Minor in Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Courses (18 credits)
        MATH1013 University mathematics II (6)
        MATH2101 Linear algebra I (6)
        MATH2211 Multivariable calculus (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
        MATH3601 Numerical analysis (6)
        MATH3906 Financial calculus (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            MATH3408 Computational methods and differential equations with
            applications (6)
            MATH3603 Probability theory (6)
            MATH3904 Introduction to optimization (6)
            MATH3911 Game theory and strategy (6)
            MATH4602 Scientific computing (6)
            MATH4907 Numerical methods for financial calculus (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Computational \& Financial Mathematics <br> 2012

admitted to Year 1 in

## Objectives:

The Minor in Computational \& Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3 : communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Minor in Mathematics

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Courses (18 credits)
        MATH1013 University mathematics II (6)
        MATH2101 Linear algebra I (6)
        MATH2211 Multivariable calculus (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
        MATH3601 Numerical analysis (6)
        MATH3906 Financial calculus (6)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
        MATH3408 Computational methods and differential equations with
        applications (6)
        MATH3603 Probability theory (6)
        MATH3904 Introduction to optimization (6)
        MATH3911 Game theory and strategy (6)
        MATH4602 Scientific computing (6)
        MATH4907 Numerical methods for financial calculus (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Earth Sciences <br> Offered to students 2021

admitted to Year 1 in

## Objectives:

The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 2 : understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

## Impermissible Combinations:

Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
EASC3020 Global change: anthropogenic impacts (6)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3415 Meteorology (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
EASC4403 Biogeochemical cycles (6)
EASC4406 Earth dynamics \& global tectonics (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)
EASC4955 Integrated field studies (6)
EASC4966 Earth sciences internship (6)
EASC4999 Earth sciences project (12)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Earth Sciences |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 0}$ |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 2 : understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

## Impermissible Combinations:

Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
EASC3020 Global change: anthropogenic impacts (6)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3415 Meteorology (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
EASC4403 Biogeochemical cycles (6)
EASC4406 Earth dynamics \& global tectonics (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)
EASC4955 Integrated field studies (6)
EASC4966 Earth sciences internship (6)
EASC4999 Earth sciences project (12)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Earth Sciences <br> Offered to students 2019

 admitted to Year 1 in
## Objectives:

The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 2 : understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

## Impermissible Combinations:

Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
EASC3020 Global change: anthropogenic impacts (6)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3415 Meteorology (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
EASC4403 Biogeochemical cycles (6)
EASC4406 Earth dynamics \& global tectonics (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)
EASC4955 Integrated field studies (6)
EASC4966 Earth sciences internship (6)
EASC4999 Earth sciences project (12)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Earth Sciences |
| :--- | :--- |
| Offered to students | 2018 |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 2 : understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 3 : discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

## Impermissible Combinations:

Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
EASC3020 Global change: anthropogenic impacts (6)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3415 Meteorology (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
EASC4403 Biogeochemical cycles (6)
EASC4406 Earth dynamics \& global tectonics (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)
EASC4955 Integrated field studies (6)
EASC4966 Earth sciences internship (6)
EASC4999 Earth sciences project (12)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Earth Sciences <br> Offered to students 2017 <br> admitted to Year 1 in

## Objectives:

The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 2 : understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

## Impermissible Combinations:

Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
EASC3020 Global change: anthropogenic impacts (6)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3415 Meteorology (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
EASC4403 Biogeochemical cycles (6)
EASC4406 Earth dynamics \& global tectonics (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)
EASC4955 Integrated field studies (6)
EASC4966 Earth sciences internship (6)
EASC4999 Earth sciences project (12)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Earth Sciences <br> Offered to students 2016 <br> admitted to Year 1 in

## Objectives:

The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 2 : understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

## Impermissible Combinations:

Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
EASC3020 Global change: anthropogenic impacts (6)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3415 Meteorology (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
EASC4403 Biogeochemical cycles (6)
EASC4406 Earth dynamics \& global tectonics (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)
EASC4955 Integrated field studies (6)
EASC4966 Earth sciences internship (6)
EASC4999 Earth sciences project (12)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Earth Sciences <br> Offered to students 2015

admitted to Year 1 in

## Objectives:

The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 2 : understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

## Impermissible Combinations:

Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
EASC3020 Global change: anthropogenic impacts (6)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3415 Meteorology (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
EASC4403 Biogeochemical cycles (6)
EASC4406 Earth dynamics \& global tectonics (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)
EASC4955 Integrated field studies (6)
EASC4966 Earth sciences internship (6)
EASC4999 Earth sciences project (12)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Earth Sciences |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 4}$ |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 2 : understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

## Impermissible Combinations:

Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
EASC3020 Global change: anthropogenic impacts (6)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3415 Meteorology (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
EASC4403 Biogeochemical cycles (6)
EASC4406 Earth dynamics \& global tectonics (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)
EASC4955 Integrated field studies (6)
EASC4966 Earth sciences internship (6)
EASC4999 Earth sciences project (12)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Earth Sciences <br> Offered to students 2013

 admitted to Year 1 in
## Objectives:

The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 2 : understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

## Impermissible Combinations:

Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
EASC3020 Global change: anthropogenic impacts (6)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3415 Meteorology (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
EASC4403 Biogeochemical cycles (6)
EASC4406 Earth dynamics \& global tectonics (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)
EASC4955 Integrated field studies (6)
EASC4966 Earth sciences internship (6)
EASC4999 Earth sciences project (12)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Earth Sciences <br> Offered to students 2012

admitted to Year 1 in

## Objectives:

The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 2 : understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)
PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

## Impermissible Combinations:

Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A
EASC3020 Global change: anthropogenic impacts (6)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3415 Meteorology (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
EASC4403 Biogeochemical cycles (6)
EASC4406 Earth dynamics \& global tectonics (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)
EASC4955 Integrated field studies (6)
EASC4966 Earth sciences internship (6)
EASC4999 Earth sciences project (12)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 2 1}$ |

## Objectives:

This Minor in Ecology \& Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Core Courses (12 credits)
        BIOL1309 Evolutionary diversity (6)
        BIOL2306 Ecology and evolution (6)
    2. Advanced level courses ( }24\mathrm{ credits)
    Disciplinary Electives (24 credits)
        BIOL3101 Animal behaviour (6)
        BIOL3301 Marine biology (6)
        BIOL3302 Systematics and phylogenetics (6)
        BIOL3303 Conservation biology (6)
        BIOL3313 Freshwater ecology (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3318 Experimental intertidal ecology (6)
        BIOL3319 Tropical terrestrial ecology (6)
        BIOL3419 Insect ecology: the little things that run the world (6)
    BIOL3506 Evolutionary biology (6)
    BIOL4301 Fish and fisheries (6)
    BIOL4302 Environmental impact assessment (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 2 0}$ |

## Objectives:

This Minor in Ecology \& Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Core Courses (12 credits)
        BIOL1309 Evolutionary diversity (6)
        BIOL2306 Ecology and evolution (6)
    2. Advanced level courses ( }24\mathrm{ credits)
    Disciplinary Electives (24 credits)
        BIOL3101 Animal behaviour (6)
        BIOL3301 Marine biology (6)
        BIOL3302 Systematics and phylogenetics (6)
        BIOL3303 Conservation biology (6)
        BIOL3313 Freshwater ecology (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3318 Experimental intertidal ecology (6)
        BIOL3319 Tropical terrestrial ecology (6)
        BIOL3419 Insect ecology: the little things that run the world (6)
    BIOL3506 Evolutionary biology (6)
    BIOL4301 Fish and fisheries (6)
    BIOL4302 Environmental impact assessment (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 9}$ |

admitted to Year 1 in

## Objectives:

This Minor in Ecology \& Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Core Courses (12 credits)
        BIOL1309 Evolutionary diversity (6)
        BIOL2306 Ecology and evolution (6)
    2. Advanced level courses ( }24\mathrm{ credits)
    Disciplinary Electives (24 credits)
        BIOL3101 Animal behaviour (6)
        BIOL3301 Marine biology (6)
        BIOL3302 Systematics and phylogenetics (6)
        BIOL3303 Conservation biology (6)
        BIOL3313 Freshwater ecology (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3318 Experimental intertidal ecology (6)
        BIOL3319 Tropical terrestrial ecology (6)
        BIOL3419 Insect ecology: the little things that run the world (6)
    BIOL3506 Evolutionary biology (6)
    BIOL4301 Fish and fisheries (6)
    BIOL4302 Environmental impact assessment (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | 2018 |
| admitted to Year 1 in |  |

## Objectives:

This Minor in Ecology \& Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Core Courses (12 credits)
        BIOL1309 Evolutionary diversity (6)
        BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (24 credits)
    Disciplinary Electives (24 credits)
        BIOL3101 Animal behaviour (6)
        BIOL3301 Marine biology (6)
        BIOL3302 Systematics and phylogenetics (6)
        BIOL3303 Conservation biology (6)
        BIOL3313 Freshwater ecology (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3318 Experimental intertidal ecology (6)
        BIOL3319 Tropical terrestrial ecology (6)
        BIOL3419 Insect ecology: the little things that run the world (6)
    BIOL3506 Evolutionary biology (6)
    BIOL4301 Fish and fisheries (6)
    BIOL4302 Environmental impact assessment (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | 2017 |

admitted to Year 1 in

## Objectives:

This Minor in Ecology \& Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Core Courses (12 credits)
        BIOL1309 Evolutionary diversity (6)
        BIOL2306 Ecology and evolution (6)
    2. Advanced level courses ( }24\mathrm{ credits)
    Disciplinary Electives (24 credits)
        BIOL3101 Animal behaviour (6)
        BIOL3301 Marine biology (6)
        BIOL3302 Systematics and phylogenetics (6)
        BIOL3303 Conservation biology (6)
        BIOL3313 Freshwater ecology (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3318 Experimental intertidal ecology (6)
        BIOL3319 Tropical terrestrial ecology (6)
        BIOL3419 Insect ecology: the little things that run the world (6)
    BIOL3506 Evolutionary biology (6)
    BIOL4301 Fish and fisheries (6)
    BIOL4302 Environmental impact assessment (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | 2016 |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

This Minor in Ecology \& Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Core Courses (12 credits)
    BIOL1309 Evolutionary diversity (6)
    BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (24 credits)
    Disciplinary Electives (24 credits)
        BIOL3101 Animal behaviour (6)
        BIOL3301 Marine biology (6)
        BIOL3302 Systematics and phylogenetics (6)
        BIOL3313 Freshwater ecology (6) [previous title: Conservation ecology (6)]
    BIOL3314 Plant structure and evolution (6)
    BIOL3318 Experimental intertidal ecology (6)
    BIOL3319 Tropical terrestrial ecology (6)
        [previous title: Terrestrail ecology (6) ]
    BIOL3320 The biology of marine mammals (6)
    BIOL3419 Insect ecology: the little things that run the world (6)
    BIOL3506 Evolutionary biology (6)
    BIOL4301 Fish and fisheries (6)
    BIOL4302 Environmental impact assessment (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 5}$ |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

This Minor in Ecology \& Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)

## Required courses (36 credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Core Courses ( 12 credits) <br> BIOL1309 Evolutionary diversity (6) <br> BIOL2306 Ecology and evolution (6)

2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives ( 24 credits)
BIOL3101 Animal behaviour (6)

BIOL3301
Marine biology (6)
BIOL3302
Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)
BIOL3318 Experimental intertidal ecology (6)
BIOL3319 Tropical terrestrial ecology (6)
BIOL3320 The biology of marine mammals (6)
BIOL3419 Insect ecology: the little things that run the world (6)
BIOL3506 Evolutionary biology (6)
BIOL4301 Fish and fisheries (6)
BIOL4302 Environmental impact assessment (6)
BIOL4303 Animal behaviour (6)
Take either BIOL3101 or BIOL4303 to fulfill this 24 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.
[previous title: Conservation ecology (6) ]
[previous title: Terrestrial ecology (6)]

Take either BIOL3101 or BIOL4303 to fulfill this 24 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 4}$ |

## Objectives:

This Minor in Ecology \& Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Core Courses (12 credits)
        BIOL1309 Evolutionary diversity (6)
        BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (24 credits)
    Disciplinary Electives (24 credits)
        BIOL3101 Animal behaviour (6)
        BIOL3301 Marine biology (6)
        BIOL3302 Systematics and phylogenetics (6)
    BIOL3303 Conservation biology (6) [previous title: Conservation ecology (6)]
    BIOL3313 Freshwater ecology (6)
    BIOL3314 Plant structure and evolution (6)
    BIOL3318 Experimental intertidal ecology (6)
    BIOL3319 Tropical terrestrial ecology (6)
    BIOL3320 The biology of marine mammals (6)
    BIOL3419 Insect ecology: the little things that run the world (6)
    BIOL4301 Fish and fisheries (6)
    BIOL4302 Environmental impact assessment (6)
    BIOL4303 Animal behaviour (6)
Take either BIOL3101 or BIOL4303 to fulfill
this }24\mathrm{ credits requirement, but not both.
BIOL3101 and BIOL4303 are mutually
exclusive.
    [previous title: Terrestrial ecology (6)]
Take either BIOL3101 or BIOL4303 to fulfil
this }24\mathrm{ credits requirement, but not both.
BIOL3101 and BIOL4303 are mutually
exclusive.
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 3}$ |

admitted to Year 1 in

## Objectives:

This Minor in Ecology \& Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Core Courses (12 credits)
        BIOL1309 Evolutionary diversity (6)
        BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (24 credits)
    Disciplinary Electives (24 credits)
        BIOL3101 Animal behaviour (6)
        BIOL3301 Marine biology (6)
        BIOL3302 Systematics and phylogenetics (6)
    BIOL3303 Conservation biology (6) [previous title: Conservation ecology (6)]
    BIOL3313 Freshwater ecology (6)
    BIOL3314 Plant structure and evolution (6)
    BIOL3318 Experimental intertidal ecology (6)
    BIOL3319 Tropical terrestrial ecology (6)
    BIOL3320 The biology of marine mammals (6)
    BIOL3419 Insect ecology: the little things that run the world (6)
    BIOL4301 Fish and fisheries (6)
    BIOL4302 Environmental impact assessment (6)
    BIOL4303 Animal behaviour (6)
Take either BIOL3101 or BIOL4303 to fulfill
this }24\mathrm{ credits requirement, but not both.
BIOL3101 and BIOL4303 are mutually
exclusive.
    [previous title: Terrestrial ecology (6)]
Take either BIOL3101 or BIOL4303 to fulfil
this }24\mathrm{ credits requirement, but not both.
BIOL3101 and BIOL4303 are mutually
exclusive.
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Ecology \& Biodiversity |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 2}$ |

admitted to Year 1 in

## Objectives:

This Minor in Ecology \& Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3 : appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Ecology \& Biodiversity
Major in Ecology \& Biodiversity (Intensive)

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Core Courses (12 credits)
        BIOL1309 Evolutionary diversity (6)
        BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (24 credits)
    Disciplinary Electives (24 credits)
        BIOL3101 Animal behaviour (6)
        BIOL3301 Marine biology (6)
        BIOL3302 Systematics and phylogenetics (6)
    BIOL3303 Conservation biology (6) [previous title: Conservation ecology (6)]
    BIOL3313 Freshwater ecology (6)
    BIOL3314 Plant structure and evolution (6)
    BIOL3318 Experimental intertidal ecology (6)
    BIOL3319 Tropical terrestrial ecology (6)
    BIOL3320 The biology of marine mammals (6)
    BIOL3419 Insect ecology: the little things that run the world (6)
    BIOL4301 Fish and fisheries (6)
    BIOL4302 Environmental impact assessment (6)
    BIOL4303 Animal behaviour (6)
Take either BIOL3101 or BIOL4303 to fulfill
this }24\mathrm{ credits requirement, but not both.
BIOL3101 and BIOL4303 are mutually
exclusive.
    [previous title: Terrestrial ecology (6)]
Take either BIOL3101 or BIOL4303 to fulfil
this }24\mathrm{ credits requirement, but not both.
BIOL3101 and BIOL4303 are mutually
exclusive.
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Minor in Environmental Science <br> 2021 <br> Offered to students

admitted to Year 1 in

## Objectives:

The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help student understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Major in Environmental Science

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
ENVS1401 Introduction to environmental science (6)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses (Level 1 \& 2):
CHEM1042 General chemistry I (6)
EASC1020 Introduction to climate science (6)
EASC1401 Blue Planet (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
ENVS1301 Environmental life science (6)
ENVS2001 Methods in environmental science (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
ENVS3004 Environment, society and economics (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
BIOL4302 Environmental impact assessment (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3010 Sustainable energy and environment (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
ENVS3042 Pollution (6)
ENVS3202 Plant physiology and climate change (6)
ENVS3313 Environmental oceanography (6)
ENVS3401 Understanding tropical ecosystems in a changing world (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Environmental Science

admitted to Year 1 in

## Objectives:

The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help student understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Major in Environmental Science

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
ENVS1401 Introduction to environmental science (6)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses (Level 1 \& 2):
CHEM1042 General chemistry I (6)
EASC1020 Introduction to climate science (6)
EASC1401 Blue Planet (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
ENVS1301 Environmental life science (6)
ENVS2001 Methods in environmental science (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
ENVS3004 Environment, society and economics (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
BIOL4302 Environmental impact assessment (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3010 Sustainable energy and environment (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
ENVS3042 Pollution (6)
ENVS3202 Plant physiology and climate change (6)
ENVS3313 Environmental oceanography (6)
ENVS3401 Understanding tropical ecosystems in a changing world (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Environmental Science

admitted to Year 1 in

## Objectives:

The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help student understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Major in Environmental Science

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
ENVS1401 Introduction to environmental science (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses (Level 1 \& 2):
CHEM1042 General chemistry I (6)
EASC1020 Introduction to climate science (6)
EASC1401 Blue Planet (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
ENVS1301 Environmental life science (6)
ENVS2001 Methods in environmental science (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
ENVS3004 Environment, society and economics (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
BIOL4302 Environmental impact assessment (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3010 Sustainable energy and environment (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
ENVS3042 Pollution (6)
ENVS3313 Environmental oceanography (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Environmental Science <br> 2018

admitted to Year 1 in

## Objectives:

The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help student understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Major in Environmental Science

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
ENVS1401 Introduction to environmental science (6)
Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses (Level 1 \& 2):
CHEM1042 General chemistry I (6)
EASC1020 Introduction to climate science (6)
EASC1401 Blue Planet (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
ENVS1301 Environmental life science (6)
ENVS2001 Methods in environmental science (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
ENVS3004 Environment, society and economics (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
BIOL4302 Environmental impact assessment (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3010 Sustainable energy and environment (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
ENVS3042 Pollution (6)
ENVS3313 Environmental oceanography (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Environmental Science

admitted to Year 1 in

## Objectives:

The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help student understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Major in Environmental Science

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
ENVS1401 Introduction to environmental science (6)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses (Level 1 \& 2):
CHEM1042 General chemistry I (6)
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
EASC1020 Introduction to climate science (6)
EASC1401 Blue Planet (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
ENVS1301 Environmental life science (6)
ENVS2001 Methods in environmental science (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
ENVS3004 Environment, society and economics (6)
Disciplinary Electives ( 18 credits)
At least 18 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
BIOL4302 Environmental impact assessment (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
CHEM3242 Food and water analysis (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
ENVS3006 Environmental radiation (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3010 Sustainable energy and environment (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
ENVS3042 Pollution (6)
ENVS3313 Environmental oceanography (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Environmental Science <br> 2016

admitted to Year 1 in

## Objectives:

The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help student understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Major in Environmental Science

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
ENVS1401 Introduction to environmental science (6)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses (Level 1 \& 2):
CHEM1042 General chemistry I (6)
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
EASC1020 Introduction to climate science (6)
EASC1401 Blue Planet (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
ENVS1301 Environmental life science (6)
ENVS2001 Methods in environmental science (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
ENVS3004 Environment, society and economics (6)
Disciplinary Electives ( 18 credits)
At least 18 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
BIOL4302 Environmental impact assessment (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
CHEM3242 Food and water analysis (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
ENVS3006 Environmental radiation (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3010 Sustainable energy and environment (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
ENVS3042 Pollution (6)
ENVS3313 Environmental oceanography (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Environmental Science

admitted to Year 1 in

## Objectives:

The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help student understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Major in Environmental Science

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
ENVS1401 Introduction to environmental science (6)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses (Level 1 \& 2):
CHEM1042 General chemistry I (6)
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
EASC1020 Introduction to climate science (6)
EASC1401 Blue Planet (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
ENVS1301 Environmental life science (6)
ENVS2001 Methods in environmental science (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
ENVS3004 Environment, society and economics (6)
Disciplinary Electives ( 18 credits)
At least 18 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
BIOL4302 Environmental impact assessment (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
CHEM3242 Food and water analysis (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
ENVS3006 Environmental radiation (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3010 Sustainable energy and environment (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
ENVS3042 Pollution (6)
ENVS3313 Environmental oceanography (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Environmental Science <br> 2014

admitted to Year 1 in

## Objectives:

The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help student understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Major in Environmental Science

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
ENVS1401 Introduction to environmental science (6)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses (Level 1 \& 2):
CHEM1042 General chemistry I (6)
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
EASC1020 Introduction to climate science (6)
EASC1401 Blue Planet (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
ENVS1301 Environmental life science (6)
ENVS2001 Methods in environmental science (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
ENVS3004 Environment, society and economics (6)
Disciplinary Electives ( 18 credits)
At least 18 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
BIOL4302 Environmental impact assessment (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
CHEM3242 Food and water analysis (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
ENVS3006 Environmental radiation (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3010 Sustainable energy and environment (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
ENVS3042 Pollution (6)
ENVS3313 Environmental oceanography (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Environmental Science

admitted to Year 1 in

## Objectives:

The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help student understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Major in Environmental Science

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 6 credits)
ENVS1401 Introduction to environmental science (6)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses (Level 1 \& 2):
CHEM1042 General chemistry I (6)
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
EASC1020 Introduction to climate science (6)
EASC1401 Blue Planet (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
ENVS1301 Environmental life science (6)
ENVS2001 Methods in environmental science (6)
ENVS2002 Environmental data analysis (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
ENVS3004 Environment, society and economics (6)
Disciplinary Electives ( 18 credits)
At least 18 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
BIOL4302 Environmental impact assessment (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
CHEM3242 Food and water analysis (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
ENVS3006 Environmental radiation (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3010 Sustainable energy and environment (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
ENVS3042 Pollution (6)
ENVS3313 Environmental oceanography (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Environmental Science

admitted to Year 1 in

## Objectives:

The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help student understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
PLO 4 : gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

## Impermissible Combinations:

Major in Environmental Science

```
Required courses ( 42 credits)
    1. Introductory level courses ( 18 credits)
    Disciplinary Core Courses ( 6 credits)
        ENVS1401 Introduction to environmental science (6)
    Disciplinary Electives ( 12 credits)
        At least 6 credits selected from the following courses (Level 1) in List A:
        List A
            CHEM1042 General chemistry I (6)
            EASC1401 Blue Planet (6)
            ENVS1301 Environmental life science (6)
            At least 6 credits selected from the following courses (Level 2) in List B:
            List B
            BIOL2102 Biostatistics (6)
            CHEM2041 Principles of chemistry (6)
            CHEM2241 Analytical chemistry I (6)
            CHEM2442 Fundamentals of organic chemistry (6)
            EASC2404 Introduction to atmosphere and hydrosphere (6)
            ENVS2001 Methods in environmental science (6)
            ENVS2002 Environmental data analysis (6)
    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Core Courses ( 6 credits)
        ENVS3004 Environment, society and economics (6)
    Disciplinary Electives ( 18 credits)
        At least 18 credits selected from the following courses:
            BIOL3110 Environmental toxicology (6)
            BIOL3303 Conservation biology (6)
            BIOL4302 Environmental impact assessment (6)
            CHEM3141 Environmental chemistry (6)
            CHEM3241 Analytical chemistry II: chemical instrumentation (6)
            CHEM3242 Food and water analysis (6)
            EASC3020 Global change: anthropogenic impacts (6)
            EASC3405 Environmental remote sensing (6)
            ENVS3006 Environmental radiation (6)
            ENVS3007 Natural hazards and mitigation (6)
            ENVS3010 Sustainable energy and environment (6)
            ENVS3019 Urban ecology (6)
            ENVS3020 Global change ecology (6)
            ENVS3042 Pollution (6)
            ENVS3313 Environmental oceanography (6)
            ENVS4110 Environmental remediation (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Food \& Nutritional Science <br> admitted to Year 1 in <br> 2021

## Objectives:

The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Food \& Nutritional Science

## Required courses (36 credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
BIOL1110 From molecules to cells (6)
BIOL1201 Introduction to food and nutrition (6)
BIOL2101 Principles of food chemistry (6)
BIOL2220 Principles of biochemistry (6)

BIOC2600 Basic biochemistry (6)

## 2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:
BIOL3202 Nutritional biochemistry (6)

BIOL3203 Food microbiology (6)
BIOL3204 Nutrition and the life cycle (6)
BIOL3205 Human physiology (6)
BIOL3207 Principles of toxicology (6) [previous title: Food and nutritional toxicology
BIOL3209 Food and nutrient analysis (6)
BIOL3211 Nutrigenomics (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3218 Food hygiene and quality control (6)
BIOL3606 Diet and disease (6)
BIOL3608 Food commodities (6)
BIOL4201 Public health nutrition (6)
BIOL4202 Nutrition and sports performance (6)
BIOL4205 Food technology (6)
BIOL4209 Functional foods (6)
BIOL4411 Plant and food biotechnology (6)

Take either BIOL2220 or BIOC2600 o fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 o fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
(6) ]
[previous title: Food processing and engineering (6) ]

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Food \& Nutritional Science <br> 2020 <br> admitted to Year 1 in

## Objectives:

The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Food \& Nutritional Science

## Required courses (36 credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
BIOL1110 From molecules to cells (6)
BIOL1201 Introduction to food and nutrition (6)
BIOL2101 Principles of food chemistry (6)
BIOL2220 Principles of biochemistry (6)

BIOC2600 Basic biochemistry (6)

## 2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:
BIOL3202 Nutritional biochemistry (6)

BIOL3203 Food microbiology (6)
BIOL3204 Nutrition and the life cycle (6)
BIOL3205 Human physiology (6)
BIOL3207 Principles of toxicology (6) [previous title: Food and nutritional toxicology
BIOL3209 Food and nutrient analysis (6)
BIOL3211 Nutrigenomics (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3218 Food hygiene and quality control (6)
BIOL3606 Diet and disease (6)
BIOL3608 Food commodities (6)
BIOL4201 Public health nutrition (6)
BIOL4202 Nutrition and sports performance (6)
BIOL4205 Food technology (6)
BIOL4209 Functional foods (6)
BIOL4411 Plant and food biotechnology (6)

Take either BIOL2220 or BIOC2600 o fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 o fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
(6) ]
[previous title: Food processing and engineering (6) ]

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Food \& Nutritional Science <br> 2019 <br> admitted to Year 1 in

## Objectives:

The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Food \& Nutritional Science

## Required courses (36 credits) <br> 1. Introductory level courses ( 12 credits) <br> Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
BIOL1110 From molecules to cells (6)
BIOL1201 Introduction to food and nutrition (6)
BIOL2101 Principles of food chemistry (6)
BIOL2220 Principles of biochemistry (6)

BIOC2600 Basic biochemistry (6)

## 2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:
BIOL3202 Nutritional biochemistry (6)
BIOL3203 Food microbiology (6)
BIOL3204 Nutrition and the life cycle (6)
BIOL3205 Human physiology (6)
BIOL3207 Principles of toxicology (6)
Take either BIOL2220 or BIOC2600 o fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 o fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

BIOL3209 Food and nutrient analysis (6)
BIOL3211 Nutrigenomics (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3218 Food hygiene and quality control (6)
BIOL3606 Diet and disease (6)
BIOL3608 Food commodities (6)
BIOL4201 Public health nutrition (6)
BIOL4202 Nutrition and sports performance (6)
BIOL4204 Diet, brain function and behavior (6)
BIOL4205 Food technology (6)
BIOL4209 Functional foods (6)
BIOL4411 Plant and food biotechnology (6)
[previous title: Food and nutritional toxicology (6) ]
[previous title: Food processing and engineering (6)]

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Food \& Nutritional Science <br> 2018 <br> admitted to Year 1 in

## Objectives:

The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4 : synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Food \& Nutritional Science

```
Required courses ( 36 credits)
    1. Introductory level courses ( 12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL1110 From molecules to cells (6)
            BIOL1201 Introduction to food and nutrition (6)
            BIOL2101 Principles of food chemistry (6)
            BIOL2220 Principles of biochemistry (6) Take either BIOL2220 or BIOC2600 o fulfill
                this 12 credits requirement, but not both.
```


## 2. Advanced level courses ( 24 credits)

```
Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:
BIOL3202 Nutritional biochemistry (6)
BIOL3203 Food microbiology (6)
BIOL3204 Nutrition and the life cycle (6)
BIOL3205 Human physiology (6)
BIOL3206 Clinical nutrition (6)
BIOL3207 Principles of toxicology (6)
BIOL3209 Food and nutrient analysis (6)
BIOL3211 Nutrigenomics (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3218 Food hygiene and quality control (6)
BIOL3606 Diet and disease (6)
BIOL3608 Food commodities (6)
```

BIOL4201
BIOL 420
BIOL4204
Public health nutrition (6)
Nutrition and sports performance (6)
BIOL4204
Food technology (6)
BIOL4208 Meat, dairy and grain sciences (6)

BIOL4209
Functional foods (6)
BIOL4411 Plant and food biotechnology (6)

BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 o fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 o fulfill this 12 credits requirement, but not both.

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
[previous title: Food and nutritional toxicology (6) ]

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive.
[previous title: Food processing and engineering (6) ]
Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Food \& Nutritional Science <br> 2017 <br> admitted to Year 1 in

## Objectives:

The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4 : synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Food \& Nutritional Science

```
Required courses ( 36 credits)
    1. Introductory level courses ( 12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL1110 From molecules to cells (6)
            BIOL1201 Introduction to food and nutrition (6)
            BIOL2101 Principles of food chemistry (6)
            BIOL2220 Principles of biochemistry (6) Take either BIOL2220 or BIOC2600 o fulfill
                this 12 credits requirement, but not both.
```


## 2. Advanced level courses ( 24 credits)

```
Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:
BIOL3202 Nutritional biochemistry (6)
BIOL3203 Food microbiology (6)
BIOL3204 Nutrition and the life cycle (6)
BIOL3205 Human physiology (6)
BIOL3206 Clinical nutrition (6)
BIOL3207 Principles of toxicology (6)
BIOL3209 Food and nutrient analysis (6)
BIOL3211 Nutrigenomics (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3218 Food hygiene and quality control (6)
BIOL3606 Diet and disease (6)
BIOL3608 Food commodities (6)
```

BIOL4201
BIOL 420
BIOL4204
Public health nutrition (6)
Nutrition and sports performance (6)
BIOL4204
Food technology (6)
BIOL4208 Meat, dairy and grain sciences (6)

BIOL4209
Functional foods (6)
BIOL4411 Plant and food biotechnology (6)

BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 o fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 o fulfill this 12 credits requirement, but not both.

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
[previous title: Food and nutritional toxicology (6) ]

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive.
[previous title: Food processing and engineering (6) ]
Take either BIOL3608 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3608 and BIOL4208 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Food \& Nutritional Science <br> 2016 <br> admitted to Year 1 in

## Objectives:

The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4 : synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Food \& Nutritional Science

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            BIOL1110 From molecules to cells (6)
            BIOL1201 Introduction to food and nutrition (6)
            BIOL2220 Principles of biochemistry (6)
            BIOC2600 Basic biochemistry (6)
```

    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
            BIOL3201 Food chemistry (6)
            BIOL3202 Nutritional biochemistry (6)
            BIOL3203 Food microbiology (6)
            BIOL3204 Nutrition and the life cycle (6)
            BIOL3205 Human physiology (6)
            BIOL3206 Clinical nutrition (6)
            BIOL3207 Principles of toxicology (6)
            BIOL3208 Food safety and quality management (6)
            BIOL3209 Food and nutrient analysis (6)
            BIOL3210 Grain production and utilization (6)
                BIOL3211 Nutrigenomics (6)
                    BIOL3216 Food waste management (6)
                    BIOL3217 Food, environment and health (6)
                    BIOL3218 Food hygiene and quality control (6)
                    BIOL3606 Diet and disease (6)
                    BIOL3608 Food commodities (6)
    Take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
[previous title: Food and nutritional toxicology (6) ]

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

Take either BIOL3210 or BIOL4208 or BIOL3608 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 or BIOL3608 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.
Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3210 or BIOL4208 or BIOL3608; BIOL4207 or BIOL4208 or BIOL3608 to fufill this 24 credits requirement, but not both. BIOL3210, BIOL3608, BIOL4207 and BIOL4208 are mutually exclusive.

| BIOL4201 | Public health nutrition (6) |  |
| :--- | :--- | :--- |
| BIOL4202 | Nutrition and sports performance (6) |  |
| BIOL4204 | Diet, brain function and behavior (6) |  |
| BIOL4205 | Food technology (6) | [previous title: Food processing and <br> engineering (6)] |
| BIOL4207 | Meat and dairy sciences (6) | Take either BIOL4207 or BIOL4208 or |
|  |  | BIOL3608 to fufill this 24 credits requirement, <br> but not both. BIOL3608, BIOL4207 and |
|  |  | BIOL4208 are mutually exclusive. |
| BIOL4208 | Take either BIOL3210 or BIOL4208 or |  |
|  |  | BIOL3608; BIOL4207 or BIOL4208 or |
|  |  | BIOL3608 to fufill this 24 credits requirement, <br> but not both. BIOL3210, BIOL3608, |
|  |  | BIOL4207 and BIOL4208 are mutually <br> exclusive. |
| BIOL4209 |  |  |
| BIOL4210 | Functional foods (6) |  |
| BIOL4411 | Food product development (6) |  |
|  | Plant and food biotechnology (6) |  |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Food \& Nutritional Science <br> admitted to Year 1 in <br> 2015

## Objectives:

The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Food \& Nutritional Science

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            BIOL1110 From molecules to cells (6)
            BIOL1201 Introduction to food and nutrition (6)
            BIOL2220 Principles of biochemistry (6)
            BIOC2600 Basic biochemistry (6)
```

    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
            BIOL3201 Food chemistry (6)
            BIOL3202 Nutritional biochemistry (6)
            BIOL3203 Food microbiology (6)
            BIOL3204 Nutrition and the life cycle (6)
            BIOL3205 Human physiology (6)
            BIOL3206 Clinical nutrition (6)
            BIOL3207 Principles of toxicology (6)
            BIOL3208 Food safety and quality management (6)
            BIOL3209 Food and nutrient analysis (6)
            BIOL3210 Grain production and utilization (6)
                BIOL3211 Nutrigenomics (6)
                    BIOL3216 Food waste management (6)
                    BIOL3217 Food, environment and health (6)
                    BIOL3218 Food hygiene and quality control (6)
                    BIOL3606 Diet and disease (6)
                    BIOL3608 Food commodities (6)
    Take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutaully exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutaully exclusive.

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
[previous title: Food and nutritional toxicology (6) ]

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutaully exclusive.

Take either BIOL3210 or BIOL4208 or BIOL3608 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 or BIOL3608 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutaully exclusive.
Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3210 or BIOL4208 or BIOL3608; BIOL4207 or BIOL4208 or BIOL3608 to fufill this 24 credits requirement, but not both. BIOL3210, BIOL3608, BIOL4207 and BIOL4208 are mutually exclusive.

| BIOL4201 | Public health nutrition (6) |  |
| :--- | :--- | :--- |
| BIOL4202 | Nutrition and sports performance (6) |  |
| BIOL4204 | Diet, brain function and behavior (6) |  |
| BIOL4205 | Food technology (6) | [previous title: Food processing and <br> engineering (6)] |
| BIOL4207 | Meat and dairy sciences (6) | Take either BIOL4207 or BIOL4208 or |
|  |  | BIOL3608 to fufill this 24 credits requirement, <br> but not both. BIOL3608, BIOL4207 and |
|  |  | BIOL4208 are mutually exclusive. |
| BIOL4208 | Take either BIOL3210 or BIOL4208 or |  |
|  |  | BIOL3608; BIOL4207 or BIOL4208 or |
|  |  | BIOL3608 to fufill this 24 credits requirement, <br> but not both. BIOL3210, BIOL3608, |
|  |  | BIOL4207 and BIOL4208 are mutually <br> exclusive. |
| BIOL4209 |  |  |
| BIOL4210 | Functional foods (6) |  |
| BIOL4411 | Food product development (6) |  |
|  | Plant and food biotechnology (6) |  |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

Minor Title
Offered to students admitted to Year 1 in

Minor in Food \& Nutritional Science
2014

## Objectives:

The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Food \& Nutritional Science

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            BIOL1110 From molecules to cells (6)
            BIOL1201 Introduction to food and nutrition (6)
            BIOL2220 Principles of biochemistry (6)
            BIOC2600 Basic biochemistry (6)
```

    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Electives ( \(\mathbf{2 4}\) credits)
        At least 24 credits selected from the following courses:
            BIOL3201 Food chemistry (6)
            BIOL3202 Nutritional biochemistry (6)
            BIOL3203 Food microbiology (6)
            BIOL3204 Nutrition and the life cycle (6)
            BIOL3205 Human physiology (6)
            BIOL3206 Clinical nutrition (6)
            BIOL3207 Principles of toxicology (6)
            BIOL3208 Food safety and quality management (6)
            BIOL3209 Food and nutrient analysis (6)
            BIOL3210 Grain production and utilization (6)
                BIOL3211 Nutrigenomics (6)
                    BIOL3216 Food waste management (6)
                    BIOL3217 Food, environment and health (6)
                    BIOL3218 Food hygiene and quality control (6)
                    BIOL3606 Diet and disease (6)
                    BIOL3608 Food commodities (6)
    Take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusvie.
Take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusvie.

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
[previous title: Food and nutritional toxicology (6) ]

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusvie.

Take either BIOL3210 or BIOL4208 or BIOL3608 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 or BIOL3608 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusvie.
Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3210 or BIOL4208 or BIOL3608; BIOL4207 or BIOL4208 or BIOL3608 to fufill this 24 credits requirement, but not both. BIOL3210, BIOL3608, BIOL4207 and BIOL4208 are mutually exclusive.

| BIOL4201 | Public health nutrition (6) |  |
| :--- | :--- | :--- |
| BIOL4202 | Nutrition and sports performance (6) |  |
| BIOL4204 | Diet, brain function and behavior (6) |  |
| BIOL4205 | Food technology (6) | [previous title: Food processing and <br> engineering (6)] |
| BIOL4207 | Meat and dairy sciences (6) | Take either BIOL4207 or BIOL4208 or |
|  |  | BIOL3608 to fufill this 24 credits requirement, <br> but not both. BIOL3608, BIOL4207 and |
|  |  | BIOL4208 are mutually exclusive. |
| BIOL4208 | Take either BIOL3210 or BIOL4208 or |  |
|  |  | BIOL3608; BIOL4207 or BIOL4208 or |
|  |  | BIOL3608 to fufill this 24 credits requirement, <br> but not both. BIOL3210, BIOL3608, |
|  |  | BIOL4207 and BIOL4208 are mutually <br> exclusive. |
| BIOL4209 |  |  |
| BIOL4210 | Functional foods (6) |  |
| BIOL4411 | Food product development (6) |  |
|  | Plant and food biotechnology (6) |  |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Food \& Nutritional Science <br> admitted to Year 1 in <br> 2013

## Objectives:

The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Food \& Nutritional Science

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            BIOL1110 From molecules to cells (6)
            BIOL1201 Introduction to food and nutrition (6)
            BIOL2220 Principles of biochemistry (6)
            BIOC2600 Basic biochemistry (6)
```

    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
            BIOL3201 Food chemistry (6)
            BIOL3202 Nutritional biochemistry (6)
            BIOL3203 Food microbiology (6)
            BIOL3204 Nutrition and the life cycle (6)
            BIOL3205 Human physiology (6)
            BIOL3206 Clinical nutrition (6)
            BIOL3207 Principles of toxicology (6)
            BIOL3208 Food safety and quality management (6)
            BIOL3209 Food and nutrient analysis (6)
            BIOL3210 Grain production and utilization (6)
                BIOL3211 Nutrigenomics (6)
                    BIOL3216 Food waste management (6)
                    BIOL3217 Food, environment and health (6)
                    BIOL3218 Food hygiene and quality control (6)
                    BIOL3606 Diet and disease (6)
                    BIOL3608 Food commodities (6)
    Take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
[previous title: Food and nutritional toxicology (6) ]

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

Take either BIOL3210 or BIOL4208 or BIOL3608 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 or BIOL3608 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.
Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3210 or BIOL4208 or BIOL3608; BIOL4207 or BIOL4208 or BIOL3608 to fufill this 24 credits requirement, but not both. BIOL3210, BIOL3608, BIOL4207 and BIOL4208 are mutually exclusive.

| BIOL4201 | Public health nutrition (6) |  |
| :--- | :--- | :--- |
| BIOL4202 | Nutrition and sports performance (6) |  |
| BIOL4204 | Diet, brain function and behavior (6) |  |
| BIOL4205 | Food technology (6) | [previous title: Food processing and <br> engineering (6)] |
| BIOL4207 | Meat and dairy sciences (6) | Take either BIOL4207 or BIOL4208 or |
|  |  | BIOL3608 to fufill this 24 credits requirement, <br> but not both. BIOL3608, BIOL4207 and |
|  |  | BIOL4208 are mutually exclusive. |
| BIOL4208 | Take either BIOL3210 or BIOL4208 or |  |
|  |  | BIOL3608; BIOL4207 or BIOL4208 or |
|  |  | BIOL3608 to fufill this 24 credits requirement, <br> but not both. BIOL3210, BIOL3608, |
|  |  | BIOL4207 and BIOL4208 are mutually <br> exclusive. |
| BIOL4209 |  |  |
| BIOL4210 | Functional foods (6) |  |
| BIOL4411 | Food product development (6) |  |
|  | Plant and food biotechnology (6) |  |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Food \& Nutritional Science <br> 2012 <br> admitted to Year 1 in

## Objectives:

The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2 : recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4 : synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

## Impermissible Combinations:

Major in Food \& Nutritional Science

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            BIOL1110 From molecules to cells (6)
            BIOL1201 Introduction to food and nutrition (6)
            BIOL2220 Principles of biochemistry (6)
            BIOC2600 Basic biochemistry (6)
```

    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
            BIOL3201 Food chemistry (6)
            BIOL3202 Nutritional biochemistry (6)
            BIOL3203 Food microbiology (6)
            BIOL3204 Nutrition and the life cycle (6)
            BIOL3205 Human physiology (6)
            BIOL3206 Clinical nutrition (6)
            BIOL3207 Principles of toxicology (6)
            BIOL3208 Food safety and quality management (6)
            BIOL3209 Food and nutrient analysis (6)
            BIOL3210 Grain production and utilization (6)
                BIOL3211 Nutrigenomics (6)
                    BIOL3216 Food waste management (6)
                    BIOL3217 Food, environment and health (6)
                    BIOL3218 Food hygiene and quality control (6)
                    BIOL3606 Diet and disease (6)
                    BIOL3608 Food commodities (6)
    Take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
Take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
[previous title: Food and nutritional toxicology (6) ]

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

Take either BIOL3210 or BIOL4208 or BIOL3608 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 or BIOL3608 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.
Take either BIOL3206 or BIOL3606 to fulfill this 24 credits requirement, but not both. BIOL3206 and BIOL3606 are mutually exclusive.
Take either BIOL3210 or BIOL4208 or BIOL3608; BIOL4207 or BIOL4208 or BIOL3608 to fufill this 24 credits requirement, but not both. BIOL3210, BIOL3608, BIOL4207 and BIOL4208 are mutually exclusive.

| BIOL4201 | Public health nutrition (6) |  |
| :--- | :--- | :--- |
| BIOL4202 | Nutrition and sports performance (6) |  |
| BIOL4204 | Diet, brain function and behavior (6) |  |
| BIOL4205 | Food technology (6) | [previous title: Food processing and <br> engineering (6)] |
| BIOL4207 | Meat and dairy sciences (6) | Take either BIOL4207 or BIOL4208 or |
|  |  | BIOL3608 to fufill this 24 credits requirement, <br> but not both. BIOL3608, BIOL4207 and |
|  |  | BIOL4208 are mutually exclusive. |
| BIOL4208 | Take either BIOL3210 or BIOL4208 or |  |
|  |  | BIOL3608; BIOL4207 or BIOL4208 or |
|  |  | BIOL3608 to fufill this 24 credits requirement, <br> but not both. BIOL3210, BIOL3608, |
|  |  | BIOL4207 and BIOL4208 are mutually <br> exclusive. |
| BIOL4209 |  |  |
| BIOL4210 | Functional foods (6) |  |
| BIOL4411 | Food product development (6) |  |
|  | Plant and food biotechnology (6) |  |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Marine Biology <br> admitted to Year 1 in <br> 2021

## Objectives:

The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study, Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g.business, engineering and social science) an excellent opportunity to enter into a career or research in marine environmentrelated fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, labtoratorybased, and tutorial classes and project-based learning in the curriculum)
PLO 3 : have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, labtoratory-based, and tutorial classes and projectbased learning in the curriculum)
PLO 4 : understand the major marine issues both locally and globally (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 5 : appreciate the possible implications of climate change on marine systems (by means of coursework, labtoratorybased, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses ( 36 credits)
    1. Introductory level courses ( 12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL1309 Evolutionary diversity (6)
            ENVS1301 Environmental life science (6)
            BIOL2306 Ecology and evolution (6)
    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Core Courses ( 12 credits)
            BIOL3301 Marine biology (6)
            ENVS3313 Environmental oceanography (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL3303 Conservation biology (6)
            BIOL3305 Tropical and temperate marine ecology field course (6)
            BIOL3318 Experimental intertidal ecology (6)
            BIOL3322 Marine invertebrate zoology (6)
            BIOL3328 Nearshore marine and estuarine ecology (6)
            BIOL4301 Fish and fisheries (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Marine Biology <br> admitted to Year 1 in <br> 2020

## Objectives:

The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study, Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g.business, engineering and social science) an excellent opportunity to enter into a career or research in marine environmentrelated fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, labtoratorybased, and tutorial classes and project-based learning in the curriculum)
PLO 3 : have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, labtoratory-based, and tutorial classes and projectbased learning in the curriculum)
PLO 4 : understand the major marine issues both locally and globally (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 5 : appreciate the possible implications of climate change on marine systems (by means of coursework, labtoratorybased, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses ( 36 credits)
    1. Introductory level courses ( 12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL1309 Evolutionary diversity (6)
            ENVS1301 Environmental life science (6)
            BIOL2306 Ecology and evolution (6)
    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Core Courses ( 12 credits)
            BIOL3301 Marine biology (6)
            ENVS3313 Environmental oceanography (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL3303 Conservation biology (6)
            BIOL3305 Tropical and temperate marine ecology field course (6)
            BIOL3318 Experimental intertidal ecology (6)
            BIOL3322 Marine invertebrate zoology (6)
            BIOL3328 Nearshore marine and estuarine ecology (6)
            BIOL4301 Fish and fisheries (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Marine Biology <br> admitted to Year 1 in <br> 2019

## Objectives:

The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study, Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g.business, engineering and social science) an excellent opportunity to enter into a career or research in marine environmentrelated fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, labtoratorybased, and tutorial classes and project-based learning in the curriculum)
PLO 3 : have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, labtoratory-based, and tutorial classes and projectbased learning in the curriculum)
PLO 4 : understand the major marine issues both locally and globally (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 5 : appreciate the possible implications of climate change on marine systems (by means of coursework, labtoratorybased, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses ( 36 credits)
    1. Introductory level courses ( 12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL1309 Evolutionary diversity (6)
            ENVS1301 Environmental life science (6)
            BIOL2306 Ecology and evolution (6)
    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Core Courses ( 12 credits)
            BIOL3301 Marine biology (6)
            ENVS3313 Environmental oceanography (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL3303 Conservation biology (6)
            BIOL3305 Tropical and temperate marine ecology field course (6)
            BIOL3318 Experimental intertidal ecology (6)
            BIOL3322 Marine invertebrate zoology (6)
            BIOL3328 Nearshore marine and estuarine ecology (6)
            BIOL4301 Fish and fisheries (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Marine Biology <br> admitted to Year 1 in <br> 2018

## Objectives:

The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study, Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g.business, engineering and social science) an excellent opportunity to enter into a career or research in marine environmentrelated fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, labtoratorybased, and tutorial classes and project-based learning in the curriculum)
PLO 3 : have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, labtoratory-based, and tutorial classes and projectbased learning in the curriculum)
PLO 4 : understand the major marine issues both locally and globally (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 5 : appreciate the possible implications of climate change on marine systems (by means of coursework, labtoratorybased, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses ( 36 credits)
    1. Introductory level courses ( 12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL1309 Evolutionary diversity (6)
            ENVS1301 Environmental life science (6)
            BIOL2306 Ecology and evolution (6)
    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Core Courses ( 12 credits)
            BIOL3301 Marine biology (6)
            ENVS3313 Environmental oceanography (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL3303 Conservation biology (6)
            BIOL3305 Tropical and temperate marine ecology field course (6)
            BIOL3318 Experimental intertidal ecology (6)
            BIOL3322 Marine invertebrate zoology (6)
            BIOL3328 Nearshore marine and estuarine ecology (6)
            BIOL4301 Fish and fisheries (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Marine Biology <br> admitted to Year 1 in <br> 2017

## Objectives:

The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study, Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g.business, engineering and social science) an excellent opportunity to enter into a career or research in marine environmentrelated fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, labtoratorybased, and tutorial classes and project-based learning in the curriculum)
PLO 3 : have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, labtoratory-based, and tutorial classes and projectbased learning in the curriculum)
PLO 4 : understand the major marine issues both locally and globally (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 5 : appreciate the possible implications of climate change on marine systems (by means of coursework, labtoratorybased, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses ( 36 credits)
    1. Introductory level courses ( 12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL1309 Evolutionary diversity (6)
            ENVS1301 Environmental life science (6)
            BIOL2306 Ecology and evolution (6)
    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Core Courses ( 12 credits)
            BIOL3301 Marine biology (6)
            ENVS3313 Environmental oceanography (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL3303 Conservation biology (6)
            BIOL3305 Tropical and temperate marine ecology field course (6)
            BIOL3318 Experimental intertidal ecology (6)
            BIOL3322 Marine invertebrate zoology (6)
            BIOL3328 Nearshore marine and estuarine ecology (6)
            BIOL4301 Fish and fisheries (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Marine Biology <br> admitted to Year 1 in <br> 2016

## Objectives:

The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study, Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g.business, engineering and social science) an excellent opportunity to enter into a career or research in marine environmentrelated fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, labtoratorybased, and tutorial classes and project-based learning in the curriculum)
PLO 3 : have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, labtoratory-based, and tutorial classes and projectbased learning in the curriculum)
PLO 4 : understand the major marine issues both locally and globally (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 5 : appreciate the possible implications of climate change on marine systems (by means of coursework, labtoratorybased, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            BIOL1309 Evolutionary diversity (6)
            ENVS1301 Environmental life science (6)
            BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
            BIOL3301 Marine biology (6)
            ENVS3313 Environmental oceanography (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL3303 Conservation biology (6)
            BIOL3305 Tropical and temperate marine ecology field course (6)
            BIOL3318 Experimental intertidal ecology (6)
            BIOL3320 The biology of marine mammals (6)
            BIOL3322 Marine invertebrate zoology (6)
            BIOL3328 Nearshore marine and estuarine ecology (6)
            BIOL4301 Fish and fisheries (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Marine Biology <br> admitted to Year 1 in <br> 2015

## Objectives:

The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study, Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g.business, engineering and social science) an excellent opportunity to enter into a career or research in marine environmentrelated fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, labtoratorybased, and tutorial classes and project-based learning in the curriculum)
PLO 3 : have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, labtoratory-based, and tutorial classes and projectbased learning in the curriculum)
PLO 4 : understand the major marine issues both locally and globally (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 5 : appreciate the possible implications of climate change on marine systems (by means of coursework, labtoratorybased, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            BIOL1309 Evolutionary diversity (6)
            ENVS1301 Environmental life science (6)
            BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
            BIOL3301 Marine biology (6)
            ENVS3313 Environmental oceanography (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL3303 Conservation biology (6)
            BIOL3305 Tropical and temperate marine ecology field course (6)
            BIOL3318 Experimental intertidal ecology (6)
            BIOL3320 The biology of marine mammals (6)
            BIOL3322 Marine invertebrate zoology (6)
            BIOL3328 Nearshore marine and estuarine ecology (6)
            BIOL4301 Fish and fisheries (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Marine Biology <br> admitted to Year 1 in <br> 2014

## Objectives:

The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study, Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g.business, engineering and social science) an excellent opportunity to enter into a career or research in marine environmentrelated fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, labtoratorybased, and tutorial classes and project-based learning in the curriculum)
PLO 3 : have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, labtoratory-based, and tutorial classes and projectbased learning in the curriculum)
PLO 4 : understand the major marine issues both locally and globally (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 5 : appreciate the possible implications of climate change on marine systems (by means of coursework, labtoratorybased, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            BIOL1309 Evolutionary diversity (6)
            ENVS1301 Environmental life science (6)
            BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
            BIOL3301 Marine biology (6)
            ENVS3313 Environmental oceanography (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL3303 Conservation biology (6)
            BIOL3305 Tropical and temperate marine ecology field course (6)
            BIOL3318 Experimental intertidal ecology (6)
            BIOL3320 The biology of marine mammals (6)
            BIOL3322 Marine invertebrate zoology (6)
            BIOL3328 Nearshore marine and estuarine ecology (6)
            BIOL4301 Fish and fisheries (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Marine Biology <br> admitted to Year 1 in <br> 2013

## Objectives:

The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study, Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g.business, engineering and social science) an excellent opportunity to enter into a career or research in marine environmentrelated fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, labtoratorybased, and tutorial classes and project-based learning in the curriculum)
PLO 3 : have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, labtoratory-based, and tutorial classes and projectbased learning in the curriculum)
PLO 4 : understand the major marine issues both locally and globally (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 5 : appreciate the possible implications of climate change on marine systems (by means of coursework, labtoratorybased, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            BIOL1309 Evolutionary diversity (6)
            ENVS1301 Environmental life science (6)
            BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
            BIOL3301 Marine biology (6)
            ENVS3313 Environmental oceanography (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL3303 Conservation biology (6)
            BIOL3305 Tropical and temperate marine ecology field course (6)
            BIOL3318 Experimental intertidal ecology (6)
            BIOL3320 The biology of marine mammals (6)
            BIOL3322 Marine invertebrate zoology (6)
            BIOL3328 Nearshore marine and estuarine ecology (6)
            BIOL4301 Fish and fisheries (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Marine Biology <br> 2012 <br> admitted to Year 1 in

## Objectives:

The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study, Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g.business, engineering and social science) an excellent opportunity to enter into a career or research in marine environmentrelated fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, labtoratorybased, and tutorial classes and project-based learning in the curriculum)
PLO 3 : have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, labtoratory-based, and tutorial classes and projectbased learning in the curriculum)
PLO 4 : understand the major marine issues both locally and globally (by means of coursework, labtoratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 5 : appreciate the possible implications of climate change on marine systems (by means of coursework, labtoratorybased, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            BIOL1309 Evolutionary diversity (6)
            ENVS1301 Environmental life science (6)
            BIOL2306 Ecology and evolution (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
            BIOL3301 Marine biology (6)
            ENVS3313 Environmental oceanography (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            BIOL3303 Conservation biology (6)
            BIOL3305 Tropical and temperate marine ecology field course (6)
            BIOL3318 Experimental intertidal ecology (6)
            BIOL3320 The biology of marine mammals (6)
            BIOL3322 Marine invertebrate zoology (6)
            BIOL3328 Nearshore marine and estuarine ecology (6)
            BIOL4301 Fish and fisheries (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Mathematics

admitted to Year 1 in

## Objectives:

The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Minor in Computational \& Financial Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (36 credits)
    1. Introductory level courses (18 credits) (note 4)
    Disciplinary Core Course (6 credits)
        MATH1013
        University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
            MATH2101 Linear algebra I (6)
            MATH2211 Multivariable calculus (6)
            List B
        MATH2012
    Fundamental concepts of mathematics (6)
        MATH2014
    Multivariable calculus and linear algebra (6)
```

2. Advanced level courses ( 18 credits)
Disciplinary Electives (18 credits)
At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to
pre-requisite requirements. The current course list includes courses in List $A$ :
List A
MATH3001 Development of mathematical ideas (6)
MATH3002 Mathematics seminar (6)
MATH3301 Algebra I (6)
MATH3303 Matrix theory and its applications (6)
MATH3304
MATH3401
Introduction to number theory (6)
Analysis I (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Geometry (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)

| MATH7219 | Topics in applied functional analysis (6) |
| :--- | :--- |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.
4. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Mathematics

admitted to Year 1 in

## Objectives:

The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Minor in Computational \& Financial Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (36 credits)
    1. Introductory level courses (18 credits) (note 4)
    Disciplinary Core Course (6 credits)
        MATH1013
        University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
            MATH2101 Linear algebra I (6)
            MATH2211 Multivariable calculus (6)
            List B
        MATH2012
    Fundamental concepts of mathematics (6)
        MATH2014
    Multivariable calculus and linear algebra (6)
```

2. Advanced level courses ( 18 credits)
Disciplinary Electives (18 credits)
At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to
pre-requisite requirements. The current course list includes courses in List $A$ :
List A
MATH3001 Development of mathematical ideas (6)
MATH3002 Mathematics seminar (6)
MATH3301 Algebra I (6)
MATH3303 Matrix theory and its applications (6)
MATH3304
MATH3401
Introduction to number theory (6)
Analysis I (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Geometry (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)

| MATH7219 | Topics in applied functional analysis (6) |
| :--- | :--- |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.
4. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Mathematics <br> 2019

admitted to Year 1 in

## Objectives:

The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Minor in Computational \& Financial Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (36 credits)
    1. Introductory level courses (18 credits) (note 4)
    Disciplinary Core Course (6 credits)
        MATH1013
        University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
            MATH2101 Linear algebra I (6)
            MATH2211 Multivariable calculus (6)
            List B
        MATH2012
                            Fundamental concepts of mathematics (6)
            MATH2014
                            Multivariable calculus and linear algebra (6)
```

2. Advanced level courses ( 18 credits)
Disciplinary Electives (18 credits)
At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to
pre-requisite requirements. The current course list includes courses in List $A$ :
List A
MATH3001 Development of mathematical ideas (6)
MATH3002 Mathematics seminar (6)
MATH3301 Algebra I (6)
MATH3303 Matrix theory and its applications (6)
MATH3304
MATH3401
Introduction to number theory (6)
Analysis I (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Geometry (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)

| MATH7219 | Topics in applied functional analysis (6) |
| :--- | :--- |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.
4. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Mathematics <br> 2018 <br> admitted to Year 1 in

## Objectives:

The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Minor in Computational \& Financial Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (36 credits)
    1. Introductory level courses (18 credits) (note 4)
    Disciplinary Core Course (6 credits)
        MATH1013
        University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
            MATH2101 Linear algebra I (6)
            MATH2211 Multivariable calculus (6)
            List B
        MATH2012
                            Fundamental concepts of mathematics (6)
            MATH2014
                            Multivariable calculus and linear algebra (6)
```

2. Advanced level courses ( 18 credits)
Disciplinary Electives (18 credits)
At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to
pre-requisite requirements. The current course list includes courses in List $A$ :
List A
MATH3001 Development of mathematical ideas (6)
MATH3002 Mathematics seminar (6)
MATH3301 Algebra I (6)
MATH3303 Matrix theory and its applications (6)
MATH3304
MATH3401
Introduction to number theory (6)
Analysis I (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Geometry (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)

| MATH7219 | Topics in applied functional analysis (6) |
| :--- | :--- |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.
4. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Mathematics <br> 2017

admitted to Year 1 in

## Objectives:

The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (36 credits)
    1. Introductory level courses (18 credits) (note 4)
    Disciplinary Core Course (6 credits)
        MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
        MATH2101 Linear algebra I (6)
        MATH2211 Multivariable calculus (6)
        List B
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2014
        Multivariable calculus and linear algebra (6)
```

    2. Advanced level courses (18 credits)
    Disciplinary Electives (18 credits)
        At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to
        pre-requisite requirements. The current course list includes courses in List A:
        List A
    MATH3001
MATH3002 MATH3301 MATH3303 MATH3304 MATH3401 MATH3403 MATH3405 MATH3408

MATH3541
MATH3600
MATH3601
MATH3603
MATH3901 MATH3904 MATH3905 MATH3906 MATH3911 MATH3943 MATH4302 MATH4402 MATH4404 MATH4406 MATH4501 MATH4511 MATH4602 MATH4902 MATH4907 MATH7101 MATH7201 MATH7202

Development of mathematical ideas (6)
Mathematics seminar (6)
Algebra I (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Analysis I (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Geometry (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)

| MATH7217 | Topics in financial mathematics (6) |
| :--- | :--- |
| MATH7219 | Topics in applied functional analysis (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics $(6)$ |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis $(6)$ |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.
4. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Mathematics <br> 2016 <br> admitted to Year 1 in

## Objectives:

The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (36 credits)
    1. Introductory level courses (18 credits) (note 4)
    Disciplinary Core Course (6 credits)
        MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
        MATH2101 Linear algebra I (6)
        MATH2211 Multivariable calculus (6)
        List B
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2014
        Multivariable calculus and linear algebra (6)
```

    2. Advanced level courses (18 credits)
    Disciplinary Electives (18 credits)
        At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to
        pre-requisite requirements. The current course list includes courses in List A:
        List A
    MATH3001
MATH3002 MATH3301 MATH3303 MATH3304 MATH3401 MATH3403 MATH3405 MATH3408

MATH3541
MATH3600
MATH3601
MATH3603
MATH3901 MATH3904 MATH3905 MATH3906 MATH3911 MATH3943 MATH4302 MATH4402 MATH4404 MATH4406 MATH4501 MATH4511 MATH4602 MATH4902 MATH4907 MATH7101 MATH7201 MATH7202

Development of mathematical ideas (6)
Mathematics seminar (6)
Algebra I (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Analysis I (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Geometry (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)

| MATH7217 | Topics in financial mathematics (6) |
| :--- | :--- |
| MATH7219 | Topics in applied functional analysis (6) |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics $(6)$ |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis $(6)$ |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.
4. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Mathematics <br> 2015

admitted to Year 1 in

## Objectives:

The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (36 credits)
    1. Introductory level courses (18 credits) (note 4)
    Disciplinary Core Course (6 credits)
        MATH1013
        University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
            MATH2101 Linear algebra I (6)
            MATH2211 Multivariable calculus (6)
            List B
        MATH2012
    Fundamental concepts of mathematics (6)
        MATH2014
    Multivariable calculus and linear algebra (6)
```

2. Advanced level courses ( 18 credits)
Disciplinary Electives (18 credits)
At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to
pre-requisite requirements. The current course list includes courses in List $A$ :
List A
MATH3001 Development of mathematical ideas (6)
MATH3002 Mathematics seminar (6)
MATH3301 Algebra I (6)
MATH3303 Matrix theory and its applications (6)
MATH3304
MATH3401
Introduction to number theory (6)
Analysis I (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Geometry (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)

| MATH7219 | Topics in applied functional analysis (6) |
| :--- | :--- |
| MATH7224 | Topics in advanced probability theory (6) |
| MATH7501 | Topics in algebra (6) |
| MATH7502 | Topics in applied discrete mathematics (6) |
| MATH7503 | Topics in mathematical programming and optimization (6) |
| MATH7504 | Geometric topology (6) |
| MATH7505 | Real analysis (6) |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.
4. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Mathematics <br> 2014

admitted to Year 1 in

## Objectives:

The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (36 credits)
    1. Introductory level courses (18 credits) (note 4)
    Disciplinary Core Courses (18 credits)
        MATH1013
        MATH2101 Linear algebra I (6)
        MATH2211 Multivariable calculus (6)
```

    2. Advanced level courses ( 18 credits)
    Disciplinary Electives (18 credits)
        At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to
        pre-requisite requirements. The current course list includes courses in List A:
        List A
    MATH3001
MATH3002
MATH3301
MATH3303
MATH3304
MATH3401
MATH3403
MATH3405
MATH3408
MATH3541
MATH3600
MATH3601
MATH3603
MATH3901
MATH3904
MATH3905
MATH3906
MATH3911
MATH3943
MATH4302
MATH4402
MATH4404
MATH4406
MATH4501
MATH4511
MATH4602
MATH4902
MATH4907
MATH7101
MATH7201
MATH7202
MATH7217
MATH7219
MATH7224
MATH7501
MATH7502
MATH7503
MATH7504

Development of mathematical ideas (6)
Mathematics seminar (6)
Algebra I (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Analysis I (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Geometry (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)
Topics in applied functional analysis (6)
Topics in advanced probability theory (6)
Topics in algebra (6)
Topics in applied discrete mathematics (6)
Topics in mathematical programming and optimization (6)
Geometric topology (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.
4. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Mathematics

admitted to Year 1 in

## Objectives:

The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics
Minor in Operations Research \& Mathematical Programming

```
Required courses (36 credits)
    1. Introductory level courses (18 credits) (note 4)
    Disciplinary Core Courses (18 credits)
        MATH1013
        MATH2101 Linear algebra I (6)
        MATH2211 Multivariable calculus (6)
```

    2. Advanced level courses ( 18 credits)
    Disciplinary Electives (18 credits)
        At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to
        pre-requisite requirements. The current course list includes courses in List A:
        List A
    MATH3001
MATH3002
MATH3301
MATH3303
MATH3304
MATH3401
MATH3403
MATH3405
MATH3408
MATH3541
MATH3600
MATH3601
MATH3603
MATH3901
MATH3904
MATH3905
MATH3906
MATH3911
MATH3943
MATH4302
MATH4402
MATH4404
MATH4406
MATH4501
MATH4511
MATH4602
MATH4902
MATH4907
MATH7101
MATH7201
MATH7202
MATH7217
MATH7219
MATH7224
MATH7501
MATH7502
MATH7503
MATH7504

Development of mathematical ideas (6)
Mathematics seminar (6)
Algebra I (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Analysis I (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Geometry (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)
Topics in applied functional analysis (6)
Topics in advanced probability theory (6)
Topics in algebra (6)
Topics in applied discrete mathematics (6)
Topics in mathematical programming and optimization (6)
Geometric topology (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.
4. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title <br> Offered to students <br> Minor in Mathematics <br> 2012

admitted to Year 1 in

## Objectives:

The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics/Physics
Minor in Computational \& Financial Mathematics

```
Required courses (36 credits)
    1. Introductory level courses (18 credits) (note 4)
    Disciplinary Core Courses (18 credits)
        MATH1013 University mathematics II (6)
        MATH2101 Linear algebra I (6)
        MATH2211
                            Multivariable calculus (6)
    2. Advanced level courses (18 credits)
    Disciplinary Electives (18 credits)
        At least }18\mathrm{ credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to
        pre-requisite requirements. The current course list includes courses in List A:
        List A
```

MATH3001
MATH3002 MATH3301 MATH3303 MATH3304 MATH3401 MATH3403 MATH3405 MATH3408

MATH3541
MATH3600 MATH3601 MATH3603 MATH3901 MATH3904 MATH3905 MATH3906 MATH3911 MATH3943 MATH4302 MATH4402 MATH4404 MATH4406 MATH4501 MATH4511 MATH4602 MATH4902 MATH4907 MATH7101 MATH7201 MATH7202 MATH7217 MATH7219 MATH7224 MATH7501 MATH7502 MATH7503 MATH7504 MATH7505

Development of mathematical ideas (6)
Mathematics seminar (6)
Algebra I (6)
Matrix theory and its applications (6)
Introduction to number theory (6)
Analysis I (6)
Functions of a complex variable (6)
Differential equations (6)
Computational methods and differential equations with
applications (6)
Introduction to topology (6)
Discrete mathematics (6)
Numerical analysis (6)
Probability theory (6)
Operations research I (6)
Introduction to optimization (6)
Queueing theory and simulation (6)
Financial calculus (6)
Game theory and strategy (6)
Network models in operations research (6)
Algebra II (6)
Analysis II (6)
Functional analysis (6)
Introduction to partial differential equations (6)
Geometry (6)
Introduction to differentiable manifolds (6)
Scientific computing (6)
Operations research II (6)
Numerical methods for financial calculus (6)
Intermediate complex analysis (6)
Topics in geometry (6)
Complex manifolds (6)
Topics in financial mathematics (6)
Topics in applied functional analysis (6)
Topics in advanced probability theory (6)
Topics in algebra (6)
Topics in applied discrete mathematics (6)
Topics in mathematical programming and optimization (6)
Geometric topology (6)
Real analysis (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.
4. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Molecular Biology \& Biotechnology <br> Offered to students 2021

admitted to Year 1 in

## Objectives:

The Minor in Molecular Biology \& Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
PLO 3 : understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives ( 12 credits)
At least 12 credits selected from the following courses:
$\begin{array}{ll}\text { BIOL1110 } & \text { From molecules to cells (6) } \\ \text { BIOL1309 } & \text { Evolutionary diversity (6) }\end{array}$
BIOC2600 Basic biochemistry (6) fulfill this 12 credits requirement, but not both fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
May take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
2. Advanced level courses ( 24 credits)

Disciplinary Core Courses ( 6 credits)
BIOL3401 Molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Molecular Biology \& Biotechnology |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 0}$ |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Minor in Molecular Biology \& Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
PLO 3 : understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses ( $\mathbf{3 6}$ credits)

1. Introductory level courses ( 12 credits)

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
$\begin{array}{ll}\text { BIOL1110 } & \text { From molecules to cells (6) } \\ \text { BIOL1309 } & \text { Evolutionary diversity (6) }\end{array}$
BIOC2600 Basic biochemistry (6) fulfill this 12 credits requirement, but not both fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
May take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
BIOL3401 Molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4401 Medical microbiology and applied immunology (6)
BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Molecular Biology \& Biotechnology |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 9}$ |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Minor in Molecular Biology \& Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
PLO 3 : understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses ( $\mathbf{3 6}$ credits)

1. Introductory level courses ( 12 credits)

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
$\begin{array}{ll}\text { BIOL1110 } & \text { From molecules to cells (6) } \\ \text { BIOL1309 } & \text { Evolutionary diversity (6) }\end{array}$
BIOC2600 Basic biochemistry (6) fulfill this 12 credits requirement, but not both fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
May take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
BIOL3401 Molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4401 Medical microbiology and applied immunology (6)
BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Molecular Biology \& Biotechnology |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2018 |

## Objectives:

The Minor in Molecular Biology \& Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
PLO 3 : understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses ( $\mathbf{3 6}$ credits)

1. Introductory level courses ( 12 credits)

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
$\begin{array}{ll}\text { BIOL1110 } & \text { From molecules to cells (6) } \\ \text { BIOL1309 } & \text { Evolutionary diversity (6) }\end{array}$
BIOC2600 Basic biochemistry (6) fulfill this 12 credits requirement, but not both fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
May take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
BIOL3401 Molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4401 Medical microbiology and applied immunology (6)
BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Molecular Biology \& Biotechnology |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2017 |

admitted to Year 1 in

## Objectives:

The Minor in Molecular Biology \& Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
PLO 3 : understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses ( $\mathbf{3 6}$ credits)

1. Introductory level courses ( 12 credits)

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
$\begin{array}{ll}\text { BIOL1110 } & \text { From molecules to cells (6) } \\ \text { BIOL1309 } & \text { Evolutionary diversity (6) }\end{array}$
BIOC2600 Basic biochemistry (6) fulfill this 12 credits requirement, but not both fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
May take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
BIOL3401 Molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4401 Medical microbiology and applied immunology (6)
BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Molecular Biology \& Biotechnology |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2016 |

## Objectives:

The Minor in Molecular Biology \& Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
PLO 3 : understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses ( $\mathbf{3 6}$ credits)

1. Introductory level courses ( 12 credits)

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
$\begin{array}{ll}\text { BIOL1110 } & \text { From molecules to cells (6) } \\ \text { BIOL1309 } & \text { Evolutionary diversity (6) }\end{array}$
BIOC2600 Basic biochemistry (6) fulfill this 12 credits requirement, but not both fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
May take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( 6 credits)
BIOL3401 Molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL3508 Microbial physiology and biotechnology (6)
BIOL4401 Medical microbiology and applied immunology (6)
BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
ENVS4110 Environmental remediation (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Molecular Biology \& Biotechnology <br> Offered to students 2015 <br> admitted to Year 1 in

## Objectives:

The Minor in Molecular Biology \& Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
PLO 3 : understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses ( $\mathbf{3 6}$ credits)

1. Introductory level courses ( 12 credits)

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
$\begin{array}{lll}\text { BIOL1110 } & \text { From molecules to cells (6) } \\ \text { BIOL1309 } & \text { Evolutionary diversity (6) }\end{array}$
BIOC2600 Basic biochemistry (6) fulfill this 12 credits requirement, but not both. fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
2. Advanced level courses ( 24 credits)

Disciplinary Core Courses ( 6 credits)
BIOL3401 Molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL3508 Microbial physiology and biotechnology (6)

BIOL4401 Medical microbiology and applied immunology (6)
BIOL4402 Microbial biotechnology (6)

BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
ENVS4110 Environmental remediation (6)

Take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

Take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Molecular Biology \& Biotechnology <br> Offered to students 2014 <br> admitted to Year 1 in

## Objectives:

The Minor in Molecular Biology \& Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
PLO 3 : understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses ( $\mathbf{3 6}$ credits)

1. Introductory level courses ( 12 credits)

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
$\begin{array}{lll}\text { BIOL1110 } & \text { From molecules to cells (6) } \\ \text { BIOL1309 } & \text { Evolutionary diversity (6) }\end{array}$
BIOC2600 Basic biochemistry (6) fulfill this 12 credits requirement, but not both. fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
2. Advanced level courses ( 24 credits)

Disciplinary Core Courses ( 6 credits)
BIOL3401 Molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL3508 Microbial physiology and biotechnology (6)

BIOL4401 Medical microbiology and applied immunology (6)
BIOL4402 Microbial biotechnology (6)

BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
ENVS4110 Environmental remediation (6)

Take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

Take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Molecular Biology \& Biotechnology |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 3}$ |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Molecular Biology \& Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
PLO 3 : understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses ( $\mathbf{3 6}$ credits)

1. Introductory level courses ( 12 credits)

## Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:
$\begin{array}{lll}\text { BIOL1110 } & \text { From molecules to cells (6) } \\ \text { BIOL1309 } & \text { Evolutionary diversity (6) }\end{array}$
BIOC2600 Basic biochemistry (6) fulfill this 12 credits requirement, but not both fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
2. Advanced level courses ( 24 credits)

Disciplinary Core Courses ( 6 credits)
BIOL3401 Molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL3508 Microbial physiology and biotechnology (6)

BIOL4401 Medical microbiology and applied immunology (6)
BIOL4402 Microbial biotechnology (6)

BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
ENVS4110 Environmental remediation (6)

Take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

Take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Molecular Biology \& Biotechnology <br> Offered to students 2012 <br> admitted to Year 1 in

## Objectives:

The Minor in Molecular Biology \& Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
PLO 2 : develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
PLO 3 : understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratorybased learning in the curriculum)

## Impermissible Combinations:

Major in Molecular Biology \& Biotechnology
Major in Molecular Biology \& Biotechnology (Intensive)

## Required courses ( $\mathbf{3 6}$ credits)

1. Introductory level courses ( 12 credits)

## Disciplinary Electives ( 12 credits)

At least 12 credits selected from the following courses:
$\begin{array}{lll}\text { BIOL1110 } & \text { From molecules to cells (6) } \\ \text { BIOL1309 } & \text { Evolutionary diversity (6) }\end{array}$
BIOC2600 Basic biochemistry (6) fulfill this 12 credits requirement, but not both fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2220 Principles of biochemistry (6)

BIOL2306 Ecology and evolution (6)
2. Advanced level courses ( 24 credits)

Disciplinary Core Courses ( 6 credits)
BIOL3401 Molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3402 Cell biology and cell technology (6)
BIOL3403 Immunology (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL3508 Microbial physiology and biotechnology (6)

BIOL4401 Medical microbiology and applied immunology (6)
BIOL4402 Microbial biotechnology (6)

BIOL4411 Plant and food biotechnology (6)
BIOL4415 Healthcare biotechnology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
ENVS4110 Environmental remediation (6)

Take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

Take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Operations Research \& Mathematical Programming <br> Offered to students 2021

admitted to Year 1 in

## Objectives:

The Minor in Operations Research \& Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and demonstrate understanding of fundamental concepts in operations research \& mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Minor in Mathematics
Minor in Computational \& Financial Mathematics

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
    MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
    Select either List A or List B:
    List A
        MATH2101 Linear algebral (6)
        MATH2211 Multivariable calculus (6)
        List B
            MATH2012 Fundamental concepts of mathematics (6)
            MATH2014 Multivariable calculus and linear algebra (6)
```

    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Core Courses ( 12 credits)
            MATH3901 Operations research I (6)
            MATH3904 Introduction to optimization (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            MATH3405 Differential equations (6)
            MATH3600 Discrete mathematics (6)
            MATH3905 Queueing theory and simulation (6)
            MATH3906 Financial calculus (6)
            MATH3911 Game theory and strategy (6)
            MATH3943 Network models in operations research (6)
            MATH4902 Operations research II (6)
            MATH4907 Numerical methods for financial calculus (6)
            MATH7502 Topics in applied discrete mathematics (6)
            MATH7503 Topics in mathematical programming and optimization (6)
    
## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Operations Research \& Mathematical Programming <br> Offered to students 2020

admitted to Year 1 in

## Objectives:

The Minor in Operations Research \& Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and demonstrate understanding of fundamental concepts in operations research \& mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Minor in Mathematics
Minor in Computational \& Financial Mathematics

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
    MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
    Select either List A or List B:
    List A
        MATH2101 Linear algebral (6)
        MATH2211 Multivariable calculus (6)
        List B
            MATH2012 Fundamental concepts of mathematics (6)
            MATH2014 Multivariable calculus and linear algebra (6)
```

    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Core Courses ( 12 credits)
            MATH3901 Operations research I (6)
            MATH3904 Introduction to optimization (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            MATH3405 Differential equations (6)
            MATH3600 Discrete mathematics (6)
            MATH3905 Queueing theory and simulation (6)
            MATH3906 Financial calculus (6)
            MATH3911 Game theory and strategy (6)
            MATH3943 Network models in operations research (6)
            MATH4902 Operations research II (6)
            MATH4907 Numerical methods for financial calculus (6)
            MATH7502 Topics in applied discrete mathematics (6)
            MATH7503 Topics in mathematical programming and optimization (6)
    
## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Operations Research \& Mathematical Programming <br> Offered to students 2019

admitted to Year 1 in

## Objectives:

The Minor in Operations Research \& Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and demonstrate understanding of fundamental concepts in operations research \& mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Minor in Mathematics
Minor in Computational \& Financial Mathematics

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
    MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
    Select either List A or List B:
    List A
        MATH2101 Linear algebral (6)
        MATH2211 Multivariable calculus (6)
        List B
            MATH2012 Fundamental concepts of mathematics (6)
            MATH2014 Multivariable calculus and linear algebra (6)
```

    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Core Courses ( 12 credits)
            MATH3901 Operations research I (6)
            MATH3904 Introduction to optimization (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            MATH3405 Differential equations (6)
            MATH3600 Discrete mathematics (6)
            MATH3905 Queueing theory and simulation (6)
            MATH3906 Financial calculus (6)
            MATH3911 Game theory and strategy (6)
            MATH3943 Network models in operations research (6)
            MATH4902 Operations research II (6)
            MATH4907 Numerical methods for financial calculus (6)
            MATH7502 Topics in applied discrete mathematics (6)
            MATH7503 Topics in mathematical programming and optimization (6)
    
## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Operations Research \& Mathematical Programming <br> Offered to students 2018

admitted to Year 1 in

## Objectives:

The Minor in Operations Research \& Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and demonstrate understanding of fundamental concepts in operations research \& mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Minor in Mathematics
Minor in Computational \& Financial Mathematics

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
    MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
    Select either List A or List B:
    List A
        MATH2101 Linear algebral (6)
        MATH2211 Multivariable calculus (6)
        List B
            MATH2012 Fundamental concepts of mathematics (6)
            MATH2014 Multivariable calculus and linear algebra (6)
```

    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Core Courses ( 12 credits)
            MATH3901 Operations research I (6)
            MATH3904 Introduction to optimization (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            MATH3405 Differential equations (6)
            MATH3600 Discrete mathematics (6)
            MATH3905 Queueing theory and simulation (6)
            MATH3906 Financial calculus (6)
            MATH3911 Game theory and strategy (6)
            MATH3943 Network models in operations research (6)
            MATH4902 Operations research II (6)
            MATH4907 Numerical methods for financial calculus (6)
            MATH7502 Topics in applied discrete mathematics (6)
            MATH7503 Topics in mathematical programming and optimization (6)
    
## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Operations Research \& Mathematical Programming <br> Offered to students 2017

admitted to Year 1 in

## Objectives:

The Minor in Operations Research \& Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and demonstrate understanding of fundamental concepts in operations research \& mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Major in Mathematics/Physics
Minor in Mathematics
Minor in Computational \& Financial Mathematics

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
        MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
        MATH2101 Linear algebra I (6)
        MATH2211 Multivariable calculus (6)
        List B
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2014 Multivariable calculus and linear algebra (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
        MATH3901 Operations research I (6)
        MATH3904 Introduction to optimization (6)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
        MATH3405 Differential equations (6)
        MATH3600 Discrete mathematics (6)
        MATH3905 Queueing theory and simulation (6)
        MATH3906 Financial calculus (6)
        MATH3911 Game theory and strategy (6)
        MATH3943 Network models in operations research (6)
        MATH4902 Operations research II (6)
        MATH4907 Numerical methods for financial calculus (6)
        MATH7502 Topics in applied discrete mathematics (6)
        MATH7503 Topics in mathematical programming and optimization (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Operations Research \& Mathematical Programming <br> Offered to students 2016

admitted to Year 1 in

## Objectives:

The Minor in Operations Research \& Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and demonstrate understanding of fundamental concepts in operations research \& mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics (Intensive)
Major in Mathematics/Physics
Minor in Mathematics
Minor in Computational \& Financial Mathematics

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
        MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
        Select either List A or List B:
        List A
        MATH2101 Linear algebra I (6)
        MATH2211 Multivariable calculus (6)
        List B
        MATH2012 Fundamental concepts of mathematics (6)
        MATH2014 Multivariable calculus and linear algebra (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
        MATH3901 Operations research I (6)
        MATH3904 Introduction to optimization (6)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
        MATH3405 Differential equations (6)
        MATH3600 Discrete mathematics (6)
        MATH3905 Queueing theory and simulation (6)
        MATH3906 Financial calculus (6)
        MATH3911 Game theory and strategy (6)
        MATH3943 Network models in operations research (6)
        MATH4902 Operations research II (6)
        MATH4907 Numerical methods for financial calculus (6)
        MATH7502 Topics in applied discrete mathematics (6)
        MATH7503 Topics in mathematical programming and optimization (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Operations Research \& Mathematical Programming <br> Offered to students 2015

admitted to Year 1 in

## Objectives:

The Minor in Operations Research \& Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and demonstrate understanding of fundamental concepts in operations research \& mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics/Physics
Minor in Mathematics
Minor in Computational \& Financial Mathematics

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Course (6 credits)
    MATH1013 University mathematics II (6)
    Disciplinary Electives (12 credits)
    Select either List A or List B:
    List A
        MATH2101 Linear algebral (6)
        MATH2211 Multivariable calculus (6)
        List B
            MATH2012 Fundamental concepts of mathematics (6)
            MATH2014 Multivariable calculus and linear algebra (6)
```

    2. Advanced level courses ( \(\mathbf{2 4}\) credits)
    Disciplinary Core Courses ( 12 credits)
            MATH3901 Operations research I (6)
            MATH3904 Introduction to optimization (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            MATH3405 Differential equations (6)
            MATH3600 Discrete mathematics (6)
            MATH3905 Queueing theory and simulation (6)
            MATH3906 Financial calculus (6)
            MATH3911 Game theory and strategy (6)
            MATH3943 Network models in operations research (6)
            MATH4902 Operations research II (6)
            MATH4907 Numerical methods for financial calculus (6)
            MATH7502 Topics in applied discrete mathematics (6)
            MATH7503 Topics in mathematical programming and optimization (6)
    
## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Operations Research \& Mathematical Programming <br> Offered to students 2014 <br> admitted to Year 1 in

## Objectives:

The Minor in Operations Research \& Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and demonstrate understanding of fundamental concepts in operations research \& mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics/Physics
Minor in Mathematics
Minor in Computational \& Financial Mathematics

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Courses (18 credits)
    MATH1013 University mathematics II (6)
    MATH2101 Linear algebra I (6)
    MATH2211 Multivariable calculus (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
        MATH3901 Operations research I (6)
        MATH3904 Introduction to optimization (6)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
            MATH3405 Differential equations (6)
            MATH3600 Discrete mathematics (6)
            MATH3905 Queueing theory and simulation (6)
            MATH3906 Financial calculus (6)
            MATH3911 Game theory and strategy (6)
            MATH3943 Network models in operations research (6)
            MATH4902 Operations research II (6)
            MATH4907 Numerical methods for financial calculus (6)
            MATH7502 Topics in applied discrete mathematics (6)
            MATH7503 Topics in mathematical programming and optimization (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Operations Research \& Mathematical Programming <br> Offered to students 2013 <br> admitted to Year 1 in

## Objectives:

The Minor in Operations Research \& Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: describe and demonstrate understanding of fundamental concepts in operations research \& mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and projectbased learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics
Major in Mathematics/Physics
Minor in Mathematics
Minor in Computational \& Financial Mathematics

```
Required courses (42 credits)
    1. Introductory level courses (18 credits) (note 3)
    Disciplinary Core Courses (18 credits)
    MATH1013 University mathematics II (6)
    MATH2101 Linear algebra I (6)
    MATH2211 Multivariable calculus (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (12 credits)
        MATH3901 Operations research I (6)
        MATH3904 Introduction to optimization (6)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
            MATH3405 Differential equations (6)
            MATH3600 Discrete mathematics (6)
            MATH3905 Queueing theory and simulation (6)
            MATH3906 Financial calculus (6)
            MATH3911 Game theory and strategy (6)
            MATH3943 Network models in operations research (6)
            MATH4902 Operations research II (6)
            MATH4907 Numerical methods for financial calculus (6)
            MATH7502 Topics in applied discrete mathematics (6)
            MATH7503 Topics in mathematical programming and optimization (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.
3. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at https://www.scifac.hku.hk/current/ug/academic/overlapping-course-requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Physics |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 2 1}$ |

## Objectives:

The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2 : analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Physics
Major in Physics (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 24 credits)

Disciplinary Core Courses ( 6 credits)
PHYS1250 Fundamental physics (6)
Disciplinary Electives ( 18 credits)
At least 18 credits selected from the following courses:
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2160 Introductory computational physics (6)
PHYS2250 Introductory mechanics (6)
PHYS2255 Introductory electricity and magnetism (6)
PHYS2261 Introductory heat and thermodynamics (6)
PHYS2265 Introductory quantum physics (6)
2. Advanced level courses ( 18 credits)

Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
List A
PHYS3150 Theoretical physics (6)
PHYS3151 Machine learning in physics (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics \& thermodynamics (6)
PHYS3650 Observational astronomy (6)
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS3750 Laser and spectroscopy (6)
PHYS3760 Physics laboratory (6)
PHYS3850 Physical Optics (6)
PHYS3851 Atomic and nuclear physics (6)
PHYS4150 Computational physics (6)
PHYS4151 Data analysis and modeling in physics (6)
PHYS4351 Advanced quantum mechanics (6)
PHYS4450 Advanced electromagnetism (6)
PHYS4550 Advanced statistical mechanics (6)
PHYS4551 Solid state physics (6)
PHYS4650 Stellar physics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)
PHYS4850 Particle physics (6)
PHYS7350 Graduate classical mechanics (6)
PHYS7351 Graduate quantum mechanics (6)
PHYS7450 Graduate electromagnetism (6)
PHYS7550 Graduate statistical mechanics (6)
PHYS7750 Nanophysics (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course
("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title <br> Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 2 0}$ |
| :--- | :--- |

## Objectives:

The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2 : analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Physics
Major in Physics (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 24 credits)

Disciplinary Core Courses ( 6 credits)
PHYS1250 Fundamental physics (6)
Disciplinary Electives ( 18 credits)
At least 18 credits selected from the following courses:
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2160 Introductory computational physics (6)
PHYS2250 Introductory mechanics (6)
PHYS2255 Introductory electricity and magnetism (6)
PHYS2261 Introductory heat and thermodynamics (6)
PHYS2265 Introductory quantum physics (6)
2. Advanced level courses ( 18 credits)

Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
List A
PHYS3150 Theoretical physics (6)
PHYS3151 Machine learning in physics (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics \& thermodynamics (6)
PHYS3650 Observational astronomy (6)
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS3750 Laser and spectroscopy (6)
PHYS3760 Physics laboratory (6)
PHYS3850 Physical Optics (6)
PHYS3851 Atomic and nuclear physics (6)
PHYS4150 Computational physics (6)
PHYS4151 Data analysis and modeling in physics (6)
PHYS4351 Advanced quantum mechanics (6)
PHYS4450 Advanced electromagnetism (6)
PHYS4550 Advanced statistical mechanics (6)
PHYS4551 Solid state physics (6)
PHYS4650 Stellar physics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)
PHYS4850 Particle physics (6)
PHYS7350 Graduate classical mechanics (6)
PHYS7351 Graduate quantum mechanics (6)
PHYS7450 Graduate electromagnetism (6)
PHYS7550 Graduate statistical mechanics (6)
PHYS7750 Nanophysics (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course
("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Physics |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2 : analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Physics
Major in Physics (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 24 credits)

Disciplinary Core Courses ( 6 credits)
PHYS1250 Fundamental physics (6)
Disciplinary Electives ( 18 credits)
At least 18 credits selected from the following courses:
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2160 Introductory computational physics (6)
PHYS2250 Introductory mechanics (6)
PHYS2255 Introductory electricity and magnetism (6)
PHYS2261 Introductory heat and thermodynamics (6)
PHYS2265 Introductory quantum physics (6)
2. Advanced level courses ( 18 credits)

Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
List A
PHYS3150 Theoretical physics (6)
PHYS3151 Machine learning in physics (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics \& thermodynamics (6)
PHYS3650 Observational astronomy (6)
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS3750 Laser and spectroscopy (6)
PHYS3760 Physics laboratory (6)
PHYS3850 Physical Optics (6) [previous title: Waves and optics (6)]
PHYS3851 Atomic and nuclear physics (6)
PHYS4150 Computational physics (6)
PHYS4151 Data analysis and modeling in physics (6)
PHYS4351 Advanced quantum mechanics (6)
PHYS4450 Advanced electromagnetism (6)
PHYS4550 Advanced statistical mechanics (6)
PHYS4551 Solid state physics (6)
PHYS4650 Stellar physics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)
PHYS4850 Particle physics (6)
PHYS7350 Graduate classical mechanics (6)
PHYS7351 Graduate quantum mechanics (6)
PHYS7450 Graduate electromagnetism (6)
PHYS7550 Graduate statistical mechanics (6)
PHYS7750 Nanophysics (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course
("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Physics <br> Offered to students 2018 <br> admitted to Year 1 in

## Objectives:

The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2: analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

## Major in Physics

Major in Physics (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 24 credits)

Disciplinary Core Courses ( 6 credits)
PHYS1250 Fundamental physics (6)
Disciplinary Electives ( 18 credits)
At least 18 credits selected from the following courses:
PHYS1150 Problem solving in physics (6)
PHYS2055 Introductory relativity (6) [previous title: Introduction to relativity (6)]
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2160 Introductory computational physics (6)
PHYS2250 Introductory mechanics (6)
PHYS2255 Introductory electricity and magnetism (6)
PHYS2261 Introductory heat and thermodynamics (6)
PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
2. Advanced level courses ( 18 credits)

Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
List A
PHYS3150 Theoretical physics (6)
PHYS3151 Machine learning in physics (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics \& thermodynamics (6)
PHYS3650 Observational astronomy (6)
PHYS3653 Astrophysics (6)
PHYS3660 Astronomy laboratory (6)
PHYS3750 Laser and spectroscopy (6)
PHYS3760 Physics laboratory (6)
PHYS3850 Physical Optics (6)
PHYS3851 Atomic and nuclear physics (6)
PHYS4150 Computational physics (6)
PHYS4151 Data analysis and modeling in physics (6)
PHYS4351 Advanced quantum mechanics (6)
PHYS4450 Advanced electromagnetism (6)
PHYS4550 Advanced statistical mechanics (6)
PHYS4551 Solid state physics (6)
PHYS4650 Stellar physics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4656 Advanced astrophysics (6)
PHYS4850 Particle physics (6)
PHYS7350 Graduate classical mechanics (6)
PHYS7351 Graduate quantum mechanics (6)
PHYS7450 Graduate electromagnetism (6)
PHYS7550 Graduate statistical mechanics (6)
PHYS7750 Nanophysics (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course
("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Physics <br> Offered to students 2017 <br> admitted to Year 1 in

## Objectives:

The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2 : analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics/Physics
Major in Physics
Major in Physics (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 18 credits)

| PHYS1250 | Fundamental physics (6) |
| :--- | :--- |
| PHYS2250 | Introductory mechanics (6) |

PHYS2265 Introductory quantum physics (6)
[previous title: Modern physics (6)]
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives ( 24 credits)
At least 24 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A

PHYS3150
PHYS3151
PHYS3350
PHYS3351
PHYS3450
PHYS3550
PHYS3551
PHYS3650
PHYS3651
PHYS3652
PHYS3653
PHYS3660
PHYS3750
PHYS3751
PHYS3760
PHYS3850
PHYS3851
PHYS3999
PHYS4150
PHYS4151
PHYS4350
PHYS4351
PHYS4450
PHYS4550
PHYS4551
PHYS4650
PHYS4651
PHYS4652
PHYS4653
PHYS4654
PHYS4655
PHYS4656
PHYS4750
PHYS4850
PHYS4966
PHYS4999
PHYS7350
PHYS7351
PHYS7450
PHY7550
Graduate statistical mechanics (6)
PHYS7551 Graduate solid state physics (6)
Physics laboratory (6)
Physical Optics (6)
Atomic and nuclear physics (6)
Directed studies in physics (6)
Computational physics (6)
Data analysis and modeling in physics (6)
Advanced classical mechanics (6)
Advanced quantum mechanics (6)
Advanced electromagnetism (6)
Advanced statistical mechanics (6)
Solid state physics (6)
Stellar physics (6)
Selected topics in astrophysics (6)
Planetary science (6)
Cosmology (6)
General relativity (6)
Interstellar medium (6)
Advanced astrophysics (6)
Experimental physics (6)
Particle physics (6)
Physics internship (6)
Physics project (12)
Graduate classical mechanics (6)
Graduate quantum mechanics (6)
Graduate electromagnetism (6)

```
    PHYS7650 Stellar atmospheres (6)
    PHYS7750
    Nanophysics (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Physics <br> Offered to students 2016 <br> admitted to Year 1 in

## Objectives:

The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2 : analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics/Physics
Major in Physics
Major in Physics (Intensive)

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 18 credits)

| PHYS1250 | Fundamental physics (6) |
| :--- | :--- |
| PHYS2250 | Introductory mechanics (6) |
| PHYS2265 | Introduto |

PHYS2265 Introductory quantum physics (6)
[previous title: Modern physics (6)]
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives ( 24 credits)
At least 24 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A

PHYS3150
PHYS3151
PHYS3350
PHYS3351
PHYS3450
PHYS3550
PHYS3551
PHYS3650
PHYS3651
PHYS3652
PHYS3653
PHYS3660
PHYS3750
PHYS3751
PHYS3760
PHYS3850
PHYS3851
PHYS3999
PHYS4150
PHYS4151
PHYS4350
PHYS4351
PHYS4450
PHYS4550
PHYS4551
PHYS4650
PHYS4651
PHYS4652
PHYS4653
PHYS4654
PHYS4655
PHYS4656
PHYS4750
PHYS4850
PHYS4966
PHYS4999
PHYS7350
PHYS7351
PHYS7450
PHY7550
Graduate statistical mechanics (6)
PHYS7551 Graduate solid state physics (6)
Theoretical physics (6)
Machine learning in physics (6)
Classical mechanics (6)
Quantum mechanics (6)
Electromagnetism (6)
Statistical mechanics \& thermodynamics (6)
Introductory solid state physics (6)
Observational astronomy (6)
The physical universe (6)
Principles of astronomy (6)
Astrophysics (6)
Astronomy laboratory (6)
Laser and spectroscopy (6)
Physics of nanomaterials (6)
Physics laboratory (6)
Physical Optics (6)
Atomic and nuclear physics (6)
Directed studies in physics (6)
Computational physics (6)
Data analysis and modeling in physics (6)
Advanced classical mechanics (6)
Advanced quantum mechanics (6)
Advanced electromagnetism (6)
Advanced statistical mechanics (6)
Solid state physics (6)
Stellar physics (6)
Selected topics in astrophysics (6)
Planetary science (6)
Cosmology (6)
General relativity (6)
Interstellar medium (6)
Advanced astrophysics (6)
Experimental physics (6)
Particle physics (6)
Physics internship (6)
Physics project (12)
Graduate classical mechanics (6)
Graduate quantum mechanics (6)
Graduate electromagnetism (6)

```
    PHYS7650 Stellar atmospheres (6)
    PHYS7750
    Nanophysics (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title $\quad$ Minor in Physics
Offered to students
admitted to Year 1 in
Objectives:
The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would
acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics
from the very small scale of nanomaterials to the large scale of astrophysics.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2 : analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics/Physics
Major in Physics

## Required courses ( 42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 18 credits)
PHYS1250 Fundamental physics (6) PHYS2250 Introductory mechanics (6) PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives ( 24 credits)
At least 24 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A PHYS3150

Theoretical physics (6)
PHYS3151
Machine learning in physics (6)
PHYS3350 Classical mechanics (6)
PHYS3351 PHYS3450 PHYS3550 PHYS3551 PHYS3650 PHYS3651 PHYS3652 PHYS3653 PHYS3660 PHYS3750 PHYS3751 PHYS3760 PHYS3850 PHYS3851 PHYS3999 PHYS4150 PHYS4151 PHYS4350 PHYS4351 PHYS4450 PHYS4550 PHYS4551 PHYS4650 PHYS4651 PHYS4652 PHYS4653 PHYS4654 PHYS4655 PHYS4656 PHYS4750 PHYS4850 PHYS4966 PHYS4999 PHYS7350 PHYS7351 PHYS7450 PHYS7550 PHYS7551

Quantum mechanics (6)
Electromagnetism (6)
Statistical mechanics \& thermodynamics (6)
Introductory solid state physics (6)
Observational astronomy (6)
The physical universe (6)
Principles of astronomy (6)
Astrophysics (6)
Astronomy laboratory (6)
Laser and spectroscopy (6)
Physics of nanomaterials (6)
Physics laboratory (6)
Physical Optics (6)
Atomic and nuclear physics (6)
Directed studies in physics (6)
Computational physics (6)
Data analysis and modeling in physics (6)
Advanced classical mechanics (6)
Advanced quantum mechanics (6)
Advanced electromagnetism (6)
Advanced statistical mechanics (6)
Solid state physics (6)
Stellar physics (6)
Selected topics in astrophysics (6)
Planetary science (6)
Cosmology (6)
General relativity (6)
Interstellar medium (6)
Advanced astrophysics (6)
Experimental physics (6)
Particle physics (6)
Physics internship (6)
Physics project (12)
Graduate classical mechanics (6)
Graduate quantum mechanics (6)
Graduate electromagnetism (6)
Graduate statistical mechanics (6) Graduate solid state physics (6)
Stellar atmospheres (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Physics <br> Offered to students 2014 <br> admitted to Year 1 in

## Objectives:

The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2 : analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics/Physics
Major in Physics

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 18 credits)
PHYS1250 Fundamental physics (6)
PHYS2250 Introductory mechanics (6)

PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
List A

PHYS3150
PHYS3350
PHYS3351 Quantum mechanics (6)
PHYS3450
PHYS3550
PHYS3551
PHYS3650
PHYS3651
PHYS3652
PHYS3750
PHYS3751
PHYS3850
PHYS3851 PHYS3999 PHYS4150 PHYS4151 PHYS4350 PHYS4351 PHYS4450 PHYS4550 PHYS4551 PHYS4650 PHYS4651 PHYS4652 PHYS4653 PHYS4654 PHYS4655 PHYS4750 PHYS4850 PHYS4966 PHYS4999 PHYS7350 PHYS7351 PHYS7450

Graduate statistical mechanics (6) PHYS7551 Graduate solid state physics (6) PHYS7650 Stellar atmospheres (6) PHYS7750

## Physical Optics (6)

Atomic and nuclear physics (6)
Directed studies in physics (6)
Computational physics (6)
Data analysis and modeling in physics (6)
Advanced classical mechanics (6)
Advanced quantum mechanics (6)
Advanced electromagnetism (6)
Advanced statistical mechanics (6)
Solid state physics (6)
Stellar physics (6)
Selected topics in astrophysics (6)
Planetary science (6)
Cosmology (6)
General relativity (6)
Interstellar medium (6)
Experimental physics (6)
Particle physics (6)
Physics internship (6)
Physics project (12)
Graduate classical mechanics (6)
Graduate quantum mechanics (6)
Graduate electromagnetism (6)

Nanophysics (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For
details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Physics <br> Offered to students 2013 <br> admitted to Year 1 in

## Objectives:

The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2 : analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics/Physics
Major in Physics

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 18 credits)
PHYS1250 Fundamental physics (6)
PHYS2250 Introductory mechanics (6)

PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List $A$ :
List A

PHYS3150 PHYS3350 PHYS3351 PHYS3450 PHYS3550 PHYS3551 PHYS3650 PHYS3651 PHYS3652 PHYS3750 PHYS3751 PHYS3850 PHYS3851 PHYS3999 PHYS4150 PHYS4151 PHYS4350 PHYS4351 PHYS4450 PHYS4550 PHYS4551 PHYS4650 PHYS4651 PHYS4652 PHYS4653 PHYS4654 PHYS4655 PHYS4750 PHYS4850 PHYS4966 PHYS4999 PHYS7350 PHYS7351 PHYS7450 PHYS7550 PHYS7551 PHYS7650 PHYS7750

Theoretical physics (6)
Classical mechanics (6)
Quantum mechanics (6)
Electromagnetism (6)
Statistical mechanics \& thermodynamics (6)
Introductory solid state physics (6)
Observational astronomy (6)
The physical universe (6)
Principles of astronomy (6)
Laser and spectroscopy (6)
Physics of nanomaterials (6)
Physical Optics (6) [previous title: Waves and optics (6) ]
Atomic and nuclear physics (6)
Directed studies in physics (6)
Computational physics (6)
Data analysis and modeling in physics (6)
Advanced classical mechanics (6)
Advanced quantum mechanics (6)
Advanced electromagnetism (6)
Advanced statistical mechanics (6)
Solid state physics (6)
Stellar physics (6)
Selected topics in astrophysics (6)
Planetary science (6)
Cosmology (6)
General relativity (6)
Interstellar medium (6)
Experimental physics (6)
Particle physics (6)
Physics internship (6)
Physics project (12)
Graduate classical mechanics (6)
Graduate quantum mechanics (6)
Graduate electromagnetism (6)
Graduate statistical mechanics (6)
Graduate solid state physics (6)
Stellar atmospheres (6)
Nanophysics (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For
details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Physics <br> Offered to students 2012 <br> admitted to Year 1 in

## Objectives:

The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2 : analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

## Impermissible Combinations:

Major in Mathematics/Physics
Major in Physics

## Required courses (42 credits)

1. Introductory level courses ( 18 credits)

Disciplinary Core Courses ( 18 credits)
PHYS1250 Fundamental physics (6)
PHYS2250 Introductory mechanics (6)

PHYS2265 Introductory quantum physics (6) [previous title: Modern physics (6)]
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Electives (24 credits)
At least 24 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List $A$ :
List A

PHYS3150 PHYS3350 PHYS3351 PHYS3450 PHYS3550 PHYS3551 PHYS3650 PHYS3651 PHYS3652 PHYS3750 PHYS3751 PHYS3850 PHYS3851 PHYS3999 PHYS4150 PHYS4151 PHYS4350 PHYS4351 PHYS4450 PHYS4550 PHYS4551 PHYS4650 PHYS4651 PHYS4652 PHYS4653 PHYS4654 PHYS4655 PHYS4750 PHYS4850 PHYS4966 PHYS4999 PHYS7350 PHYS7351 PHYS7450 PHYS7550 PHYS7551 PHYS7650 PHYS7750

Theoretical physics (6)
Classical mechanics (6)
Quantum mechanics (6)
Electromagnetism (6)
Statistical mechanics \& thermodynamics (6)
Introductory solid state physics (6)
Observational astronomy (6)
The physical universe (6)
Principles of astronomy (6)
Laser and spectroscopy (6)
Physics of nanomaterials (6)
Physical Optics (6) [previous title: Waves and optics (6) ]
Atomic and nuclear physics (6)
Directed studies in physics (6)
Computational physics (6)
Data analysis and modeling in physics (6)
Advanced classical mechanics (6)
Advanced quantum mechanics (6)
Advanced electromagnetism (6)
Advanced statistical mechanics (6)
Solid state physics (6)
Stellar physics (6)
Selected topics in astrophysics (6)
Planetary science (6)
Cosmology (6)
General relativity (6)
Interstellar medium (6)
Experimental physics (6)
Particle physics (6)
Physics internship (6)
Physics project (12)
Graduate classical mechanics (6)
Graduate quantum mechanics (6)
Graduate electromagnetism (6)
Graduate statistical mechanics (6)
Graduate solid state physics (6)
Stellar atmospheres (6)
Nanophysics (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For
details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title Minor in Plant Science
Offered to students $\quad 2021$
admitted to Year 1 in
Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular
mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such
as the production of high-quality food, tutilization of plant products as biofuels and extraction of beneficial phytochemicals.
Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for
nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to
the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1 : appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 2 : understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 3 : acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

| Required courses (36 credits) |  |
| :--- | :--- |
| 1. Introductory level courses (12 credits) |  |
| Disciplinary Electives (12 credits) |  |
| At least 12 credits selected from the following courses: |  |
| BIOL1110 | From molecules to cells (6) |
| BIOL1309 | Evolutionary diversity (6) |
| BIOL2103 | Biological sciences laboratory course (6) |
| BIOL2220 | Principles of biochemistry (6) |
| 2. Advanced level courses (24 credits) |  |
| Disciplinary Electives (24 credits) |  |
| At least 24 credits selected from the following courses: |  |
| BIOL3107 | Plant physiology (6) |
| BIOL3210 | Grain production and utilization (6) |
| BIOL3314 | Plant structure and evolution (6) |
| BIOL3408 | Genetics (6) |
| BIOL4209 | Functional foods (6) |
| BIOL4411 | Plant and food biotechnology (6) |
|  |  |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title Minor in Plant Science
Offered to students $\quad 2020$
admitted to Year 1 in
Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular
mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such
as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals.
Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for
nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to
the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 2 : understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 3 : acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
        BIOL11100 From molecules to cells (6)
        BIOL1309 Evolutionary diversity (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
```

    2. Advanced level courses ( 24 credits)
    Disciplinary Electives ( 24 credits)
        At least 24 credits selected from the following courses:
        BIOL3107 Plant physiology (6)
        BIOL3210 Grain production and utilization (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3408 Genetics (6)
        BIOL4209 Functional foods (6)
        BIOL4411 Plant and food biotechnology (6)
    
## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title Minor in Plant Science
Offered to students $\quad 2019$
admitted to Year 1 in
Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular
mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such
as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals.
Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for
nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to
the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 2 : understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 3 : acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
        BIOL11100 From molecules to cells (6)
        BIOL1309 Evolutionary diversity (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
```

    2. Advanced level courses ( 24 credits)
    Disciplinary Electives ( 24 credits)
        At least 24 credits selected from the following courses:
        BIOL3107 Plant physiology (6)
        BIOL3210 Grain production and utilization (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3408 Genetics (6)
        BIOL4209 Functional foods (6)
        BIOL4411 Plant and food biotechnology (6)
    
## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title Minor in Plant Science
Offered to students $\quad 2018$
admitted to Year 1 in
Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular
mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such
as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals.
Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for
nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to
the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 2 : understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 3 : acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
        BIOL11100 From molecules to cells (6)
        BIOL1309 Evolutionary diversity (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
```

    2. Advanced level courses ( 24 credits)
    Disciplinary Electives ( 24 credits)
        At least 24 credits selected from the following courses:
        BIOL3107 Plant physiology (6)
        BIOL3210 Grain production and utilization (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3408 Genetics (6)
        BIOL4209 Functional foods (6)
        BIOL4411 Plant and food biotechnology (6)
    
## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title Minor in Plant Science
Offered to students $\quad 2017$
admitted to Year 1 in
Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular
mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such
as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals.
Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for
nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to
the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 2 : understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 3 : acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
        BIOL11100 From molecules to cells (6)
        BIOL1309 Evolutionary diversity (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
```

    2. Advanced level courses ( 24 credits)
    Disciplinary Electives ( 24 credits)
        At least 24 credits selected from the following courses:
        BIOL3107 Plant physiology (6)
        BIOL3210 Grain production and utilization (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3408 Genetics (6)
        BIOL4209 Functional foods (6)
        BIOL4411 Plant and food biotechnology (6)
    
## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Plant Science |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 6}$ |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals. Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 2 : understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 3 : acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
        BIOL1110 From molecules to cells (6)
        BIOL1309 Evolutionary diversity (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
    2. Advanced level courses (24 credits)
    Disciplinary Electives (24 credits)
        At least 24 credits selected from the following courses:
        BIOL3107 Plant physiology (6)
        BIOL3210 Grain production and utilization (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3408 Genetics (6)
        BIOL4209 Functional foods (6)
        BIOL4411 Plant and food biotechnology (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title Minor in Plant Science
Offered to students $\quad 2015$
admitted to Year 1 in
Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular
mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such
as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals.
Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for
nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to
the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 2 : understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 3 : acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
        BIOL11100 From molecules to cells (6)
        BIOL1309 Evolutionary diversity (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
```

    2. Advanced level courses ( 24 credits)
    Disciplinary Electives ( 24 credits)
        At least 24 credits selected from the following courses:
        BIOL3107 Plant physiology (6)
        BIOL3210 Grain production and utilization (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3408 Genetics (6)
        BIOL4209 Functional foods (6)
        BIOL4411 Plant and food biotechnology (6)
    
## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title Minor in Plant Science
Offered to students $\quad 2014$
admitted to Year 1 in
Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular
mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such
as the production of high-quality food, tutilization of plant products as biofuels and extraction of beneficial phytochemicals.
Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for
nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to
the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1 : appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 2 : understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 3 : acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

| Required courses (36 credits) |  |
| :--- | :--- |
| 1. Introductory level courses (12 credits) |  |
| Disciplinary Electives (12 credits) |  |
| At least 12 credits selected from the following courses: |  |
| BIOL1110 | From molecules to cells (6) |
| BIOL1309 | Evolutionary diversity (6) |
| BIOL2103 | Biological sciences laboratory course (6) |
| BIOL2220 | Principles of biochemistry (6) |
| 2. Advanced level courses (24 credits) |  |
| Disciplinary Electives (24 credits) |  |
| At least 24 credits selected from the following courses: |  |
| BIOL3107 | Plant physiology (6) |
| BIOL3210 | Grain production and utilization (6) |
| BIOL3314 | Plant structure and evolution (6) |
| BIOL3408 | Genetics (6) |
| BIOL4209 | Functional foods (6) |
| BIOL4411 | Plant and food biotechnology (6) |
|  |  |

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title Minor in Plant Science
Offered to students $\quad 2013$
admitted to Year 1 in
Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular
mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such
as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals.
Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for
nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to
the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 2 : understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 3 : acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits selected from the following courses:
        BIOL1110 From molecules to cells (6)
        BIOL1309 Evolutionary diversity (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
```

    2. Advanced level courses ( 24 credits)
    Disciplinary Electives ( 24 credits)
        At least 24 credits selected from the following courses:
        BIOL3107 Plant physiology (6)
        BIOL3210 Grain production and utilization (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3408 Genetics (6)
        BIOL4209 Functional foods (6)
        BIOL4411 Plant and food biotechnology (6)
    
## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title Minor in Plant Science
Offered to students $\quad 2012$
admitted to Year 1 in
Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular
mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such
as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals.
Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for
nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to
the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 2 : understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)
PLO 3 : acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, labtoratory-based, and tutorial class and project-based learning in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least 12 credits selected from the following courses:
        BIOL11100 From molecules to cells (6)
        BIOL1309 Evolutionary diversity (6)
        BIOL2103 Biological sciences laboratory course (6)
        BIOL2220 Principles of biochemistry (6)
```

    2. Advanced level courses ( 24 credits)
    Disciplinary Electives ( 24 credits)
        At least 24 credits selected from the following courses:
        BIOL3107 Plant physiology (6)
        BIOL3210 Grain production and utilization (6)
        BIOL3314 Plant structure and evolution (6)
        BIOL3408 Genetics (6)
        BIOL4209 Functional foods (6)
        BIOL4411 Plant and food biotechnology (6)
    
## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Risk Management |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 1}$ |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3 : acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits from List A and List B, with at least 6 credits from List B:
        List A
            STAT1601 Elementary statistical methods (6)
            STAT1602 Business statistics (6)
            STAT1603 Introductory statistics (6)
            STAT2601 Probability and statistics I (6)
            List B
            STAT2602 Probability and statistics II (6)
            STAT2603 Data management with SAS (6)
            STAT2604 Introduction to R programming and elementary data analysis
                    (6)
2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:
            STAT3609 The statistics of investment risk (6)
            STAT3610 Risk management and insurance (6)
            STAT3611 Computer-aided data analysis (6)
            STAT3612 Statistical machine learning (6)
            STAT3614 Business forecasting (6)
            STAT3615 Practical mathematics for investment (6)
            STAT3618 Derivatives and risk management (6)
            STAT4601 Time-series analysis (6)
            STAT4603 Current topics in risk management (6)
            STAT4606 Risk management and Basel Accords in banking and finance
            STAT4607 Credit risk analysis (6)
            STAT4608 Market risk analysis (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Risk Management |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 2 0}$ |

## Objectives:

The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3 : acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits from List A and List B, with at least 6 credits from List B:
        List A
            STAT1601 Elementary statistical methods (6)
            STAT1602 Business statistics (6)
            STAT1603 Introductory statistics (6)
            STAT2601 Probability and statistics I (6)
            List B
            STAT2602 Probability and statistics II (6)
            STAT2603 Data management with SAS (6)
            STAT2604 Introduction to R programming and elementary data analysis
                    (6)
2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:
            STAT3609 The statistics of investment risk (6)
            STAT3610 Risk management and insurance (6)
            STAT3611 Computer-aided data analysis (6)
            STAT3612 Statistical machine learning (6)
            STAT3614 Business forecasting (6)
            STAT3615 Practical mathematics for investment (6)
            STAT3618 Derivatives and risk management (6)
            STAT4601 Time-series analysis (6)
            STAT4603 Current topics in risk management (6)
            STAT4606 Risk management and Basel Accords in banking and finance
            STAT4607 Credit risk analysis (6)
            STAT4608 Market risk analysis (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Risk Management |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2019 |

## Objectives:

The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3 : acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits from List A and List B, with at least 6 credits from List B:
        List A
            STAT1601 Elementary statistical methods (6)
            STAT1602 Business statistics (6)
            STAT1603 Introductory statistics (6)
            STAT2601 Probability and statistics I (6)
            List B
            STAT2602 Probability and statistics II (6)
            STAT2603 Data management with SAS (6)
            STAT2604 Introduction to R programming and elementary data analysis
                    (6)
2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:
            STAT3609 The statistics of investment risk (6)
            STAT3610 Risk management and insurance (6)
            STAT3611 Computer-aided data analysis (6)
            STAT3612 Statistical machine learning (6)
            STAT3614 Business forecasting (6)
            STAT3615 Practical mathematics for investment (6)
            STAT3618 Derivatives and risk management (6)
            STAT4601 Time-series analysis (6)
            STAT4603 Current topics in risk management (6)
            STAT4606 Risk management and Basel Accords in banking and finance
            STAT4607 Credit risk analysis (6)
            STAT4608 Market risk analysis (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Risk Management |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2018 |

## Objectives:

The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3 : acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits from List A and List B, with at least 6 credits from List B:
        List A
            STAT1601 Elementary statistical methods (6)
            STAT1602 Business statistics (6)
            STAT1603 Introductory statistics (6)
            STAT2601 Probability and statistics I (6)
            List B
            STAT2602 Probability and statistics II (6)
            STAT2603 Data management with SAS (6)
            STAT2604 Introduction to R programming and elementary data analysis
                    (6)
2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:
            STAT3609 The statistics of investment risk (6)
            STAT3610 Risk management and insurance (6)
            STAT3611 Computer-aided data analysis (6)
            STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
            STAT3614 Business forecasting (6)
            STAT3615 Practical mathematics for investment (6)
            STAT3618 Derivatives and risk management (6)
            STAT4601 Time-series analysis (6)
            STAT4603 Current topics in risk management (6)
            STAT4606 Risk management and Basel Accords in banking and finance
            STAT4607 Credit risk analysis (6)
            STAT4608 Market risk analysis (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Risk Management |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2017 |

## Objectives:

The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3 : acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits from List A and List B, with at least 6 credits from List B:
        List A
            STAT1601 Elementary statistical methods (6)
            STAT1602 Business statistics (6)
            STAT1603 Introductory statistics (6)
            STAT2601 Probability and statistics I (6)
            List B
            STAT2602 Probability and statistics II (6)
            STAT2603 Data management with SAS (6)
            STAT2604 Introduction to R programming and elementary data analysis
                    (6)
2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:
            STAT3609 The statistics of investment risk (6)
            STAT3610 Risk management and insurance (6)
            STAT3611 Computer-aided data analysis (6)
            STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
            STAT3614 Business forecasting (6)
            STAT3615 Practical mathematics for investment (6)
            STAT3618 Derivatives and risk management (6)
            STAT4601 Time-series analysis (6)
            STAT4603 Current topics in risk management (6)
            STAT4606 Risk management and Basel Accords in banking and finance
            STAT4607 Credit risk analysis (6)
            STAT4608 Market risk analysis (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Risk Management |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2016 |

## Objectives:

The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3 : acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits from List A and List B, with at least 6 credits from List B:
        List A
            STAT1601 Elementary statistical methods (6)
            STAT1602 Business statistics (6)
            STAT1603 Introductory statistics (6)
            STAT2601 Probability and statistics I (6)
            List B
            STAT2602 Probability and statistics II (6)
            STAT2603 Data management with SAS (6)
            STAT2604 Introduction to R programming and elementary data analysis
                    (6)
2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:
            STAT3609 The statistics of investment risk (6)
            STAT3610 Risk management and insurance (6)
            STAT3611 Computer-aided data analysis (6)
            STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
            STAT3614 Business forecasting (6)
            STAT3615 Practical mathematics for investment (6)
            STAT3618 Derivatives and risk management (6)
            STAT4601 Time-series analysis (6)
            STAT4603 Current topics in risk management (6)
            STAT4606 Risk management and Basel Accords in banking and finance
            STAT4607 Credit risk analysis (6)
            STAT4608 Market risk analysis (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Risk Management |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | 2015 |

## Objectives:

The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3 : acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits from List A and List B, with at least 6 credits from List B:
        List A
            STAT1601 Elementary statistical methods (6)
            STAT1602 Business statistics (6)
            STAT1603 Introductory statistics (6)
            STAT2601 Probability and statistics I (6)
            List B
            STAT2602 Probability and statistics II (6)
            STAT2603 Data management with SAS (6)
            STAT2604 Introduction to R programming and elementary data analysis
                    (6)
2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:
            STAT3609 The statistics of investment risk (6)
            STAT3610 Risk management and insurance (6)
            STAT3611 Computer-aided data analysis (6)
            STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
            STAT3614 Business forecasting (6)
            STAT3615 Practical mathematics for investment (6)
            STAT3618 Derivatives and risk management (6)
            STAT4601 Time-series analysis (6)
            STAT4603 Current topics in risk management (6)
            STAT4606 Risk management and Basel Accords in banking and finance
            STAT4607 Credit risk analysis (6)
            STAT4608 Market risk analysis (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Risk Management |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 4}$ |

## Objectives:

The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3 : acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits from List A and List B, with at least 6 credits from List B:
        List A
            STAT1601 Elementary statistical methods (6)
            STAT1602 Business statistics (6)
            STAT1603 Introductory statistics (6)
            STAT2601 Probability and statistics I (6)
            List B
            STAT2602 Probability and statistics II (6)
            STAT2603 Data management with SAS (6)
            STAT2604 Introduction to R programming and elementary data analysis
                    (6)
2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:
            STAT3609 The statistics of investment risk (6)
            STAT3610 Risk management and insurance (6)
            STAT3611 Computer-aided data analysis (6)
            STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
            STAT3614 Business forecasting (6)
            STAT3615 Practical mathematics for investment (6)
            STAT3618 Derivatives and risk management (6)
            STAT4601 Time-series analysis (6)
            STAT4603 Current topics in risk management (6)
            STAT4606 Risk management and Basel Accords in banking and finance
            STAT4607 Credit risk analysis (6)
            STAT4608 Market risk analysis (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Risk Management |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 3}$ |
| admitted to Year 1 in |  |

## Objectives:

The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3 : acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Risk Management
Major in Statistics
Minor in Statistics

## Required courses (42 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits from List $A$ and List B, with at least 6 credits from List B:
List A
STAT1601 Elementary statistical methods (6)
STAT1602 Business statistics (6)
STAT1603 Introductory statistics (6)
STAT2601 Probability and statistics I (6)
List B
STAT2602 Probability and statistics II (6)
STAT2603 Data management with SAS (6)
STAT2604 Introduction to R programming and elementary data analysis (6)
2. Advanced level courses ( $\mathbf{3 0}$ credits)

Disciplinary Electives ( 30 credits)
At least 30 credits selected from the following courses:
STAT3609 The statistics of investment risk (6)

STAT3610 Risk management and insurance (6)
STAT3611 Computer-aided data analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
STAT3614 Business forecasting (6)
STAT3615 Practical mathematics for investment (6)
STAT3618 Derivatives and risk management (6)
STAT4601 Time-series analysis (6)
STAT4603 Current topics in risk management (6)
STAT4606 Risk management and Basel Accords in banking and finance
(6)

STAT4607 Credit risk analysis (6)
STAT4608 Market risk analysis (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Risk Management |
| :--- | :--- |
| Offered to students |  |
| admitted to Year 1 in | $\mathbf{2 0 1 2}$ |

## Objectives:

The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3 : acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Risk Management
Major in Statistics
Minor in Statistics

## Required courses (42 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Electives (12 credits)
At least 12 credits from List $A$ and List B, with at least 6 credits from List B:
List A
STAT1601 Elementary statistical methods (6)
STAT1602 Business statistics (6)
STAT1603 Introductory statistics (6)
STAT2601 Probability and statistics I (6)
List B
STAT2602 Probability and statistics II (6)
STAT2603 Data management with SAS (6)
STAT2604 Introduction to R programming and elementary data analysis (6)
2. Advanced level courses ( $\mathbf{3 0}$ credits)

Disciplinary Electives ( 30 credits)
At least 30 credits selected from the following courses:
STAT3609 The statistics of investment risk (6)

STAT3610 Risk management and insurance (6)
STAT3611 Computer-aided data analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
STAT3614 Business forecasting (6)
STAT3615 Practical mathematics for investment (6)
STAT3618 Derivatives and risk management (6)
STAT4601 Time-series analysis (6)
STAT4603 Current topics in risk management (6)
STAT4606 Risk management and Basel Accords in banking and finance
(6)

STAT4607 Credit risk analysis (6)
STAT4608 Market risk analysis (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Science Entrepreneurship <br> Offered to students 2021

admitted to Year 1 in

## Objectives:

This Minor aims at broadening the horizon of our undergraduate students with respect to entrepreneurship, so as to arouse their interest in this aspect and better equip them. It is also important for our students to visualize how their training in science (a) is relevant to the real world and (b) can bring about huge insights via critical analysis of the operation of existing enterprises. With the vivid commercial environment and a growing atmosphere for start-ups both locally and globally, this Minor also serves to offer more competitive edge to our students via connecting their academic knowledge with the real world, even though they may not initiate their own start-ups in the short run.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the entrepreneurial process and the principles/models relevant to its different key stages (by means of coursework and tutorial classes in the curriculum)
PLO 2 : gain insights into how a broad range of disciplines contribute to the success of the entrepreneurial process (by means of coursework and tutorial classes in the curriculum)
PLO 3 : evaluate how scientific knowledge can cause impact to the society via entrepreneurship (by means of coursework and tutorial classes in the curriculum)
PLO 4 : develop appropriate action plans for transforming ideas into start-up companies (by means of coursework, tutorial classes and training in his/her internship in the curriculum)
PLO 5: effectively collaborate with team members with different expertise and communicate their ideas to a range of audiences during the entrepreneurial process (by means of coursework, tutorial classes and training in his/her internship in the curriculum)

## Impermissible Combinations:

NIL

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)

Disciplinary Core Courses ( 12 credits)
(Resource, Management and Basic Entrepreneurship)
ENTR2001 Professional and leadership development (6)
IIMT1611 Principles of Technology Entrepreneurship (6)
2. Advanced level courses ( $\mathbf{2 4}$ credits)

Disciplinary Core Courses ( $\mathbf{2 4}$ credits)
(Creativity and Innovation)
ENTR3001 Science-based innovation development (6)
ENTR3002 Customer analysis and strategic marketing (6)
(Practical Experience)
ENTR4966 Entrepreneurship internship (6)
ENTR4999 Entrepreneurship project (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students may consider taking the following courses if they wish to pursue a more focused study in topics related to entrepreneurship:BUSI38011 Business Law, BUSI3803 Company Law, STRA3706 China Business Environment.
3. Courses with the prefix ENTR are subjected to minor changes.
4. Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Science Entrepreneurship |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 2 0}$ |

admitted to Year 1 in

## Objectives:

This Minor aims at broadening the horizon of our undergraduate students with respect to entrepreneurship, so as to arouse their interest in this aspect and better equip them. It is also important for our students to visualize how their training in science (a) is relevant to the real world and (b) can bring about huge insights via critical analysis of the operation of existing enterprises. With the vivid commercial environment and a growing atmosphere for start-ups both locally and globally, this Minor also serves to offer more competitive edge to our students via connecting their academic knowledge with the real world, even though they may not initiate their own start-ups in the short run.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the entrepreneurial process and the principles/models relevant to its different key stages (by means of coursework and tutorial classes in the curriculum)
PLO 2 : gain insights into how a broad range of disciplines contribute to the success of the entrepreneurial process (by means of coursework and tutorial classes in the curriculum)
PLO 3 : evaluate how scientific knowledge can cause impact to the society via entrepreneurship (by means of coursework and tutorial classes in the curriculum)
PLO 4 : develop appropriate action plans for transforming ideas into start-up companies (by means of coursework, tutorial classes and training in his/her internship in the curriculum)
PLO 5: effectively collaborate with team members with different expertise and communicate their ideas to a range of audiences during the entrepreneurial process (by means of coursework, tutorial classes and training in his/her internship in the curriculum)

## Impermissible Combinations:

NIL

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)
Disciplinary Core Courses ( 12 credits)
(Resource, Management and Basic Entrepreneurship)
ENTR2001 Professional and leadership development (6)
IIMT1611 Principles of Technology Entrepreneurship (6)
2. Advanced level courses ( 24 credits)

Disciplinary Core Courses (24 credits)
(Creativity and Innovation)
ENTR3001 Science-based innovation development (6)
ENTR3002 Customer analysis and strategic marketing (6)
(Practical Experience)
ENTR4966 Entrepreneurship internship (6)
ENTR4999 Entrepreneurship project (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students may consider taking the following courses if they wish to pursue a more focused study in topics related to entrepreneurship:BUSI38011 Business Law, BUSI3803 Company Law, STRA3706 China Business Environment.
3. Courses with the prefix ENTR are subjected to minor changes.
4. Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Science Entrepreneurship |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 9}$ |

## Objectives:

This Minor aims at broadening the horizon of our undergraduate students with respect to entrepreneurship, so as to arouse their interest in this aspect and better equip them. It is also important for our students to visualize how their training in science (a) is relevant to the real world and (b) can bring about huge insights via critical analysis of the operation of existing enterprises. With the vivid commercial environment and a growing atmosphere for start-ups both locally and globally, this Minor also serves to offer more competitive edge to our students via connecting their academic knowledge with the real world, even though they may not initiate their own start-ups in the short run.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the entrepreneurial process and the principles/models relevant to its different key stages (by means of coursework and tutorial classes in the curriculum)
PLO 2 : gain insights into how a broad range of disciplines contribute to the success of the entrepreneurial process (by means of coursework and tutorial classes in the curriculum)
PLO 3 : evaluate how scientific knowledge can cause impact to the society via entrepreneurship (by means of coursework and tutorial classes in the curriculum)
PLO 4 : develop appropriate action plans for transforming ideas into start-up companies (by means of coursework, tutorial classes and training in his/her internship in the curriculum)
PLO 5: effectively collaborate with team members with different expertise and communicate their ideas to a range of audiences during the entrepreneurial process (by means of coursework, tutorial classes and training in his/her internship in the curriculum)

## Impermissible Combinations:

NIL

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)
Disciplinary Core Courses ( 12 credits)
(Resource, Management and Basic Entrepreneurship)
ENTR2001 Professional and leadership development (6)
IIMT1611 Principles of Technology Entrepreneurship (6)
2. Advanced level courses ( 24 credits)

Disciplinary Core Courses (24 credits)
(Creativity and Innovation)
ENTR3001 Science-based innovation development (6)
ENTR3002 Customer analysis and strategic marketing (6)
(Practical Experience)
ENTR4966 Entrepreneurship internship (6)
ENTR4999 Entrepreneurship project (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students may consider taking the following courses if they wish to pursue a more focused study in topics related to entrepreneurship:BUSI38011 Business Law, BUSI3803 Company Law, STRA3706 China Business Environment.
3. Courses with the prefix ENTR are subjected to minor changes.
4. Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Science Entrepreneurship |
| :--- | :--- |
| Offered to students <br> admitted to Year 1 in | $\mathbf{2 0 1 8}$ |

## Objectives:

This Minor aims at broadening the horizon of our undergraduate students with respect to entrepreneurship, so as to arouse their interest in this aspect and better equip them. It is also important for our students to visualize how their training in science (a) is relevant to the real world and (b) can bring about huge insights via critical analysis of the operation of existing enterprises. With the vivid commercial environment and a growing atmosphere for start-ups both locally and globally, this Minor also serves to offer more competitive edge to our students via connecting their academic knowledge with the real world, even though they may not initiate their own start-ups in the short run.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the entrepreneurial process and the principles/models relevant to its different key stages (by means of coursework and tutorial classes in the curriculum)
PLO 2 : gain insights into how a broad range of disciplines contribute to the success of the entrepreneurial process (by means of coursework and tutorial classes in the curriculum)
PLO 3 : evaluate how scientific knowledge can cause impact to the society via entrepreneurship (by means of coursework and tutorial classes in the curriculum)
PLO 4 : develop appropriate action plans for transforming ideas into start-up companies (by means of coursework, tutorial classes and training in his/her internship in the curriculum)
PLO 5: effectively collaborate with team members with different expertise and communicate their ideas to a range of audiences during the entrepreneurial process (by means of coursework, tutorial classes and training in his/her internship in the curriculum)

## Impermissible Combinations:

NIL

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)
Disciplinary Core Courses ( 12 credits)
(Resource, Management and Basic Entrepreneurship)
ENTR2001 Professional and leadership development (6)
IIMT1611 Principles of Technology Entrepreneurship (6)
2. Advanced level courses ( 24 credits)

Disciplinary Core Courses (24 credits)
(Creativity and Innovation)
ENTR3001 Science-based innovation development (6)
ENTR3002 Customer analysis and strategic marketing (6)
(Practical Experience)
ENTR4966 Entrepreneurship internship (6)
ENTR4999 Entrepreneurship project (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students may consider taking the following courses if they wish to pursue a more focused study in topics related to entrepreneurship:BUSI38011 Business Law, BUSI3803 Company Law, STRA3706 China Business Environment.
3. Courses with the prefix ENTR are subjected to minor changes.
4. Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Science Entrepreneurship |
| :--- | :--- |
| Offered to students | 2017 |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

This Minor aims at broadening the horizon of our undergraduate students with respect to entrepreneurship, so as to arouse their interest in this aspect and better equip them. It is also important for our students to visualize how their training in science (a) is relevant to the real world and (b) can bring about huge insights via critical analysis of the operation of existing enterprises. With the vivid commercial environment and a growing atmosphere for start-ups both locally and globally, this Minor also serves to offer more competitive edge to our students via connecting their academic knowledge with the real world, even though they may not initiate their own start-ups in the short run.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1 : apprehend the entrepreneurial process and the principles/models relevant to its different key stages (by means of coursework and tutorial classes in the curriculum)
PLO 2 : gain insights into how a broad range of disciplines contribute to the success of the entrepreneurial process (by means of coursework and tutorial classes in the curriculum)
PLO 3 : evaluate how scientific knowledge can cause impact to the society via entrepreneurship (by means of coursework and tutorial classes in the curriculum)
PLO 4 : develop appropriate action plans for transforming ideas into start-up companies (by means of coursework, tutorial classes and training in his/her internship in the curriculum)
PLO 5: effectively collaborate with team members with different expertise and communicate their ideas to a range of audiences during the entrepreneurial process (by means of coursework, tutorial classes and training in his/her internship in the curriculum)

## Impermissible Combinations:

NIL

```
Required courses (36 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Core Courses (12 credits)
        (Resource, Management and Basic Entrepreneurship)
            ENTR2001 Professional and leadership development (6)
            IIMT1611 Principles of Technology Entrepreneurship (6)
    2. Advanced level courses (24 credits)
    Disciplinary Core Courses (24 credits)
            (Creativity and Innovation)
            ENTR3001 Science-based innovation development (6)
            ENTR3002 Customer analysis and strategic marketing (6)
            (Practical Experience)
            ENTR4966 Entrepreneurship internship (6)
            ENTR4999 Entrepreneurship project (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students may consider taking the following courses if they wish to pursue a more focused study in topics related to entrepreneurship:BUSI38011 Business Law, BUSI3803 Company Law, STRA3706 China Business Environment.
3. Courses with the prefix ENTR are subjected to minor changes.
4. Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

| Minor Title | Minor in Science Entrepreneurship |
| :--- | :--- |
| Offered to students | $\mathbf{2 0 1 6}$ |
| admitted to Year 1 in |  |

admitted to Year 1 in

## Objectives:

This Minor aims at broadening the horizon of our undergraduate students with respect to entrepreneurship, so as to arouse their interest in this aspect and better equip them. It is also important for our students to visualize how their training in science (a) is relevant to the real world and (b) can bring about huge insights via critical analysis of the operation of existing enterprises. With the vivid commercial environment and a growing atmosphere for start-ups both locally and globally, this Minor also serves to offer more competitive edge to our students via connecting their academic knowledge with the real world, even though they may not initiate their own start-ups in the short run.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: apprehend the entrepreneurial process and the principles/models relevant to its different key stages (by means of coursework and tutorial classes in the curriculum)
PLO 2 : gain insights into how a broad range of disciplines contribute to the success of the entrepreneurial process (by means of coursework and tutorial classes in the curriculum)
PLO 3 : evaluate how scientific knowledge can cause impact to the society via entrepreneurship (by means of coursework and tutorial classes in the curriculum)
PLO 4 : develop appropriate action plans for transforming ideas into start-up companies (by means of coursework, tutorial classes and training in his/her internship in the curriculum)
PLO 5: effectively collaborate with team members with different expertise and communicate their ideas to a range of audiences during the entrepreneurial process (by means of coursework, tutorial classes and training in his/her internship in the curriculum)

## Impermissible Combinations:

NIL

## Required courses (36 credits)

1. Introductory level courses ( 12 credits)
Disciplinary Core Courses ( 12 credits)
(Resource, Management and Basic Entrepreneurship)
ENTR2001 Professional and leadership development (6)
IIMT1611 Principles of Technology Entrepreneurship (6)
2. Advanced level courses ( 24 credits)

Disciplinary Core Courses (24 credits)
(Creativity and Innovation)
ENTR3001 Science-based innovation development (6)
ENTR3002 Customer analysis and strategic marketing (6)
(Practical Experience)
ENTR4966 Entrepreneurship internship (6)
ENTR4999 Entrepreneurship project (6)

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students may consider taking the following courses if they wish to pursue a more focused study in topics related to entrepreneurship:BUSI38011 Business Law, BUSI3803 Company Law, STRA3706 China Business Environment.
3. Courses with the prefix ENTR are subjected to minor changes.
4. Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Statistics <br> Offered to students 2021 <br> admitted to Year 1 in

## Objectives:

The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)
PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

```
Required courses ( 42 credits)
    1. Introductory level courses ( 12 credits)
    Disciplinary Electives (12 credits)
    At least 12 credits from List \(A\) and List \(B\), with at least 6 credits from List \(B\) :
    List A
        STAT1601 Elementary statistical methods (6)
        STAT1602 Business statistics (6)
        STAT1603 Introductory statistics (6)
        STAT2601 Probability and statistics I (6)
    List B
        STAT2602 Probability and statistics II (6)
        STAT2603 Data management with SAS (6)
        STAT2604 Introduction to R programming and elementary data analysis
        (6)
    STAT2605 Demographic and socio-economic statistics (6)
2. Advanced level courses ( 30 credits)
Disciplinary Electives ( \(\mathbf{3 0}\) credits)
    At least 30 credits selected from the following courses:
    STAT3600 Linear statistical analysis (6)
    STAT3602 Statistical inference (6)
    STAT3603 Stochastic processes (6)
    STAT3604 Design and analysis of experiments (6)
    STAT3605 Quality control and management (6)
    STAT3606 Business logistics (6)
    STAT3607 Statistics in clinical medicine and bio-medical research (6)
    STAT3608 Statistical genetics (6)
    STAT3611 Computer-aided data analysis (6)
    STAT3612 Statistical machine learning (6)
    STAT3613 Marketing analytics (6)
    STAT3614 Business forecasting (6)
    STAT3617 Sample survey methods (6)
    STAT3620 Modern nonparametric statistics (6)
    STAT3621 Statistical data analysis (6)
    STAT3655 Survival analysis (6)
    STAT4601 Time-series analysis (6)
    STAT4602 Multivariate data analysis (6)
    STAT4610 Bayesian learning (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Statistics <br> Offered to students 2020

admitted to Year 1 in

## Objectives:

The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)
PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

```
Required courses ( 42 credits)
    1. Introductory level courses ( 12 credits)
    Disciplinary Electives (12 credits)
    At least 12 credits from List \(A\) and List \(B\), with at least 6 credits from List \(B\) :
    List A
        STAT1601 Elementary statistical methods (6)
        STAT1602 Business statistics (6)
        STAT1603 Introductory statistics (6)
        STAT2601 Probability and statistics I (6)
    List B
        STAT2602 Probability and statistics II (6)
        STAT2603 Data management with SAS (6)
        STAT2604 Introduction to R programming and elementary data analysis
        (6)
    STAT2605 Demographic and socio-economic statistics (6)
2. Advanced level courses ( 30 credits)
Disciplinary Electives ( \(\mathbf{3 0}\) credits)
    At least 30 credits selected from the following courses:
    STAT3600 Linear statistical analysis (6)
    STAT3602 Statistical inference (6)
    STAT3603 Stochastic processes (6)
    STAT3604 Design and analysis of experiments (6)
    STAT3605 Quality control and management (6)
    STAT3606 Business logistics (6)
    STAT3607 Statistics in clinical medicine and bio-medical research (6)
    STAT3608 Statistical genetics (6)
    STAT3611 Computer-aided data analysis (6)
    STAT3612 Statistical machine learning (6)
    STAT3613 Marketing analytics (6)
    STAT3614 Business forecasting (6)
    STAT3617 Sample survey methods (6)
    STAT3620 Modern nonparametric statistics (6)
    STAT3621 Statistical data analysis (6)
    STAT3655 Survival analysis (6)
    STAT4601 Time-series analysis (6)
    STAT4602 Multivariate data analysis (6)
    STAT4610 Bayesian learning (6)
```


## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Statistics <br> Offered to students 2019 <br> admitted to Year 1 in

## Objectives:

The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)
PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

```
Required courses ( 42 credits)
    1. Introductory level courses ( 12 credits)
    Disciplinary Electives (12 credits)
    At least 12 credits from List \(A\) and List \(B\), with at least 6 credits from List \(B\) :
    List A
        STAT1601 Elementary statistical methods (6)
    STAT1602 Business statistics (6)
    STAT1603 Introductory statistics (6)
    STAT2601 Probability and statistics I (6)
    List B
    STAT2602 Probability and statistics II (6)
    STAT2603 Data management with SAS (6)
    STAT2604 Introduction to R programming and elementary data analysis
        (6)
    STAT2605 Demographic and socio-economic statistics (6)
2. Advanced level courses ( 30 credits)
Disciplinary Electives ( \(\mathbf{3 0}\) credits)
    At least 30 credits selected from the following courses:
    STAT3600 Linear statistical analysis (6)
    STAT3602 Statistical inference (6)
    STAT3603 Stochastic processes (6)
    STAT3604 Design and analysis of experiments (6)
    STAT3605 Quality control and management (6)
    STAT3606 Business logistics (6)
    STAT3607 Statistics in clinical medicine and bio-medical research (6)
    STAT3608 Statistical genetics (6)
    STAT3611 Computer-aided data analysis (6)
    STAT3612 Statistical machine learning (6)
    STAT3613 Marketing analytics (6)
    STAT3614 Business forecasting (6)
    STAT3617 Sample survey methods (6)
    STAT3620 Modern nonparametric statistics (6)
    STAT3621 Statistical data analysis (6)
    STAT3655 Survival analysis (6)
    STAT3955 Survival analysis (6)
    STAT4601 Time-series analysis (6)
    STAT4602 Multivariate data analysis (6)
    STAT4610 Bayesian learning (6)
```

Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive. Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Statistics <br> Offered to students 2018 <br> admitted to Year 1 in

## Objectives:

The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)
PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

```
Required courses (42 credits)
    1. Introductory level courses ( 12 credits)
    Disciplinary Electives (12 credits)
    At least 12 credits from List \(A\) and List \(B\), with at least 6 credits from List \(B\) :
    List A
        STAT1601 Elementary statistical methods (6)
    STAT1602 Business statistics (6)
    STAT1603 Introductory statistics (6)
    STAT2601 Probability and statistics I (6)
    List B
    STAT2602 Probability and statistics II (6)
    STAT2603 Data management with SAS (6)
    STAT2604 Introduction to R programming and elementary data analysis
        (6)
    STAT2605 Demographic and socio-economic statistics (6)
2. Advanced level courses ( 30 credits)
Disciplinary Electives ( \(\mathbf{3 0}\) credits)
    At least 30 credits selected from the following courses:
    STAT3600 Linear statistical analysis (6)
    STAT3602 Statistical inference (6)
    STAT3603 Stochastic processes (6)
    STAT3604 Design and analysis of experiments (6)
    STAT3605 Quality control and management (6)
    STAT3606 Business logistics (6)
    STAT3607 Statistics in clinical medicine and bio-medical research (6)
    STAT3608 Statistical genetics (6)
    STAT3611 Computer-aided data analysis (6)
    STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
    STAT3613 Marketing analytics (6) [previous title: Marketing engineering (6)]
    STAT3614 Business forecasting (6)
    STAT3617 Sample survey methods (6)
    STAT3620 Modern nonparametric statistics (6)
    STAT3621 Statistical data analysis (6)
    STAT3655 Survival analysis (6)
    STAT3955 Survival analysis (6)
    STAT4601 Time-series analysis (6)
    STAT4602 Multivariate data analysis (6)
    STAT4610 Bayesian learning (6)
```

Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive. Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Statistics <br> Offered to students 2017 <br> admitted to Year 1 in

## Objectives:

The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)
PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
    At least 12 credits from List A and List B, with at least 6 credits from List B:
    List A
        STAT1601 Elementary statistical methods (6)
    STAT1602 Business statistics (6)
    STAT1603 Introductory statistics (6)
    STAT2601 Probability and statistics I (6)
    List B
    STAT2602 Probability and statistics II (6)
    STAT2603 Data management with SAS (6)
    STAT2604 Introduction to R programming and elementary data analysis
    (6)
    STAT2605 Demographic and socio-economic statistics (6)
```

2. Advanced level courses ( $\mathbf{3 0}$ credits)
Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3600 Linear statistical analysis (6)
STAT3602 Statistical inference (6)
STAT3603 Stochastic processes (6)
STAT3604 Design and analysis of experiments (6)
STAT3605 Quality control and management (6)
STAT3606 Business logistics (6)
STAT3607 Statistics in clinical medicine and bio-medical research (6)
STAT3608 Statistical genetics (6)
STAT3611 Computer-aided data analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
STAT3613 Marketing analytics (6) [previous title: Marketing engineering (6)]
STAT3614 Business forecasting (6)
STAT3616 Advanced SAS programming (6)
STAT3617 Sample survey methods (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
STAT3655 Survival analysis (6) Take either STAT3655 or STAT3955 to fulfill
STAT3955 Survival analysis (6)
STAT4601 Time-series analysis (6)
STAT4602 Multivariate data analysis (6)
STAT4610 Bayesian learning (6)

Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.
Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Statistics <br> Offered to students 2016 <br> admitted to Year 1 in

## Objectives:

The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)
PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
    At least 12 credits from List A and List B, with at least 6 credits from List B:
    List A
        STAT1601 Elementary statistical methods (6)
    STAT1602 Business statistics (6)
    STAT1603 Introductory statistics (6)
    STAT2601 Probability and statistics I (6)
    List B
    STAT2602 Probability and statistics II (6)
    STAT2603 Data management with SAS (6)
    STAT2604 Introduction to R programming and elementary data analysis
    (6)
    STAT2605 Demographic and socio-economic statistics (6)
```

2. Advanced level courses ( $\mathbf{3 0}$ credits)
Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3600 Linear statistical analysis (6)
STAT3602 Statistical inference (6)
STAT3603 Stochastic processes (6)
STAT3604 Design and analysis of experiments (6)
STAT3605 Quality control and management (6)
STAT3606 Business logistics (6)
STAT3607 Statistics in clinical medicine and bio-medical research (6)
STAT3608 Statistical genetics (6)
STAT3611 Computer-aided data analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
STAT3613 Marketing analytics (6) [previous title: Marketing engineering (6)]
STAT3614 Business forecasting (6)
STAT3616 Advanced SAS programming (6)
STAT3617 Sample survey methods (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
STAT3655 Survival analysis (6) Take either STAT3655 or STAT3955 to fulfill
STAT3955 Survival analysis (6)
STAT4601 Time-series analysis (6)
STAT4602 Multivariate data analysis (6)
STAT4610 Bayesian learning (6)

Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.
Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Statistics <br> Offered to students 2015 <br> admitted to Year 1 in

## Objectives:

The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)
PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
    At least }12\mathrm{ credits from List A and List B, with at least 6 credits from List B:
    List A
        STAT1601 Elementary statistical methods (6)
    STAT1602 Business statistics (6)
    STAT1603 Introductory statistics (6)
    STAT2601 Probability and statistics I (6)
    List B
    STAT2602 Probability and statistics II (6)
    STAT2603 Data management with SAS (6)
    STAT2604 Introduction to R programming and elementary data analysis
        (6)
    STAT2605 Demographic and socio-economic statistics (6)
```

2. Advanced level courses ( 30 credits)
Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3600 Linear statistical analysis (6)
STAT3602 Statistical inference (6)
STAT3603 Stochastic processes (6)
STAT3604 Design and analysis of experiments (6)
STAT3605 Quality control and management (6)
STAT3606 Business logistics (6)
STAT3607 Statistics in clinical medicine and bio-medical research (6)
STAT3608 Statistical genetics (6)
STAT3611 Computer-aided data analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
STAT3613 Marketing analytics (6) [previous title: Marketing engineering (6)]
STAT3614 Business forecasting (6)
STAT3616 Advanced SAS programming (6)
STAT3617 Sample survey methods (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
STAT3655 Survival analysis (6) Take either STAT3655 or STAT3955 to fulfill
the requirement; but not both. STAT3655 and
STAT3955 are mutually exclusive.
Take either STAT3655 or STAT3955 to fulfill
the requirement; but not both. STAT3655 and
STAT3955 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Statistics <br> Offered to students 2014 <br> admitted to Year 1 in

## Objectives:

The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)
PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
    At least }12\mathrm{ credits from List A and List B, with at least 6 credits from List B:
    List A
        STAT1601 Elementary statistical methods (6)
    STAT1602 Business statistics (6)
    STAT1603 Introductory statistics (6)
    STAT2601 Probability and statistics I (6)
    List B
    STAT2602 Probability and statistics II (6)
    STAT2603 Data management with SAS (6)
    STAT2604 Introduction to R programming and elementary data analysis
        (6)
    STAT2605 Demographic and socio-economic statistics (6)
```

2. Advanced level courses ( 30 credits)
Disciplinary Electives ( $\mathbf{3 0}$ credits)
At least 30 credits selected from the following courses:
STAT3600 Linear statistical analysis (6)
STAT3602 Statistical inference (6)
STAT3603 Stochastic processes (6)
STAT3604 Design and analysis of experiments (6)
STAT3605 Quality control and management (6)
STAT3606 Business logistics (6)
STAT3607 Statistics in clinical medicine and bio-medical research (6)
STAT3608 Statistical genetics (6)
STAT3611 Computer-aided data analysis (6)
STAT3612 Statistical machine learning (6) [previous title: Data mining (6)]
STAT3613 Marketing analytics (6) [previous title: Marketing engineering (6)]
STAT3614 Business forecasting (6)
STAT3616 Advanced SAS programming (6)
STAT3617 Sample survey methods (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
STAT3655 Survival analysis (6) Take either STAT3655 or STAT3955 to fulfill
the requirement; but not both. STAT3655 and
STAT3955 are mutually exclusive.
Take either STAT3655 or STAT3955 to fulfill
the requirement; but not both. STAT3655 and
STAT3955 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

## Minor Title Minor in Statistics <br> Offered to students 2013

admitted to Year 1 in

## Objectives:

The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)
PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits from List A and List B, with at least 6 credits from List B:
        List A
        STAT1601 Elementary statistical methods (6)
        STAT1602 Business statistics (6)
        STAT1603 Introductory statistics (6)
        STAT2601 Probability and statistics I (6)
        List B
        STAT2602 Probability and statistics II (6)
        STAT2603 Data management with SAS (6)
        STAT2604 Introduction to R programming and elementary data analysis
        (6)
        STAT2605 Demographic and socio-economic statistics (6)
```

    2. Advanced level courses ( 30 credits)
    Disciplinary Electives ( \(\mathbf{3 0}\) credits)
        At least 30 credits selected from the following courses:
        STAT3600 Linear statistical analysis (6)
        STAT3602 Statistical inference (6)
        STAT3603 Stochastic processes (6)
        STAT3604 Design and analysis of experiments (6)
        STAT3605 Quality control and management (6)
        STAT3606 Business logistics (6)
        STAT3607 Statistics in clinical medicine and bio-medical research (6)
        STAT3608 Statistical genetics (6)
        STAT3611 Computer-aided data analysis (6)
        STAT3612 Statistical machine learning (6)
        STAT3613 Marketing analytics (6)
        STAT3614 Business forecasting (6)
        STAT3616 Advanced SAS programming (6)
        STAT3617 Sample survey methods (6)
        STAT3620 Modern nonparametric statistics (6)
        STAT3621 Statistical data analysis (6)
        STAT3655 Survival analysis (6)
        STAT3955 Survival analysis (6)
        STAT4601 Time-series analysis (6)
        STAT4602 Multivariate data analysis (6)
    [previous title: Data mining (6)]
[previous title: Marketing engineering (6) ]

Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive. Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

 Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
## Minor Title Minor in Statistics <br> Offered to students 2012 <br> admitted to Year 1 in

## Objectives:

The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

## Learning Outcomes:

By the end of this programme, students should be able to:
PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2 : equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)
PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

## Impermissible Combinations:

Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

```
Required courses (42 credits)
    1. Introductory level courses (12 credits)
    Disciplinary Electives (12 credits)
        At least }12\mathrm{ credits from List A and List B, with at least 6 credits from List B:
        List A
        STAT1601 Elementary statistical methods (6)
        STAT1602 Business statistics (6)
        STAT1603 Introductory statistics (6)
        STAT2601 Probability and statistics I (6)
        List B
        STAT2602 Probability and statistics II (6)
        STAT2603 Data management with SAS (6)
        STAT2604 Introduction to R programming and elementary data analysis
        (6)
        STAT2605 Demographic and socio-economic statistics (6)
```

    2. Advanced level courses ( 30 credits)
    Disciplinary Electives ( \(\mathbf{3 0}\) credits)
        At least 30 credits selected from the following courses:
        STAT3600 Linear statistical analysis (6)
        STAT3602 Statistical inference (6)
        STAT3603 Stochastic processes (6)
        STAT3604 Design and analysis of experiments (6)
        STAT3605 Quality control and management (6)
        STAT3606 Business logistics (6)
        STAT3607 Statistics in clinical medicine and bio-medical research (6)
        STAT3608 Statistical genetics (6)
        STAT3611 Computer-aided data analysis (6)
        STAT3612 Statistical machine learning (6)
        STAT3613 Marketing analytics (6)
        STAT3614 Business forecasting (6)
        STAT3616 Advanced SAS programming (6)
        STAT3617 Sample survey methods (6)
        STAT3620 Modern nonparametric statistics (6)
        STAT3621 Statistical data analysis (6)
        STAT3655 Survival analysis (6)
        STAT3955 Survival analysis (6)
        STAT4601 Time-series analysis (6)
        STAT4602 Multivariate data analysis (6)
    [previous title: Data mining (6)]
[previous title: Marketing engineering (6) ]

Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive. Take either STAT3655 or STAT3955 to fulfill the requirement; but not both. STAT3655 and STAT3955 are mutually exclusive.

## Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

## Remarks:

 Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
## Students taking double Majors,

Major-Minor or double Minors with overlapping course requirements


1. Double-counting of courses up to a maximum of 24 credits is permissible with double majors. The double-counted courses in both Science majors must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. The following list shows the major-major combinations that have more than 24 credits of the same 'disciplinary core' courses that appear in both majors and is subject to the rule of double counting:

| Major-Major combination | $\begin{array}{c}\text { No. of common } \\ \text { Admission Year } \\ \text { (Year 1) }\end{array}$ | $\begin{array}{c}\text { 'disciplinary core' courses } \\ \text { (credits) appear in both } \\ \text { majors including }\end{array}$ |
| :--- | :---: | :---: | :---: |
| ScNC1111 and SCNC112 |  |  |\(\left.] \begin{array}{c}No. of replacement <br>

courses (credits) to <br>
be taken in the 2 <br>
major ('Major 2')\end{array}\right\}\)

If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as 'disciplinary core' courses required in both the first ('Major 1') and second ('Major 2') majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) in the second major ('Major 2'). The replacement course(s) must be the disciplinary elective course in the second major ('Major 2') and have the same prefix and at the same or higher level as the double-counted course(s). The double counted credits should count the following courses in this order: (1) SCNC1111 and SCNC1112, (2) introductory level (levels 1 and 2) courses, and (3) advanced level (level 3 or above) courses. For example, if a student takes a first major in Ecology \& Biodiversity ('Major 1') and the $2^{\text {nd }}$ major in Molecular Biology \& Biotechnology ('Major 2'), SCNC1111, SCNC1112, BIOL1110, BIOL2102 and BIOL2103 are the common 'disciplinary core' courses that appear in both majors. The first 3 courses SCNC1111, SCNC1112, and BIOL1110 would first be counted plus either BIOL2102 or BIOL2103 for the major in Molecular Biology \& Biotechnology. The student has to take a replacement 'disciplinary elective' course (with a prefix of BIOL at level 2 or above) in the $2^{\text {nd }}$ major in Molecular Biology \& Biotechnology to make up for BIOL2102 or BIOL2103.
3. Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111:

- Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB)
- Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level (GCEAL)
- Mathematics qualification in Gao Kao will be considered on a case-by-case basis

It is optional for them to take the course SCNC1111. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112:

- Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE)
- Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB)
- Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL)
- Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis

It is optional for them to take the course SCNC1112. Those who do not take this course should take a 6 -credit disciplinary elective course of the science major in lieu.

The eligible students will be informed by the Faculty, via email, of the granting of an exemption from taking SCNC1111 and/or SCNC1112 in late August (before the start of your first year of study). You (as an eligible student) can try out courses that suit your academic interest before you commit to a particular major and submit your application form for taking a replacement course(s) for SCNC1111 and/or SCNC1112 via the Science Online Application Submission System (OASS) during the courses add/drop periods in your second/third year of study. The replacement course must be the disciplinary elective in your declared Science major. If you wish to take double Science majors, you should take the disciplinary elective in each of your declared Science majors to replace the exempted SCNC course(s).

Under these circumstances, the following list shows the major-major combinations that have 24 credits (or more) of the same 'disciplinary core' courses that appear in both Science majors and is subject to the rule of double counting:

Scenario \#1
(a) Admission Year (Year 1): 2020, 2021

Exemption granted: SCNC1111
OR
(b) Admission Year (Year 1):

2021
Exemption granted: SCNC1112

| Major-Major combination | Admission Year (Year 1) | Exemption granted | No. of replacement courses (credits) to be taken in the $1^{\text {st }}$ major ('Major 1') | No. of common 'disciplinary core' courses (credits) appear in both Science majors including SCNC1111 and SCNC1112 | No. of replacement courses (credits) to be taken in the $2^{\text {nd }}$ major ('Major 2') |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Major in Biochemistry Major in Chemistry | $\begin{gathered} 2020,2021 \\ 2021 \end{gathered}$ | SCNC1111 or <br> SCNC1112 | 1 (6 credits) | 5 (30 credits) | 1 (6 credits) |
| Major in Biochemistry <br>  <br> Biotechnology | $\begin{gathered} 2020,2021 \\ 2021 \end{gathered}$ | SCNC1111 or <br> SCNC1112 | 1 (6 credits) | 4 (24 credits) | 1 (6 credits) <br> - to replace <br> SCNC1111 or <br> SCNC1112 |
| Major in Biological Sciences Major in Ecology \& Biodiversity | $\begin{gathered} 2020,2021 \\ 2021 \end{gathered}$ | SCNC1111 or <br> SCNC1112 | 1 (6 credits) | 7 (42 credits) | 3 (18 credits) |
| Major in Biological Sciences Major in Food \& Nutritional Science | $\begin{gathered} 2020,2021 \\ 2021 \end{gathered}$ | SCNC1111 or <br> SCNC1112 | 1 (6 credits) | 6 (36 credits) | 2 (12 credits) |
| Major in Biological Sciences Major in Molecular Biology \& Biotechnology | $\begin{gathered} 2020,2021 \\ 2021 \end{gathered}$ | SCNC1111 or <br> SCNC1112 | 1 (6 credits) | 6 (36 credits) | 2 (12 credits) |
| Major in Earth System Science Major in Geology | $\begin{gathered} 2020,2021 \\ 2021 \end{gathered}$ | SCNC1111 or <br> SCNC1112 | 1 (6 credits) | 4 (24 credits) | 1 (6 credits) <br> - to replace <br> SCNC1111 or <br> SCNC1112 |


|  |  |  | Major-Minor or Double M |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Major in Ecology \& Biodiversity Major in Food \& Nutritional Science | $\begin{gathered} 2020,2021 \\ 2021 \end{gathered}$ | SCNC1111 or SCNC1112 | 1 (6 credits) | 5 (30 credits) | 1 (6 credits) |
| Major in E®ßlogy \& Biodiversity Major in Moolecular Biology \& Biotechnqlogy | $\begin{gathered} 2020,2021 \\ 2021 \end{gathered}$ | SCNC1111 or SCNC1112 | 1 (6 credits) | 5 (30 credits) | 1 (6 credits) |
| Major in Food \& Nutritional Science Major in Molecular Biology \& Biotechnology | $\begin{gathered} 2020,2021 \\ 2021 \end{gathered}$ | SCNC1111 or SCNC1112 | 1 (6 credits) | 6 (36 credits) | 2 (12 credits) |

If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ('disciplinary core') in both the first ('Major 1') and second ('Major 2') majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) in the second major ('Major 2'). The replacement course(s) must be the disciplinary elective course(s) in the second major ('Major 2') and have the same prefix and at the same or higher level as the double-counted course(s). For example, if a student takes a first major in Ecology \& Biodiversity ('Major 1') and a second major in Molecular Biology \& Biotechnology ('Major 2'), SCNC1111, SCNC1112, BIOL1110, BIOL2102 and BIOL2103 are the common 'disciplinary core' courses that appear in both majors.
(a) In light of the exempted course SCNC1111, the double counted credits should count the following courses in this order: (1) SCNC1112, (2) introductory level (levels 1 and 2) courses, and (3) advanced level (level 3 or above) courses. The 4 courses (SCNC1112, BIOL1110, BIOL2102, and BIOL2103) would be counted for the major in Molecular Biology \& Biotechnology. The student has to take a replacement 'disciplinary elective' course in the second major in Molecular Biology \& Biotechnology to make up for SCNC1111.
(b) In light of the exempted course SCNC1112, the double counted credits should count the following courses in this order: (1) SCNC1111, (2) introductory level (levels 1 and 2) courses, and (3) advanced level (level 3 or above) courses. The 4 courses (SCNC1111, BIOL1110, BIOL2102, and BIOL2103) would be counted for the major in Molecular Biology \& Biotechnology. The student has to take a replacement 'disciplinary elective' course in the second major in Molecular Biology \& Biotechnology to make up for SCNC1112.

Scenario \#2
(a) Admission Year (Year 1):

Exemption granted:

2021
SCNC1111 \& SCNC1112

| Major-Major combination | Admission Year (Year 1) | Exemption granted | No. of replacement courses (credits) to be taken in the $1^{\text {st }}$ major ('Major 1') | No. of common 'disciplinary core' courses (credits) appear in both Science majors including SCNC1111 and SCNC1112 | No. of replacement courses (credits) to be taken in the $2^{\text {nd }}$ major ('Major 2') |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Major in Biochemistry Major in Chemistry | 2021 |  <br> SCNC1112 | 2 (12 credits) | 5 (30 credits) | 2 (12 credits) <br> - to replace SCNC1111 \& SCNC1112 |
| Major in Biochemistry Major in Molecular Biology \& Biotechnology | 2021 |  <br> SCNC1112 | 2 (12 credits) | 4 (24 credits) | 2 (12 credits) <br> - to replace SCNC1111 \& SCNC1112 |
| Major in Biological Sciences Major in Ecology \& Biodiversity | 2021 |  <br> SCNC1112 | 2 (12 credits) | 7 (42 credits) | 3 (18 credits) |
| Major in Biological Sciences Major in Food \& Nutritional Science | 2021 |  <br> SCNC1112 | 2 (12 credits) | 6 (36 credits) | 2 (12 credits) |
| Major in Biological Sciences Major in Molecular Biology \& Biotechnology | 2021 | $\begin{aligned} & \text { SCNC1111 \& } \\ & \text { SCNC1112 } \end{aligned}$ | 2 (12 credits) | 6 (36 credits) | 2 (12 credits) |
| Major in Earth System Science Major in Geology | 2021 |  <br> SCNC1112 | 2 (12 credits) | 4 (24 credits) | 2 (12 credits) - to replace SCNC1111 \& SCNC1112 |
| Major in Ecology \& Biodiversity Major in Food \& Nutritional Science | 2021 | SCNC1111 \& SCNC1112 | 2 (12 credits) | 5 (30 credits) | 2 (12 credits) - to replace SCNC1111 \& SCNC1112 |


| Major in Ecblogy \& Biodiversity Major in Mбlecular Biology \& Biotechnology | 2021 |  <br> SCNC1112 | 2 (12 credits) | 5 (30 credits) | 2 (12 credits) <br> - to replace SCNC1111 \& SCNC1112 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Major in Food \& Nutritional Science Major in Molecular Biology \& Biotechnology | 2021 | SCNC1111 \& SCNC1112 | 2 (12 credits) | 6 (36 credits) | 2 (12 credits) |

If more than 24 credits (including SCNC1111 \& SCNC1112) are listed as required courses ('disciplinary core') in both the first ('Major 1') and second ('Major 2') majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) in the second major ('Major 2'). The replacement course(s) must be the disciplinary elective course(s) in the second major ('Major 2') and have the same prefix and at the same or higher level as the double-counted course(s). In light of the exempted course SCNC1111 \& SCNC1112, the double counted credits should count the following courses in this order: (1) introductory level (levels 1 and 2) courses, and (2) advanced level (level 3 or above) courses. For example, if a student takes a first major in Ecology \& Biodiversity ('Major 1') and a second major in Molecular Biology \& Biotechnology ('Major 2'), SCNC1111, SCNC1112, BIOL1110, BIOL2102 and BIOL2103 are the common 'disciplinary core' courses that appear in both majors. The 3 courses (BIOL1110, BIOL2102, and BIOL2103) would be counted for the major in Molecular Biology \& Biotechnology. The student has to take 2 replacement 'disciplinary elective' courses in the second major in Molecular Biology \& Biotechnology to make up for SCNC1111 \& SCNC1112.
4. Double counting of credits is not permissible for major-minor or double-minors combinations. When a course is required ('disciplinary core') both by the major and minor or by both minors, the student must take a replacement course for the minor. The replacement course must be the disciplinary elective in the minor and have the same prefix and at the same or higher level as the course to be replaced.
5. For students taking the Mathematics related majors/minors should note the following exemption and replacement arrangement:

Students who fall into the following exemption situation for the introductory level Disciplinary Core Mathematics courses in Science Majors/Minors are required to take the specified replacement course(s) as prescribed in the table:

| Exempted Course | Exemption granted under the following circumstances | Specified Replacement Course |
| :---: | :---: | :---: |
| MATH1013 <br> University mathematics II | For students taking Minor with an overlap of Disciplinary Core Course : <br> MATH1013 | Select 6 credits from the following to replace MATH1013: <br> - Any 6-credit level 2 or above Mathematics Disciplinary Elective chosen from the Programme/Major/Minor structure in which MATH1013 is the disciplinary core course <br> - MATH2012 Fundamental concepts of mathematics (6) (if not the disciplinary core course in the structure) <br> - MATH2241 Introduction to mathematical analysis (6) (if not the disciplinary core course in the structure) |
|  | For students taking Programme / Major / Minor with Disciplinary Core Courses: <br> MATH1851 and MATH1853 (which are together deemed equivalent to MATH1013) |  |
|  | For students taking Professional Core in Bachelor of Science in Actuarial Science with Disciplinary Core Course : <br> MATH1821 <br> (which is equivalent to MATH1013) |  |
| MATH2014 <br> Multivariable calculus and linear algebra | For students taking <br> Programme/Major with Disciplinary Core Course : <br> MATH2101 and MATH2211 <br> (which are together deemed <br> equivalent to MATH2014) | Select 6 credits from the following to replace MATH2014: <br> - Any 6-credit level 2 or above Mathematics Disciplinary Elective chosen from the Programme/Major/Minor structure in which MATH2014 is the disciplinary core course <br> - MATH2012 Fundamental concepts of mathematics (6) (if not the disciplinary core course in the structure) <br> - MATH2241 Introduction to mathematical analysis (6) (if not the disciplinary core course in the structure) |
|  | For students taking Professional Core in Bachelor of Science in Actuarial Science with Disciplinary Core Course : <br> MATH2822 <br> (which is equivalent to MATH2O14) |  |

6. For the situations of 2, 3, 4 and 5 above, students have to complete and submit the online application form to the Faculty Office via the Science Online Application Submission System (OASS) by the deadline of course selection or add/drop periods. The application will then be forwarded to the relevant Course Selection Adviser (CSA) for endorsement and comment (if any).

## Course Descriptions



## Basic biochemistry (6 credits) <br> Academic Year 2021 <br> Biomedical Sciences Quota <br> 300

Dr. M Kotaka, Biomedical Sciences (masayo@hku.hk)
(Dr A S L Wong,Biomedical Sciences)



| Examination |  | 50 | CLO 1,2,3 |
| :--- | :--- | :--- | :--- |

Required/recommended Cox MM, Doudna JA and O'Donnell M (2015) Molecular Biology: Principles and Practice, 2nd ed. Macmillan. reading and Scopes RK (1994) Protein Purification: Principles and Practice. 3rd ed, Springer Advanced Texts in Chemistry, Springer-Verlag, New York.
Wilson K, Walker KM (2010) Principles and Techniques of Biochemistry and Molecular Biology. 7th ed. Cambridge University Press, Cambridge.


Required/recommended Higgs, P.G. \& Attwood, T.K., 2005. Bioinformatics and molecular evolution, Malden, MA ; Oxford: Blackwell.
reading and Mount, D.W., 2004. Bioinformatics : sequence and genome analysis 2nd ed., Cold Spring Harbor, N.Y.: Cold
online materials
Spring Harbor Laboratory Press.


CLO 2 illustrate the application of molecular biology in medicine with examples; apply biochemical, molecular and cell biological, genetic, immunological as well as microbiological principles and methods to solve new medical problems
CLO 3 interpret and communicate new results about molecular aspects of medicine in the literature to a wider audience in the community
CLO 4 integrate and translate knowledge in molecular biology to new approaches in disease prevention and intervention

Pre-requisites (and Co-requisites and Impermissible combinations)

| Offer in 2021-2022 |
| :--- |
| Grade Descriptors | (A+ to F)

Pass in BIOC2600 or BIOL2220 or MEDE2301 or BMED2301

| Y | 2nd sem | Offer in 2022-2023: Y |
| :--- | :---: | :---: | Examination May


| to F) |  | prevention and intervention. Evidence of strong analytical and critical thinking when dealing with complex scientific data. Some evidence for additional information beyond what is given in the lectures. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | B | Displays a substantial and near-complete grasp of the key concepts underlying the molecular basis of human diseases, but without depth in some areas and with some omissions and factual errors. An understanding of the topic though is clear. Able to relate knowledge in molecular biology to new strategies in disease prevention and intervention. Able to apply analytical and critical thinking skills when dealing with scientific data. |  |  |  |
|  | C | Displays a general understanding of the key concepts underlying the molecular basis of human disease and is sometimes able to relate knowledge in molecular biology to new strategies in disease prevention and intervention. Sometimes able to apply analytical and critical thinking skills when dealing with scientific data. |  |  |  |
|  | D | Displays a limited understanding of the key concepts underlying the molecular basis of human disease and is rarely able to relate knowledge in molecular biology to new strategies in disease prevention and intervention. Evidence of weak analytical and critical thinking skills when dealing with scientific data. |  |  |  |
|  | Fail | Displays an incorrect or incomplete understanding of the key concepts underlying the molecular basis of human disease and is unable to relate this knowledge to effective treatment strategies. No evidence of analytical or critical thinking skills when dealing with scientific data. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Examination |  |  | 60 | CLO 1,2,3,4 |

Required/recommended Lodish et al: Molecular Cell Biology 7th ed., 2013 (4th ed. is available at NCBI Books)
 Alberts et al: Molecular Biology of the Cell 6th ed., 2015 (4th ed. is available at NCBI Books)
online materials $\quad$ Cassimeris et al: Lewin's Cells, 2nd ed., 2011

| BIOC3999 | Directed studies in biochemistry (6 credits) |  |  |  |  | Academic Year | 2021 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Offering Department | Biomedical Sciences |  |  |  |  | Quota | 36 |
| Course Co-ordinator | Dr A C Koon (Sem 1); Dr B H B Yuen (Sem 2 \& Summer), Biomedical Sciences (alexkoon@hku.hk; yuenbbh@hku.hk) |  |  |  |  |  |  |
| Teachers Involved | (All academic staff in Biochemistry Major,Biomedical Sciences) <br> (Dr A C Koon,Biomedical Sciences) <br> (Dr B H B Yuen,Biomedical Sciences) <br> (Dr B H B Yuen, Biomedical Sciences) |  |  |  |  |  |  |
| Course Objectives | To enhance students knowledge of a particular topic and the students self-directed learning and critical thinking skills. |  |  |  |  |  |  |
| Course Contents \& Topics | The student undertakes a self-managed study on a topic in biochemistry under the supervision of a staff member. The topic is preferably one not sufficiently covered in the regular curriculum. The directed study can be a critical review or a synthesis of published work on the subject. A laboratory or field study may also be involved that would enhance the student's understanding of the subject. |  |  |  |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |  |  |  |
| Outcomes | CLO 1 critically appraise research literature in a specific area of biochemistry and molecular biology |  |  |  |  |  |  |
|  | CLO 2 examine the theoretical or experimental basis for existing concepts |  |  |  |  |  |  |
|  | CLO 3 identify questions and evaluate issues for further research development |  |  |  |  |  |  |
|  | CLO 4 interpret scientific data in original research articles and communicate using appropriate scientific language |  |  |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pas incl This The | in at least ing BIOC2 apstone c arliest tha | 24 credits 600 or BIO urse is for a student | f advanced 2220 and Biochemis allowed to | d level (level 3 BIOL3401. <br> try Major studen o take this caps | tive courses in $B$ study. | ochem |
| Offer in 2021-2022 | Y | 1st sem | 2nd sem | Summer | Offer in 2022 - | Examination | No Ex |
| Grade Descriptors$(A+\text { to } F)$ | A | Produces a sophisticated and detailed appraisal of the biochemical literature, displaying a comprehensive and deep understanding of the selected topic. Able to contextualize all the ideas within a personal framework of knowledge and evaluate relevant issues emerging from the study. Works proactively with a supervisor to enhance understanding and scientific writing skills. Communicates the findings to a broader audience in an effective way and responds knowledgeably to questions. Excellent time-management skills and able to reflect honestly on one's own learning. |  |  |  |  |  |
|  | B | Produces a coherent appraisal of the biochemical literature, displaying a sound understanding of the selected topic. Able to contextualize many of the ideas within a personal framework of knowledge and identify some relevant issues emerging from the study. Works constructively with a supervisor to enhance understanding and scientific writing skills. Clearly communicates the findings to a broader audience and responds knowledgeably to most questions. Able to time-manage effectively and reflect on one's own learning. |  |  |  |  |  |
|  | C | Produces a reasonable appraisal of the biochemical literature, displaying an adequate understanding of the selected topic. Able to contextualize a few of the ideas within a personal framework of knowledge and makes some attempt to identify some relevant issues emerging from the study. Works with a supervisor and other co-workers to improve understanding and scientific writing skills. Communicates the findings to a broader audience with reasonable clarity and responds to most questions. Acceptable time-management and self-reflection skills. |  |  |  |  |  |
|  | D | Produces a superficial appraisal of the biochemical literature, displaying a limited understanding of the selected topic. Able to contextualize a few of the ideas within a personal framework of knowledge but unable to identify any relevant issues emerging |  |  |  |  |  |


|  | Fail | from the study Displays we reflection skils Fails to app contextualize in isolation, presenting th | tantly with a supervisor and other ion skills when presenting the fin <br> emical literature and thus unable n a personal framework of knowledg ake progress in understanding and broader audience. No time-manage | o develop understanding broader audience. Poor <br> any understanding of the any relevant issues eme riting skills. Unable to com $r$ ability to self-reflect. | scientific writing skills. management and self- <br> cted topic. Unable to from the study. Works nicate effectively when |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Project-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Reading / Self study |  | at least 120 hours on the project |  | 120 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Dissertation |  | including mind map (10\%) | 60 | CLO 1,2,3,4 |
|  | Oral presentation |  |  | 25 | CLO 1,2,3,4 |
|  | Research report |  | Supervisor comments | 15 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | as suggested by project supervisors |  |  |  |  |
| BIOC4610 | Advanced biochemistry (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Biomedical Sciences |  |  | Quota | 70 |
| Course Co-ordinator | Dr K M Yao, Biomedical Sciences (kmyao@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr J F C Ti,Biomedical Sciences) <br> (Dr K M Yao,Biomedical Sciences) <br> (Dr. R Hervas Millan,Biomedical Sciences) <br> (Prof D Chan,Biomedical Sciences) |  |  |  |  |
| Course Objectives | This course aims at providing students an in-depth understanding of molecular and cellular signaling in multicellular organisms. This course is particularly useful for students interested in research or intending to develop a career in biomedical sciences. |  |  |  |  |
| Course Contents \& Topics | A. Int Cell-s signa kinas <br> B. Cy The m cytos <br> C. Pr Trans folding <br> D. Ce Cell-c collag | d intracellul ce receptors pathways th thway, phos <br> eleton as ta tubule cytos ion and cell trafficking a tion of secr d quality con <br> ll and cell-m and cell-extr and proteog | nduction mechanisms transduction proteins; G-Pr ene expression: receptors th signaling pathways and rece <br> transduction <br> esin and dynein motor; the a toskeleton and intracellular t <br> athways <br> s - insertion into the ER; m ; molecular mechanism of <br> atrix (ECM) junctions and the cell meets the matrix; regu | pled receptors: struc te protein tyrosine kir e kinases that activa <br> keleton; myosin; the in neuron <br> in sorting pathways raffic; protein sorting <br> sion molecules; cad ignaling molecules by | and mechanism; ses, the Ras/MAP Smads <br> rmediate filament; <br> otein modification, processing <br> ins and integrins; CM |
| Course Learning Outcomes | $\begin{aligned} & \text { On sl } \\ & \hline \text { CLO } \\ & \hline \end{aligned}$ | ssful comple cribe and mmunication knowled erpret data guage rk effective | ourse, students should be ab molecular and cellular sign a plethora of cellular respon ular cell biology to analyze n articles/problem-solving que <br> mates in tutorial classes | uction mechanisms lticellular organisms s and to design furth communicate using | mediate cellular <br> xperiments propriate scientific |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOC3601 or BIOL3401 or BIOL3402 or BIOL3404 |  |  |  |  |
| Offer in 2021-2022 | Y | 1st sem Offer in 2022-2023: Y |  | Examination Dec |  |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough and complete mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong critical thinking and analytical skills, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of critical thinking and analytical skills, and ability to apply knowledge to familiar and some unfamiliar situations. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some critical thinking and analytical skills, and ability to apply knowledge to most familiar situations. |  |  |  |
|  |  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some critical thinking, but with limited analytical skills. Show limited ability to apply knowledge to solve problems. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of critical thinking and analytical skills. Show very little or no ability to apply knowledge to solve problems. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching <br> \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Meth |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |





BIOC4999
Offering Department Course Co-ordinator Teachers Involved

## Course Objectives

## Biochemistry project (12 credits)

Biomedical Sciences
Dr N S Wong, Biomedical Sciences (nswong@hku.hk)
(All academic staff in Biochemistry Major,Biomedical Sciences)
(Dr N S Wong,Biomedical Sciences)
To enable students to acquire the basic skills in scientific research emphasizing on critical and analytical reasoning, free and creative thinking, scholarly communication (both orally and in writing), research integrity, teamwork and time management. The course is particularly useful for those students who intend to pursue a career in life science either in research or industry.

| Course Contents \& Topics | Project-related topics in biochemistry, cell, molecular and developmental biology. <br> Experimental methods in protein and nucleic acid biochemistry; bioinformatics and cell biology. <br> Critical appraisal of current science literature <br> Formulation of research questions <br> Design of experiments. <br> Data analysis and interpretation. <br> Scientific writing |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 describe recent research development in a defined area of biochemistry and molecular biology |  |  |  |  |
|  | CLO 2 formulate research questions and design experiments to address these questions |  |  |  |  |
|  | CLO 3 apply appropriate experimental techniques to solve research problems |  |  |  |  |
|  | CLO 4 manage and interpret experimental results |  |  |  |  |
|  | CLO 5 develop scientific writing skills and logically report their research findings |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Biochemistry Major including 4 of the following 5 courses: BIOL3401, BIOC3601, BIOC3604, BIOC4610 and BIOC4613. <br> BIOC4610 and BIOC4613 can be taken concurrently with this course. <br> This capstone course is for Biochemistry Major students only. <br> This capstone course is ONLY opened to students who are in year 3 or above in the Biochemistry Major program. |  |  |  |  |
| Offer in 2021-2022 Grade Descriptors (A+ to F) | Y Year long Offer in 2022-2023: Y |  |  | Examination No Exam |  |
|  | A | Plans and executes a sophisticated and creative experimental investigation, framing the research question within existing knowledge. Displays tenacity and commitment, generating a meaningful body of data that is analysed with insight and comprehensively evaluated in the context of the original research question. Works proactively with a supervisor and other coworkers to enhance practical and scientific writing skills. Communicates the findings to a broader audience in an effective and scholarly way and responds knowledgeably to questions. Excellent time-management skills. |  |  |  |
|  | B | Plans and executes a detailed experimental investigation, framing the research question within existing knowledge. Works with commitment, generating a sufficient body of data that is analysed and evaluated in the context of the original research question with skill and understanding. Works constructively with a supervisor and other co-workers to enhance practical and scientific writing skills. Clearly communicates the findings to a broader audience and responds knowledgeably to most questions. Able to time-manage effectively. |  |  |  |
|  | C | Plans and executes an experimental investigation, attempting to contextualize the research question. Works with adequate commitment in order to generate sufficient data for a reasonable analysis and evaluation in the context of the original research question. Works with a supervisor and other co-workers to improve practical and scientific writing skills. Communicates the findings to a broader audience with reasonable clarity and responds to most questions. Acceptable time-management skills. |  |  |  |
|  | D | Plans and executes a rudimentary experimental investigation, showing a limited ability to contextualize the research question. Displays minimal commitment when collecting data and is only able to undertake a superficial analysis and evaluation. Works reluctantly with a supervisor and other co-workers to develop practical and scientific writing skills. Displays weak communication skills when presenting the findings to a broader audience. Poor time-management skills. |  |  |  |
|  | Fail | Plans and executes an experimental investigation that is flawed, ineffective or overly simplistic, that is lacking a valid scientific context. Shows no commitment when collecting data and produces an incoherent analysis and evaluation. Works in isolation, thus failing to improve practical and scientific writing skills. Displays weak communication skills when presenting the findings to a broader audience. No time-management skills. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Project-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Reading / Self study |  |  |  | 240 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Dissertation |  |  | 60 | CLO 1,2,3,4,5 |
|  | Oral presentation |  | including continuous assessment (15\%) | 40 | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | None prescribed |  |  |  |  |






| Outcomes | CLO 1 demonstrate understanding and to explain the principle of inheritance, recombinant DNA and cloning CLO 2 gain deep understanding about the advancement of biotechnology <br> CLO 3 determine and explain the benefits and shortcomings of the application of biotechnology knowledge |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Not for students with level 3 or above in HKDSE Biology or Combined Science with Biology component or equivalent. |  |  |  |  |
| Offer in 2021-2022 | N | r in 2022 - |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use communication skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective individual as well as collaborative-based organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective individual as well as collaborative-based organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately individual as well as collaborative-based organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to realworld problems. Demonstrate individual as well as collaborative-based organizational and presentational skills of limited effectiveness. |  |  |  |
|  | Fail | Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness individual as well as collaborative-based organizational and presentational skills. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching <br> \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  | including 45 hours on 15 essay/report writing, 30 presentation (include preparation) |  | 93 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | discussion forum | 35 | CLO 1,2,3 |
|  | Essay |  | essays \& written reports | 25 | CLO 1,2,3 |
|  | Presentation |  | poster \& oral presentation | 30 | CLO 1,2,3 |
|  | Test |  | in-class participation \& quizzes | 10 | CLO 1,2,3 |
| Required/recommended reading and online materials | Library \& web-based reading materials |  |  |  |  |
| Additional Course Information | This course will be offered subject to a minimum enrollment number and availability of teachers. |  |  |  |  |
| BIOL2101 | Principles of food chemistry (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Biological Sciences |  |  | Quota | 100 |
| Course Co-ordinator | Dr J C Y Lee, Biological Sciences (jettylee@hku.hk) |  |  |  |  |
|  | (Dr J C Y Lee,School of Biological Sciences) <br> (Dr T C S Lam,School of Biological Sciences) |  |  |  |  |
| Course Objectives | To provide a basic understanding of chemistry in food systems, and to provide practical training in chemistry related to food science and nutrition. |  |  |  |  |
| Course Contents \& Topics | The course will cover the components of food, including water, proteins, carbohydrates and lipids, and minor components such as enzymes, vitamins, minerals, colorants, flavorants and additives. The physical and chemical properties of these important constituents of foods are covered in detail, and form the basis for understanding the reactions which occur during the production, processing, storage and handling of foods, and in understanding the methods used in analyzing foods |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 understand the functions and properties of major and minor food components |  |  |  |  |
|  | CLO 2 understand the basic chemistry behind food processing |  |  |  |  |
|  | CLO 3 understand how major chemical and biochemical reactions influence food quality |  |  |  |  |
|  | CLO 4 have integrated their knowledge of biological and chemical principles into a food science and nutrition context |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOL1201; and NOT for students who have passed in BIOL3201. The course is only for students admitted in 2017-2018 or thereafter. |  |  |  |  |
| Offer in 2021-2022 | Y | sem Offer in 2022-2023: Y |  | Examination Dec |  |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough grasp of the subject matter covered. Show extensive knowledge and understanding of the topics covered and can readily apply this knowledge. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions. |  |  |  |
|  | B | Demonstrate substantial grasp of the subject matter covered. Show thorough knowledge and understanding of the content and a high level of competence in the topics covered and able to apply this knowledge and skills to most situations. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions. |  |  |  |
|  | C | Demonstrate general but incomplete grasp of the subject matter covered. The student has a sound knowledge and understanding of the main areas of content and has achieved an adequate level of competence in the topics covered. Use lab skills and techniques and analysis of data and results to draw moderately appropriate conclusions. |  |  |  |
|  | D | Demonstrate partial but limited grasp, with retention of some relevant information of the subject matter covered. Show a basic knowledge and understanding of the content and has achieved a limited level of competence in the topics covered. Use lab skills and techniques and analysis of data and results to draw appropriate conclusions occasionally. <br> Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show elementary |  |  |  |
|  |  |  |  |  |  |


|  | Fail | knowledge and understanding in few areas of the content and has achieved very limited competence in some of the topics covered. Use lab skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 24 |
|  | Laboratory |  |  |  | 36 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | Laboratory | 30 | CLO 1,2,3,4 |
|  | Examination |  |  | 40 | CLO 1,2,3,4 |
|  | Test |  |  | 30 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Fennema OR, Food Chemistry (Marcel Dekker 4th Ed, 2008) Belitz HD, Grosch W, Schieberle, P, Food Chemistry (Springer 4th Ed, 2009) |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| Additional Course Information | The course will be offered subject to a minimum enrollment number and availability of teachers Lab. A (Quota: 50): 14:30 pm-18:50 pm (Monday) <br> Lab. B (Quota 50) : 13:30 pm - 17:50 pm (Wednesday) |  |  |  |  |
| BIOL2102 | Biostatistics (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Biological Sciences |  |  | Quota | 169 |
| Course Co-ordinator | Dr E Pickett, Faculty (epickett@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr E Pickett,Faculty of Science) <br> (Dr J D Gaitan-Espitia,School of Biological Sciences) |  |  |  |  |
| Course Objectives | This course aims to is to introduce students to the core ideas and concepts of statistical analysis with special attention to the modeling approaches used in biological sciences. The course will give students the skills and knowledge to understand how to apply these concepts using the $R$ statistical programming language for data analysis. Although the course covers some basic concepts (experimental design, distributions, hypothesis testing), the main emphasis of the course is on model building and selection, linear models (regression and analysis of variance), basic random effects and mixed effects models, and multivariate statistics (PCA, MANOVA). |  |  |  |  |
| Course Contents \& Topics | Introduction to Statistics and Probability; Descriptive Statistics and Estimation; Statistical Inference; Statistical Explanation and Diagnosis; Likelihood and Model Selection, Categorical predictors (ANCOVA and ANOVA); Factorial design, Multiple Comparisons and Block Design; Correlation and Regression Analyses; Multiple Regression Analysis; Introduction to Multivariate Analyses. Students will learn how to use R to conduct the statistical analyses, and correctly interpret the results. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 formulate |  | estions into |  |  |
|  | CLO 2 design ex |  | fectively |  |  |
|  | CLO 3 appreciat |  | et statistics in |  |  |
|  | CLO 4 use R to |  | mon statistic |  |  |
|  | CLO 5 understand |  | ptions of com | thods |  |
|  | CLO 6 | critically evaluate the scientific literature |  |  |  |
|  | CLO 7 | apply different statistical modeling methods |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOC1600 or BIOL1110 or BIOL2306 or ENVS1301 or ENVS2002 or SCNC1111 |  |  |  |  |
| Offer in 2021-2022 | Y | sem Offer | 23 : Y | Examinatio | No Exam |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough grasp of the subject and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply highly effective computational skills and techniques for basic statistical analyses. Be able to critically use data and statistical results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial grasp of the subject and skills required for attaining at least most of the course learning outcomes. Present evidence of analytical and critical abilities and logical thinking. Apply effective computational skills and techniques for basic statistical analyses. Be able to correctly use data and statistical results to draw appropriate conclusions. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete grasp of the subject and skills required for attaining some of the course learning outcomes. Present evidence of some analytical and critical abilities and logical thinking. Apply moderately effective computational skills and techniques for basic statistical analyses. Demonstrate mostly correct but some erroneous use of data and statistical results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial and limited grasp of the subject and skills required for attaining some of the course learning outcomes. Present evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective computational skills and techniques for basic statistical analyses. Demonstrate limited ability to use data and statistical results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate evidence of little or no grasp of the subject and skills required for attaining any of the course learning outcomes. Present evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Apply minimally effective or ineffective computational skills and techniques for basic statistical analyses. Demonstrate misuse of data and statistical results and/or unable to draw appropriate conclusions. Apply minimally effective or ineffective organizational and presentational skills. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 24 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Meth |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |




|  | ecological and evolutionary processes |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | understand the basic mechanism of natural selection, and how interactions with the environment lead to adaptation and generate biodiversity |  |  |  |
|  | understand that ecology and behaviour can be interpreted in the light of selective pressures from the environment upon individual organisms |  |  |  |
|  | CLO 4 understand the ecological factors influencing evolution, using the human evolutionary tree as an example |  |  |  |
|  | CLO 5 understand the community ecology and biodiversity of selected Hong Kong habitats, and typical adaptations of organisms found there |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOL1110 or BIOL1309 or ENVS1301 or ENVS1401 |  |  |  |
| Offer in 2021-2022 | 1st sem Offer in 2022-2023: Y |  | Examination | Dec |
| Grade Descriptors $(A+\text { to } F)$ | AE <br> le <br> or <br> w | Evidence of complete or near-complete understanding and a thorough grasp of the subject as demonstrated by attainment of all learning outcomes, and excellent use of named (organism) examples, including local species and habitats. Show excellent organizational, presentational and/or analytical skills and fieldwork techniques. Excellent or outstanding (for $\mathrm{A}+$ ) work relative to what is required at degree level. |  |  |
|  | Evidence of substantial understanding and a good grasp of the subject as demonstrated by attainment of the majority of learning outcomes, and use of named (organism) examples, including local species and habitats. Show good organizational, presentational and/or analytical skills and fieldwork techniques. Work more than sufficient for what is required at degree level. |  |  |  |
|  | Evidence of general understanding with an adequate (but incomplete) grasp of the subject, as demonstrated by general but incomplete attainment of most of the learning outcomes, with limited use of named (organism) examples. Show fair organizational, analytical, presentational and/or analytical skills and fieldwork techniques. Work sufficient for what is required for degree level. |  |  |  |
|  | Evidence of retention of a minimum of relevant information and incomplete understanding of the subject (i.e. knowledge is very incomplete), as demonstrated by partial but limited attainment of learning outcomes. Insufficient familiarity with fieldwork techniques, habitats or organisms. Work merely (for $\mathrm{D}+$ ) or barely ( D ) adequate for what is required at degree level. |  |  |  |
|  | Evidence of poor or inadequate knowledge and understanding of the subject such that the majority of learning outcomes cannot be attained. Little or no evidence of familiarity with fieldwork techniques, habitats or organisms. Work fails to reach degree level. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures | 24 hours lectures, plus residential field course | of lectures during | 34 |
|  | Laboratory | at least 36 hours field and individuals | work, as groups and | 36 |
|  | Reading / Self study | during the semester in assigned reading and a | of internet tutorials, rkshop | 80 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments | Field course assessment | 30 | CLO 1,2,3,4 |
|  | Examination |  | 50 | CLO 1,5 |
|  | Test | In-lecture quizzes | 20 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Rickleffs \& Relya (2018) Ecology: The Economy of Nature (8th edition). New York: W.H. Freeman and Company Molles \& Sher (2018) Ecology: Concepts and Applications (8th edition). McGraw-Hill Education |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |
| Additional Course Information | A compulsory 5-day field component during the reading week. Details of the location and cost of the field course, which will be held in the Reading week of semester 1, will be made available at the start of the semester. Priority will be given to students majoring in BS, BS intensive, E\&B and E\&B intensive. . |  |  |  |

BIOL2408
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents \& Topics

Course Learning
Outcomes

Green earth-plants and mankind ( 6 credits)
Biological Sciences
Prof. M L Chye, Biological Sciences (mlchye@hku.hk)
(Dr C Lo,School of Biological Sciences)
(Prof M L Chye,School of Biological Sciences)
This course is intended for students interested in the fundamentals of plant biology. The course will emphasize on the essential attributes of plants to humans. At the end of the course, students are expected to know the distinct features of plants and appreciate the importance of plants in our daily lives. Specific topics such as genetic engineering and the use of plants for food and medicine, will be addressed.
The importance of plants to human. How to be a plant? Types of plant biotic interactions. Plant-plant interactions. Plants and pathogens. Phytohormones. Plants and environment. Genetic improvements in agriculture. You are what you eat? Medicinal plants.
On successful completion of this course, students should be able to:
CLO 1 Realize how plant structure enables functions
CLO 2 Comprehend the essentials of plant growth and development
CLO 3 Understand the abilities of plants to detect, process, and interpret information from their surrounding environment
CLO 4 Recognize the interactions of plants with the living and non-living environment
CLO 5 Appreciate the contribution of plants to humans
Pass in BIOL1110 and BIOL2103

N Offer in 2022-2023: N Examination ---
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.

|  | C | learning outcomes. Demonstrate substantial grasp of the subject. Show evidence of analytical and critical abilities and logical thinking. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching | Acti |  | Details |  | No. of Hours |
| \& Learning Activities |  |  |  |  | 24 |
|  | Labo |  |  |  | 24 |
|  |  |  | Field trip |  | 6 |
|  |  | Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | Lab sessions / reports | 30 | CLO 1,2,3,4,5 |
|  | Examination |  |  | 50 | CLO 1,2,3,4,5 |
|  | Test |  |  | 20 | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | Core Textbooks <br> 1. Simpson, B.B. \& M.C. Ogorzaly. 2014. Economic Botany: Plants in our World. McGraw-Hill. References and Online Materials <br> 2. Teaching Tools in Plant Biology (American Society of Plant Biologists) <br> https://academic.oup.com/plcell/pages/teaching-tools-plant-biology <br> 3. Levetin E. \& McMahon, K. 2016. Plants \& Society 7th Ed. McGraw Hill |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| Additional Course Information | This course will be offered subject to a minimum enrollment number and availability of teachers. |  |  |  |  |
| BIOL2409 | Biotechnology industry and entrepreneurship (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Biological Sciences |  |  | Quota | 40 |
| Course Co-ordinator | Dr W B L Lim, Biological Sciences (bllim@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr R Law,Faculty of Science) <br> (Dr W B Lim,School of Biological Sciences) <br> (Guest Lecturer,School of Biological Sciences) |  |  |  |  |
| Course Objectives | The course will give an overview of the innovative developments in biotech industry and provide the students with useful tools in learning how an exciting research idea can be turned into a viable business. |  |  |  |  |
| Course Contents \& Topics | The purpose of the course is to introduce you to the entrepreneurial process with a focus on the biotechnology industry. The course will provide a thoughtful, practical guide to the process of successfully launching an entrepreneurial venture. We place a special emphasis on the decision to become a biotech entrepreneur and how to develop successful business ideas, however we will also discuss the process of moving from an idea to a biotech firm. Topics on intellectual properties, patent laws, patent application process, licensing and fundraising will be covered as well. Throughout the course, guest entrepreneurs, managers and directors of the biotech industry will be presenting case studies and explain their involvement in various biotech and pharmaceutical companies. Topics: <br> 1. Introduction to Biotechnology Industry: $4 P$ in Biotechnology Business (3 hours) <br> 2. IP rights: Patent application, Patent system, USPTO, SIPO, PCT (6 hours) <br> 3. Licensing of IP rights (3 hours) <br> 4. Technology Transfer Office and HKSTP (3 hours) <br> 5. How to raise fund for startup companies ( 3 hours)? <br> 6. Agrobiotechnology and Green Tech (Monsanto, Novozymes, etc) (4.5 hours) <br> 7. Drug development and clinical trials (Gilead Sciences, Wuxi PharmaTech, etc). (6 hours) <br> 8. Diagnostics business (BGI, Diagcor, etc) (4.5 hours) <br> 9. Company analysis (3 hours) <br> 10. Company Visit <br> 11. Company analysis |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 understand and demonstrate knowledge of the development and management of biotechnology business |  |  |  |  |
|  | CLO 2 understand and demonstrate how discoveries and inventions are commercialized |  |  |  |  |
|  | CLO 3 navigate the various steps in the development of a biotechnology derived product: from bench, to scaleup,to market |  |  |  |  |
|  | CLO 4 gain technical and business knowledge of the biotechnology and bioprocessing industries |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in 1110 <br> NOT for students who have passed in BIOL3409. |  |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offer |  | 023 : Y | Examination No Exam |  |
| Grade Descriptors $(A+\text { to } F)$ |  | Students acquire exceptional skills and knowledge from the course and are capable of independently analyzing the business and technological developments of various biotechnology ventures. <br> Students demonstrate a broad and in-depth understanding of the current developments in biotechnology industry and are capable of analyzing the business and technological developments of various biotechnology ventures under guidance. |  |  |  |



| Assessment Methods <br> and Weighting | Methods | Details | Weighting in final <br> course grade (\%) | Assessment <br> Methods <br> (t CLO Mapping |
| :--- | :--- | :--- | :--- | :---: |
|  |  |  | 60 | CLO 1,2,3,4,5 |



Required/recommended Christopher D. Moyes \& Patricia M. Schulte (2015), Principles of Animal Physiology, Pearson.
reading and
Richard W. Hill, Gordon A. Wyse \& Margaret Anderson (2012), Animal Physiology, Sinauer Associate.
online materials
E. N. Marieb (2012), Essentials of Human Anatomy \& Physiology. Benjamin Cummings.

Course Website
http://moodle.hku.hk/
Additional Course
Refer to the Website of School of Biological Sciences.
Information
This course will be offered subject to a minimum enrollment number and availability of teachers.





CLO 5 explain the biochemical outcomes of nutrient deficiency/excess

Pre-requisites (and Co-requisites and Impermissible combinations)
Offer in 2021-2022

Grade Descriptors (A+ to F)

Pass in BIOC2600 or BIOL2220 or MEDE2301


Test

Required/recommended S.S. Gropper \& J. L. Smith 'Advanced Nutrition and Human Metabolism' (6th edition) Elsevier reading and online materials

Course Website
Additional Course Information Elsevier
K. N. Frayn 'Metabolic Regulation
http://moodle.hku.hk/
This course will be offered subject to a minimum enrollment number and availability of teachers

BIOL3203
Offering Department
Course Co-ordinator
Teachers Involved

$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { Course Type } & \text { Lecture with laboratory component course } & & \\ \hline \begin{array}{l}\text { Course Teaching } \\ \text { \& Learning Activities }\end{array} & \text { Activities } & \text { Details } & & \\ \hline & \text { Lectures } & & & & \text { No. of Hours } \\ \hline & \text { Laboratory } & & & 24 \\ \hline & \text { Tutorials }\end{array}\right)$

Required/recommended Food Microbiology: An Introduction, 2005, Thomas J. Montville and Karl Matthews, American Society for reading and Microbiology (ASM) Press, Washington, DC
online materials $\quad$ Food Microbiology: Fundamentals and Frontiers, 2007, Edited by Michael P. Doyle, Larry R. Beuchat, and Thomas J. Montville, 3rd edition, American Society for Microbiology (ASM) Press, Washington, DC

Course Website Additional Course http://moodle.hku.hk/

Information
Quota in sub class A: 70;
Quota in sub class B: 70.
This course will be offered subject to a minimum enrollment number and availability of teachers


Required/recommended Brown J.E. Nutrition Through the Life Cycle. Thomson, 2011
reading and
online materials
Gropper S.S., Smith J.L.. \& Groff J.L. Advanced Nutrition and Human Metabolism (Wadsworth, 2009)
Croxford, Itsiopoulous, Forsyth, Belski, Thodis, Shepherd and Tierney. Food \& Nutrition Throughout Life (2015) http://moodle.hku.hk/
Course Website Additional C Information

This course will be offered subject to a minimum enrollment number and availability of teachers
sub class A-25 Quota;
sub class B-25 Quota.

(and Co-requisites
and Impermissible and Impermissible combinations)

| Offer in 2021-2022 | v Offer in 2022-2023: N |  |  | Examination | --- |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective laboratory/fieldwork skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Substantial grasp of the subject. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective laboratory /fieldwork skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. General but incomplete grasp of the subject. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective laboratory / fieldwork skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Partial but limited grasp of the subject, retention of some relevant information of the subject. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab / fieldwork skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Little or no grasp of the knowledge and understanding of the subject. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective laboratory / fieldwork skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching <br> \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  |  | 20 | CLO 1,2 |
|  | Examination |  |  | 60 | CLO 1,2,3,4 |
|  | Presentation |  |  | 20 | CLO 1,2,3,4 |

Required/recommended reading and online materials
Course Website
Additional Course Information

Selected readings will also be available on the class website.
S. Rodwell Williams: Nutrition and Diet Therapy (7th ed.) Suitor \& Hunter: Nutrition: Principles and Application in Health Promotion Wardlaw Gordon: Perspectives in Nutrition (2nd ed.)
http://moodle.hku.hk/
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3207
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives $\quad$ To introduce students to methods used in assessing the toxicity of food contaminants, and to develop their confidence in the handling and interpretation of toxicological data. Students will also be introduced to the basic concepts behind toxicological evaluation, and the criteria for setting guidance values for dietary and nondietary exposure to chemicals. Students will understand the role of biochemical, metabolic and toxicokinetic studies in toxicological evaluation. This course aims to equip students with basic skills in conducting food toxicological studies.
Topics include a discussion on exposure and entry routes, fates of toxic substances in the body (toxicokinetics), concepts in experimental toxicology, the dose response relationship, actions of toxic substances, target organ effects, the actions and types of carcinogens. A survey of the health effects of common classes of toxic substances is also presented.
On successful completion of this course, students should be able to:
CLO 1 demonstrate an understanding of the processes involved in absorption, distribution, metabolism and excretion of toxicants, including an understanding of the toxicokinetic behavior of toxicants in mammals
CLO 2 demonstrate an understanding of the various effects induced after exposure to toxicants
CLO 3 demonstrate an understanding of the factors which underlie species differences in response to potential toxicants
CLO 4 demonstrate the ability to work in a team to investigate and solve toxicological problems of importance in human health
Pass in BIOC2600 or BIOL2220 or BIOL3205 or MEDE2301

Y 2nd sem Offer in 2022-2023: Y Examination No Exam
Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills. Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.



| BIOL3210 | Grain production and utilization (6 credits) |  |  | Academic Year |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Offering Department | Biolog | Sciences |  | Quota | 40 |
| Course Co-ordinator | Prof H Corke, Biological Sciences (harold@hku.hk) |  |  |  |  |
| Teachers Involved |  |  |  |  |  |
| Course Objectives | To provide a broad understanding of the utilization and significance of the major grains in the food industry and in human health and nutrition. |  |  |  |  |
| Course Contents \& Topics | - Glob | ain production nevolutio nal grain tr our milling, uality of Asi mall-scale ritional qual roducts of w ocusing on business | umption <br> ermath <br> gy, the baking process, including steamed bread ty <br> $r$ preferences, milling, nimal feed development <br> on the grain processing | esting, products <br> discussed |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |  |
| Outcomes | CLO 1 understand the major production, import, and export patterns that support the global utilization of grain |  |  |  |  |
|  | CLO 2 understand the technology behind the production of grain-based foods |  |  |  |  |
|  | CLO 3 understand the scope and nature of professional level quality testing for grain products |  |  |  |  |
|  | CLO 4 appreciate the constraints to global food sufficiency |  |  |  |  |
|  | CLO 5 appreciate the ethical issues behind the diversion of grain into meat and biofuel production |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in any level 2 BIOL course |  |  |  |  |
| Offer in 2021-2022 | $\mathrm{N} \quad$ Offer in 2022-2023: N |  |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness. |  |  |  |
|  | Fail | Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Examination |  |  | 70 | CLO 1,2,3,4,5 |
|  | Project reports |  | including presentation | 30 | CLO 2,3 |
| Required/recommended reading and online materials | Encyclopedia of Grain Science, edited by Wrigley CW, Corke H, and Walker CE (2004) 3 Volumes, 1,700 pages. Elsevier, Oxford. (selected chapters only) <br> Other readings to be provided |  |  |  |  |
| Course Website | http://moodle.hku.hk/ |  |  |  |  |
| Additional Course Information | This course will be offered subject to a minimum enrollment number and availability of teachers. |  |  |  |  |
| BIOL3211 | Nutrigenomics (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Biological Sciences |  |  | Quota | 40 |
| Course Co-ordinator | Dr K C Tan-Un, Biological Sciences (kctanun@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr K C Tan-Un,Biological Sciences) |  |  |  |  |
| Course Objectives | Recent advances in the understanding of the human genome have resulted in the emergence of a new science called Nutrigenomics. This course aims to provide students with an understanding of the biochemical mechanisms underpinning the science of nutrition and the relation between genes and diet-related diseases. It explains the role of nutrition at the molecular level and the concepts of nutrigenomics and nutrigenetics. |  |  |  |  |
| Course Contents \& Topics | Concepts of nutrigenomics, nutrigenetics, metabolomics and nutritional biochemistry. <br> Regulation of gene expression; Single Nucleotide Polymorphisms and relation to diseases. <br> Overview of lipid metabolism; cholesterol metabolic pathway; hyperlipidaemia, LDL receptor mutations. <br> Relevance of folate, vitamin B12; hyperhomocysteinemia and gene polymorphisms in diseases. <br> Epigenetics, Barker s hypothesis, influence of maternal nutrition in fetal gene expression. Obesity, genetic predisposition, candidate genes like leptin, FTO and other hormones involved in the control of appetite <br> Polyunsaturated fatty acid and their roles in the control of gene expression example lipogenesis and lipid oxidation pathways; <br> Inborn errors of metabolism in the context of genetic mutations and personalized diet therapy |  |  |  |  |



|  | D Fail | Demonstrate Demonstrate evidence of techniques problems. De Demonstrate and logical analysis of problems. | ctive team-based organiza ted grasp, with retention gical thinking, but lacking data and results to draw -based organizational and sp , with retention of little re inimal competence in pro ineffectively, leading gen ectiveness team-based org | onal skills. <br> mation, of the subject mat sional-level problem solvi riate but often erroneous of limited effectiveness. of the subject matter cove $m$ solving. Use practical and usually erroneous entational skills. | covered. Show some Use practical skills and clusions to real-world <br> Show lack of coherent s and techniques and nclusions to real-world |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Laboratory and workshop course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
|  | Workshops |  |  |  | 48 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 90 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Laboratory reports |  |  | 40 | CLO 1,2,3,4,5,6 |
|  | Presentation |  | Group presentation | 10 | CLO 1,2,3 |
|  | Project reports |  |  | 30 | CLO 1,2,3,4 |
|  | Test |  |  | 20 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Requ Lee Gibs Onlin Instit Estab | d Nieman <br> , Principles erials: Medicine Upper Int | Assessment 6th Ed Assessment 2nd Ed <br> and Nutrition Board. or Nutrients. http://ww | ity Press <br> e Intakes: A Risk A ov/books/NBK45182/ | ssment Model for |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| Additional Course Information | This course will be offered subject to a minimum enrollment number and availability of teachers |  |  |  |  |
| BIOL3216 <br> Offering Department Course Co-ordinator Teachers Involved Course Objectives | Food waste management (6 credits) |  |  | Academic Y | 2021 |
|  | Biological Sciences |  |  | Quota | 30 |
|  | Dr O Habimana, Biological Sciences (ohabim@hku.hk) |  |  |  |  |
|  | (Dr O Habimana,School of Biological Sciences) |  |  |  |  |
|  | To allow students to develop an understanding of the propagation, treatment and disposal of food waste relevant within the farm to table chain. To allow students to critically evaluate food waste management and resource recovery potential in Hong Kong in comparison to other countries in Asia/Worldwide. |  |  |  |  |
| Course Contents \& Topics | With our current global population estimated to reach 9.1 billion in 2050 , food production will be expected to increase by $70 \%$ to meet food demand. However, our current world food supply is instead declining, with $1 / 4$ to $1 / 3$ of all food produced for human consumption lost or wasted. This amounts to a staggering 1 to 2 billion metric tons per year! Clearly we should be worried about food wastage. <br> In this course, the social, economic, and environmental implications associated with food waste will be identified, by presenting relevant facts and figures and case studies embodying agricultural, industrial and consumer wastetypes. Basic waste management concepts will also be covered, examining current waste management in Hong Kong compared to other countries in Asia, while providing the basis for examining our own personal waste footprint. This course will address current applications and limitations of food waste treatment technologies. <br> Course outline: <br> -Background, Definitions, Social \& Environmental implications of food waste <br> -Facts and figures related to food Waste <br> -Basic Waste Management concepts (3 R's) <br> -Case studies: Agricultural waste <br> -Case studies: Food Industrial waste <br> -Case studies: Food consumer waste <br> -Waste Management in Hong Kong vs other countries in Asia <br> -Individual waste footprint: from awareness to legislation in Hong Kong <br> -Current Technological applications \& limitations in food waste treatment |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 understand and define the various types of waste as well as create an awareness of individual waste footprint. |  |  |  |  |
|  | CLO 2 be able to define the 3 R's in waste management (reduce, reuse, recycle), and be familiarized with waste polices in Hong Kong compared to other countries in Asia /Worldwide. |  |  |  |  |
|  | CLO 3 be able to describe current and novel technologies for treating waste, as well as transforming waste into value added resources. | CLO 4 to develop written and oral presentation skills necessary to effectively convey technical, economic, and social information related to waste management. |  |  | orming waste into <br> al, economic, and |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOL2101 |  |  |  |  |
| Offer in 2021-2022 | Y | 2nd sem Offer in 2022-2023: Y |  | Examination May |  |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use quality management skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective teambased organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use quality management skills and techniques |  |  |  |



|  | techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  | with practic |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Project work |  |  |  | 20 |
|  | Reading / Self study |  |  |  | 50 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  |  | 50 | CLO 1,2,3,4,5 |
|  | Presentation |  |  | 50 | CLO 1,2,4,5 |
| Required/recommended reading and online materials | There is no course textbook. Most of the reading material will be provided on Moodle or distributed during lectures. |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| BIOL3218 | Food hygiene and quality control (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Biological Sciences |  |  | Quota | 30 |
| Course Co-ordinator | Dr O Habimana, Biological Sciences (ohabim@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr O Habimana,School of Biological Sciences) |  |  |  |  |
| Course Objectives | To provide exposure to some key management, microbiology and food processing concepts used to produce safe high-quality food products. To introduce students to analysis and problem-solving of realistic business situations in food safety management. |  |  |  |  |
| Course Contents \& Topics | - The <br> - Bas <br> - Statis <br> - Qua <br> - Qua <br> - Dev <br> food <br> - Role <br> - A re <br> - Relig <br> - Illus | atory, socia cepts in TQ Process C unction Dep anagement ment and im managem vironment of microbio ethical, and business | ss impera <br> ISO 9000) <br> n of a Haz supply chain ent system d safety co od choices on food s | Point (HACCP) plan dustry <br> scussed | thin an ISO 22000 |
| Course Learning Outcomes | On su <br> CLO <br> CLO <br> CLO | sful comple derstand the familiar with able to ana fety | ourse, stu | pts in food safety food industry for pr endations for action | ting food safety prove quality and |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOL2101 or BIOL3203 <br> Not for students who have passed in BIOL3208 |  |  |  |  |
| Offer in 2021-2022 | Y 1st sem Offer |  | 23 : Y | Examination Dec |  |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use quality management skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills. |  |  |  |
|  | B | Demonstrate thinking with and analysis based organ | asp of the of compete sults to draw esentational | dence of analytical and lving. Use quality manag to real-world problems. | abilities and logical skills and techniques nstrate effective team |
|  | C | Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills. |  |  |  |
|  |  | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use qualitymanagement skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness. |  |  |  |
|  | Fail | Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Group work |  |  |  | 12 |
|  | Project work |  |  |  | 30 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  |  | 20 | CLO 2 |
|  | Examination |  |  | 50 | CLO 1,2,3 |
|  | Project reports |  |  | 30 | CLO 2,3 |
| Course Website | http:// | dle.hku.hk |  |  |  |

Additional Course Information

The course will be offered subject to a minimum enrollment number and availability of teachers.

| BIOL3301 |
| :--- |
| Offering Department |
| Course Co-ordinator |

Marine biology (6 credits) Academic Year 2021
Biological Sciences Quota

Dr M Yasuhara, Biological Sciences (yasuhara@hku.hk)
(Dr B Russell,Biological Sciences)
(Dr M Yasuhara,Biological Sciences)
(Dr Shelby E Mcilroy,Biological Sciences)
(Guest Lecturer,Biological Sciences)

| Course Objectives | To develop a basic understanding and appreciation of the field of marine biology, including the fascinating diversity of marine life, their function, ecology and inter-relationships. Contemporary issues including the benefits we derive from marine biological resources and threats to their long-term sustainability will also be discussed with case studies highlighting key issues. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Contents \& Topics | The topics cover: <br> 1. The physical and temperature, pH , diss <br> 2. Important groups and marine food web <br> 3. Major marine habit <br> 4. Exploitation of mar <br> 5. Contemporary issu species) | environme <br> , nutrient ganisms <br> ystems (e resources ate change | mospheric -ocean the marine biota kton, benthos, nek <br> , deep sea, coral re e compounds) le use of marine liv | ractions, salinity, marine mammals) mangroves) resources, invasive |
| Course Learning Outcomes | On successful comple <br> CLO 1 demonstrate <br> CLO 2 recognize the <br> CLO 3 appreciate th <br>  <br> sustainability | ourse, stu rstanding of marine of marin ssible sol | of marine biota <br> ats of human activit | on their long-term |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOL2306 or |  |  |  |
| Offer in 2021-2022 | Y 1st sem Offe | 23 : Y | Examinatio | Dec |
| Grade Descriptors$(A+\text { to } F)$ | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B $\quad$Demonstrate <br> learning out <br> and some u | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |
|  | CD <br> out <br> fa | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |
|  | DD <br> Show <br> kn | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |
|  | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching <br> \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 24 |
|  | Field work | field trip, laboratory practical \& tutorials |  | 30 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | 20 | CLO 1,2,3 |
|  | Examination |  | 80 | CLO 1,2,3 |

Required/recommended Levinton, J. S. 2001. Marine Biology; function, biodiversity, ecology 2nd edition. 515 pp. Oxford University Press reading and online materials Nybakken, J.W. and Bertness, M.D., 2004. Marine Biology: An Ecological Approach, 6th Edition, Benjamin Cummings.
H. V. Thurman and E. A. Burton: Introductory Oceanography (Prentice Hall, 2001, 9th ed.)
J. W. Nybakken: Marine Biology: An Ecological View (Benjamin Cummings, 2000)

TBC
Course Website http://moodle.hku.hk

BIOL3302
Offering Department
Course Co-ordinator
Teachers Involved
Systematics and phylogenetics ( 6 credits)
Academic Year 2021
Biological Sciences
Quota
60
Prof R M K Saunders, Biological Sciences (saunders@hku.hk)
(Prof R M K Saunders,Biological Sciences)
To give students an understanding of the principles of systematics and phylogenetics and an appreciation of current trends and controversies. Systematics forms an invaluable grounding for many fields of biology (including anatomy, ecology, population biology and evolutionary biology), and enables the integration of a wide range of techniques (including anatomy, biochemistry, chemistry, molecular biology, cytology, palaeontology and ethology).
Course Contents
\& Topics

Currrent classificatory theories: phenetic systematics (classifications based on overall resemblances) and cladistics (evolutionary reconstruction). The species concept. Sources of taxonomic data: morphology \& anatomy, biochemistry, chemistry, molecular biology, cytology, and ethology. Causes of taxonomies complexity: environmental factors; hybridization; breeding systems. Principles of nomenclature. Laboratory sessions will be aimed at illustrating taxonomic procedures and problems; students will not be expected to memorize large numbers




Required/recommended Students will be directed to relevant scientific literature and websites
reading and
online materials
Course Website
Additional Course
Information
http://moodle.hku.hk
This course involves a two-week field course to Australia, one week in the Sydney (temperate region) and one week on Orpheus Island (tropical region). Students will be exposed to some harsh environmental conditions including working in contact with seawater, potentially cold and rainy weather. Orpheus Island can have an abundance of biting insects (mosquitos and sand flies).

There will be extra costs involved in the course, including but not limited to airfares, accommodation and meal costs.

Enrollment Procedure:
Enrollment for this course will close at the end of the add/drop period of the second semester because airfares and accommodation for the trip need to be booked in advance.

BIOL3313
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Freshwater ecology (6 credits)
Biological Sciences TBC, Biological Sciences () (TBC,School of Biological Sciences)
This course introduces freshwater science by integrating the physical and biological components of rivers and their drainage basins in the context of sustaining human livelihoods and biodiversity. Conservation and management of lakes and maintenance of water quality are considered also. Case studies are used to illustrate the principles of river science and human use of drainage basins. Emphasis will be placed upon conservation of freshwater biodiversity in Asia in the context of increasing human modification of ecosystems, habitat degradation and water scarcity.
Course Contents The amount of water on Earth is fixed. Less than $0.01 \%$ of the world's water is in lakes and rivers, yet this water hosts $10 \%$ of the Earth's species. Global water use has increased $300 \%$ since 1950 and is growing faster than the Earth's population; many people in Asia already face water stress. This course introduces the physicochemical processes involved in the hydrological cycle and flow of water in drainage basins, as well as their seasonal fluctuations, and describes the main longitudinal changes that occur along rivers and their floodplains. Energy flows in freshwater ecosystems are described with particular reference to the transfer of materials between water and land and the relative importance of aquatic primary production versus energy derived from detrital inputs from the land. The range of organisms associated with Asian fresh waters is introduced and their functional roles explained, and students will become familiar with some common Hong Kong species in field trips and laboratory sessions. The dependence of humans on freshwater ecosystems and the role they play in sustaining livelihoods is explained, together with the causes and consequences of human modification of fresh waters, and the implications for conservation of aquatic biodiversity. Finally the range of management strategies used to reduce or mitigate human impacts on freshwater ecosystems and maintain water quality is introduced.
On successful completion of this course, students should be able to:
CLO 1 describe the global water cycle, the main sources and pathways of energy in freshwaters, and the influence of land-water interactions on aquatic productivity
CLO 2 describe the composition of the freshwater biota (major groups) and their functional roles in aquatic
ecosystems, and identify some of the common animals that occur in Hong Kong fresh waters

|  | CLO | ecosystems, describe the freshwater bio the managem | ome of th modificatio Asia, expla used to | in Hong Kong fresh s by humans, list vulnerable to human | aters <br> main threats to pacts, and indicate |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass | in BIOL2102 and |  |  |  |
| Offer in 2021-2022 | N | Offer in 2022-202 |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | A | Evidence of original logical (or coherent) thought, strong analytical (or critical) abilities and a thorough grasp of the subject as demonstrated by background reading and excellent use of named (organism) examples. Show excellent presentational, analytical skills and/or lab/field skills, and substantial knowledge of general freshwater biodiveristy or selected taxa. Excellent or outstanding (for $\mathrm{A}^{+}$) work relative to what is required at degree level. |  |  |  |
|  |  | Evidence of analytical (or critical) abilities and logical (or coherent) - but not necessarily original - thinking, a good grasp of the subject as demonstrated by background reading and use of named (organism) examples. Show good presentational, analytical and/or lab/field skills, and knowledge of general freshwater biodiversity or selected taxa. Work more than sufficient for what is required at degree level. |  |  |  |
|  | C | Evidence of some analytical (or critical) abilities and logical (or coherert) thinking with an adequate (but incomplete) grasp of the subject, but little or no evidence of original thinking, with limited background reading and use of named (organism) examples. Show fair presentational, analytical and/or lab/field skills, and some knowledge of general freshwater biodiversity or selected taxa. Work sufficient for what is required for degree level. |  |  |  |
|  |  | Evidence of retention of a minimum of relevant information of the subject (i.e. knowledge is very incomplete), with limited organizational, analytical or presentational skills. Shows insufficient evidence of background reading, or familiarity with lab/field techniques or freshwater biodiversity. Work merely (for $\mathrm{D}+$ ) or barely ( D ) adequate for what is required at degree level. |  |  |  |
|  | Fail | Evidence of poor or inadequate knowledge and understanding of the subject, and a lack of coherence, poor organization and/or excessive irrelevancy. Little or no evidence of familiarity with relevant reading material and lab/field techniques, or any knowledge of freshwater biodiversity. Work fails to reach degree level. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 26 |
|  | Laboratory |  | project and wet | tips to local streams | 40 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  |  | 30 | CLO 2 |
|  | Examination |  |  | 60 | CLO 1,2,3 |
|  | Laboratory reports |  |  | 10 | CLO 3 |
| Required/recommended reading and online materials | Allan, <br> The An on inform health <br> A list | J.D. \& Castillo, <br> Mekong River Aw line training to mation on the ph <br> of references av | Stream <br> (RAK) ht d by an iological <br> U library | K/html/rak_frameset.h g the course coordin s how human liveliho <br> ure on the course web | tor) that contains ds depend on river |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| Additional Course | Offer in alternate year from 2017-2018 |  |  |  |  |
| Information |  |  |  |  |  |




BIOL3318
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

## Course Contents

## \& Topics

Outcomes

Experimental intertidal ecology ( 6 credits)
Biological Sciences
Prof G A Williams, Biological Sciences (hrsbwga@hku.hk)
(Prof G A Williams,School of Biological Sciences)
To examine the communities of coastal systems: their distribution, composition and the factors which regulate them. This course will examine, using an experimental approach, patterns exhibited by a range of shores and the deterministic and stochastic processes that create and sustain them. Hong Kong shores will be used as examples but comparisons will be drawn from the coastlines of the world.
The first part of this course describes shores of the marine to brackish water continuum and the communities found on them. Lectures will cover the physical environment of the intertidal (e.g. tides; waves; geological and hydrological processes) the resultant variations in exposure and shore types and consequent distribution of animals and algae on these shores (vertical and horizontal zonation patterns) with specific Hong Kong examples. The second part of the course uses an experimental approach (e.g. sampling methodology; manipulative techniques; experimental design and data analysis) to investigate the factors (e.g. predation; herbivory; competition; disturbance; succession; patchiness and recruitment; supply side ecology) that structure these shores, with particular focus on rocky intertidal shores.
On successful completion of this course, students should be able to:
CLO 1 describe the physical environmental factors (e.g., waves, tides) shaping the intertidal environment and how they interact with geographic features to produce different kinds of shores (e.g., sandy shores, mangroves) CLO 2 understand the factors limiting species distribution patterns on the vertical intertidal gradient and appreciate methods to measure and investigate these patterns
CLO 3 identify and quantify the distribution of a variety of local species on different Hong Kong shores
CLO 4 review, critique and design experimental studies to investigate patterns (e.g., zonation) and processes (e.g., herbivory, competition) in intertidal areas

CLO 5 explain the role of biological processes (e.g., predation, succession) and their interaction with the physical environment in shaping intertidal communities
CLO 6 plan, design, execute, analyse and present a simple experimental study on intertidal ecology
Pass in BIOL2102 or BIOL3301

Y 2nd sem Offer in 2022-2023: N Examination May
A Evidence of original, logical (or coherent) thought, strong analytical and critical abilities and a thorough grasp of the subject as demonstrated by background reading and excellent use of named (organism) examples. Show excellent presentational, analytical skills and/or lab/field skills, and demonstrate substantial knowledge of general intertidal ecology and excellent analytical skills and/or lab/field skills, Evidence of analytical (or critical) abilities and logical (or coherent), but not necessarily original, thinking, a good grasp of the subject as demonstrated by background reading and use of named (organism) examples. Show good presentational, analytical and/or lab/field skills, and demonstrate knowledge of general intertidal ecology and good experimental design and analysis skills.
C Evidence of some analytical (or critical) abilities and logical (or coherent) thinking with an adequate (but incomplete) grasp of the subject, but little or no evidence of original thinking, limited background reading and use of named (organism) examples. Show fair presentational, analytical and/or lab/field skills, and demonstrates some knowledge of general intertidal ecology and adequate abilities of experimental design and analysis.
D Evidence of retention of a minimum of relevant information of the subject (i.e. knowledge is very incomplete), with limited organizational, analytical or presentational skills. Show insufficient evidence of background reading, or familiarity with lab/field techniques. Poor knowledge of general intertidal ecology and misunderstanding of experimental design and analysis.
Fail Evidence of poor or inadequate knowledge and understanding of the subject, and a lack of coherence, poor organization and/or excessive irrelevancy. Limited or no evidence of familiarity with relevant reading material and lab/field techniques, or knowledge of general intertidal ecology, and misuse of experimental design and analysis skills.
N

Communication-
intensive Course


| Assignments |  | 10 | CLO 1,2,3,4,5 |
| :--- | :--- | :--- | :--- |
| Examination |  | 40 | CLO 1,2,3,4,5 |
| Presentation |  | 25 | CLO 1,2,3,4,5 |
| Project report |  | 25 | CLO 1,2,3,4,5 |

reading and
online materials
Course Website
Additional Course Information

Required/recommended Corlett R T. : The Ecology of Tropical East Asia (Oxford University Press 2009)
Corlett R.T. : The Ecology of Tropical East Asia (Oxford University Press, 2009).
Dudgeon D. and Corlett R. T.: Ecology and Biodiversity of Hong Kong (Friends of the Country Parks, Hong Kong)
To be provided in classes
http://moodle@hku.hk
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3320
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

The biology of marine mammals ( 6 credits)
Biological Sciences
, Biological Sciences ()
Few other groups of animals have captured the public's imagination the way marine mammals, especially whales and dolphins have. This course covers the evolutionary biology, ecology, behaviour, and conservation of marine mammals: whales, dolphins and porpoises (cetaceans), seals and walruses (pinnipeds), manatees and dugongs (sirenians) and sea otters. Students will learn to understand the ecology of mammalian life in the aquatic environment, their role in the marine ecosystem, their behavioural complexity and socio-ecology, and the current threats to these animals in the human-dominated world.
Course Contents
\& Topics

The course begins with an overview of marine mammal species and their global distribution, followed by a review of the various adaptations that have evolved to meet the challenges of the marine environment. Next, the course discusses the life history, reproductive strategies, ecology and population dynamics of marine mammals, highlighting the similarities and differences between species in this taxonomically diverse group of animals. This is followed by sessions on behaviour and behavioural ecology; here we discuss animal movement, diving and ranging behaviour, foraging strategies, ecology of group living and social behaviour, behavioural complexity, cognition, and social strategies that guide the daily lives of these animals. The course concludes with a discussion of human influences on the fate of marine mammals, examples of critically endangered species and populations, and a review of conservation and management strategies; our emphasis is on the importance of applying the knowledge of population ecology, behaviour and behavioural ecology in ensuring long-term effective conservation of marine mammal populations. This course is designed for 3rd and 4th year students; it includes field trips, discussions of current scientific research, innovative research techniques and recent discoveries. Students will undertake independent literature-searches and will discuss their projects during classroom debates, training their skills in conceptual and analytical approaches to science.
On successful completion of this course, students should be able to:
CLO 1 appreciate marine mammal diversity and biogeography
CLO 2 understand how mammals adapt and function in an aquatic environment and their role in the marine ecosystem
CLO 3 understand and appreciate the complexity of interactions between environmental selective pressures and marine mammal behaviour, population structure and demography
CLO 4 appreciate the socio-ecological diversity and behavioural complexity of marine mammals
CLO 5 think analytically in terms of marine mammal ecology and anthropogenic impacts in the rapidly changing world

Pass in BIOL2306
Pre-requisites
(and Co-requisites
and Impermissible
combinations)
Offer in 2021-2022
Grade Descriptors
(A+ to F)
N Offer in 2022-2023: N Examination ---

A Evidence of a thorough grasp of the subject in a broader comparative perspective as demonstrated by background reading and excellent use of named examples and case studies. Evidence of independent critical thought with excellent use of a broad range excellent use of named examples and case studies. Evidence of independent critical thought with excellent use of a broad range of fundamental concepts to draw insightful and logical conclusions. Show eagerness to learn, great abilities of independent work, effective presentation skills with excellent analytical argumentation. Excellent or outstanding work relative to what is required a
degree level. degree level.
Evidence of a good grasp of the subject as demonstrated by some background reading and appropriate use of named examples and some case studies. Evidence of good critical thought, although not necessarily original. Good and very good (but not outstanding) abilities of independent work, effective presentation skills with good analytical and logical argumentation. Good general command of acquired knowledge to draw meaningful and logical conclusions. Work more than sufficient for what is required at degree level.
C Demonstrate an adequate, but not coherent and incomplete grasp of the subject, with limited background reading and limited use of named examples and case studies. Some abilities of logical critical thinking, but not insightful and/or independent; only partial abilities to use acquired knowledge and work independently to draw meaningful conclusions. Fair presentation skills, with mostly correct argumentation, but limited (or no) abilities to integrate broader concepts. Work sufficient for what is required for degree correct
D
Demonstrate some grasp of the subject, but partial and limited to the most basic concepts, examples, and limited (or none) case studies. Insufficient evidence of background reading, limited abilities of critical independent thinking, and not particularly effective presentation skills with generally weak logical argumentation and restricted ability of drawing appropriate conclusions. Work barely meets what is required at degree level.
Fail No evidence of basic minimum knowledge and understanding of the subject. No evidence of background reading and no familiarity with any relevant examples and case studies. Inadequate evidence of coherent logical thought; ineffective presentation skills with poor argumentation and no abilities to draw meaningful conclusions. Work fails to reach degree level.
N
Communication-
intensive Course
Course Type
Course Teaching
\& Learning Activities

| Activities | Details |  | No. of Hours |
| :---: | :---: | :---: | :---: |
| Lectures |  |  | 24 |
| Laboratory | including field trips, research site vists, demonstration of research techniques, interactive classroom debates |  | 32 |
| Project work | project work review |  | 8 |
| Reading / Self study |  |  | 60 |
| Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |


|  | Assignments | including <br> participation/continuous <br> assessment/presentation | CLO |  |
| :--- | :--- | :--- | :--- | :--- |



second Reading Week (Second Semester). Students will be expected to live in tented accommodation and contribute to daily camp activities as well as conduct fieldwork in potentially harsh environmental conditions. Extra costs may be involved in the course, which may include airfares. Accommodation, meal costs and internal travel in South Africa are covered by South African hosts.


Required/recommended R. Weaver: Molecular Biology (McGraw-Hill, 2005 or 2008)

| reading and | J. Watson et al.: Molecular Biology of the Gene (Benjamin Cummings, 2004) |
| :--- | :--- |
| online materials | B. Lewin: Gene IX (Jones and Bertlett, 2008) <br> Selected journal articles and web learning materials. |
|  | TBC |
| Course Website | http://moodle.hku.hk/ |

BIOL3402
Offering Department
Course Co-ordinator
Teachers Involved

Cell biology and cell technology (6 credits)
Biological Sciences
Prof A S T Wong, Biological Sciences (awong1@hku.hk)
(Dr W Y Lui,Biological Sciences)
(Prof A S T Wong,Biological Sciences)
(Prof. M L Chye,Biological Sciences)
Course Objectives To provide a coherent understanding of the structure and function of cells, and the principles and applications of cell culture and instrumentation in biology and biotechnology

## I. Cell Biology

Cell membranes. Organelles. Cellular transport: ions transport and ions channels. Protein and RNA transport. Membrane potentials, Action potentials. Cell junctions. Extracellular Matrix. Cell-cell interactions. Cell-matrix


|  | CLO 5 understand antigen-antibody interaction and the principle of immunoassays |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOC2600 or BIOL2103 or BIOL2220 or MEDE2301 or BMED2301 |  |  |  |  |
| Offer in 2021-2022 | 2nd sem Offer in 2022-2023: Y1. Exceptionally good performance demole |  |  | Examination |  |
| Grade Descriptors$(A+\text { to } F)$ |  |  |  | tanding of the subject ma roup communication skills | 2. Critical insight and |
|  | B | 1. Good performance demonstrating full understanding of the subject matter. 2. Coherent insight and analysis into the scientific literatures. 3. Good writing, presentation and group communication skills. |  |  |  |
|  | C | 1. Satisfactory performance demonstrating adequate understanding of the subject matter. 2 . Some insight into the scientific literatures. 3. Adequate writing and communication skills. |  |  |  |
|  |  | 1. Limited performance demonstrating some understanding of basic subject matter. 2. Some ability to use the scientific literatures. 3.Limited writing and communication skills. |  |  |  |
|  |  | 1. Poor understanding of subject matter. 2. Little to no insight into use of the scientific literatures. 3. Unable to write or communicate. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 30 |
|  | Laboratory |  | during rea |  | 16 |
|  | Tutorials |  |  |  | 6 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Examination |  |  | 50 | CLO 1,2,3,4,5 |
|  | Laboratory reports |  |  | 20 | CLO 1,2,3,4,5 |
|  | Test |  | Mid term | 30 | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | J. Kuby: Immunology (Freeman and Company, 2003 or 2007-6thd ed., or 2013-7th ed.) Benjamin \& Leskowitz: Immunology: A Short Course (Wiley-Liss, 2007, 6th edition. Or the latest edition) I. Roitt, J. Brostoff and D. Male: Immunology (Mosby, latest 2 editions) |  |  |  |  |
| Course Website | http://moodle.hku.hk/ |  |  |  |  |
| Additional Course Information | This course will be offered subject to a minimum enrollment number and availability of teachers. |  |  |  |  |
| BIOL3404 | Protein structure and function (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Biological Sciences |  |  | Quota | 70 |
| Course Co-ordinator | Dr Y L Zhai, Biological Sciences (zhai@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr C M Qian,Biomedical Sciences) <br> (Dr Y L Zhai,Biological Sciences) |  |  |  |  |
| Course Objectives | To provide students with a good understanding of protein structure, how structure subserves function, and the methods for study of both. This course provides a strong foundation for advanced courses in biochemistry and biotechnology. |  |  |  |  |
| Course Contents \& Topics | Elements of macromolecular structure: sequencing, prediction and determination of secondary, tertiary and quaternary structures; <br> The relationship of protein structure and function: molecular motifs, binding and recognition, enzyme catalysis and specificity; <br> Methods for protein structure determination: X-ray crystallography, nuclear magnetic resonance and cryo electron microscopy; <br> How protein works: protein flexibility and dynamics, protein interaction, protein complex, and control of protein function; <br> Protein purification and characterization: various liquid chromatographical methods and their uses in combination, separation techniques, methods of determination of molecular mass, activity and purity, optical methods in protein determination, ultracentrifugation, protein polishing, stability and storage, methods and devices for protein delivery. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 fundamental understanding of principles of protein structure |  |  |  |  |
|  | CLO 2 demonstrate a basic understanding of the relationship between protein structure and function |  |  |  |  |
|  | CLO 3 have a basic understanding of major methods for macromolecular structure determination |  |  |  |  |
|  | CLO 4 understand the principles regulating protein function in vivo |  |  |  |  |
|  | CLO 5 learn about the ways to purify protein and the many industrial uses of proteins |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOC2600 or BIOL2220 or MEDE2301 or BMED2301 |  |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Off |  | 023 : Y | Examination May |  |
| Grade Descriptors$(A+\text { to } F)$ | A | 1. Exceptionally good performance demonstrating comprehensive understanding of the subject matter. 2. Critical insight into the scientific literature. 3. Superior writing and group communication skills. |  |  |  |
|  |  | 1. Good performance demonstrating full understanding of the subject matter. 2. Coherent insight into the scientific literature. 3. Good writing and group collaboration skills. |  |  |  |
|  | C | 1. Satisfactory performance demonstrating adequate understanding of the subject matter. 2 . Some insight into the scientific literature. 3. Adequate writing and group collaboration skills. |  |  |  |
|  |  | 1. Limited performance demonstrating some understanding of basic subject matter. 2 . Some ability to use the scientific literature. <br> 3. Limited writing and group collaboration skills. |  |  |  |
|  | Fail | 1. Poor understanding of subject matter. 2. Little to no insight into use of the scientific literature. 3. Unable to write or collaborate. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  |  |  |  |  | 36 |



| Offering Department | Biological Sciences |  |  | Quota | 35 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Course Co-ordinator | Prof A O L Wong, Biological Sciences (olwong@hku.hk) |  |  |  |  |
| Teachers Involved | (Prof A O L Wong,Biological Sciences) |  |  |  |  |
| Course Objectives | To provide a comprehensive overview on modern concepts and recent advances in reproductive biology \& reproductive biotechnology in human and animal models. |  |  |  |  |
| Course Contents \& Topics | -Basic concepts of reproduction, evolution of sex, human \& animal reproductive strategies and sexual behavior. <br> -Molecular mechanisms for sex determination, developmental aspects of gametogenesis and reproductive systems. <br> -Neuroendocrinology of reproductive system and recent advances in kisspeptin \& GnRH system and steroid feedback via KNDy neuronal circuit. <br> -Environmental endocrine disruptors and recent advances in biotechnology for fertility control \& assisted reproduction in human. <br> -Recent advances in embryonic stem cells \& induced pluripotent stem cells and their applications in regenerative medicine/therapeutic cloning. <br> -New technology for genome editing by TALENT \& CRISPR/Cas9 systems and gene therapy, animal cloning and primordial germ cell transplantation in animal models. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 Have a broad understanding of reproductive biology ranging from evolution of sex, different reproductive strategies \& sexual behaviors in animals to the regulatory mechanisms for sex determination \& development of reproductive systems. |  |  |  |  |
|  | CLO 2 Have an appreciation of the recent advances on neuroendocrine control of reproductive functions \& reproductive cycle, sexual behavior, parental care, and pregnancy \& parturition in human \& mammalian models. |  |  |  |  |
|  | CLO 3 Have a basic understanding on the adverse effects of environmental endocrine disruptors on reproduction, possible causes of human infertility \& treatment with assisted reproduction. |  |  |  |  |
|  | CLO 4 Comprehend a wide range of modern technologies for genome editing, animal cloning \& primordial germ cell transplantation and the applications of embryonic stem cells/induced pluripotent stem cells in regenerative medicine/therapeutic cloning. |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOL2103 or BIOL2220 or BIOC2600 or MEDE2301 |  |  |  |  |
| Offer in 2021-2022 | Y 1st sem Offer in 2022-2023: Y Examination Dec |  |  |  |  |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 24 |
|  | Laboratory |  |  |  | 24 |
|  | Tutorials |  |  |  | 6 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in course grade | Assessment Methods to CLO Mapping |
|  | Examination Test |  |  | 50 | CLO 1,2,3,4 |
|  |  |  | Contin | 50 | CLO 1,2,3,4 |

Required/recommended 1. Biotechnology of Animal Reproduction (e-book) by M. M. Seneda, K. C. Silva-Santos \& L. S. R. Martinho, Nova reading and

| online materials | 2. Human Reproductive Biology (4th edition, e-Book) by R.E. Jones \& Kristin H. Lopez, Academic Press (2015) <br> (Winner of 2015 Textbook Excellence Award). <br> 3. Reproduction System at a Glance by L.J. Heffner \& D.J. Schust, Wiley-Blackwell (2014). |
| :--- | :--- |
|  | 4. Yen and Jaffe Reproductive Endocrinology (e-Book) by J.F. Strauss III \& R. Barbieri, Elsevier / Saunders (2014) |


| BIOL3408 | Genetics (6 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- | :--- |
| Offering Department | Biological Sciences | Quota | 50 |
| Course Co-ordinator | Dr G Y W Chan, Biological Sciences (gywchan@hku.hk) |  |  |
| Teachers Involved | (Dr C Schunter,Biological Sciences) <br> (Dr G Y W Chan, Biological Science) |  |  |
| Course Objectives | This course aims to provide students with fundamental knowledge of classical, molecular and population genetics |  |  |
| Course Contents <br> \& Topics | Topics will include cellular reproduction, principles and chromosomal basis of Mendelian genetics, linkage analysis <br> and mapping, concept and definition of the gene, molecular mechanisms of mutation, DNA repair and |  |  |

recombination, DNA transposition, extranuclear inheritance, transcription and translation, epigenetics, genomics, transcriptomics and proteomics as well as population genetics.


BIOL3409
Offering Department
Course Co-ordinator
Teachers Involved

Business aspects of biotechnology ( 6 credits)
Biological Sciences
Dr W B L Lim, Biological Sciences (bllim@hku.hk)
(Dr K W Y Yuen, School of Biological Sciences)
(Dr Ng,Guest Lecture)
(Dr W B L Lim,Biological Science)
Course Objectives The course will give an overview of the innovative developments in biotech industry and provide the students with useful tools in learning how an exciting research idea can be turned into a viable business.
The purpose of the course is to introduce you to the entrepreneurial process with a focus on the biotechnology industry. The course will provide a thoughtful, practical guide to the process of successfully launching an entrepreneurial venture. We place a special emphasis on the decision to become a biotech entrepreneur and how to develop successful business ideas, however we will also discuss the process of moving from an idea to a biotech firm. Topics on intellectual properties, patent laws, patent application process, licensing and fundraising will be covered as well. Throughout the course, guest entrepreneurs, managers and directors of the biotech industry will be presenting case studies and explain their involvement in various biotech and pharmaceutical companies.
Topics:

1. Introduction to Biotechnology Industry: 4 P in Biotechnology Business (3 hours)
2. IP rights: Patent application, Patent system, USPTO, SIPO, PCT (6 hours)
3. Licensing of IP rights (3 hours)
4. Technology Transfer Office and HKSTP (3 hours)
5. How to raise fund for startup companies (3 hours)?
6. Agrobiotechnology and Green Tech (Monsanto, Novozymes, etc) ( 4.5 hours)
7. Drug development and clinical trials (Gilead Sciences, Wuxi PharmaTech, etc). (6 hours)
8. Diagnostics business (BGI, Diagcor, etc) (4.5 hours)
9. Company analysis (3 hours)
10. Company Visit
11. Company analysis

On successful completion of this course, students should be able to:
CLO 1 understand and demonstrate knowledge of the development and management of biotechnology business CLO 2 understand and demonstrate how discoveries and inventions are commercialized
CLO 3 navigate the various steps in the development of a biotechnology derived product: from bench, to scale-up, to market
CLO 4 gain technical and business knowledge of the biotechnology and bioprocessing industries
CLO 5 participate and contribute to the business side of scientific enterprises
Pass in any level 3 BIOL or BIOC or BBMS course; NOT for students who have passed in BIOL2409.
This course is only for students admitted in 2017-2018 or before.
Academic Year 2021
Quota
n

Pre-requisites (and Co-requisites and Impermissible combinations)




|  | matter, demonstrating deficiencies serious enough to make it inadvisable to proceed further without additional course work. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 24 |
|  | Laboratory |  |  |  | 12 |
|  | Project work |  |  |  | 12 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mappin } \end{aligned}$ |
|  | Assignments |  |  | 10 | CLO 1,3,4,5,6 |
|  | Essay |  |  | 5 | CLO 1,2,3,4,5 |
|  | Examination |  |  | 50 | CLO 1,4,5,6 |
|  | Laboratory reports |  |  | 10 | CLO 3 |
|  | Presentation |  |  | 10 | CLO 1,4,5,6 |
|  | Project report |  |  | 5 | CLO 1,4,6 |
|  | Test |  |  | 10 | CLO 1,4,5,6 |
| Required/recommended reading and online materials | Frankham et al: Introduction to Conservation Genetics (Cambridge University Press, 2009, 2nd ed.) e-book available |  |  |  |  |
| Course Website | http://moodle.hku.hk/ |  |  |  |  |
| Additional Course Information | This course will be offered subject to a minimum enrollment number and availability of teachers. |  |  |  |  |
| BIOL3503 | Endocrinology: human physiology II (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Biological Sciences |  |  | Quota | 60 |
| Course Co-ordinator | Dr C B Chan, Biological Sciences (chancb@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr C B Chan,Biological Sciences) (Dr Y L Zhai,Biological Sciences) (Prof. B K C Chow,Biological Sciences) |  |  |  |  |
| Course Objectives | To provide an advanced course on hormones and how they regulate metabolism/growth, reproduction and water/salt homeostasis in our body. |  |  |  |  |
| Course Contents \& Topics | History: discovery of blood borne factor or hormone. Chemical nature of hormones. Mechanisms of cell-cell signaling. Secondary messengers. Responsivity and hormonal effects. <br> The hypothalamic pituitary axis <br> The GHRH-GH-IGF axis. The TRH-TSH-thyroid hormone axis. The CRH-ACTH-cortisol axis. Cortisol and stress. Catecholamine effects and their pathways. <br> The gastrointestinal system <br> The enteric nervous system. The cephalic phase, stomach phase and intestinal phase of food digestion. Regulation of acid secretion. Regulation of pancreatic exocrine and endocrine secretion. Gut hormones: gastrin, GIP, CCK, secretin, GLP-1, GLP-2 and motilin. Regulation of feeding, energy balance and food intake. <br> Insulin and glucagon. <br> Reproduction <br> The GnRH-gonadotropin-sex hormone axis. Regulation of LH and FSH release. Male reproductive system. Interaction of hormones produced by various cells in the testis to regulate spermatogenesis. Biological actions of testosterone. The erection reflex. Female reproductive system. Development of ovarian follicles. The menstrual cycle: hormonal control: Ovulation, fertilization and implantation. The placenta as an endocrine organ. Endocrine regulation of parturition. Hormonal control of milk secretion. Prolactin and broodiness. <br> Osmoregulation <br> Posterior pituitary hormone, ADH. Aldosterone and sodium balance. Angiotensin's effect on blood pressure. Atrial natriuretic peptide and its function in water and sodium balance. |  |  |  |  |
| Course Learning Outcomes | On su CLO CLO CLO CLO | sful compl derstand th lain and d scribe the plain and tabolism/g | ourse, stu nd nature ndary mes tween pit mones inv uction and | es <br> higher brain centers most important bod | peripheral organ unctions including |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass | L2103 |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offer |  | 023 : Y | Examination May |  |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations Apply moderately effective organizational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge required for attaining the course learning outcomes. Lack analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problem Organizational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |



|  | Reading / Self study Assessment |  |  | 20 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 10 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | 25 | CLO 3,4 |
|  | Report | Presentation: developing innovative ideas for sustainable and economically viable aquacultre in Hong Kong | 50 | CLO 4 |
|  | Test |  | 25 | CLO 1,2 |
| Required/recommended reading and online materials | Ecology of Marine Invertebrate Larvae (Larry McEdward, CRC Press) Shellfish Aquaculture and the Environment (S.E. Shumway, John Wiley \& Sons) Molluscan Shellfish Farming (Brian Spencer, John Wiley \& Sons) |  |  |  |
| Course Website | http://www.biosch.hku.hk/ecology/lsc/ |  |  |  |
| Additional Course Information | Taught and trained by several teachers, guest lecturers from government and aquaculture business sector; <br> This course is offered in close collaboration with USM (Penang, Malaysia); <br> Tentative duration: 1-15 June, 2016; <br> In Part 1 - First 5 days at HKU for lectures, practicals and field visits - then flight to Penang to visit various oyster aquaculture facilities; <br> Few USM (Malaysia) students may join the course; <br> Fund for the Penang visit will be collected from students (about 6000 HKD including airfare, accommodation and selective meals for 7 days). <br> This course will be offered subject to a minimum enrollment number and availability of teachers. <br> This course will be offered in alternative year. |  |  |  |
| BIOL3506 | Evolutionary biology (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Biological Sciences |  | Quota | 50 |
| Course Co-ordinator | C Schunter, Biological Sciences (Schunter@hku.hk) |  |  |  |
| Teachers Involved | (Dr C Schunter,School of Biological Sciences) <br> (Dr J D Gaitan-Espitia,School of Biological Sciences) |  |  |  |
| Course Objectives | 1. The course aims to introduce students to the major themes of contemporary evolutionary biology, including the history of evolutionary biology, evolutionary processes, adaptation, speciation, and evolution as an explanatory framework at all levels of biological organization. <br> 2. The course emphasizes the interplay between theory and empirical tests of hypotheses, thus acquainting students with the process of science. |  |  |  |
| Course Contents \& Topics | - Introduction to Evolu <br> - Mechanisms of evol <br> - Genetics Drift <br> - Gene Flow <br> - Natural Selection <br> - Sexual Selection <br> - Speciation <br> - Species concept <br> - Phenotypic evolutio <br> - Evolution of genes <br> - Evolutionary Develo <br> - Co-Evolution | gog Theory <br> Devo) |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 identify the facts on theory of evolution |  |  |  |
|  | CLO 2 describe Darwin's theory of evolution by natural selection and how the process of natural selection can lead to speciation |  |  |  |
|  | CLO 3 understand mechanisms involved in the modern evolutionary theory |  |  |  |
|  | CLO 4 apply evolutionary thinking to real world problems in agriculture, medicine, and biodiversity conservation |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOL2306 Not for students who | in BIOL3501 |  |  |
| Offer in 2021-2022 | Y 1st sem Offer | 23 : Y | Examination | Dec |
| Grade Descriptors$(A+\text { to } F)$ | Exceptionally good performance demonstrating excellent understanding of the subject matter, extensive knowledge over a wide range of topics covered by the course, and skillful applications of concepts/theories in solving new or unfamiliar problems, showing strong abilities in critical thinking and logical reasoning, with evidence of significant insight and original thought in dealing with the critical issues in the field. |  |  |  |
|  | Good performance demonstrating capacity to use the appropriate concepts, a good understanding of the subject matter, and an ability to handle the problems and materials encountered in the subject, showing evidence of attaining most of the course learning outcomes. |  |  |  |
|  | Adequate performance demonstrating some understanding of the subject matter, an ability to handle relatively simple problems, but showing incomplete command of knowledge required for attaining most of the expected course learning outcomes. |  |  |  |
|  | Minimally acceptable performance demonstrating at least partial familiarity with the subject matter and some capacity to deal with relatively simple problems, but also demonstrating serious deficiencies in knowledge required for attaining most of the expected course learning outcomes. |  |  |  |
|  | Poor performance in all aspects of the course, showing liftle evidence of learning, lacking real understanding of the subject matter, demonstrating deficiencies serious enough to make it inadvisable to proceed further without additional course work. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 24 |
|  | Laboratory |  |  | 24 |
|  | Project work |  |  | 12 |



Course Website
Additional Course Information
http://moodle.hku.hk
This course will be offered subject to a minimum enrollment number and availability of teachers.

| BIOL3606 |
| :--- |
| Offering Department |

Course Co-ordinator
Teachers Involved
Course Objectives

Diet and disease (6 credits)
Academic Year 2021
Biological Sciences
Dr J C Y Lee, Biological Sciences (jettylee@hku.hk)
(Dr J C Y Lee,School of Biological Sciences)
This course aims to provide understanding and insight into diseases associated with diet and basic dietetics, specifically to:

1. Explain the relationships between diet and disease.
2. Describe the role of diet in the development and prevention of common chronic diseases such as diabetes, obesity and anorexia, cardiovascular disease, cancer, immune deficiency and renal failure.
3. Differentiate risk factors that influence dietary choice.
4. Describe the rationales for postoperative nutritional support for hospitalized patients.

Course Contents The basics of nutrition for health and fitness and medical nutrition therapy. The role of diet in the development and

## \& Topics

Course Learning
Outcomes prevention of chronic diseases such as cancer, diabetes, obesity and anorexia as well as bulimia nervosa, cardiovascular diseases, renal failure, etc. Malnutrition. Nutrition and immune function. Medical nutrition therapy for food allergy and food intolerance. Nutrition in pregnancy and lactation.
On successful completion of this course, students should be able to:
CLO 1 discuss the different relationships between diet and disease

CLO 2 describe the role of diet in the development and prevention of diabetes, obesity and anorexia, cardiovascular disease, cancer, immune deficiency, and renal failure
CLO 3 clearly differentiate and interpret risk factors that influence dietary choice
CLO 4 describe the rationales for postoperative nutritional support for hospitalized patients
Pass in BIOL2220 or BIOC2600 or BIOL3202 or BIOL3203 or BIOL3204 or BIOL3205
Not for students who have passed in BIOL3206
2nd sem Offer in 2022-2023: Y Examination No Exam

## Pre-requisites

 (and Co-requisites and Impermissible combinations)Offer in 2021-2022 Grade Descriptors ( $\mathrm{A}+$ to F )

Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective laboratory/fieldwork skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Substantial grasp of the subject. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective laboratory /fieldwork skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. General but incomplete grasp of the subject. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational
skills. Apply moderately effective laboratory / fieldwork skills and techniques. Mostly correct but some erroneous use of data and Skills. Apply moderately effective laboratory / fieldwork skills and techniques. Mostly correct but some erron
results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Partial but limited grasp of the subject, retention of some relevant information of the subject. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab / fieldwork skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Little or no grasp of the knowledge and understanding of the subject. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective laboratory / fieldwork skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.
Communication- N

Course Type
Course Teaching
\& Learning Activities

Assessment Methods and Weighting

Lecture with laboratory component course

| Activities | Details |  | No. of Hours |
| :--- | :--- | :--- | :---: | :---: |
| Lectures |  |  | 24 |
| Laboratory |  |  | 36 |
| Reading / Self study | Details | Weighting in final <br> course grade (\%) | Assessment <br> Methods <br> to CLO Mapping |
| Methods |  | 50 | CLO 1,2,3 |
| Assignments | Assignment \& Presentation <br> (Individual) | 50 | CLO 1,3 |
| Laboratory reports | Group work | 30 | CLO 1,2,3,4 |
| Presentation |  | 20 |  |

Required/recommended
reading and
online materials
Course Website
Additional Course
Information
Selected readings will also be available on the class website.
S. Rodwell Williams: Nutrition and Diet Therapy (7th ed.) Suitor \& Hunter: Nutrition: Principles and Application in Health Promotion Wardlaw Gordon: Perspectives in Nutrition (2nd ed.)
http://moodle.hku.hk/
This course will be offered subject to a minimum enrollment number and availability of teachers.

| BIOL3608 | Food commodities (6 credits) | Academic Year 2021 |
| :---: | :---: | :---: |
| Offering Department | Biological Sciences | Quota 30 |
| Course Co-ordinator | Dr L Zhang, Biological Sciences (lzhang@hku.hk) |  |
| Teachers Involved | (Dr J C Y Lee, School of Biological Sciences) <br> (Dr L Zhang,School of Biological Sciences) |  |
| Course Objectives | To give students a broad understanding of moder | d in agriculture product |



|  | C | with relevant background reading and case studies. Good handling of field data collection and commendable analytical skills. Good evidence of critical thought (although not always independent), with an appreciable use of fundamental concepts and consideration of broader comparative perspective in drawing logical conclusions. Good abilities of independent work, effective presentation skills with logical and analytical argumentation. Work more than sufficient for what is required at degree level. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Demonstrate an adequate, but incomplete grasp of the subject and relevant research techniques. Moderate familiarity with relevant background reading and case studies, but no interest in learning beyond the adequate average level. Evidence of logical critical thinking (although not always independent), with mostly good use of fundamental concepts to draw logical conclusions. Fair presentation skills, with mostly correct argumentation, but limited (or no) abilities to integrate broader concepts. Work sufficient for what is required for degree level. |  |  |  |
|  | D | Demonstrate some grasp of the subject, but only partial and with limited understanding of relevant research concepts and research techniques. Some familiarity with relevant case studies, but insufficient evidence of background reading and limited abilities of critical independent thinking. Ineffective presentation skills with generally weak logical argumentation with restricted ability of drawing appropriate conclusions. Work barely meets what is required at degree level. |  |  |  |
|  | Fail | No evidence of basic a minimum grasp of the subject and the minimum relevant research techniques. No evidence of background reading and no familiarity with any relevant examples and case studies. Inadequate evidence of coherent logical thought; ineffective presentation skills with poor argumentation and no abilities to draw meaningful conclusions. Work fails to reach degree level. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Field camps |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Field work |  |  |  | 42 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  |  | 35 | CLO 1,2,3,4 |
|  | Report |  | project report (35\%), group investigation \& presenation (30\%) | 65 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Students will be directed to relevant scientific literautre and websites |  |  |  |  |
| Course Website | http://www.biosch.hku.hk/ecology/lsc/ |  |  |  |  |
| Additional Course | Students can choose either one of the following courses: |  |  |  |  |
| Information | Subclass A: Marine Mammal Field Course |  |  |  |  |
|  | Subclass B: Animal Behaviour Field Course |  |  |  |  |
|  | Enrollment Procedure: <br> The course is open to enrollment only during the add/drop period of the 2nd semester. Students are required to submit a brief (maximum 1-page) application letter (PDF file) via e-mail to the Course Coordinator (leszek@hku.hk) not later than 11 January 2016. The application shall include the following: <br> 1. Personal and academic details <br> 2. ID photograph <br> 3. Brief description of academic interests <br> 4. GPA <br> 5. Pre-requisite courses taken and grades received (if pre-requisites are not met, a reasoned request for waiver) <br> All applications will be reviewed prior to the commencement of the 2 nd semester and results will be announced within the 1st week of the add/drop period of the 2nd semester. |  |  |  |  |

BIOL3991
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Directed studies in ecology \& biodiversity ( 6 credits) Biological Sciences Dr S W Y Sin, Biological Sciences (sinyw@hku.hk)
(All academic staff in E\&B Major / E\&B Major (Intensive) Major,Biological Sciences)
(All academic staff in E\&B Major / E\&B Major (Intensive) Major,Biological Scineces)
Students will undertake a dissertation on a topic related to the field of ecology and biodiversity. The dissertation will not involve any practical research in terms of laboratory or fieldwork, but will take the form of a desk-top study. Conducting a dissertation is an independent learning experience and will enable students to develop skills including the use of library and Web-based resources; the logical development of scientific arguments; written presentation skills; and personal time management.
An appropriate dissertation topic will be selected from a predeterminted list and following discussion with a member of Ecology \& Biodiversity staff, who will act as the student's supervisor. Formal teaching will be limited and aimed at introducing students to the techniques necessary for successful completion of their dissertation.
On successful completion of this course, students should be able to:
CLO 1 identify a relevant scientific question or knowledge gap
CLO 2 establish a desk-top literature approach to test the question posed / address the knowledge gap
CLO 3 undertake the appropriate research to test the question / address the knowledge gap using sound scientific principles; including statistical analyses where appropriate
CLO 4 draw appropriate scientific conclusions from their research
CLO 5 present their research as a scientific paper
Pass in at least 24 credits of advanced level disciplinary core / elective courses in the Ecology \& Biodiversity Major / Ecology \& Biodiversity (Intensive) Major.
This capstone course is for Ecology \& Biodiversity Major / Ecology \& Biodiversity (Intensive) Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.
Y 1st sem 2nd sem Offer in 2022-2023: Y Examination No Exam A Evidence of complete or near-complete understanding and a thorough grasp of the subject matter as demonstrated by attainment of all learning outcomes. Excellent critique and knowledge of relevant literature and identification of research hypothesis. Well designed scientific approach to test research hypothesis. Show excellent organizational and/or analytical skills.

$$
\begin{array}{l|l}
\text { Demonstrate comprehensive, critical, assessment of findings and professional presentation of research work. } \\
\text { E } & \text { Evidence of near-complete understandino and a oood arasp of the subiect matter as demonstrated bv attainn }
\end{array}
$$

B Evidence of near-complete understanding and a good grasp of the subject matter as demonstrated by attainment of the majority Evidence of near-complete understanding and a good grasp of the subject matter as demonstrated by attainment of the majority
of learning outcomes. Good critique and knowledge of relevant literature and identification of research hypothesis. Appropriately designed scientific approach to test research hypothesis. Show good organizational and/or analytical skills. Demonstrate effective, critical, assessment of findings and good presentation of research work.
C

Academic Year 2021
Quota
---

|  |  | Adequately designed scientific approach to test research hypothesis. Show fair organizational and/or analytical skills. Demonstrate adequate but not necessarily critical, assessment of findings and presentation of research work. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | D | Evidence of limited understanding and grasp of the subject matter as demonstrated by incomplete attainment of many of the learning outcomes. Limited critique and knowledge of relevant literature and identification of research hypothesis. Poorly designed scientific approach to test research hypothesis. Show fair organizational and/or analytical skills. Demonstrate confused and poorly organized assessment of findings and limited presentation of research work. |  |  |  |
|  | Fail | Evidence of poor or inadequate understanding and grasp of the subject matter such that most of the learning outcomes are not attained. Poor critique and knowledge of relevant literature and identification of research hypothesis. Badly designed scientific approach to test research hypothesis. Show little evidence of appropriate organizational and/or analytical skills. Demonstrate incorrect interpretation and assessment of findings and poor presentation of research work. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Project-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Reading / Self study |  | at least 120 hours on the dissertation or project |  | 120 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Oral presentation |  |  | 30 | CLO 1,2,3,4 |
|  | Research report |  | Written report (<10000 words) | 70 | CLO 1,2,3,4,5 |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| Additional Course Information | Regular meetings between the supervisor and student. Guidance from the supervisor on the scientific methods, and on how to think and write scientifically. Students should spend at least 120 hours on the dissertation or project. Recommended reading may be assigned. |  |  |  |  |

BIOL3992
Offering Department Course Co-ordinator Teachers Involved Course Objectives

Course Contents \& Topics

Directed studies in food \& nutritional science ( $\mathbf{6}$ credits) Biological Sciences

Academic Year 2021

Dr J C Y Louie, Biological Sciences (jimmyl@hku.hk)
(All academic staff in Food \& Nutritional Science Major,Biological Sciences)
This course aims to provide a stimulating capstone experience for all Food \& Nutritional Science Major undergraduates to integrate and apply their knowledge and skills obtained from the Major.
The directed study can be a review of literature on a specific topic, or a lab or field study that enhances the student's understanding of the topic in the field of food \& nutritional science. The student should obtain the commitment of a supervisor in the area of the dissertation topic before submitting the registration form for the course (available from the General Office of School of Biological Sciences). Supervisor will introduce various methodologies/techniques and guide students to completion of the dissertation. Teaching will be informal and students will gain knowledge through discussion and feedback from their supervisors.
On successful completion of this course, students should be able to:
CLO 1 acquaint with the process of scientific enquiry
CLO 2 have a better understanding of the nature of food \& nutritional science
CLO 3 apply scientific methods to address important issues in various biological disciplines
CLO 4 develop the key intellectual skills that will be valubale for all scientific studies
Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Food \& Nutritional Science Major.
This capstone course is for Food \& Nutritional Science Major students only.
The earliest that a student is allowed to take this capstone course is their year 3 study.
Y 1st sem 2nd sem Offer in 2022-2023: Y Examination No Exam

A Work displaying a high level of scholarship and originality; virtually flawless presentation with excellent introduction to dissertation topic, showing a thorough grasp of the topic from background reading and analysis; clear statement of the objectives of the research; comprehensive exploration of the topic, personal synthesis of the issues with detailed support from the literature, comprehensive and up-to-date references integrated into argument or logical reasoning; critical evaluations of the main points or problems and their solutions and implications; thought-provoking discussions; accurate summary. All chapters/paragraphs are well-connected and presented logically with clarity of goals, demonstrating excellent organizational, rhetorical and presentational skills. The length of the dissertation meet the specified requirements. All other aspects of the dissertation conform to a high

Work showing some evidence of originality and insight in identifying, generating and communicating competing arguments, perspectives or problem solving approaches; demonstrating substantial understanding of fundamental concepts of the field of study; adequate grasp of the topic from background reading and analysis; a systematic exploration of the topic which may include an attempt at critical comment or appraisal; regular support provided from the literature; comprehensive and up-to-date references included; main points fully elaborated; summary given in the final chapter/paragraphs; communicating information and ideas clearly and fluently, demonstrating good organizational, rhetorical and presentational skills. The length of the dissertation
C Work showing no evidence of originality and insight, but the presentation demonstrated adequate understanding and comprehension of most aspects of the dissertation topic; essential topic materials have been read and acknowledged; the main points presented in logically sequential paragraphs; reasonably balanced discussion of the major issues; acceptable interpretation of the topic, some explanation, illustration and support provided from the literature; summary given in the final chapter/paragraphs; most presentation details met (front page, margin, legibility, citations correctly reported and tabulated, etc.);

Demonstrating superficial or partial or faulty understanding of the fundamental concepts of the field of study; showing the bare minimum of information, poorly digested and not very well organized in presentation; irrelevant material; showing no evidence of critical thinking; arguments undeveloped or inappropriate or unsupported; lack of clarity or structure in communicating information or ideas. dissertation topic not fully covered; discussion too brief or just repeating the data or findings; overuse quotations with little explanation; insufficient support from literature; reading not well incorporated into the text; limited acknowledgements and light bibliography; some major points missed. Minimum conform to an acceptable academic standard.
Fail The dissertation topic was not covered acceptably; demonstrating evidence of poor knowledge, clear deficiencies in understanding fundamental concepts; materials largely irrelevant; incomplete or confusing communication of information or ideas; unreflective; incoherent argument; complete misinterpretation of the topic or data; no evidence of reading (no acknowledgements or bibliography); structure confused or not discernible; Fail to meet most or all of the basic requirements of

Communication-
intensive Course
Course Type
Course Teaching \& Learning Activities
Assessment Methods and Weighting
academic standard. meet the specified requirements. Most aspects conform to a high academic standard. few typos or grammatical errors; Most aspects conform to an acceptable academic standard. the course. The written work is not of an academic standard.
A -

| Project-based course | Details | No. of Hours |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Activities | at least 120 hours on the dissertation or project | 120 |  |  |
| Reading / Self study | Details | Weighting in final <br> course grade (\%) | Assessment <br> Methods <br> to CLO Mapping |  |
| Methods |  |  |  |  |


|  | Oral presentation | 15 minutes (Plus 5 minutes for questions and answers). | 20 | CLO 1,2,3,4 |
| :---: | :---: | :---: | :---: | :---: |
|  | Research report | Written report 6000-8000 words (excluding figures and references). | 80 | CLO 1,2,3,4 |
| Course Website | http://moodle.hku.h |  |  |  |
| Additional Course Information | Regular meetings and on how to think | ervisor and student. Guidance fr tifically. Students should spend at |  | tific meth tion or proj |

Additional Course
Regular meetings between the supervisor and student. Guidance from the supervisor on the scientific methods, and on how to think and write scientifically. Students should spend at least 120 hours on the dissertation or project. Recommended reading may be assigned.

| BIOL3993 | Directed studies in Molecular biology \& biotechnology (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Biological Sciences | Quota | --- |
| Course Co-ordinator | Dr A Yan, Biological Sciences (ayan8@hku.hk) |  |  |
| Teachers Involved | (All academic staff in Molecular Biology \& Biotechnology Major,Biological Sciences) |  |  |
| Course Objectives | This course aims to provide a stimulating capstone experience for all Molecular Biology \& Biotechnology Major undergraduates to integrate and apply their knowledge and skills obtained from the Major. |  |  |
| Course Contents \& Topics | The directed study can be a review of literature on a specific topic, or a lab or field study that enhances the student's understanding of the topic in the field of molecular biology \& biotechnology. The student should obtain the commitment of a supervisor in the area of the dissertation topic before submitting the registration form for the course (available from the General Office of School of Biological Sciences). Supervisor will introduce various methodologies/techniques and guide students to completion of the dissertation. Teaching will be informal and students will gain knowledge through discussion and feedback from their supervisors. |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |
| Outcomes | CLO 1 acquaint with the process of science |  |  |
|  | CLO 2 have a better understanding of the nature of molecular biology \& biotechnology |  |  |
|  | CLO 3 apply scientific methods to address important issues in various biological disciplines |  |  |
|  | CLO 4 develop the key intellectual skills that will be valubale for all scientific studies |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in at least 24 credits of advanced level disciplinary core / elective courses in the Molecular Biology \& Biotechnology Major. |  |  |
| Offer in 2021-2022 | Y 1st sem 2nd sem Offer in 2022-2023: Y | Examination | No Exam |
| Grade Descriptors $(A+\text { to } F)$ | Work displaying a high level of scholarship and originality; virtually flawless presentation with excellent introduction to dissertation topic, showing a thorough grasp of the topic from background reading and analysis; clear statement of the objectives of the research; comprehensive exploration of the topic, personal synthesis of the issues with detailed support from the literature; comprehensive and up-to-date references integrated into argument or logical reasoning; critical evaluations of the main points or problems and their solutions and implications; thought-provoking discussions; accurate summary. All chapters/paragraphs are well-connected and presented logically with clarity of goals, demonstrating excellent organizational, rhetorical and presentational skills. The length of the dissertation meet the specified requirements. All other aspects of the dissertation conform to a high academic standard. |  |  |
|  | Work showing some evidence of originality and insight in identifying, generating and communicating competing arguments, perspectives or problem solving approaches; demonstrating substantial understanding of fundamental concepts of the field of study; adequate grasp of the topic from background reading and analysis; a systematic exploration of the topic which may include an attempt at critical comment or appraisal; regular support provided from the literature; comprehensive and up-to-date references included; main points fully elaborated; summary given in the final chapter/paragraphs; communicating information and ideas clearly and fluently, demonstrating good organizational, rhetorical and presentational skills. The length of the dissertation meet the specified requirements. Most aspects conform to a high academic standard |  |  |
|  | Work showing no evidence of originality and insight, but the presentation demonstrated adequate understanding and comprehension of most aspects of the dissertation topic; essential topic materials have been read and acknowledged; the main points presented in logically sequential paragraphs; reasonably balanced discussion of the major issues; acceptable interpretation of the topic, some explanation, illustration and support provided from the literature; summary given in the final chapter/paragraphs; most presentation details met (front page, margin, legibility, citations correctly reported and tabulated, etc.); few typos or grammatical errors; Most aspects conform to an acceptable academic standard. |  |  |
|  | Demonstrating superficial or partial or faulty understanding of the fundamental concepts of the field of study; showing the bare minimum of information, poorly digested and not very well organized in presentation; irrelevant material; showing no evidence of critical thinking; arguments undeveloped or inappropriate or unsupported; lack of clarity or structure in communicating information or ideas. dissertation topic not fully covered; discussion too brief or just repeating the data or findings; overuse quotations with little explanation; insufficient support from literature; reading not well incorporated into the text; limited acknowledgements and light bibliography; some major points missed. Minimum conform to an acceptable academic standard. |  |  |
|  | The dissertation topic was not covered acceptably; demonstrating evidence of poor knowledge, clear deficiencies in understanding fundamental concepts; materials largely irrelevant; incomplete or confusing communication of information or ideas; unreflective; incoherent argument; complete misinterpretation of the topic or data; no evidence of reading (no acknowledgements or bibliography); structure confused or not discernible; Fail to meet most or all of the basic requirements of the course. The written work is not of an academic standard. |  |  |
| Communicationintensive Course | N |  |  |
| Course Type | Project-based course |  |  |
| Course Teaching | Activities | Details | No. of Hours |
| \& Learning Activities | at least 120 hours on the dissertation or project |  | 120 |
| Assessment Methods and Weighting | Methods Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Oral presentation 15 minutes (Plus 5 minutes for <br> questions and answers). | 20 | CLO 1,2,3,4 |
|  | Research report Written report 6000-8000 words <br> (excluding figures and references). | 80 | CLO 1,2,3,4 |
| Course Website | http://moodle.hku.hk/ |  |  |
| Additional Course Information | Regular meetings between the supervisor and student. Guidance from the supervisor on the scientific methods, and on how to think and write scientifically. Students should spend at least 120 hours on the dissertation or project. Recommended reading may be assigned. |  |  |

BIOL3994
Offering Department
Course Co-ordinator

Directed studies in biological sciences ( 6 credits)
Academic Year
2021
Biological Sciences
Dr J Wu, Biological Sciences (jinwu@hku.hk)




Required/recommended Most of the reading material will be provided on Moodle or given during lectures; however, do make use of the reading and book and journal resources in HKU's libraries including:

| online materials | -Sport Nutrition. An introduction to Energy Production and Performance. Asker Jeukedrup \& Michael Gleeson <br> (2004). |
| :--- | :--- | :--- |
|  | -Sports and Exercise Nutrition. William McArdle, Frank Katch, Victor Katch. (2009). |
| -Modern Nutrition in Health and Disease, (2103) Eleventh edition. |  |

BIOL4204
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives
Course Contents
\& Topics
Course Learning Outcomes

Diet, brain function and behavior (6 credits)
Biological Sciences
Dr E T S Li, Biological Sciences (etsli@hku.hk)
(Dr E T S Li,Biological Sciences)
(Dr J C Y Lee,Biological Sceinces)
To highlight the impact of nutrient provision on brain structure and function, and to discuss various effects of nutrition and diet on mental function and behaviour.
Fundamentals of the central nervous system; Nutrition \& brain development; Diet, learning \& memory function; Dietary CNS stimulants; Neurotransmitters, drugs \& behaviour; Physiological and socio-cultural determinants of dietary behaviour.
On successful completion of this course, students should be able to:
CLO 1 understand the basic structure and functions of the brain and how nutrition influences its development
CLO 2 be able to explain the consequences of malnutrition on cognition
CLO 3 Appreciate appetite control as a function of food-gut-brain interaction
CLO 4 understand the differences between bioactive food ingredients and drugs
CLO 5 critically evaluate and interpret the internal and external cues that determine dietary behaviour
Pass in BIOL3204, or already enrolled in this course

| N | in 2022-2023: N Examination |
| :---: | :---: |
| A | Demonstrate thorough grasp of the subject matter covered. Show exceptional ability on knowledge integration, problem identification and solving. Show outstanding ability to critically analyze and interpret scientific data and draw appropriate conclusions. Demonstrate highly effective presentation / writing skills. |
| B | Demonstrate substantial grasp of the subject matter covered. Show full ability on knowledge integration, problem identification and solving. Show reasonable ability to critically analyze and interpret scientific data and draw appropriate conclusions. Demonstrate effective presentation / writing skills. |
| C | Demonstrate general but incomplete grasp of the subject matter covered. Might show misunderstanding of the materials. Show some ability on knowledge integration, problem identification and solving. Show some ability to analyze and interpret scientific data and draw proper conclusions. Demonstrate adequate organization / writing skills. |
| D | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter cove Misunderstanding of the materials is not uncommon. Show limited ability on knowledge integration, problem identification |





|  | B | Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use knowledge to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use knowledge to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use knowledge to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness. |  |  |  |
|  | Fail | Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use knowledge ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  | tutorials/seminars |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  |  | 30 | CLO 1,2,3,4,5 |
|  | Examination |  |  | 50 | CLO 1,2,3,4,5 |
|  | Test |  |  | 20 | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | R. E. C. Wildman: Handbook of Nutraceuticals and Functional Foods (CRC Press, 2007) <br> C. M. Hasler: Regulation of Functional Foods and Nutraceuticals: a Global Perspective (IFT Press, 2005) |  |  |  |  |
| Course Website | http://moodle.hku.hk/ |  |  |  |  |
| Additional Course Information | This course will be offered subject to a minimum enrollment number and availability of teachers. |  |  |  |  |
| BIOL4210 | Food product development (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Biological Sciences |  |  | Quota | 40 |
| Course Co-ordinator | Dr M F Wang, Biological Sciences (mfwang@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr M F Wang,Biological Sciences) |  |  |  |  |
| Course Objectives | To introduce the key concepts and techniques used in food product development. To provide small group experience in the design, development and production of a new food product. |  |  |  |  |
| Course Contents \& Topics | History and future of the food industry; industrial product development process; idea generation and prototype development for new food products; quality management and legal protection; marketing strategies; food labeling; food package design; new product development for different food industries. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 understand the food product development cycle |  |  |  |  |
|  | CLO 2 know the key steps in new product development |  |  |  |  |
|  | CLO 3 demonstrate enhanced insight and understanding of current and future trends in the food industry |  |  |  |  |
|  | CLO 4 have professional level practical experience in new product development |  |  |  |  |
|  | CLO 5 know the main characteristics of different sectors of the food industry |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass | OL3203 or |  |  |  |
| Offer in 2021-2022 |  | in 2022 - |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness. |  |  |  |
|  | Fail | Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Laboratory and workshop course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Laboratory |  |  |  | 48 |
|  | Group work |  | 80-100 hours group project work |  | 100 |
|  | Tutorials |  | 10 lectures + 12 tutorials |  | 22 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Meth |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO |


|  |  |  | Mapping |
| :--- | :--- | :--- | :---: |
| Assignments | assessment of group product <br> development project including in- <br> class presentation | 80 | CLO 1,2,3,4,5 |
| Test |  | 20 | CLO 1,2,3,4,5 |

Required/recommended A. L. Brody and J. B. Lord: Developing New Food Products for a Changing Marketplace (CRC Press, 2007) reading and E. Graf and I. S. Saguy: Food Product Development (Avi Books, 1991)
online materials $\quad$ G. W. Fuller: New Food Product Development (CRC Press, 2005)
Course Website
Additional Course
http://moodle.hku.hk/
This course will be offered subject to a minimum enrollment number and availability of teachers.
Information
 knowledge and skills required for attaining all course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, ability to integrate and synthesize information, and ability to apply knowledge to a wide range of complex, familiar and unfam
highly effective presentational skills. Strong evidence of clear attention to thoughtful and reflective thinking. highly effective presentational skills. Strong evidence of clear attention to thoughtful and reflective thinking. learning outcomes. Show evidence of analytical and critical abilities and logical thinking, integration of materials and ability to apply knowledge to familiar and some unfamiliar situations. Demonstrate effective presentational skills. Evidence of clear attention to thoughtful and reflective thinking.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective presentational skills. Little evidence of clear attention to thoughtful and reflective thinking.
Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities and little attempt at integration. Show limited ability to apply knowledge to solve problems. Apply limited effectiveness in presentational skills. Lack of attention to thoughtful and reflective thinking.
Fail $\quad$ Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.
N
Communication-
intensive Course
Course Type
Course Teaching \& Learning Activities

Lecture-based course

| Activities | Details |  | No. of Hours |
| :--- | :--- | :--- | :---: |
| Lectures | Field, laboratory, practical and tutorials | 24 |  |
| Field work |  |  | 36 |
| Reading / Self study | Details | Weighting in final <br> course grade (\%) | Assessment <br> Methods <br> (to CLO Mapping |
| Methods |  |  | 30 |
| Assignments |  | 60 | CLO 1,2,3,4,5 |

Required/recommended Hart P. J. B. \& Reynolds J. D. (eds): Handbook of Fish Biology and Fisheries (Volumes 1 \& 2, Blackwell
reading and
online materials
Course Website
Additional Course Information

Science Ltd, 2002)
G. Helfman, B. Collette and D. Facey: The Diversity of Fishes (Blackwell Science, 1997)
http://www.biosch.hku.hk/ecology/lsc/
Offer in alternate year from 2017--2018
This course will be offered subject to a minimum enrollment number and availability of teachers.

within the paradigm of behavioural ecology and understand the causes, functions, development, and evolution of behaviour. We will discuss several classical studies that form the foundation of this field, as well as more recent research that represents the current concepts which have led to modern understanding of animal behaviour. We will also illustrate the links between the recent extraordinary advances in behavioural ecology and socio-ecology with their application in animal conservation.


BIOL4304
Offering Department
Course Co-ordinator
Teachers Involved

| Ecosystem functioning and services (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: |
| Biological Sciences | Quota | 30 |

Dr B Russell, Biological Sciences (brussell@hku.hk)
(Dr B Guenard,Biological Sceinces)
(Dr B Russell,Biological Sciences)
(Dr C Dingle,Biological Sciences)
(Dr S Cannicci,Biological Sciences)
(Guester Lecturer,Biological Sciences)
Course Objectives This course will introduce the functioning of terrestrial, fresh water and marine ecosystems and the services which they provide human populations. The concept of ecosystem services will be further expanded into "value", including financial, cultural, social and, importantly, the intrinsic value that may be priceless. We will also explore how human activities degrade these ecosystem services and how protecting ecosystems and biodiversity can increase the ecosystem services supplied to humans.
Course Contents \& Topics

Natural ecosystems provide trillions of dollars' worth of ecosystem services to humans every year. Many of these services go unrecognized and undervalued. In fact, because humans rely on ecosystems many of these services may be priceless. This course will first cover the function of different ecosystems from terrestrial, fresh water and marine environments. Students will then be introduced to the concept of ecosystem services and what they provide to human populations. Finally, human activities which degrade ecosystems and reduce the extent that ecosystems can provide these services, and what that means for human populations, will be covered. Students will develop independent and creative thinking when proposing solutions to the question of how to value ecosystems for their
inherent properties rather than perceived monetary value.


| BIOL4401 | Medical microbiology and applied immunology (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Biological Sciences | Quota | 40 |
| Course Co-ordinator | Dr W Y Lui, Biological Sciences (wylui@hku.hk) |  |  |
| Teachers Involved | (Dr A Yan,Biological Sciences) (Dr C G Zheng,Biological Sciences) (Dr W Y Lui, Biological Sciences) |  |  |
| Course Objectives | The objective is to provide students the knowledge on the practical applications of immunology and microbiology in biological research, clinical analysis and disease diagnosis. |  |  |
| Course Contents \& Topics | Application of antigen-antibody interaction in advanced research such immunoprecipitation and dual immunofluorescence analysis. <br> Principles of flow cytometry and its application. <br> Tumor immunology and immunotherapy such as FDA-approved checkpoin antigen receptor (CAR) T-cell therapy. <br> Microbial pathogens and associated diseases, host immune respo resistance, epidemiology and prevention of microbial infections. <br> Clinical laboratory analysis in haematology, chemical pathology, and cli testing methods in the diagnosis of disease associated with major syste infectious diseases. | atin. immunopre <br> ibitor immunothe <br> timicrobial agent <br> robiology. The a human body and | pation <br> py an <br> and <br> plicatio <br> the d |
| Course Learning | On successful completion of this course, students should be able to: |  |  |
| Outcomes | CLO 2 demonstrate knowledge on microbial pathogens, mechanisms for their disease-causing, and principles of antibiotic development |  |  |
|  | CLO 3 understand the scientific principles of various clinical laboratory analyses |  |  |
|  | CLO 4 promote public attention on control of microbial infection and the spread of antibiotic resistance |  |  |
| Pre-requisites (and Co-requisites | Pass in BIOL3401 |  |  |



| BIOL4402 | Microbial biotechnology (6 credits) |  | Academic Year | 2021 |
| :---: | :---: | :---: | :---: | :---: |
| Offering Department | Biologic | cal Sciences | Quota | 30 |
| Course Co-ordinator | ---, Biological Sciences () |  |  |  |
| Teachers Involved | (---, Biological Sciences) |  |  |  |
| Course Objectives | This course is intended for students who would like to understand the application of modern microbiology in biotechnology. The microbial systems being used include different types of viruses, bacteria, fungi and algae. At the end of the course the students are expected to know the parameters and conditions that affect the yield of production and the systems available for the expression of vaious types of biotechnology products. |  |  |  |
| Course Contents \& Topics | Upstream and downstream processing will be briefly described to equip the students with the background for microbial biotechnology. The latest advances in microbial expression systems using viruses, bacteria, yeasts and algae will be reviewed. Specific examples on the use of these systems will be provided. These include but not limited to production of recombinant vaccines, secondary metabolites, food and food additives, industrial enzymes and biopesticides as well as bioremediation and medical diagnostics. |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 explain the fundamental biochemical concepts underlying the industrial production of selected microbial biotechnology products |  |  |  |
|  | CLO 2 understand the importance of the current recombinant technology for large-scale manufacturing of various protein products |  |  |  |
|  | CLO 3 describe the major expression systems, understand their purposes, advantages, and disadvantages |  |  |  |
|  | CLO 4 deliver a professional group presentation on a self-decided topic related to microbial biotechnology |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in | BIOL3401 |  |  |
| Offer in 2021-2022 | N Offer in 2022-2023: N |  | Examination | --- |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Demonstrate deep understanding of the subject. Demonstrate integration of the full range of appropriate theories, principles, evidence and techniques. Illustrate insightful use and critical analysis / evaluation of information drawn from a full range of high quality sources and to quote/reference aptly. Apply highly effective organizational and presentational skills. |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining most of the course learning outcomes. Demonstrate substantial grasp of the subject. Demonstrate general integration of theories, principles, evidence and techniques. Illustrate critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Apply effective organizational and presentational skills. |  |  |
|  | C | Demonstrate general but incomplete knowledge and skills required for attaining most of the course learning outcomes. Demonstrate general but incomplete grasp of the subject. Demonstrate some partial integration of theories, principles, evidence and techniques. Illustrate use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/reference aptly. Apply moderately effective organizational and presentational skills. |  |  |
|  | D | Demonstrate limited knowledge and skills required for attaining some of the course learning outcomes. Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Show limited integration of theories, principles, evidence and techniques. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Apply limited or barely effective organizational and presentational skills. |  |  |
|  | Fail | Demonstrate little or no knowledge and skills required for attaining the course learning outcomes. Demonstrate evidence of little |  |  |


|  |  | or no grasp of the knowledge and understanding of the subject. Show little or no or inapt integration of theories, principles, evidence and techniques. Show limited use of secondary sources and no critical comparison of them. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 30 |
|  | Tutorials |  | including |  | 18 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  |  | 30 | CLO 1,2,3,4 |
|  | Examination |  |  | 70 | CLO 1,2,3 |
| Required/recommended reading and online materials | A. N. Glazer and H. Nikaido: Microbial Biotechnology: Fundamentals of Applied Microbiology (W. H. Freeman \& Co., 1995) <br> A. L. Demain, J. E. Davies, R. M. Atlas, G. Cohen, C. L. Hershberger, W-S. Hu, D. |  |  |  |  |
| Course Website | http://moodle.hku.hk/ |  |  |  |  |
| BIOL4409 | General virology (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Biological Sciences |  |  | Quota | 30 |
| Course Co-ordinator | Dr W B L Lim, Biological Sciences (bllim@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr W B Lim,School of Biological Sceinces) |  |  |  |  |
| Course Objectives | This Course provides the fundamental principles of virology so that students can understand the pathogenesis of major viral diseases that affect animal health. The course will prepare students for profession or graduate work in virology, medicine and biotechnology. |  |  |  |  |
| Course Contents \& Topics | Fund 1. Cl 2. Vir 3. Vir 4. Vir 5. Vir 6. RN 7. Ba 8. Ba 9. An 10, 11 12. 13, 1 15. 16. 17. A 18. V Pract 19. S Qual 20. V 21, 22 Com 23, 24 | tal Virology ation and ucture: Cap ucture: Ge try: Recept ll interactio uses: Geno Class IV Class V se RNA vi timore Class re Class II timore Clas re Class II nisms of Vi al treatmen as Tools <br> irology Collect surance \& solation, pro us Identific nt Fixation utralization | of Virus <br> y, Icosahed <br> Is, Nucleo <br> g and fus <br> n and mR viruses: P <br> viruses: My viruses and <br> RNA virus ruses: Reovir viruses: viruses: P esis <br> nd Biotec <br> tation and afety d titration ocytochem agglutinat ntiviral as |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 be familiar with virus classification and the modes of replication and transmission of various viral families |  |  |  |  |
|  | CLO 2 gain hand-on experiences on common virological techniques |  |  |  |  |
|  | CLO 3 carry out researches on virology after taking this course |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass | OL3401 or |  |  |  |
| Offer in 2021-2022 | N | r in 2022 - |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of knowledge required for attaining all the course learning outcomes. Show strong analytical skills and competent ability to acquire knowledge on new development of the subject. Apply highly effective lab skills and techniques. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical skills and adequate ability to acquire knowledge on new development of the subject. Apply effective lab skills and techniques. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical skills and certain ability to acquire knowledge on new development of the subject. Apply moderately effective lab skills and techniques. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of limited analytical skills and ability to acquire knowledge on new development of the subject. Apply partially effective lab skills and techniques. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical skills and ability to acquire knowledge on new development of the subject. Apply minimally effective or ineffective lab skills and techniques. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 24 |
|  | Laboratory |  |  |  | 24 |
|  |  |  |  |  | 6 |



| Required/recommended <br> reading and <br> online materials | Chrispeels, M.J. and D.E. Sadava. Plants, genes, and agriculture. Jones and Bartlett. |
| :--- | :--- |
| E-reserves (HKU Library) |  |
| Lecture notes on Moodle |  |$|$| Course Website | http://moodle.hku.hk/ |
| :--- | :--- |
| Additional Course | Core in Molecular Biology \& Biotechnology Major <br> Information advanced elective course in FNS Major <br> An advanced elective course in Plant Science Minor |

BIOL4415
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives
Course Contents
\& Topics

Healthcare biotechnology (6 credits) Academic Year 2021
Biological Sciences Quota
70
Dr G Y W Chan, Biological Sciences (gywchan@hku.hk)
(Dr G Y W Chan, Biological Sciences)
(Dr K W Y Yuen,Biological Sciences)
This course discusses the key concepts and principles involved in healthcare biotechnology, and their applications in molecular medicine.
Genetic biotechnology in animals (transgenics, knockouts and other related technologies): Transgenic animals as models in the study of human diseases, as bioreactors for the production of hormones, antibiotics and vaccines and organs for xenotransplantation.
Advanced molecular biology techniques related to human and animal science basic research, disease diagnosis and development of new therapies. These include but not limited to: applications of DNA technologies in diagnostic medicine and forensic science; tissue engineering.
An overview of the drug development process, with a focus on the early-stage, preclinical drug discovery, drug target identification, high-throughput assay development, and screening of chemical libraries (synthetic and natural products). The concept of individualized medicine will also be discussed.
On successful completion of this course, students should be able to:
CLO 1 describe key concepts in genetic biotechnology and human health
CLO 2 acquire and apply advanced laboratory techniques essential to biotechnology
CLO 3 develop scientific inquiry and critical thinking skills to understand, analyze, and evaluate problems in order to develop solutions
CLO 4 gain insight into real-world applications in healthcare biotechnology
Pass in BIOL3401
(and Co-requisites
and Impermissible
combinations)
Offer in 2021-2022
Grade Descriptors
(A+ to F)
Y 2nd sem Offer in 2022-2023: Y Examination May
A Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning
outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational skills. Writings
consistently demonstrate informed, thoughtful intellectual engagement with broad range of relevant concepts.


Required/recommended - Textbook of Drug Design and Discovery (Krogsgaard-Larsen, Liljefors, and Madsen, Taylor \& Francis, 2002) reading and - Human Molecular Genetics (Strachan and Read, Garland Science, 2010)
online materials $\quad$ - Suggested readings for each topic will be provided.
Course Website http://moodle.hku.hk/
Additional Course Moodle
Information

| BIOL4416 | Stem cells and regenerative biology (6 credits) | Academic Year 2021 |
| :---: | :---: | :---: |
| Offering Department | Biological Sciences | Quota 40 |
| Course Co-ordinator | Dr K W Y Yuen, Biological Sciences (kwyyuen@hku.hk) |  |


energy sources similar to chemical synthesis. The significance of this field has been promoted by the worldwide synthetic biology competition organized by MIT, i.e., iGEM competition. In this course, we will introduce some innovative ideas in synthetic biology and practice the skills needed for iGEM competition.


| BIOL4451 | Cetacean behaviour, ecology and conservation: fiel research experience (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Biological Sciences | Quota | 12 |
| Course Co-ordinator | , Biological Sciences () |  |  |
| Teachers Involved |  |  |  |
| Course Objectives | This course offers an exciting experiential learning opportunity through hands-on experience in field research into behavioural ecology and conservation of free-ranging cetaceans (whales, dolphins and porpoises). It provides students with a fundamental knowledge, skills, and the appreciation of what it takes to design, implement, and effectively run field studies in cetacean ecology, behaviour and conservation, and similar studies of other large and mobile marine vertebrates. |  |  |
| Course Contents \& Topics | Field-based studies of cetaceans have been rapidly evolving in recent years. There are many exciting new developments that allow researchers to tackle previously unexplored avenues of research. However, the primary component of cetacean studies, the direct contact with free-ranging animals out at sea, in their natural environment and on their terms remains unchanged; both challenging and fascinating. This course, conducted in a field research site outside Hong Kong, will expose students to various aspects of cetacean field studies, from the definition of a research question to project design, and to various stages of data collection and analyses. Students will learn a suite of research techniques, and will exercise their skills in data processing and interpretation. The emphasis will be on delphinid behavioural ecology and conservation applications; students will be guided through the scientific reasoning and methodology, and will develop an understanding how individual projects can contribute to advancing science and benefiting broader conservation management efforts. The course includes lectures, informal discussions of current research and recent discoveries, review of innovative research techniques, and extensive field component with sea-based research surveys performed daily (weather permitting). Following the field-based activities, students are required to write an independent report describing the learning outcome of the course. |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |


| Outcomes | CLO 1 understand of the biodiversity and primary habitats in the ecosystem studied |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | CLO 2 establish the basic skills needed to identify target species associated with the field course |  |  |  |
|  | CLO 3 be knowledgeable about and able to implement sampling techniques for organisms in the particular ecosystems studied |  |  |  |
|  | CLO 4 understand the basic ecology of target species and how biotic and abiotic factors shape focal communities |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in at least one of the following courses: BIOL3101, BIOL3301, BIOL3313 or BIOL3320. <br> This experiential field course is primarily for Ecology \& Biodiversity Major students. <br> The earliest that a student is allowed to take this experiential course is their year 3 study; and because it is conducted in early June, this course is best suited for year 3 students. |  |  |  |
| Offer in 2021-2022 | N Offer in 2022-2023: N Examination --- |  |  |  |
| Grade Descriptors$(A+\text { to } F)$ | A Evidence of a thorough grasp of the subject and relevant research techniques. Eagerness and enthusiasm to learn and excellent familiarity with relevant background reading and case studies. Exemplary handling of field data collection and excellent analytical skills. Ample evidence of independent critical thought with excellent use of a broad range of fundamental concepts and broader comparative perspective to draw insightful and logical conclusions. Show outstanding abilities of independent work, effective presentation skills with excellent analytical argumentation. Excellent or outstanding work relative to what is required at degree level. |  |  |  |
|  | B <br> Evidence o with relevan Good evide consideratio presentation | Evidence of a good grasp of the subject and relevant research techniques. Interest in learning and good-to-moderate familiarity with relevant background reading and case studies. Good handling of field data collection and commendable analytical skills. Good evidence of critical thought (although not always independent), with an appreciable use of fundamental concepts and consideration of broader comparative perspective in drawing logical conclusions. Good abilities of independent work, effective presentation skills with logical and analytical argumentation. Work more than sufficient for what is required at degree level. |  |  |
|  | C <br> Demonstrat relevant ba critical think Fair presen sufficient fo | Demonstrate an adequate, but incomplete grasp of the subject and relevant research techniques. Moderate familiarity with relevant background reading and case studies, but no interest in learning beyond the adequate average level. Evidence of logical critical thinking (although not always independent), with mostly good use of fundamental concepts to draw logical conclusions. Fair presentation skills, with mostly correct argumentation, but limited (or no) abilities to integrate broader concepts. Work sufficient for what is required for degree level. |  |  |
|  | D $\quad$Demonstra <br> research te <br> abilities of <br> ability of dr | Demonstrate some grasp of the subject, but only partial and with limited understanding of relevant research concepts and research techniques. Some familiarity with relevant case studies, but insufficient evidence of background reading and limited abilities of critical independent thinking. Ineffective presentation skills with generally weak logical argumentation with restricted ability of drawing appropriate conclusions. Work barely meets what is required at degree level. |  |  |
|  | Fail No evidenc <br> background <br> thought; in <br> reach degre | No evidence of basic a minimum grasp of the subject and the minimum relevant research techniques. No evidence of background reading and no familiarity with any relevant examples and case studies. Inadequate evidence of coherent logical thought; ineffective presentation skills with poor argumentation and no abilities to draw meaningful conclusions. Work fails to reach degree level. |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Field camps |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures | lectures and tutorials |  | 12 |
|  | Field work |  |  | 80 |
|  | Presentation | interactive debates |  | 10 |
|  | Reading / Self study |  |  | 100 |
|  | Assessment | group projects |  | 12 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | 35 | CLO 1,2,3,4 |
|  | Report | project report (35\%), group investigation \& presenation (30\%) | 65 | CLO 1,2,3,4 |

Required/recommended Mann, J., Connor, R.C., Tyack, P.L., Whitehead, H. (eds.) 2000. Cetacean societies: Field studies of dolphins and reading and online materials

Course Website
Additional Course Information whales. Chicago University Press
Boyd, I.L., Bowen, W.D., Iverson, S.J. (eds). 2010. Marine Mammal Ecology and Conservation: A Handbook of Techniques. Oxford University Press.
http://www.biosch.hku.hk/ecology/lsc/
Enrollment Procedure:
The course is open to enrollment only during the add/drop period of the 2nd semester. Students are required to submit a brief (maximum 1-page) application letter (PDF file) via e-mail to the Course Coordinator (leszek@hku.hk) not later than 10th January. The application shall include the following:

1. Personal and academic details
2. ID photograph
3. Brief description of academic interests
4. GPA
5. Pre-requisite courses taken and grades received (if pre-requisites are not met, a reasoned request for waiver) All applications will be reviewed prior to the commencement of the 2 nd semester and results will be announced within the 1st week of the add/drop period of the 2nd semester.

BIOL4501
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Molecular phylogenetics and evolution ( 6 credits) Biological Sciences TBC, Biological Sciences () (TBC,Biological Sciences)
The purpose of this course is to provide a comprehensive overview of state-of-the-art molecular systematics and phylogenetic research, focusing on in depth coverage of the latest techniques. The treatment of theoretical issues in formal lectures is coupled with practical workshops.

- acquisition of the sequences from the databases
- DNA and protein sequence assembly and alignment
- phylogeny reconstruction using parsimony, distance based, and maximum likelihood approaches
- introduction to relevant software for phylogenetics
- methods for the evaluation of phylogene trees

Course Contents
\& Topics

Introduction to molecular systematics and phylogenetics. Tree of life. Obtaining, storing and archiving specimens and tissue samples for use in molecular studies. Sources of molecular data, experimental design for molecular studies, taxon sampling and marker choice. Overview of basic laboratory methods for data collection (DNA isolation, PCR, DNA sequencing). Sequence editing and aligning; utilizing public sequence databases. Estimation of nucleotide polymorphism and diversity. Methods for phylogeny reconstruction: parsimony, distance methods, maximum likelihood, Bayesian methods. Statistical methods for the evaluation of phylogenetic trees. Software for phylogeny reconstruction. Molecular markers in conservation and ecological genetics. Phylogenies for different



|  |  | requirements set out in the Course Description regarding working hours, with excellent performance in written and oral report, and excellent evaluation by supervisor(s), etc. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Pass $\begin{array}{ll}\text { Ab } \\ & \text { or } \\ \text { clie } \\ \text { ora }\end{array}$ | Able to apply knowledge to solve problems in the workplace. Successfully handles and carries out the work required in the job or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, written and oral report, and evaluation by supervisor(s), etc. |  |  |
|  | Fail $\begin{array}{ll}\text { Ve } \\ \text { as } \\ \text { clie } \\ \text { rep }\end{array}$ | Very limited or no ability to solve problems in the workplace. Fails to handle or carry out the work required in the job or assigned by supervisor(s). Fails to establish effective collaboration or communication with supervisor(s), other colleagues, or clients in the job. Fails to satisfy the requirements set out in the Course Description regarding working hours, written and oral report, or evaluation by supervisor(s), etc |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Internship |  |  |  |
| Course Teaching | Activities | Details |  | No. of Hours |
| \& Learning Activities | Internship work | rk at least 160 hours |  | 160 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Written report | written report, supervisor's feedback and oral presentation | 100 | CLO 1,2,3,4 |
| Course Website | http://moodle.hku.hk |  |  |  |
| Additional Course Information | Students taking this course have to submit a written report of not less than 1,000 words and an oral presentation about their internships, which will be assessed by internal supervisors. Student's supervisor at work i.e. the institution offering the internship will also submit an assessment report to the University. <br> Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator. <br> BIOL4861 E\&B internship is not a Capstone Course. |  |  |  |

BIOL4911
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

## Conservation science in practice ( 6 credits)

Biological Sciences
TBC, Biological Sciences ()
To build on the foundation acquired by students in the Biological Sciences in the fields of ecology, biodiversity and environmental science by using case studies that stimulate them to integrate the principles and concepts learned to produce and successfully debate a topic in conservation science. Case studies will specifically address the use of science in achieving meaningful conservation outcomes taking into account the need for considering social, economic, and political contexts. Students will be expected to present their cases orally using sound practical and scientific reasoning. This course is a capstone course for Ecology \& Biodiversity major / Ecology \& Biodiversity (Intensive) Major students.
This course will use directed case studies to give students the opportunity to consider and synthesize solutions to specific problems in conservation and the application of conservation science in the modern world, and within the wider context of economic development, political considerations and scientific uncertainty.Projects will be conducted through collaborations with local organizations, such as WWF-Hong Kong and Ocean Park, and address real-life questions and issues. Possible case studies range from ecosystem services, biological footprints, wildlife trade, to assessment of conservation risk, effectiveness of international conservation and biodiversity instruments, and the relationship between biodiversity and human livelihoods. Tutorials by the course coordinator will introduce practical conservation concepts, develop critical thinking and address specific issues of relevance across case studies.
On successful completion of this course, students should be able to:
CLO 1 have an in-depth understanding of the topic studied, the major issues involved and the needs and prospects for further work in the area
CLO 2 have developed investigative skills associated with the case study selected which include synthesis, organization and presentation of information and innovative and creative thinking around problem solving CLO 3 understand the importance and complexities of conserving biodiversity
CLO 4 be able to identify practical and scientifically defensible initiatives and measures for successful conservation intervention
CLO 5 be able to competently present the case study and convincingly argue their case
Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Ecology \& Biodiversity Major / Ecology \& Biodiversity (Intensive) Major including BIOL3303. This capstone course is for Ecology \& Biodiversity Major / Ecology \& Biodiversity (Intensive) Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

```
N Offer in 2022-2023:N
```


## Examination --

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning
outcomes. Show strong analytical and critical abilities and logical thinking, with strong evidence of ability to integrate and synthesize information across subject areas, including from practical work undertaken, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations and showing consideration of practical and political dimensions for addressing conservation challenges. Apply highly effective presentational skills. Strong evidence of attention to thoughtful and reflective thinking and consideration of the wider issues of biodiversity conservation for Society.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, with some integration of materials and ability to apply knowledge to familiar and some unfamiliar situations. Demonstrate effective presentational skills. Some evidence of clear attention to thoughtful and reflective thinking and attention to detail. Consideration of practical components in of clear attention to thoughtful and reflective thinking and attention to detain. Consideration of practical co
conservation management must be demonstrated including the importance of biodiversity conservation in Society.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, ability to apply knowledge to most familiar situations and of relevance of biodiversity conservation for Society. Apply moderately effective presentational skills and understanding of the practical challenges of effective conservation initiatives. Little evidence of clear attention to thoughtful and reflective thinking.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities and little attempt at integration. Have basic understanding of importance of biodiversity for Society. Show limited ability to apply knowledge to solve problems or consider the practical challenges of biodiversity conservation. Apply limited effectiveness in presentational skills. Lack of attention to thoughtful and reflective thinking. of analytical and critical abilities, logical and coherent thinking or attention to detail. Show very little or no ability to apply knowledge or practical thinking to solve problems. Organization and presentational skills are minimally effective or ineffective.


BIOL4913
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Advanced practicum on food and nutrient analysis (6 credits)
Biological Sciences

Academic Year 2021
Quota 8
Dr J C Y Lee, Biological Sciences (jettylee@hku.hk)
(Dr El-Nezami Hani,School of Biological Sciences)
(Dr J C Y Lee,School of Biological Sciences)
Food products are analysed to follow the compliance with legal and labelling requirements, assessment of product quality, determination of nutritive value, research and development. The lectures and laboratory sessions will cover the analytical procedures and techniques used to provide information about the food labelling and toxicology of the products. The purpose of the laboratory classes is to give students experience in direct performance of food analysis and toxicology experiments, analysing data and reporting their findings. The students are to work individually on food products where they will analytically assess components using advanced techniques necessary for basic labelling of food products.
Key lectures on specific techniques and cases studies demonstrating the potential and pitfalls on analytical techniques and contaminant assessment for certain class of foods or food components will be discussed. Students will have hands-on experience in analysing food products and will utilise analytical techniques under AOAC or equivalent methods. The students will learn how mycotoxins assays, allergens and genetically modified raw materials are assessed in food products. In-depth learning in the use of different chromatography and mass spectrometry techniques, ELISA and procedures for sample preparations will be provided in the course.
On successful completion of this course, students should be able to:
CLO 1 Be familiar with the food labeling system
CLO 2 Understand the use of appropriate analytical techniques for food analysis
CLO 3 Have knowledge of a variety of analytical techniques for evaluation of food products
CLO 4 Have a detailed knowledge of the state of the art of the most important analytical methods, their possibilities and their application in complex food systems
CLO 5 Able to perform risk assessment and compare the outcomes with governmental regulated levels
Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) included BIOL3207 and / or BIOL3209 in the Food \& Nutrional Science Major.
This capstone course is for Food \& Nutrional Science Major students only.
The earliest that a student is allowed to take this capstone course is their year 3 study.
 with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.
Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based data and results to draw generally
organizational and presentational skills.


Required/recommended reading and
online materials
Course Website
Additional Course
Information
Y. Pico, Chemical Analysis of Food Techniques and Applications (2012, Knovel, Science Direct on-line)

Official methods of analysis of AOAC International 19th Ed (2012, AOAC International) http://moodle.hku.hk
The course will be offered subject to a minimum enrollment number and availability of teachers.

| BIOL4921 | Animal behaviour and behavioural ecology: field course (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Biological Sciences | Quota | 15 |
| Course Co-ordinator | Biological Sciences () |  |  |
| Teachers Involved |  |  |  |
| Course Objectives | This course is offered as a capstone experience and unique experiential learning opportunity. It introduces students to scientific reasoning and conceptual basis of studying animal behaviour and behavioural ecology. It exposes students to 'research-in-making' and 'day-to-day logistics' of a field research, with all the excitement it generates and all demanding challenges it brings along, with hands-on experience in designing, conducting, analysing, and successfully completing field studies of animal behaviour and behavioural ecology. |  |  |
| Course Contents \& Topics | Conducted in a field research site outside Hong Kong, this course teaches students how to think analytically about animal behaviour, how to design a field research protocol, construct a conceptual framework of a research project and how to put this framework into a practice of collecting and analysing data. The course includes lectures, informal discussions, review of research techniques, and extensive field component with daily research activities. It |  |  |

provides experiential learning through (i) direct participation in an ongoing field-based research, (ii) hands-on experience in application of diverse research techniques, (iii) hands-on involvement in collecting and analysing data, and (iv) engagement in scientific debates with researchers and research teams directly in their field study location. Students will be guided through the scientific reasoning and methodology, will learn a suite of research techniques and will exercise their skills in data gathering and interpretation, and will develop an understanding how individual research projects contribute to a greater understanding of behavioural and evolutionary processes and contribute to advancing science at large. The emphasis is placed on independent thinking and thoughtful application of the knowledge acquired previously during relevant classroom courses. Following the field-based component, students are required to give a seminar-type presentation on a selected topic and write a Course Report.

Course Learning Outcomes

On successful completion of this course, students should be able to:
CLO 1 understand of the biodiversity and primary habitats in the ecosystem studied
CLO 2 establish the basic skills needed to identify target species associated with the field course
CLO 3 be knowledgeable about and able to implement sampling techniques for organisms in the particular ecosystems studied
CLO 4 understand the basic ecology of target species and how biotic and abiotic factors shape focal communities Pass in BIOL3101; and
Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Ecology \& Biodiversity Major.
This capstone course is for Ecology \& Biodiversity Major students only.
The earliest that a student is allowed to take this capstone course is their year 3 study.

Pre-requisites
(and Co-requisites and Impermissible combinations)


Required/recommended Required/recommended reading and online materials
reading and
online material

Course Website
Additional Course Information
(at most 400 characters)
Lehner, P.N. 1996 (reprint 2002). Handbook of ethological methods. Cambridge University Press.
Dugatkin, L.A. (ed.) 2001. Model systems in behavioral ecology. Integrating conceptual, theoretical, and empirical approaches. Princeton University Press.
Yamagiwa, J. \& Karczmarski, L. (eds.) 2014. Primates and Cetaceans: Field research and conservation of complex mammalian societies. Springer Science.
http://www.biosch.hku.hk/ecology/lsc/
Enrollment Procedure:
The course is open to enrollment only during the add/drop period of the 2nd semester. Students are required to submit a brief (maximum 1-page) application letter (PDF file) via e-mail to the Course Coordinator (leszek@hku.hk) not later than 10th January. The application shall include the following:

1. Personal and academic details
2. ID photograph
3. Brief description of academic interests
4. GPA
5. Pre-requisite courses taken and grades received (if pre-requisites are not met, a reasoned request for waiver). All applications will be reviewed prior to the commencement of the 2 nd semester and results will be announced within the 1 st week of the add/drop period of the $2 n d$ semester.

BIOL4922
Offering Department
Course Co-ordinator Teachers Involved

## Food product development and evaluation ( 6 credits)

 Biological SciencesTBC, Biological Sciences ()
(TBC,Biological Sciences)



Course Website
Additional Course Information
http://moodle.hku.hk
Students taking this course have to submit a written report of not less than 1,000 words and an oral presentation about their internships, which will be assessed by internal supervisors. Student's
supervisor at work i.e. the institution offering the internship will also submit an assessment report to the University.
Satisfactory completion of this course can be counted towards the Capstone requirement. Details of internship will be recorded on the student's transcript. This course will be assessed on "Pass/Fail" basis. Students who are interested to enrol in this course should contact the Department to obtain the approval.
Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.

BIOL4964
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents
\& Topics

Course Learning
Outcomes

Pre-requisites (and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors
Distinction/Pass/Fail

Biological sciences internship ( 6 credits)
Academic Year
Quota
Biological Sciences
Dr Y W Chan, Biological Sciences (gywchan@hku.hk)
(All academic staff in Biological Sciences Major,Biological Sciences)
To provide a stimulating experience for all Biological Sciences major undergraduates to integrate and apply their knowledge and skills obtained from the Biological Sciences Major through gaining work experience in the field of Biological Sciences that are related to the major of study.
Students taking this course will work as an intern for at least 160 hours in at least 20 working days within the University or outside the University in a company, government department or NGO. The internship may be arranged by the School or obtained by students themselves. In the latter case, the internship must be in a relevant field to the Biological Sciences major that the students are taking and prior approval by the course coordinator is required
On successful completion of this course, students should be able to:
CLO 1 gain first hand work experience in a job placement related to their Biological Sciences Major
CLO 2 apply the knowledge in their Biological Sciences Major in solving practical problems in the work place
CLO 3 acquire an understanding and appreciation of the real work environment
CLO 4 extend their network in their field of study
Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Biological Sciences Major.
This captsone course is for Biological Sciences Major students only.
The earliest that a student is allowed to take this capstone course is their year 3 study.

## Y 1st sem 2nd sem Summer Offer in 2022-2023: Y Examination No Exam

Distincti Demonstrates excellent ability in applying knowledge to solve problems in the workplace. Demonstrates excellent Demorstrates excenlent ability in applying knowledge to solve problems in the workplace. Demonstrates excellent
performance in handling and carrying out the work required in the job or assigned by supervisor(s). Establishes highly performance in handling and carrying out the work required in the job or assigned by supervisor(s). Establishes highly
effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the
requirements set out in the Course Description regarding working hours, with excellent performance in written and oral report, requirements set out in the Course Description regarding working hours, with excellent performance in written and oral report,
and excellent evaluation by supervisor(s), etc. and excellent evaluation by supervisor(s), etc.


BIOL4991
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents
\& Topics
Course Learning

| Ecology \& biodiversity project (12 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- |
| Biological Sciences | Quota | --- |
| Dr S W Y Sin, Biological Sciences (sinyw@hku.hk) |  |  |
| (All academic staff in E\&B Major / E\&B Intensive Major,Biological Sciences) |  |  |
| To provide a stimulating capstone experience for Ecology \& Biodiversity Major / Ecology \& Biodiversity Major |  |  |
|  |  |  |
| Biodiversity Major / Ecology \& Biodiversity (Intensive) through planning and carrying out a research project under |  |  |
| the supervision of a member of staff. |  |  |
| Students should seek approval from a prospective supervisor prior to selecting this course. After |  |  |
| admission to the course is approved by the course coordinator, students will complete their project |  |  |
| work under the guidance of their supervisor. |  |  |
| On successful completion of this course, students should be able to: |  |  |

Academic Year 2021
Quota ---



| \& Learning Activities | Reading / Self study | formal lectures, seminars \& practical work |  | 144 |
| :---: | :---: | :---: | :---: | :---: |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Dissertation |  | 80 | $\begin{gathered} \text { CLO } \\ 1,2,3,4,5,6,7,8 \end{gathered}$ |
|  | Oral presentation | research seminar | 20 | CLO 1,6,7,8 |
| Course Website | http://moodle.hku.hk/ |  |  |  |
| Additional Course Information | A dissertation of about 9,000-12,000 words (80\% weighting) and a research seminar (20\% weighting). |  |  |  |
| BIOL4994 | Biological sciences project (12 credits) |  | Academic Year 2021 |  |
| Offering Department | Biological Sciences |  | Quota | --- |
| Course Co-ordinator | Dr C Schunter, Biological Sciences (schunter@hku.hk) |  |  |  |
| Teachers Involved | (All academic staff in Biological Sciences Major,Biological Sciences) |  |  |  |
| Course Objectives | To provide a stimulating capstone experience for all Biological Sciences Major undergraduates to integrate and apply their knowledge and skills obtained from the Biological Science Major through planning and carrying out a research project under the supervision of a member of staff. |  |  |  |
| Course Contents \& Topics | Students should seek approval from a prospective supervisor prior to selecting this course. After admission to the course is approved by the course coordinator, students will complete their project work under the guidance of their supervisor. |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 critique and review appropriate scientific literature |  |  |  |
|  | CLO 2 use this information to generate a scientifically relevant research question |  |  |  |
|  | CLO 3 develop and formulate scientific hypotheses to test this question |  |  |  |
|  | CLO 4 design and undertake practical research work to formally test the hypotheses proposed |  |  |  |
|  | CLO 5 analyse and evaluate the data collected to test the hypotheses |  |  |  |
|  | CLO 6 present data in a professional manner to illustrate the outcomes |  |  |  |
|  | CLO 7 draw an objective series of conclusions based on the experimental work |  |  |  |
|  | CLO 8 highlight and discuss their research findings and place them into a holistic scientific context |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in at least 24 cr BIOL4XXX) in the Bio Cumulative GPA of 3. This capstone course The earliest that a stu | anced level discipli ces Major; and <br> cal Sciences Major ed to take this caps | biological sciences c <br> y year 3 study. | ses (BIOL3XXX or |
| Offer in 2021-2022 | Y Year long Of | 2023 : Y | Examination | No Exam |
| Grade Descriptors $(A+\text { to } F)$ | A $\quad \begin{aligned} & \text { Evidence of } \\ & \text { attainment } \\ & \text { hypothesis. } \\ & \text { skill } \text { and } \\ & \text { presentation }\end{aligned}$ | near-complete understa outcomes. Excellent crit experimental approach to ork techniques. Demon k. | grasp of the subject $m$ of relevant literature and sis. Show excellent orga critical, assessment of | as demonstrated by entification of research ational and/or analytical sults and professional |
|  | B $\quad$Evidence of <br> of learning o <br> designed ex <br> laboratory/fie | understanding and a good critique and knowledge proach to test research ues. Demonstrate effectiv | matter as demonstrated $b$ nd identification of research good organizational and of results and good prese | tainment of the majority pothesis. Appropriately analytical skills and ion of research work. |
|  | Evidence of adequate understanding and grasp of the subject matter as demonstrated by general but incomplete attainment of most of the learning outcomes. Acceptable critique and knowledge of relevant literature and identification of research hypothesis. Adequately designed experimental approach to test research hypothesis. Show fair organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate adequate but not necessarily critical, assessment of results and presentation of research work. |  |  |  |
|  | D | Evidence of limited understanding and grasp of the subject matter as demonstrated by incomplete attainment of many of the learning outcomes. Limited critique and knowledge of relevant literature and identification of research hypothesis. Poorly designed experimental approach to test research hypothesis. Show fair organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate confused and poorly organized assessment of results and limited presentation of research work. |  |  |
|  | Fail | Evidence of poor or inadequate understanding and grasp of the subject matter such that most of the learning outcomes are not attained. Poor critique and knowledge of relevant literature and identification of research hypothesis. Badly designed experimental approach to test research hypothesis. Show little evidence of appropriate organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate incorrect interpretation and assessment of results and poor presentation of research work |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Project-based course |  |  |  |
| Course Teaching | Activities | Details |  | No. of Hours |
| \& Learning Activities | Reading / Self study | formal lectures, seminars \& practical work |  | 144 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Dissertation |  | 80 | $\begin{gathered} \text { CLO } \\ 1,2,3,4,5,6,7,8 \end{gathered}$ |
|  | Oral presentation | research seminar | 20 | $\begin{gathered} \text { CLO } \\ \text { 1,2,3,4,5,6,7,8 } \end{gathered}$ |
| Course Website | http://moodle.hku.hk/ |  |  |  |
| Additional Course Information | A dissertation of about 9,000-12,000 words (80\% weighting) and a research seminar (20\% weighting). |  |  |  |

ENVS1301
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

| Environmental life science (6 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- |
| Biological Sciences | Quota | 60 |
| Dr T Vengatesen, Biological Sciences (rajan@hku.hk) |  |  |
| (Dr T Vengatesen,Biological Sciences) |  |  |
| This course intended for students who wish to understand the fundamentals of environmental biology/life science |  |  |
| and importantly the relationship (connection) between environment and life. Here you will learn about the various |  |  |

biological/ecological principles and concepts of environmental science which are needed for critical discussion and evaluation of current global environmental issues including human ecology, urbanization, ecological economics, and climate change.

| Course Contents \& Topics | This course is a combination of lectures, group discussion/debate and field trips cum tutorials. We first explore the fundamental interactions between organisms and their environment. We then explore environmental constraints on life at various ecosystems (like marine, freshwater, and terrestrial). Students will also learn how factors such as urbanization, climate change, and anthropogenic impacts affect life at population and ecosystem levels. Similarly, students will be exposed to the incredible interrelationships that are basic to ecological principles and the impact that human development has upon these interrelationships. After learning basics of environmental life science, students will be stimulated to think about current life science issues such as biodiversity loss, organisms adaptation to climate change, tragedy of commons (human ecology) and applied life science topics such as biomaterial science. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Learning Outcomes | On successful comple <br> CLO 1 understand lif <br> CLO 2 appreciate sp <br> CLO 3 attain ability t <br> CLO 4 be motivated <br> environmenta | ourse, students shoul nt and their interactio osystem responses to k and discuss about d: to tackle biological rses | environmental chan fe science issues cience questions and | choose advanced |
| Pre-requisites (and Co-requisites and Impermissible combinations) | NIL |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offer | 023 : Y | Examinatio | May |
| Grade Descriptors$(A+\text { to } F)$ | A | Evidence of original thought during the analysis of environmental life science issues. Show evidence of analytical, critical and multidimensional thinking about the study subject. Extensive knowledge and skills required for attaining all the course learning outcomes. Demonstrate excellent ability to apply what you have learned in the class room to critically analyze the real environmental life science issues. Show highly effective organizational, presentational and field trip skills. |  |  |
|  | B Show subst <br> analytical, c <br> course learn <br> real environ | Show substantial knowledge and thought during the analysis of environmental life science issues. Show some evidence of some analytical, critical and multidimensional thinking about the study subject. Good knowledge and skills required for attaining all the course learning outcomes. Demonstrate good ability to apply what you have learned in the class room to critically analyze the real environmental life science issues. Show effective organizational, presentational and field trip skills. |  |  |
|  |  | Show general but incomplete knowledge and original thought during the analysis of environmental life science issues. Fair knowledge and skills required for attaining all the course learning outcomes. Demonstrate fair ability to apply what you have learned in the class room to critically analyze the real environmental life science issues. Show considerable organizational, presentational and field trip skills. |  |  |
|  | D <br> Evidence to life science poor ability very little or | Evidence to show a minimum knowledge (i.e. knowledge is very incomplete) and thought during the analysis of environmental life science issues. Show insufficient knowledge and skills required for attaining all the course learning outcomes. Demonstrate poor ability to apply what you have learned in the class room to critically analyze the real environmental life science issues. Show very little organizational, presentational and field trip skills. |  |  |
|  | FailEvidence o <br> knowledge <br> learned in t <br> relevant rea | Evidence of meager or inadequate knowledge and understanding of environmental life science issues. Show no evidence of knowledge and skills required for attaining all the course learning outcomes. Demonstrate no ability to apply what you havelearned in the class room to critically analyze the real environmental life science issues. Show no evidence of familiarity with relevant reading material and field trip demonstrations, or any knowledge of organizational and presentational skills. |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 24 |
|  | Field work | 3-12 hours field work |  | 12 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | 10 | CLO 2,3 |
|  | Examination |  | 70 | CLO 1,3 |
|  | Presentation | group presentation | 10 | CLO 3,4 |
|  |  |  | 10 | CLO 1 |

Required/recommended Appropriate reading materials/handouts will be provided during the course.
reading and
online materials
Course Website
Additional Course
http://moodle.hku.hk
Information
This course will be offered subject to a minimum enrollment number and availability of teachers.

ENVS2001
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents
\& Topics

## Course Learning

Outcomes

| Methods in environmental science (6 credits) | Academic Year 2021 |
| :--- | :--- |
| Biological Sciences | Quota |
| Dr M Yasuhara, Biological Sciences (yasuhara@hku.hk) |  |
| (Dr M Yasuhara,Biological Sciences) |  |
| To introduce students to a broad spectrum of field and laboratory methods for data collection in environmental <br> science. Through exposure to environmental data collection, experimental design, data analysis, interpretation and <br> reporting, students will gain a deeper appreciation of the process that underlies environmental science research <br> and it's relevancy to critical thinking and future careers in the sciences. <br> This course will involve environmental data collection in both field and laboratory settings. In-class lectures will <br> cover basic principles of specific methodologies and relevant applications in preparation for laboratory and field- <br> based experiential learning. Having an interdisciplinary focus, the course will cover topics relevant to the study of <br> the biosphere, encompassing terrestrial, aquatic, and atmospheric systems. Students will gain hands-on <br> experience with the operation of standard and advanced sampling and analytical equipment, quality control, basic <br> data analysis and reporting. <br> On successful completion of this course, students should be able to: <br> CLO 1 understand how scientific data is used to address environmental problems <br> CLO 2 have a basic understanding of the techniques and methodologies necessary for collecting environmental <br> data |  |




## Project reports

60
CLO 1,2,3
Required/recommended reading and

Keller and Botkin: Essential Environmental Science (John Wiley \& Sons, 2008)
online materials
Kaufmann and Cleveland: Environmental Science (Amazon, 2008)
Middleton N.: The Global Casino: An Introduction to Environmental Issues (Arnold, 1999)
Additional Course Previous course code: ENVS2004
Information
Compulsory to 4-year students

ENVS3019
Offering Department
Course Co-ordinator
Teachers Involved

Urban ecology ( 6 credits)
Biological Sciences
Dr T C Bonebrake, Biological Sciences (tbone@hku.hk)
(Dr C Dingle,School of Biological Sciences)
(Dr T C Bonebrake,School of Biolgoical Sciences)

| Course Objectives | This course will provide students with an understanding and knowledge of the ecology of urban ecosystems. The course will highlight the role of cities in a world under environmental change and rapid development. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Course Contents \& Topics | Ecological systems within cities and cities as ecological systems will both be covered in this course. Ecological concepts unique to or specialized within cities will be covered including sustainability, conservation, health, development, globalization, and restoration. Specific topics will include climate change (e.g. urban heat island effects), invasive species, infectious diseases and pollution. Examples will be taken globally but special emphasis will be placed on Hong Kong. |  |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |  |
| Outcomes | CLO 1 describe and evaluate the processes and patterns that characterize urban ecological systems |  |  |  |  |
|  | CLO 2 understand biodiversity and ecosystem responses to urbanization |  |  |  |  |
|  | CLO 3 recognize energy flows within urban ecosystems and how energy use and waste improve or deteriorate environmental quality |  |  |  |  |
|  | CLO 4 critically evaluate management and policy solutions to urban ecological problems |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOL2306 or ENVS2001 or ENVS2002 |  |  |  |  |
| Offer in 2021-2022 | Y | 1st sem Offer in 2022-2023: NDemonstrate thorough mastery at an advanced level of extensive k |  | Examination Dec |  |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, ability to integrateand synthesize information, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective presentational skills. Strong evidence of clear attention to thoughtful and reflective thinking. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, integration of materials and ability to apply knowledge to familiar and some unfamiliar situations. Demonstrate effective presentational skills. Evidence of clear attention to thoughtful and reflective thinking. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective presentational skills. Little evidence of clear attention to thoughtful and reflective thinking. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities and little attempt at integration. Show limited ability to apply knowledge to solve problems. Apply limited effectiveness in presentational skills. Lack of attention to thoughtful and reflective thinking. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Examination |  | Mid-term exam (20\%), Final exam (30\%) | 50 | CLO 1,2,3,4 |
|  | Presentation Project reports |  |  | 20 | CLO 1,2,3,4 |
|  |  |  |  | 30 | CLO 1,2,3,4 |

Required/recommended Textbooks:

## reading and

online materials

Niemela J, Breuste JH, Elmqvist T, Guntenspergen PJ, McIntyre NE (2011) Urban Ecology: Patterns, Processes, and Applications. Oxford University Press, Oxford.

References:
Gaston KJ (2010) Urban ecology. Cambridge University Press, Cambridge.
http://moodle.hku.hk
This course will be offered subject to a minimum enrollment number and availability of teachers.
Offer in alternate year from 2013-2014

ENVS3020
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

| Global change ecology (6 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- |
| Biological Sciences | Quota | 65 |
| Dr C Dingle, Biological Sciences (cdingle@hku.hk) |  |  |
| (Dr C Dingle,School of Biological Sciences) |  |  |
| The main goal of this course is to introduce students to the ways in which global environmental change affects <br> biodiversity from organisms to ecosystems. This course will explore the contributions that human population growth <br> and globalization have made to increases in greenhouse gases and associated climate change, biological <br> invasions, land degradation, disease, and, ultimately, impacts on biological systems. |  |  |


| Course Contents \& Topics | Environmental change is a natural phenomenon, with ecosystems continually shifting, rearranging, emerging, and disappearing through geologic time with changes in climatic conditions. The activities of humans have added to this natural variation, increasing the magnitude and speed with which environmental change occurs. This course will focus principally on the effects of climate change on organisms and ecosystems but will also investigate other topics registering on a global scale including land use change, biological invasions, and pollution, as well as synergistic interactions between all of the environmental stressors. We will explore (1) what climate change is and how it is manifested including climate warming, sea level rise, and ocean acidification; (2) types and extents of land use change; (3) how globalization has contributed to the spread of alien species and disease. The course will investigate how these human-caused stressors affect the morphology, phenology, distribution, and evolution of organisms and their impacts on ecosystem functioning and biodiversity in freshwater, marine, and terrestrial ecosystems. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 develop a basic understanding of climate change and other human-associated impacts, such as land use change, and how they are manifested on a global scale |  |  |  |
|  | CLO 2 explain the ways that global change affects organisms' traits and distributions, and biodiversity at the ecosystem level |  |  |  |
|  | CLO 3 understand the differences between climate change on a geologic time scale and recent climate change |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOL2306 or ENVS2001 or ENVS2002 |  |  |  |
| Offer in 2021-2022 | N Offer in 2022-2023: Y |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, ability to integrate and synthesize information, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective presentational skills. Strong evidence of clear attention to thoughtful and reflective thinking. |  |  |  |
|  | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, integration of materials and ability to apply knowledge to familiar and some unfamiliar situations. Demonstrate effective presentational skills. Evidence of clear attention to thoughtful and reflective thinking. |  |  |  |
|  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective presentational skills. Little evidence of clear attention to thoughtful and reflective thinking. |  |  |  |
|  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities and little attempt at integration. Show limited ability to apply knowledge to solve problems. Apply limited effectiveness in presentational skills. Lack of attention to thoughtful and reflective thinking. |  |  |  |
|  | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 24 |
|  | Tutorials |  |  | 12 |
|  | Project work | Problem-based exercises |  | 20 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments | problem-based exercises (10\%), continuous assessment (10\%) | 20 | CLO 1,2,3,4 |
|  | Essay | Essay and presentation | 30 | CLO 1,2 |
|  | Examination |  | 30 | CLO 1,2,3,4 |
|  | Test | Mid-term test | 20 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Recommended books Lovejoy, T.E. and Han Newman et al. 2011. <br> Required articles: Araujo, M.B., and Rah Grimm, N.B., Faeth, and the ecology of citi Schlesinger, W.H. 2006 | 5. Climate Change and Biodiversity nge Biology. CAB International, Oxf <br> 6. How does climate change affect wski, N.E., Redman, C.L., Wu J., 319:756-760. <br> hange ecology. Trends in Ecology a | University Press, UK. <br> iversity? Science 31 X., and Briggs, J.M. <br> Evolution 21:348-351 | Haven, CT, USA. <br> 396-1397. <br> 08. Global change |
| Course Website | http://moodle.hku.hk/ |  |  |  |
| Additional Course Information | This course will be offered subject to a minimum enrollment number and availability of teachers. Offer in alternate year from 2016-2017 |  |  |  |
| ENVS3022 | Environmental science field course (6 credits) |  | Academic Y | 2021 |
| Offering Department | Biological Sciences |  | Quota | 10 |
| Course Co-ordinator | Dr M Yasuhara, Biological Sciences (yasuhara@hku.hk) |  |  |  |
| Teachers Involved | (Dr C Dingle,Biological Sciences) (Dr M Yasuhara,Biological Sciences) |  |  |  |
| Course Objectives | To provide students experiential learning experience in the field of environmental science. The course is primarily based on an array of experiential studies covering essential areas of environmental science during a residential fieldtrip. |  |  |  |
| Course Contents \& Topics | Students to attend a residential field trip outside Hong Kong to learn about environmental science in practice. The residential field trip may include marine environmental survey, sediment core sampling, practical learning of ecological, paleoecology and environmental problems, environmental geology/paleontology excursion, and other activities. Students are required to write an independent report on the learning outcome of the field trip. |  |  |  |


| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | CLO 1 | recognize ways of environmental science in practice |  |  |  |
|  | CLO 2 | gain knowledge of current environmental problems and solutions |  |  |  |
|  | CLO 3 | present and communicate their field observations and findings |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in ENVS2001 or <br> Either pass in ENVS2002 or concurrently enrolled in ENVS2002 |  |  |  |  |
| Offer in 2021-2022 | N Offer in 2022 |  |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply highly effective lab / fieldwork skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Apply effective lab / fieldwork skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective lab / fieldwork skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills. |  |  |  |
|  |  | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply partially effective lab / fieldwork skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Apply minimally effective or ineffective lab/fieldwork skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Laboratory and workshop course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Field work |  | Students will take part in at least 66 hours of field trips and other learning 66 hours |  | 66 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Laboratory reports |  | field reports | 30 | CLO 1,2,3 |
|  | Presentation |  | group presentations | 30 | CLO 1,2,3 |
|  | Project reports |  | individual report | 40 | CLO 1,2,3 |
| Course Website | http://www.biosch.hku.hk/ecology/lsc/ |  |  |  |  |
| Additional Course Information | Enrollment Procedure: The actual capacity of this course is limited and will vary year by year, regardless of the quota set. So, interested student must apply for the course with a short proposal ( 2 pages max.) and CV via e-mail to Dr M Yasuhara (yasuhara@hku.hk) and Ms. Maria Lo (gylo@hku.hk) not later than 1st August (Note: this is 2nd semester course, but we need applications well in advance, by this date). Late applications will not be accepted. The proposal should include the following: (1) specific reason(s)/motivation why you are interested in joining this course; (2) merit that you expect to receive from this course, especially regarding your future academic/career path; (3) brief description of academic interests. The CV should include: (1) Personal \& academic details; (2) ID photograph; (4) GPA; (5) Pre-requisite courses taken \& grades received. <br> The selection will be made based on the quality of proposal and the justification of academic merit, in considering other factors. Only accepted students through this application process will be able to register this course. <br> The residential field trip will be organized in the reading week. Students will need to pay for their own travel cost for the trip (please contact us for details \& financial difficulty). <br> It will be good to take this course before taking the final year project to have relevant hands-on experience. <br> This course will be offered subject to a minimum enrollment no. and availability of teachers. |  |  |  |  |

## ENVS3028 Offering Department <br> Course Co-ordinator

Teachers Involved

| Coastal Sustainability (6 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- |
| Biological Sciences | Quota | 8 |
| Dr T Vengatesen, Biological Sciences (rajan@hku.hk) |  |  |
| (Dr T Vengatesen,School of Biological Sciences) |  |  |
| (Prof G A Williams,School of Biological Sciences) |  |  |
| - Understand the primary drivers of biodiversity and ecosystem function in rocky intertidal, mangrove and coral reef |  |  |
| ecosystems in USA and SE Asia. |  |  |

ecosystems in USA and SE Asia. - Gain an appreciation for how urban ecosystems in this region are being affected by climate change, development and stress from pollution

- Better understand how history and governance structures of Hong Kong, Malaysia and New England constrain and/or facilitate coastal adaptation strategies
- Appreciate how cultural practices such as seafood preferences and traditional medicine affect harvesting of marine species, and how this impacts coastal biodiversity
The majority of the Earth's population now lives in coastal cities, where people not only depend on ocean resources, but are also experiencing ever increasing threats from the ocean environment. This program will explore the mechanisms by which coastal communities in the US and SE Asia are facing these expanding challenges, including their impacts on coastal ecosystems. Using a comparative approach, students will explore the diverse challenges facing coastal societies, and will gain an in-depth understanding of coupled human-natural systems on the coasts of New England and Southeast Asia (Hong Kong and Malaysia).
By comparing and contrasting both ecosystems and societies, students will develop an appreciation for both the commonalities of challenges facing the world's coasts, as well as differences that occur due to local ecology. A major emphasis of the program will be on solutions, and how by taking a global perspective we can accelerate methods for climate change adaptation that span traditional cultural barriers. We will blend studies of threats facing both human and natural systems in Hong Kong, Malaysia and the Gulf of Maine with an in-depth exploration of how those societies have (or have not) enacted solutions to those challenges.
On successful completion of this course, students should be able to:
CLO 1 Articulating similarities and differences between how coupled human-natural systems operate in SE Asia and in comparable habitats in the U.S.A.

Reading and synthesizing review articles in the prinary literature in marine science and social science literature, and explain the connections among these diverse approaches
CLO 3 Articulating arguments about how traditional Chinese, Malaysian and American culture affect human impacts on the environment, and to develop potential solutions to these issues based on conversations with peers
CLO 4 Becoming comfortable collaborating with peers from U.S.A, and gain a greater understanding of the culture of the region

Pre-requisites (and Co-requisites and Impermissible combinations)

## Offer in 2021-2022

Grade Descriptors (A+ to F)

Pass in BIOL2306 or BIOL3301 or BIOL3305 or BIOL3318 or ENVS2001 or ENVS2002 or EASC3020


3rd and 4th weeks: Lectures and field trips in Northeastern University, New England (Boston, USA)
This is an introductory overseas experiential learning course designed for all science students as free elective. it is especially suitable for students aiming to major in environmental science, ecology \& biodiversity or biological sciences.
"Note: Field trips in New England (Boston, USA) will NOT be considered for assessment and, therefore, those field trips in USA are only exploratory in nature and are NOT part of any HKU's credit bearing course".

| ENVS3202 | Plant physiology and climate change ( 6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Biological Sciences | Quota | 40 |
| Course Co-ordinator | Dr J Wu, Biological Sciences (jinwu@hku.hk) |  |  |
| Teachers Involved | (Dr J Wu,Biological Sciences) |  |  |
| Course Objectives | In this course students will learn different quantitative methods for measuring and evaluating climate change impacts on terrestrial ecosystems. This interdisciplinary course draws on aspects of plant physiology ecology, micrometeorology and ecosystem ecology to describe impacts and patterns of global change. We will explore how the "breathing" of the biosphere impacts and is impacted by climate change by scaling plant physiology from leaf to canopy, and ultimately to global scales. Students will examine the biophysical processes that affect the exchange of material (water, CO 2 , and atmospheric trace gases) and energy between terrestrial biosphere and the atmosphere. In addition, students will learn cutting-edge techniques to help monitor, model and diagnose these processes. |  |  |
| Course Contents \& Topics | 1. Overview of plant physiology, with particular focus on the <br> 2. Fundamental biophysical principles that regulate the str transpiration and etc). <br> 3. Introduction to various remote sensing and modelling app plant metabolism (e.g. proximate and satellite remote sensin etc). <br> 4. Case studies introducing practical applications of cutal environmental issues. | plants and clim metabolism (i.e. <br> the impacts of cli elling, biological <br> ology to current | te. <br> phot <br> nate v caling ecolo |
| Course Learning | environmental issues. | On successful completion of this course, students should be able to: |  |
| Outcomes | CLO 1 understand the fundamental principles that regulate terrestrial ecosystem metabolism |  |  |
|  | CLO 2 understand the basic of remote sensing data a | remote sens | da |

Pre-requisites (and Co-requisites and Impermissible combinations)
Offer in 2021-2022 Grade Descriptors ( $\mathrm{A}+$ to F )

CLO 3 understand how to use scientific understanding of plant physiology and remote sensing data to help explain several pressing environmental problems associated with global climate change
Pass in BIOL2306 or ENVS2001 or ENVS2002 or EASC2404.
Priority will be given to students majoring in Environmental Science, Biological Science, and Earth System Science.

| Y | 1st sem Offer | 23: Y | Examinati | Dec |
| :---: | :---: | :---: | :---: | :---: |
| A | Demonstrate thorough mastery of the course material. Show strong ability for analytical, critical and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Demonstrate highly effective organizational and presentational skills. |  |  |  |
| B | Demonstrate substantial command of the course material and an ability to apply knowledge to familiar and some unfamiliar situations. Show evidence of analytical, critical thought to some complex issues. Apply effective organizational and presentational skills. |  |  |  |
| C | Demonstrate general but incomplete command of the course material and an ability to apply knowledge to most familiar situations. Show evidence of some critical and logical thinking abilities. Apply moderately effective organizational and presentational skills. |  |  |  |
| D | Demonstrate partial but limited command of the course material and a limited ability to apply knowledge to solve problems. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective organizational and presentational skills. |  |  |  |
| Fail | Demonstrate little or no evidence of command of course material with very little or no ability to apply knowledge to solve problems. Lack of critical thinking abilities and incoherent thinking. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| N |  |  |  |  |
| Lecture with laboratory component course |  |  |  |  |
| Activ | ities | Details |  | No. of Hours |
| Lectur | res |  |  | 24 |
| Labo | ratory |  |  | 12 |
| Tutor | rials |  |  | 12 |
| Read | ing / Self study |  |  | 90 |
| Meth | ods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
| Assignments |  | home work (30\%) and lab. assignment (20\%) | 50 | CLO 1,2,3 |
| Examination |  |  | 40 | CLO 1,2,3 |
| Presentation |  |  | 10 | CLO 1,3 |

http://moodle.hku.hk/
The major course objectives will be assessed by examining the biophysical processes that affect the transfer of momentum, energy and material (water, CO2, and atmospheric trace gases) between terrestrial biosphere and the atmosphere. Key instrumentation and associated multi-scale measurements of this course are also discussed. This course complements the content covered in EASC3405 Environmental Remote Sensing, but students may take this course before or after having taken EASC3405.
ENVS3401
Offering Department

Course Co-ordinator
Teachers Involved

## Understanding tropical ecosystems in a changing world (6 credits)

Academic Year
Biological Sciences
Quota
Dr A L Ashton, Biological Sciences (lashton@hku.hk)
(Dr A L Ashton,Biological Sciences)
(Dr C Dingle,Biological Sciences)
(Dr T Bonebrake,Biological Sciences)
Course Objectives In this field course, students will learn how to use natural history and ecology to answer important environmental questions relevant to tropical ecoystems. Through field studies in both degraded and prisitine habitats, students will gain an understanding of the major drivers of ecosystem change and biodiversity loss in a tropical landscape in Sabah, Borneo and learn about measures to mitigate the impacts of human activities in these vital ecosystems. Students will work in groups to develop and carry out a research project to address ecological or environmental questions. After the field portion of the course, students will write up the results of their projects in the style of a scientific paper.
Course Contents

\& Topics $\quad$| Tropical rainforests are the most biologically rich terrestrial ecosystems, providing important environmental |
| :--- |
| services such as nutrient cycling, carbon storage and new medicines. Rainforests are under increasing |
| anthropogenic pressure due to logging, burning and conversion to agriculture, as well as climate change. Effective |
| conservation efforts over the next few decades are essential if we are to slow down our impacts on these vital |
| ecosystems. In this course, through a series of lectures, tutorials and fieldwork, students will learn about tropical |
| rainforest ecosystems, investigate the environmental impacts of land use change, and discus conservation |
| measures which can help mitigate these impacts. Students will also learn techniques for designing and carrying out |
| field research projects, and about the importance of data generated from research to inform efforts to minimize the |
| impact of human activities in such important ecosystems. The bulk of the course will be carried out in Danum |
| Valley, a primary tropical rainforest located in Sabah, Malaysia. We will visit some sites impacted by human |
| activities, including palm oil plantations, to observe how land-use changes impact biodiversity and observe in situ |
| conservation efforts. Students will work in groups to conduct research projects which will tie together the concepts |
| learned through the lectures and field trips |


| N Offer in 2022-2023: Y Examination |  |  |  | Examination | --- |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Ability to apply knowledge of the natural history of a tropical rainforest and ecological studies to conservation ecology. Produce a scientific paper that is written at high enough quality for publication. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show very good analytical and critical abilities and logical thinking, with evidence of original thought. Ability to apply knowledge of the natural history of a tropical rainforest and ecological studies to conservation ecology. Produce a well written scientific paper. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show some analytical and critical abilities and logical thinking, with evidence of original thought. Able to apply some knowledge of the natural history of a tropical rainforest and ecological studies to conservation ecology. Produce a scientific paper that communicates your results. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show some analytical and critical abilities and logical thinking, but not original thought. Limited ability to use knowledge of natural history of a tropical rainforest and ecological studies to conservation ecology. Produce a scientific paper that communicates your results. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. No demonstration of analytical and critical abilities and logical thinking, with evidence of original thought. Not able to apply knowledge of the natural history of a tropical rainforest, ecological studies to conservation ecology. Fail to produce a standard scientific paper. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Field camps |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  | Briefing at HKU on field course activities |  | 2 |
|  | Field work |  | 10 days field work experience |  | 40 |
|  | Laboratory work |  | Lab work during the field trip |  | 30 |
|  | Tutorials |  | Lectures/workshops during field trip |  | 10 |
|  | Presentation |  | Presentation during the field camp, based on the research proejct |  | 5 |
|  | Reading / Self study |  | Preparation of report after the field trip |  | 40 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | Field journal: Students will create a natural history field journal, with scientific drawings and observations | 20 | CLO 2 |
|  | Report |  | Journal-style paper based on the research carried out on the field course | 50 | CLO 1,2,3,4 |
|  | Test |  | Oral presentation: Prentation during the field camp, based on the research proejct | 30 | CLO 1,2,3 |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| Additional Course Information | This is an overseas experiential learning course designed for ENVS/E\&B/ESS Major/Minor students as free elective. It is especially suitable for students aiming to major in environmental science, ecology \& biodiversity or biological sciences. |  |  |  |  |
| ENVS3402 | Qualitative data, social science methods and decisionmaking in environmental science ( 6 credits) |  |  | Academic Year | 2021 |
| Offering Department | Biological Sciences |  |  | Quota | 30 |
| Course Co-ordinator | Dr Hannah Mumby, Biological Sciences (hsmumby@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr Hannah Mumby,Biological Sciences) |  |  |  |  |
| Course Objectives | This course will introduce social science and qualitative approaches in environmental science. We will introduce the historical context and philosophical background to different approaches to environmental sciences. The course will then take a case study-based approach, using the case studies to introduce methodologies and methods. These include the ethical process, collection and analysis of qualitative and quantitative data from focus groups, surveys, interviews and questionnaires. We will also discuss wider methodologies including ethnographic approaches. Attention will be paid to suitability of methods to research questions, how studies are conducted and what analyses are used. We will also investigate how these data are or can be integrated into decision-making processes, including different tools that can be used for decision-making. |  |  |  |  |
| Course Contents \& Topics | -Research philosophy- how researchers approach questions in environmental science <br> -Research methodology- the rationale and framework for research <br> -Ethical considerations, concepts of 'bias', objectivity, truths and the role of the researcher <br> -Methodologies including biographical techniques, ethnography and case studies. <br> -Methods, sampling data and analyses, including questionnaires and surveys, interviews, focus groups, and decision-making tools. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 Determine and distinguish a range of social science approaches and qualitative data analysis techniques |  |  |  |  |
|  | CLO 2 Design a study appropriate for the research question using those approaches and techniques |  |  |  |  |
|  | CLO 3 Discuss the philosophical and epistemological background of different approaches to environmental science questions |  |  |  |  |
|  | CLO 4 Critically evaluate studies using social science and/or qualitative approaches. |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in ENVS2002 |  |  |  |  |
| Offer in 2021-2022 | Y | 2nd sem Offer in 2022-2023: Y |  | Examination May |  |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery of the course material. Show strong ability for analytical, critical and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Demonstrate highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of the course material and an ability to apply knowledge to familiar and some unfamiliar |  |  |  |


|  |  | situations. Show evidence of analytical, critical thought to some complex issues. Apply effective organizational and presentational skills. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | Demonstrate general but incomplete command of the course material and an ability to apply knowledge to most familiar situations. Show evidence of some critical and logical thinking abilities. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of the course material and a limited ability to apply knowledge to solve problems. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of course material with very little or no ability to apply knowledge to solve problems. Lack of critical thinking abilities and incoherent thinking. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  | Lab ses |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  |  | 70 | CLO 1,2,3,4 |
|  | Examination |  |  | 30 | CLO 1,2,3,4 |

Required/recommended Methods in Ecology and Evolution (2018) Special Feature: Qualitative methods for eliciting judgements for decision reading and online materials making, Volume 9, Issue 1, pp 1-206. This entire special issue contains papers on the topic.
Moon et al. (2019) Expanding the role of social science in conservation through an engagement with philosophy, methodology, and methods. Methods in Ecology and Evolution. Volume 10 pp 294-302.

Mukherjee et al. (2019) Response to Expanding the role of social science in conservation through an engagement with philosophy, methodology and methods. Methods in Ecology and Evolution. Volume 10 pp 303-307


|  | Lectures |  |  | 24 |
| :---: | :---: | :---: | :---: | :---: |
|  | Laboratory |  |  | 8 |
|  | Field work |  |  | 6 |
|  | Project work |  |  | 6 |
|  | Tutorials |  |  | 4 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | 10 | CLO 1,2,3,4 |
|  | Examination |  | 50 | CLO 1,2,3,4 |
|  | Laboratory reports |  | 25 | CLO 1,2,3,4 |
|  | Presentation |  | 10 | CLO 1,2,3,4 |
|  | Test |  | 5 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | C.J. Hurst: Manual of S.C. McCutcheon \& R. Mitchell \& J-D Gu: | al Microb Phytorem al Microb | n) Control of Contami edition) | ts (Wiley) |
| Course Website | http://moodle.hku.hk/ |  |  |  |
| Additional Course Information | The course will be offered subject to a minimum enrollment number and availability of teachers. Offer in alternative year from 2011-2012 |  |  |  |







Required/recommended Petrucci; Herring; Madura; Bissonnette: General Chemistry: Principles and Modern Applications, latest edition, reading and
online materials Zumdahl; Decoste: Chemical Principles, latest edition, Cengage. Brown; LeMay; Bursten; Murphy; Woodward; Stolzfus: Chemistry - The Central Science, latest edition, Pearson. Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this
Additional Course Information course.

CHEM1043
Offering Department
Course Co-ordinator

General chemistry II ( 6 credits)
Academic Year 2021
Chemistry Quota
Dr A P L Tong, Chemistry (apltong@hku.hk)


Required/recommended Petrucci; Herring; Madura; Bissonnette: General Chemistry: Principles and Modern Applications, latest edition,

## reading and

online materials Zumdahl; Decoste: Chemical Principles, latest edition, Cengage. Brown; LeMay; Bursten; Murphy; Woodward; Stolzfus: Chemistry - The Central Science, latest edition, Pearson.

| CHEM1044 | Mathematics in chemistry (6 credits) | Academic Year 2021 |
| :---: | :---: | :---: |
| Offering Department | Chemistry | Quota 80 |




|  | Laboratory |  |  | 24 |
| :---: | :---: | :---: | :---: | :---: |
|  | Tutorials |  |  | 6 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | 10 | CLO 1,2 |
|  | Examination |  | 50 | CLO 1,2 |
|  | Laboratory reports |  | 20 | CLO 3 |
|  | Test |  | 20 | CLO 1,2 |

Required/recommended Skoog, West, Holler and Crouch, "Fundamentals of Analytical Chemistry", latest edition, Cengage Learning reading and
online materials
Additional Course Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this Information course.

| CHEM2341 |
| :--- |
| Offering Department |
| Course Co-ordinator |


| Course Co-ordinator |
| :--- |
| Teachers Involved |

Inorganic chemistry I (6 credits) Academic Year 2021
Chemistry $\quad$ Quota 120
Dr H Y Au Yeung, Chemistry (hoyuay@hku.hk)
(Dr A M Y Yuen,Chemistry)
(Dr H Y Au Yeung,Chemistry)
(Prof H Z Sun,Chemistry)
Course Objectives To provide students with the basic principles and knowledge of inorganic chemistry and to introduce their relevance to biological processes and materials science. This course provides the foundation for further studies in inorganic chemistry.
Acid-base concept; structure and bonding of transition metal complexes and main group compounds; electronic absorption and magnetic properties of metal complexes; chemical reactions of metal complexes: redox and substitution; chemistry of selected main group elements and transition metal complexes and their relevance to biology and materials.
On successful completion of this course, students should be able to:
CLO 1 understand the basic principles and concepts of inorganic chemistry and appreciate their relevance to selected examples of biological processes and materials science
CLO 2 demonstrate knowledge and understanding of the acid-base concept and definition
CLO 3 demonstrate knowledge and understanding of the structure and bonding of main group compounds and transition metal complexes and their relevance to the electronic absorption and magnetic properties of transition metal complexes
CLO 4 demonstrate knowledge and understanding of the thermodynamic stability of metal complex formation and the thermodynamic and kinetic aspects of substitution and redox reactions
CLO 5 demonstrate knowledge and understanding of the role of main group elements and transition metal complexes in bioinorganic chemistry
Pass in CHEM1042; and NOT for students who have passed in CHEM2041, or already enrolled in this course (for students admitted in 2014-15 or before);
Pass in CHEM1042; and Pass in CHEM1043, or already enrolled in this course; and NOT for students who have passed in CHEM2041, or already enrolled in this course (for students admitted in 2015-16 or thereafter)
Y 1st sem 2nd sem Offer in 2022-2023: Y Examination Dec May
A Demonstrate thorough knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of inorganic chemistry, especially those related to acid-base concept; structure and bonding of main group compounds and metal complexes; electronic absorption spectroscopy, magnetic properties as well as thermodynamic and kinetic aspects of metal complexes and their reactions; and their relevance to biological processes and materials science. Show strong ability to apply and integrate knowledge and theory rel! ting to the basic foundation knowledge of inorganic chemistry. Show strong ability to analyze novel problems and critical use of data and experimental results to draw appropriate and insightful conclusions relating to the basic principles and knowledge of inorganic chemistry. Demonstrate highly effective basic laboratory skills and techniques, especially in the synthesis and characterization of inorganic compounds and metal complexes.
B Demonstrate substantial command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of inorganic chemistry, especially those related to acid-base concept; structure and bonding of main group compounds and metal complexes; electronic absorption spectroscopy, magnetic properties as well as thermodynamic and kinetic aspects of metal complexes and their reactions; and their relevance to biological processes and thermodynamic and kinetic aspects of metal complexes and their geactions, and their
materials science. Show evidence to apply and integrate knowledge and theory relating to the basic foundation knowledge of materials science. Show evidence to apply and integrate knowledge and theory relating to the basic foundation knowedge trand inorganic chemistry. Show evidence to analyze novel problems and correct use of data and experimental results to draw
appropriate conclusions relating to the basic principles and knowledge of inorganic chemistry. Demonstrate effective basic appropriate conclusions relating to the basic principles and knowledge of inorganic chemistry. Demonstrate effective basic
laboratory skills and techniques, especially in the synthesis and characterization of inorganic compounds and metal complexes.
C Demonstrate general but incomplete command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of inorganic chemistry, especially those related to acid-base concept; structure and bonding of main group compounds and metal complexes; electronic absorption spectroscopy, magnetic properties as well as thermodynamic and kinetic aspects of metal complexes and their reactions; and their relevance to biological processes and materials science. Show evidence of some abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of inorganic chemistry. Show ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of inorganic chemistry. Demonstrate moderately effective basic laboratory skills and techniques, especially in the synthesis and characterization of inorganic compounds and metal complexes.
Demonstrate partial but limited command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of inorganic chemistry, especially those related to acid-base concept; structure and bonding of main group compounds and metal complexes; electronic absorption spectroscopy, magnetic properties as well as thermodynamic and kinetic aspects of metal complexes and their reactions; and their relevance to biological processes and materials science. Show evidence of limited abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of inorganic chemistry. Show limited ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of inorganic chemistry. Demonstrate partially effective basic laboratory skills and techniques, especially in the synthesis and characterization of inorganic compounds and metal complexes.
Fail Demonstrate little or no evidence of command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of inorganic chemistry, especially those related to acid-base concept; structure and bonding of main group compounds and metal complexes; electronic absorption spectroscopy, magnetic properties as well as thermodynamic and kinetic aspects of metal complexes and their reactions; and their relevance to biological processes and materials science. Show little or no evidence of abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of inorganic chemistry. Show little or no ability to analyze problems to most familiar situations and erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of inorganic chemistry. Demonstrate minimally effective basic laboratory skills and techniques, especially in the synthesis and characterization of inorganic compounds and metal complexes.

| Communicationintensive Course | N |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching <br> \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 24 |
|  | Laboratory |  |  |  | 24 |
|  | Tutorials |  |  |  | 6 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  |  | 15 | CLO 1,2,3,4,5 |
|  | Examination |  |  | 50 | CLO 1,2,3,4,5 |
|  | Laboratory reports |  |  | 15 | CLO 1,2,3,4,5 |
|  | Test F. A. Cotton ; G. Wilkinson ; P. L. Gaus : Basin |  |  | 20 | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | F. A. Cotton ; G. Wilkinson ; P. L. Gaus : Basic Inorganic Chemistry (John Wiley \& Sons, 1995, 3rd ed.) P. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong: Shriver \& Atkins Inorganic Chemistry (Oxford |  |  |  |  |
| Additional Course Information | Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course. |  |  |  |  |
| CHEM2441 | Organic chemistry I (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Chemistry |  |  | Quota | 200 |
| Course Co-ordinator | Prof P Chiu, Chemistry (pchiu@hku.hk) |  |  |  |  |
| Teachers Involved | (Prof P Chiu,Chemistry) |  |  |  |  |
| Course Objectives | To provide students with the basic principles to understand the structure and reactivity of organic molecules, with examples illustrating the role of organic chemistry in daily life and industry. <br> This course serves as the first part of the complete program on fundamental organic chemistry, to be followed up by CHEM3441 Organic Chemistry II. |  |  |  |  |
| Course Contents \& Topics | Structure and bonding of organic compounds, three dimensional structures of organic molecules, conformational stereochemistry, chirality. Chemistry of alkanes, cycloalkanes, alkenes, alkynes, haloalkanes, dienes, aromatic compounds, alcohols, thiols, and ethers. Organometallic chemistry for organic synthesis. Principles of organic synthesis. Detailed considerations of reaction mechanisms. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 understand basic concepts and employ the vocabulary of organic chemistry |  |  |  |  |
|  | CLO 2 visualize and draw three-dimensional, stereochemically correct representations of organic molecules |  |  |  |  |
|  | CLO 3 recognize, discriminate and name chiral stereoisomers and diastereomers |  |  |  |  |
|  | CLO 4 understand the reactivity of the functional groups |  |  |  |  |
|  | CLO 5 understand reaction mechanisms and apply mechanistic knowledge to solve chemistry problems |  |  |  |  |
|  | CLO 6 apply reactions to the synthesis of target molecules |  |  |  |  |
|  | CLO 7 appreciate the relevance of organic chemistry in biological processes and daily life |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in CHEM1042; and NOT for students who have passed in CHEM2041, or already enrolled in this course (for students admitted in 2014-15 or before); <br> Pass in CHEM1042; and Pass in CHEM1043, or already enrolled in this course; and NOT for students who have passed CHEM2041, or already enrolled in this course (for students admitted in 2015-16 or thereafter) |  |  |  |  |
| Offer in 2021-2022 | Y | sem 2nd | in 2022-2 | Examinatio | Dec May |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate a thorough mastery at an advanced level of knowledge and understanding of facts and concepts pertaining to the chemical properties, reactions and mechanisms of organic chemistry. Show a strong ability to integrate knowledge and theory, and a strong ability to analyze and solve novel organic chemistry problems. Demonstrate highly effective organization, understanding, and execution of lab skills and techniques in organic chemistry experiments. |  |  |  |
|  | B | Demonstrate substantial command of knowledge and understanding of essential facts and concepts pertaining to the chemical properties, reactions and mechanisms of organic chemistry. Show evidence of ability to integrate knowledge and theory, and evidence of ability to analyze and solve novel organic chemistry problems. Demonstrate effective organization, understanding, and execution of lab skills and techniques in organic chemistry experiments. |  |  |  |
|  | C | Demonstrate a general but incomplete command of knowledge and understanding of essential facts and concepts pertaining to the chemical properties, reactions and mechanisms of organic chemistry. Show evidence of some ability to integrate knowledge and theory, and evidence of some ability to analyze novel problems. Show a mostly correct use of knowledge to solve most familiar problems. Demonstrate adequately effective organization, understanding, and execution of lab skills and techniques in organic chemistry experiments. |  |  |  |
|  | D | Demonstrate a partial but limited command of knowledge and understanding of essential facts and concepts pertaining to the chemical properties, reactions and mechanisms of organic chemistry. Show evidence of limited ability to integrate knowledge and theory, and a limited ability to analyze novel problems. Show some correct but also erroneous use of knowledge to solve most familiar problems. Demonstrate a partially effective organization, understanding and application of lab skills and techniques in organic chemistry experiments. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and understanding of essential facts and concepts pertaining to the chemical properties, reactions and mechanisms of organic chemistry. Show little or no evidence of ability to apply and integrate knowledge and theory, and little or no ability to analyze novel problems. Show little or no evidence of ability to solve most familiar problems. Demonstrate minimal or no organization, understanding and application of lab skills and techniques in organic chemistry experiments. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 24 |
|  | Tutorials |  |  |  | 36 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | (Assignm | 30 | CLO 1,2,3,4,5,6,7 |
|  | Examination |  |  | 50 | CLO 1,2,3,4,5,6 |
|  | Test |  |  | 20 | CLO 1,2,3,4,5,6 |

[^4]reading and
online materials

Additional Course Information

This course will be conducted as a blended learning course, in which the teaching material will be delivered using videos, along with face-to-face and online tutorials.

CHEM2442
Offering Department Course Co-ordinator Teachers Involved Course Objectives

Fundamentals of organic chemistry ( 6 credits)
Chemistry Dr P H Toy, Chemistry (phtoy@hku.hk) (Dr P H Toy,Chemistry)
The major objective of this course is to give the students a basic understanding of organic chemistry, especially in the context of daily life. This will be achieved through the introduction of the chemistry of organic functional groups that form the basis of organic molecules. The concepts presented in the lectures will be reinforced by a series of laboratory experiments.
The chemistry of organic functional groups such as alkenes, alkynes, alkyl halides, alcohols, aldehydes, ketones, carboxylic acids and their derivatives, and amines will be discussed, as will the general concepts of molecular structure, conformation and stereochemistry.
On successful completion of this course, students should be able to:
CLO 1 demonstrate basic understanding of the structure of organic molecules
CLO 2 demonstrate basic understanding of the reactivity of organic molecules
CLO 3 appreciate how organic chemistry plays an important role in everyday life
Pass in CHEM1042; and
Not for students who have passed CHEM2441, or have already enrolled in this course.
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors (A+ to F)

## Examination Dec

Demonstrate thorough mastery at an advanced level of extensive organic chemistry knowledge, and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar problems.

|  | B | Demonstrate substantial command of organic chemistry with a broad range of knowledge, and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar problems. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | Demonstrate general but incomplete command of organic chemistry knowledge, and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar problems. |  |  |  |
|  | D | Demonstrate partial but limited command of organic chemistry knowledge, and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of organic chemistry knowledge, and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 24 |
|  | Laboratory |  |  |  | 20 |
|  | Tutorials |  |  |  | 5 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Examination |  |  | 60 | CLO 1,2,3 |
|  | Test |  | Test/Quiz | 40 | CLO 1,2,3 |

Required/recommended Bruice, P.Y.; Essential Organic Chemistry (Pearson, 2016, 3rd edition)
reading and
online materials
Additional Course
Information

| CHEM2443 | Fundamentals of organic chemistry for pharmacy students (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Chemistry | Quota | 60 |
| Course Co-ordinator | Dr P H Toy, Chemistry (phtoy@hku.hk) |  |  |
| Teachers Involved | (Dr P H Toy, Chemistry) |  |  |
| Course Objectives | The major objective of this course is to give pharmacy students a basic understanding of organic chemistry, especially in the context of daily life. This will be achieved through the introduction of the chemistry of organic functional groups that form the basis of organic molecules. The concepts presented in the lectures will be reinforced by a series of laboratory experiments. |  |  |
| Course Contents \& Topics | The chemistry of organic functional groups such as alkenes, alkynes, alkyl halides, alcohols, aldehydes, ketones, carboxylic acids and their derivatives, and amines will discussed, as will the general concepts of molecular structure, conformation and stereochemistry. |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |
| Outcomes | CLO 1 demonstrate basic understanding of structure of organic molecules |  |  |
|  | CLO 2 demonstrate basic understanding of the reactivity of organic molecules |  |  |
|  | CLO 3 appreciate how organic chemistry plays an important role in everyday life |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in CHEM1042; and Not for students who have passed CHEM2442, or already enrolled in this course. (This course is for BPharm students only) |  |  |
| Offer in 2021-2022 | N Offer in 2022-2023: N | Examination | --- |






Required/recommended W. D. Callister: Materials Science and Engineering: An Introduction (8th or 9th edition)
onl
F. W. Billmeyer: Textbook of Polymer Science (John Wiley and Sons, 1984)
G. Odian: Principles of Polymerizations (John Wiley and Sons, 2004)
M. P. Stevens: Polymer Chemistry: An Introduction (Oxford University Press, 1999)



Required/recommended D.A. Skoog, F.K. Holler, S.R. Crouch: Principles of Instrumental Analysis (Thomson, latest edition).
reading and online materials Additional Course Information

CHEM3242 Offering Department Course Co-ordinator Teachers Involved Course Objectives

Course Contents \& Topics
D.A. Skoog, D.M. West, F.J. Holler, and S.R. Crouch: Fundamentals of Analytical Chemistry (Thomson, latest edition)
Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.

Food and water analysis ( 6 credits)
Academic Year 2021
Chemistry Dr K K H Ng, Chemistry (kkhn3@hku.hk)
(Dr K K H Ng,Chemistry)
To cover areas in the application and new methodology development in analytical chemistry with focus on food and water analysis.
Chemical Analysis in Practicing Laboratories: Use of standard methods, guidelines and standards for food and water analysis; good laboratory practice; reliability and quality issues in chemical analysis.

Food Analysis: Requirement of nutritional labeling; determination of food nutritional value (e.g. total protein content, sodium content); detection of food adulteration and contamination (e.g. presence of banned additives, toxins, undeclared components); recent issues and case studies in food analysis.

Water Analysis: Water quality standards; sampling, pretreatment, storage of water samples; theory and technologies for field, laboratory and automated analysis of selected types of water (e.g. drinking water, recreational water, waste water).

Analytical Method Development: Selection, application and combination of analytical (e.g. sample digestion, solid phase extraction) and instrumental (e.g. GC, LC, MS) techniques for food and water analysis; method validation (e.g. recovery analysis, analysis of certified reference materials)

On successful completion of this course, students should be able to:
CLO 1 identify and determine errors and uncertainty of analytical results
CLO 2 apply measures taken to control quality and ensure reliability of analytical results
CLO 3 demonstrate a general knowledge in food and water analysis
CLO 4 understand issues in public health protection related to chemical analysis
CLO 5 carry out analytical techniques used in practicing food and water laboratories
Pass in CHEM2041 or CHEM2241 or CHEM2341 or CHEM2441 or CHEM2541.
Please note that School of Biological Sciences stipulates that students who have passed in CHEM3242 are not allowed to take BIOL3209 Food and nutrient analysis.
(and Co-requisites
and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors
(A+ to F)


Required/recommended D. A. Skoog, D. M. West, F. J. Holler, S.R. Crouch: Fundamentals of Analytical Chemistry (Cengage Learning, reading and online materials
Additional Course Information
latest edition)
References to specialist texts and other published material will be made throughout the course.
Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.

CHEM3243
Offering Department Course Co-ordinator Teachers Involved

Introductory instrumental chemical analysis (6 credits)
Academic Year 2021
Chemistry
Quota
30
Dr X Li, Chemistry (xiangli@hku.hk)
(Dr K C J Wong, Pharmacology and Pharmacy)


Pre-requisites (and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors ( $\mathrm{A}+$ to F )

Pass in BPHM2136
(This course is for BPharm students only)
N Offer in 2022-2023: N

## Examination

- Demonstrate thorough grasp of the subject. - Show evidence of strong analytical abilities, logical and independent thinking, and ablility to apply knowledge to a wide range of complex, familiar and unfamiliar situations. - Demonstrate highly proficient lab skills and techniques and critical use of data and results to draw appropriate and insightful conclusions. - Demonstrate highly effective organization and presentation skills.


Required/recommended D.A. Skoog, F.K. Holler, S.R. Crouch: Principles of Instrumental Analysis (Thomson, latest edition). reading and online materials
Additional Course Information
D.A. Skoog, D.M. West, F.J. Holler, and S.R. Crouch: Fundamentals of Analytical Chemistry (Thomson, latest edition).
This course is for Pharmacy students ONLY.
Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.



|  | D <br> Fail | theory; chelation; structure and bonding of metals in biological systems; thermodynamic and kinetic aspects of metal ions in biological processes and their relevance to metal homeostasis; metal-based drugs. Show evidence of some abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of bioinorganic chemistry. Show ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of bioinorganic chemistry. Demonstrate moderately effective basic techniques, especially in the characterization of inorganic active site and overall metallo-biomolecules. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Demonstrate partial but limited command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of bioinorganic chemistry, especially those related to hard-soft acid-base theory; chelation; structure and bonding of metals in biological systems; thermodynamic and kinetic aspects of metal ions in biological processes and their relevance to metal homeostasis; metal-based drugs. Show evidence of limited abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of bioinorganic chemistry. Show limited ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of bioinorganic chemistry. Demonstrate partially effective basic techniques, especially in the characterization of inorganic active site and overall metallo-biomolecules. |  |  |  |
|  |  | Demonstrate little or no evidence of command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of bioinorganic chemistry, especially those related to hard-soft acid-base theory; chelation; structure and bonding of metals in biological systems; thermodynamic and kinetic aspects of metal ions in biological processes and their relevance to metal homeostasis; metal-based drugs. Show little or no evidence of abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of bioinorganic chemistry. Show little or no ability to analyze problems to most familiar situations and erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of bioinorganic chemistry. Demonstrate minimally effective basic techniques, especially in the characterization of inorganic active site and overall metallo-biomolecules. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  | including literature survey \& pres |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | (continuous assessment of assignments and presentation) | 40 | CLO 1,2,3,4 |
|  | Examination |  |  | 60 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Lippard, S. J. and Berg, J. M. Principles of Bioinorganic Chemistry (University Science Books; Mill Valley, CA, 1994 Bertini, I.; Gray, H. B.; Stiefel, E. I.; Valentine, J. S., editors. Biological Inorganic Chemistry: Structure and Reactivity, University Science Books, 2007 <br> Metals and Life, Moore C., RSC Publishing, 2010. <br> Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, Kaim W. \& Schwederski B., John Wiley \& Sons, 2013. |  |  |  |  |
| CHEM3441 <br> Offering Department Course Co-ordinator Teachers Involved | Organic chemistry II (6 credits) |  |  | Academic Year 2021 |  |
|  | Chemistry |  |  | Quota | 300 |
|  | Dr Z X Huang (1st sem); Prof X Y Li (2nd sem), Chemistry (huangzx@hku.hk; xiaoyuli@hku.hk) |  |  |  |  |
|  | $\begin{aligned} & \text { (Dr Z X Huang,Chemistry) } \\ & \text { (Prof X D Li,Chemistry) } \\ & \text { (Prof X Y Li,Chemistry) } \end{aligned}$ |  |  |  |  |
| Course Objectives | As a continuation from CHEM2441 Organic Chemistry I, this course aims to provide a solid foundation of organic chemistry together with CHEM2441. It focuses primarily on the basic principles to understand the structure and reactivity of organic molecules, with examples illustrating the role of organic chemistry in daily life and industry. |  |  |  |  |
| Course Contents \& Topics | Chemistry of common organic functional groups: ketones and aldehydes; carboxylic acids and their derivatives; amines; aromatic compounds. Principles of organic synthesis. Detailed considerations of reaction mechanisms. Spectroscopic tools (UV-Vis, IR, NMR, and MS) for characterization and identification of organic compounds. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 draw correct structural representations of organic molecules |  |  |  |  |
|  | CLO 2 understand the basic principles of structure and reactivity of organic molecules |  |  |  |  |
|  | CLO 3 determine structures of organic compounds based on spectroscopic data |  |  |  |  |
|  | CLO 4 write reasonable mechanisms for transformations of common functional groups (alcohols, ethers, carbonyl compounds, aldehydes, ketones, carboxylic acids, acyl halides, anhydrides, esters, amides, nitriles, and amines) |  |  |  |  |
|  | CLO 5 appreciate the importance of organic chemistry in daily life |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in CHEM2441 <br> [Remarks: CHEM3441 has been changed to lecture-based course from semester 2, 2015-16. For Chemistry students who admitted in 2014-15 or before, they must enroll also CHEM3443 for enrolling CHEM3441 (new version without lab component) to meet the Chemistry Major requirements.] |  |  |  |  |
| Offer in 2021-2022 | Y 1st sem 2nd sem Offer in 2022-2023: Y |  |  | Examination Dec May |  |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |





Required/recommended John W. Lehman: Operational Organic Chemistry - A Problem-Solving Approach to the Laboratory Course reading and online materials
Additional Course
Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this Information course.



and vibrational spectroscopy

Pre-requisites (and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors (A+ to F)

## Pass in CHEM3341

Y 1st sem Offer in 2022-2023: Y Examination ..... Dec
Demonstrate thorough knowledge and understanding of essential facts, concepts, principles, and theories relating to symmetry
and group theory and their applications in solving chemical problems, especially those related to symmetry elements andand group theory and their applications in solving chemical problems, especially those related to symmetry elements andsymmetry operations; symmetry point groups; reducible and irreducible representations; character tables; direct products;symmetry-adapted linear combinations; projection operators; treatment of bonding theories including hybrid orbitals andmolecular orbitals for organic, inorganic and orgametallic systems; and applications in electronic and vibrational spectroscopy.Show strong ability to apply and integrate knowledge and theory relating to the basic principles and concepts of symmetry andgroup theory and their applications in bonding, and electronic and vibrational spectroscopy. Show strong ability to analyze novelgroup theory and their applications in bonding, and electronic and vibrational spectroscopy. Show strong abiity to analyze novelproblems and critical use of data and experimer
and applications of symmetry and group theory.

Demonstrate substantial command of knowledge and understanding of essential facts, concepts, principles, and theories relating to symmetry and group theory and their applications in solving chemical problems, especially those related to symmetry elements and symmetry operations; symmetry point groups; reducible and irreducible representations; character tables; direct products; symmetry-adapted linear combinations; projection operators; treatment of bonding theories including hybrid orbitals and molecular orbitals for organic, inorganic and orgametallic systems; and applications in electronic and vibrational spectroscopy. Show evidence to apply and integrate knowledge and theory relating to the basic principles and concepts of symmetry and group theory and their applications in bonding, and electronic and vibrational spectroscopy. Show evidence to analyze novel problems and correct use of data and experimental results to draw appropriate conclusions relating to the principles and applications of symmetry and group theory.
C principles and applications of symmetry and group theory. $\quad$ Demonstrate general but incomplete command of knowledge and understanding of essential facts, concepts, principles, and theories relating to symmetry and group theory and their applications in solving chemical problems, especially those related to symmetry elements and symmetry operations; symmetry point groups; reducible and irreducible representations; character symmetry elements and symmetry operations; symmetry point groups; reducible and irreducible representations; character
tables; direct products; symmetry-adapted linear combinations; projection operators; treatment of bonding theories including tables; direct products; symmetry-adapted linear combinations; projection operators; treatment of bonding theories including
hybrid orbitals and molecular orbitals for organic, inorganic and orgameallic systems; and applications in electronic and vibrational spectroscopy. Show evidence of some abilities to apply and integrate knowledge and theory relating to the basic principles and concepts of symmetry and group theory and their applications in bonding, and electronic and vibrational spectroscopy. Show ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the principles and applications of symmetry and group theory. experimental results to draw appropriate conclusions relating to the principles and applications of symmetry and group theory. relating to symmetry and group theory and their applications in solving chemical problems, especially those related to symmetry elements and symmetry operations; symmetry point groups; reducible and irreducible representations; character tables; direct products; symmetry-adapted linear combinations; projection operators; treatment of bonding theories including hybrid orbitals and molecular orbitals for organic, inorganic and orgametallic systems; and applications in electronic and vibrational spectroscopy. Show evidence of limited abilities to apply and integrate knowledge and theory relating to the basic principles and concepts of symmetry and group theory and their applications in bonding, and electronic and vibrational spectroscopy. Show limited ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental limited ability to analyze problems to most familiar situations and mostly correct but erroneous use of data
results to draw appropriate conclusions relating to the principles and applications of symmetry and group theory. results to draw appropriate conclusions relating to the principles and applications of symmetry and group theory.
Demonstrate little or no evidence of command of knowledge and understanding of essential facts, concepts, principles, and theories relating to symmetry and group theory and their applications in solving chemical problems, especially those related to symmetry elements and symmetry operations; symmetry point groups; reducible and irreducible representations; character tables; direct products; symmetry-adapted linear combinations; projection operators; treatment of bonding theories including hybrid orbitals and molecular orbitals for organic, inorganic and orgametallic systems; and applications in electronic and vibrational spectroscopy. Show little or no evidence of abilities to apply and integrate knowledge and theory relating to the basic principles and concepts of symmetry and group theory and their applications in bonding, and electronic and vibrational spectroscopy. Show little or no ability to analyze problems to most familiar situations and erroneous use of data and experimental results to draw appropriate conclusions relating to the principles and applications of symmetry and group theory.
Communication-
intensive Course
Course Type
Course Teaching
\& Learning Activities

Assessment Methods and Weighting

Lecture-based course

| Activities | Details |  | No. of Hours |
| :--- | :--- | :--- | :---: |
| Lectures |  |  | 36 |
| Tutorials | or discussion |  | 12 |
| Reading / Self study | Details | Weighting in final <br> course grade (\%) | Assessment <br> Methods <br> to CLO Mapping |
| Methods |  |  | 25 |
| Assignments |  | 50 | CLO 1,2,3,4 |
| Examination |  | 25 | CLO 1,2,3,4 |
| Test | Test / Project |  | CLO 1,2,3,4 |

Required/recommended F.A. Cotton: Chemical Applications of Group Theory (Wiley, 3rd ed., 1990)
reading and
online materials
Additional Course
Information

CHEM4143
Offering Department Course Co-ordinator Teachers Involved

Course Objectives
Course Contents \& Topics Course Learning Outcomes

## Interfacial science and technology ( $\mathbf{6}$ credits)

Chemistry Prof G K Y Chan, Chemistry (hrsccky@hku.hk)
(Prof G K Y Chan,Chemistry)
(Visiting Professor,Chemistry)
To understand the science and technology of interfacial phenomena and processes often appeared in high value added products and modern technologies.
Physics and Chemistry of Interfaces: coatings and surfactants, colloids and interfaces, wetting, microemulsion, thin films, nanomaterials, porous materials.
On successful completion of this course, students should be able to:
CLO 1 understand interfacial phenomena and their origin from molecular details
CLO 2 solve problems in interfacial science and technology by applying knowledge of general chemistry, thermodynamics, and kinetics
CLO 3 be familiarized with technologies that require application of interfacial science, including nanomaterials, nanotechnology, detergency, composite polymers, and porosimetry

Pre-requisites
(and Co-requisites and Impermissible combinations)

This course is also offered to RPg students, and the course code for RPg students is CHEM6116.

| Offer in 2021-2022 | N Offer in 2022-2023: Y |  |  | Examination | --- |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough knowledge of interfacial science and technology, and mastery of skills required for attaining all of the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to solve problems in a wide range of complex, familiar and unfamiliar situations. Critical use of data and sourcing of references. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial knowledge of interfacial science and technology and command of skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to solve problems in familiar and some unfamiliar situations. Correct use of data and sourcing of references. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete knowledge of interfacial science and technology and command of skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge solve problems to most familiar situations. Mostly correct but some erroneous use of data and references. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited knowledge of interfacial science and technology and command of skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Limited ability to use data and source references. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of knowledge of interfacial science and technology, and command of skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Misuse of data and references. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  | or discus |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  |  | 15 | CLO 1,2,3 |
|  | Examination |  |  | 50 | CLO 1,2,3 |
|  | Test |  |  | 35 | CLO 1,2,3 |
| Required/recommended reading and online materials | Barnes and Gentle: Interfacial Science |  |  |  |  |
| Additional Course Information | This course is offered every other year. |  |  |  |  |
| CHEM4144 | Advanced materials (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Chemistry |  |  | Quota | 30 |
| Course Co-ordinator | Dr E C M Tse, Chemistry (ecmtse@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr E C M Tse,Chemistry) <br> (Dr K Okuro,Chemistry) |  |  |  |  |
| Course Objectives | This course is a continuation from Introdution to Materials Chemistry. It provides a more compreheisive overview on materials chemistry and application of materials in advanced technology. The most recent development in materials chemistry will also be discussed. |  |  |  |  |
| Course Contents \& Topics | Advanced polymerization methods: copolymerization and applications of copolymers, coordination polymerization, control of stereochemistry in polymers; ionic and radical living polymerization. Materials for specialty applications: high strength materials; high temperature polymers, polyelectrolytes, conducting polymers, optical information storage, sensors, photonics, electronics, nanotechnology. Advanced materials characterization techniques. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 describe the mechanisms and kinetics of copolymerizations, coordination polymerizations, and living polymerizations |  |  |  |  |
|  | CLO 2 identify examples of some engineering polymers for high temperature/high strength applications, and how are their properties affected by the molecular structures |  |  |  |  |
|  | CLO 3 demonstrate knowledge in advanced materials characterization techniques |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in CHEM3143 |  |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offer in 2022 |  | 023 : Y | Examination May |  |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough knowledge and understanding of essential facts, concepts, principles, and theories relating to frontier approach in polymer synthesis, properties, application, and characterization of materials for advanced technology. Show strong ability to apply and integrate knowledge and theory relating to the synthesis and applications of advanced materials. Show strong ability to analyze novel problems and critical use of data and experimental results to draw appropriate and insightful conclusions relating to advanced materials synthesis and their properties. |  |  |  |
|  | B | Demonstrate substantial command of knowledge and understanding of essential facts, concepts, principles, and theories relating to frontier approach in polymer synthesis, properties, application, and characterization of materials for advanced technology. Show evidence to apply and integrate knowledge and theory relating to the synthesis and applications of advanced materials. Show evidence to analyze novel problems and correct use of data and experimental results to draw appropriate conclusions relating to advanced materials synthesis and their properties. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and understanding of essential facts, concepts, principles, and theories relating to frontier approach in polymer synthesis, properties, application, and characterization of materials for advanced technology. Show evidence of some abilities to apply and integrate knowledge and theory relating to the synthesis and applications of advanced materials. Show ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to advanced materials synthesis and their properties. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and understanding of essential facts, concepts, principles, and theories relating to frontier approach in polymer synthesis, properties, application, and characterization of materials for advanced technology. Show evidence of limited abilities to apply and integrate knowledge and theory relating to the synthesis and applications of advanced materials. Show limited ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to advanced materials synthesis and their properties. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and understanding of essential facts, concepts, principles, and theories relating to frontier approach in polymer synthesis, properties, application, and characterization of materials for advanced |  |  |  |


|  | technology. Show little or no evidence of abilities to apply and integrate knowledge and theory relating to the synthesis and applications of advanced materials. Show little or no ability to analyze problems to most familiar situations and erroneous use of data and experimental results to draw appropriate conclusions relating to advanced materials synthesis and their properties. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching | Activities | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  | 36 |
|  | Tutorials | or discu |  | 12 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | 30 | CLO 1,2,3,4 |
|  | Examination |  | 50 | CLO 1,2,3,4 |
|  | Test |  | 20 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Specialist references | throughout |  |  |



|  | Tutorials | or discussion |  | 12 |
| :---: | :---: | :---: | :---: | :---: |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | 10 | CLO 1,2,3 |
|  | Examination |  | 60 | CLO 1,2,3 |
|  | Presentation | (two presentations) | 20 | CLO 1,2,3 |
|  | Test | midterm | 10 | CLO 1,2,3 |

Required/recommended An Introduction to Medicinal Chemistry (3/e), G.L. Patrick, Oxford University Press, 2005
reading and
Medicinal Chemistry- An Introduction, G. Thomas, John Wiley, 2000
online materials D. Wang, S.J. Lippard (2004) Nat. Rev. Drug Dis., Cellular processing of platinum anticancer drugs, 4, 307-320
Additional Course This course is also offered to RPg students, and the course code for RPg students is CHEM6113.
Information

CHEM4147
Offering Department
Course Co-ordinator
Teachers Involved

Supramolecular chemistry ( 6 credits)
Chemistry
Dr H Y Au-Yeung, Chemistry (hoyuay@hku.hk)
(Dr H Y Au-Yeung,Chemistry)
(Dr K Okuro,Chemistry)
(Dr Y F Wang,Chemistry)
Course Objectives Supramolecular chemistry concerns the chemistry beyond that of molecules. This course aims at introducing students to concepts and techniques in supramolecular chemistry, demonstrating how molecular assembly and supramolecular structures leads to functions and properties, and their relevance to material and biological science. Basic concepts in molecular recognition and self-assembly; non-covalent interactions and common supramolecular building blocks; methods in supramolecular chemistry. Selected topics in modern supramolecular chemistry, such as macrocycles and cages, molecular capsule and container molecules, synthetic receptors, interlocked structures, supramolecular polymers and supramolecular chemistry of biomolecules and biomaterials, will also be discussed. On successful completion of this course, students should be able to:
CLO 1 Understand important principles and concepts in supramolecular chemistry
CLO 2 Demonstrate knowledge and understanding in the nature of non-covalent interactions and to apply these concepts in the design and explanation of the structures, properties and functions of different supramolecular systems
CLO 3 Interpret and analyse physical characterization data of supramolecular systems and extract relevant chemical information to explain the properties of the supramolecular systems
Pre-requisites
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors
( $\mathrm{A}+$ to F )
Pass in CHEM3341 and CHEM3441

Y 2nd sem Offer in 2022-2023: Y Examination May
A Demonstrate thorough knowledge and understanding of essential facts, concepts and principles in supramolecular chemistry, especially those relating to non-covalent interactions, molecular recognition and self-assembly. Show strong ability to apply and integrate knowledge in supramolecular chemistry in explaining the formation and properties of, and in designing different
supramolecular systems. Show strong ability to analyse and interpret experimental data to draw appropriate conclusions relating to the advanced principles and properties of supramolecular systems.
Demonstrate substantial knowledge and understanding of essential facts, concepts and principles in supramolecular chemistry, especially those relating to non-covalent interactions, molecular recognition and self-assembly. Show evidence to apply and integrate knowledge in supramolecular chemistry in explaining the formation and properties of, and in designing different supramolecular systems. Show evidence to analyse and interpret experimental data to draw appropriate conclusions relating to supramolecular systems. Show evidence to analyse and inter
the advanced principles and properties of supramolecular systems.
Demonstrate general but incomplete amount of knowledge and understanding of essential facts, concepts and principles in supramolecular chemistry, especially those relating to non-covalent interactions, molecular recognition and self-assembly. Show some ability to apply and integrate knowledge in supramolecular chemistry in explaining the formation and properties of, and in designing different supramolecular systems. Show some ability to analyse and interpret experimental data to draw appropriate
conclusions relating to the advanced principles and properties of supramolecular systems.
Demonstrate partial but incomplete command of knowledge and understanding of essential facts, concepts and principles in supramolecular chemistry, especially those relating to non-covalent interactions, molecular recognition and self-assembly. Show evidence of limited ability to apply and integrate knowledge in supramolecular chemistry in explaining the formation and properties of, and in designing different supramolecular systems. Show limited ability to analyse and interpret experimental data to draw appropriate conclusions relating to the advanced principles and properties of supramolecular systems.
Demonstrate little or no evidence of command of knowledge and understanding of essential facts, concepts and principles in supramolecular chemistry, especially those relating to non-covalent interactions, molecular recognition and self-assembly. Show little or no ability to apply and integrate knowledge in supramolecular chemistry in explaining the formation and properties of, and in designing different supramolecular systems. Show little or no ability to analyse and interpret experimental data to draw appropriate conclusions relating to the advanced principles and properties of supramolecular systems.
Communication- N
intensive Course
Course Type
Course Teaching
\& Learning Activities

Assessment Methods and Weighting

| Activities | Details |  | No. of Hours |
| :--- | :--- | :--- | :---: |
| Lectures |  |  | 36 |
| Tutorials |  |  | 12 |
| Reading / Self study | Details | Weighting in final <br> course grade (\%) | Assessment <br> Methods <br> to CLO Mapping |
| Methods |  |  | 10 |
| Assignments |  | 45 | CLO 1,2,3 |
| Examination |  | 20 | CLO 1,2,3 |
| Presentation |  | 20 | CLO 1,2,3 |
| Test |  |  | CLO 1,2,3 |

Required/recommended Supramolecular Chemistry by Jonathan W. Steed and Jerry L. Atwood, John Wiley \& Sons, Ltd., 2nd Edition, 2009 reading and online materials Modern Physical Organic Chemistry by Eric V. Anslyn and Dennis A. Dougherty, University Science Books, 2006 References to specialist texts and other published materials will be made throughout the course.


CHEM4241
Offering Department Course Co-ordinator Teachers Involved

Course Objectives

Course Contents \& Topics

## Modern chemical instrumentation and applications ( 6 credits)

 Chemistry Dr I K Chu, Chemistry (ivankchu@hku.hk) (Dr I K Chu,Chemistry) (Dr K Okuro,Chemistry)The aim of the course is to provide an understanding of modern instrumentation, covering both fundamental principles and practical aspects of instrument design. The course will be of particular benefit to those pursuing a higher research degree or a career in technical sales/service.
Biological Mass spectrometry: Liquid Chromatography-Tandem Mass Spectrometry for Proteomics \& Metabolomics.
Laser Spectroscopy: Principle of laser; three-level and four-level lasers; laser instrumentation (Q-switching and frequency conversion); laser-induced fluorescence; laser atomic spectrometry; laser remote sensing; signal-to-




Required/recommended F.A. Cotton, G. Wilkinson, Hurillo and Bochmann: Advance Inorganic Chemistry (Wiley, 1999, 6th ed.) reading and
online materials
Additional Course Information

References to specialist texts and other published materials will be made throughout the course.
(Students are strongly recommended to take CHEM4142 Symmetry, group theory and applications if they wish to take this course.)
This course is also offered to RPg students, and the course code for RPg students is CHEM6115.

CHEM4342
Offering Department
Course Co-ordinator
Teachers Involved

Organometallic chemistry ( 6 credits)
Academic Year 2021
Chemistry
Dr. J Z Liu, Chemistry (juliu@hku.hk)
(Dr J He,Chemistry)
(Dr. J Z Liu,Chemistry)
To give further, more detailed, treatment to organometallic chemistry mentioned in CHEM3341 Inorganic Chemistry
II. The course also aims to introduce and familiarize students with advanced laboratory techniques, and to prepare students for graduate work in inorganic and organometallic chemistry.
Lectures: Main group and transition metal organometallics. Transition metal cluster chemistry. Bonding, structure and reactivities of organometallics. Application of organometallics in organic synthesis and catalysis.

Laboratory: To introduce and familiarize students with advanced laboratory techniques which include the synthesis and manipulation of air- and moisture- sensitive compounds, and their characterization by various spectroscopic methods.
On successful completion of this course, students should be able to:
CLO 1 understand the advanced principles and concepts in organometallic chemistry
CLO 2 demonstrate knowledge and understanding in the bonding, structure and reactivities of main group and transition metal organometallics, especially in transition metal clusters, metal alkyls, metal alkylidenes and metal alkylidynes
CLO 3 demonstrate knowledge and understanding in the application of organometallics in organic synthesis, polymerization and catalysis
CLO 4 demonstrate ability in advanced laboratory techniques including the synthesis and manipulation of air- and moisture- sensitive compounds, and their characterization by various spectroscopic methods

## Pre-requisites

(and Co-requisites and Impermissible combinations)
Offer in 2021-2022 Grade Descriptors (A+ to F)

## Pass in CHEM3341

Y 1st sem Offer in 2022-2023: Y Examination Dec

A Demonstrate thorough knowledge and understanding of essential facts, concepts, principles, and theories relating to the more detailed and advanced treatment of organometallic chemistry, especially those related to structure, bonding and reactivities of main group and transition metal organometallics; transition metal cluster chemistry; and application of organometallics in organic synthesis and catalysis. Show strong ability to apply and integrate knowledge and theory relating to the advanced principles and concepts of organometallic chemistry. Show strong ability to analyze novel problems and critical use of data and experimental results to draw appropriate and insightful conclusions relating to the advanced principles and applications of organometallic chemistry. Demonstrate highly effective advanced laboratory skills and techniques, especially in the synthesis and manipulation of air- and moisture- sensitive compounds and their characterization by various spectroscopic methods.
B Demonstrate substantial command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the more detailed and advanced treatment of organometallic chemistry, especially those related to structure, bonding and reactivities of main group and transition metal organometallics; transition metal cluster chemistry; and application of organometallics in organic synthesis and catalysis. Show evidence to apply and integrate knowledge and theory relating to the organometallics in organic synthesis and catalysis. Show evidence to apply and integrate knowledge and theory relating to the
advanced principles and concepts of organometallic chemistry. Show evidence to analyze novel problems and correct use of advanced principles and concepts of organometalic chemistry. Show evidence to analyze novel problems and correct use of
data and experimental results to draw appropriate conclusions relating to the advanced principles and applications of data and experimental results to draw appropriate conclusions relating to the advanced principles and applications of
organometallic chemistry. Demonstrate effective advanced laboratory skills and techniques, especially in the synthesis and organometallic chemistry. Demonstrate effective advanced laboratory skills and techniques, especially in the synthesis and Demonstrate general but incomplete command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the more detailed and advanced treatment of organometallic chemistry, especially those related to structure, bonding and reactivities of main group and transition metal organometallics; transition metal cluster chemistry; and application of organometallics in organic synthesis and catalysis. Show evidence of some abilities to apply and integrate knowledge and theory relating to the advanced principles and concepts of organometalicic chemistry. Show ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the advanced principles and applications of organometallic chemistry. Demonstrate moderately effective advanced laboratory skills and techniques, especially in the synthesis and manipulation of air- and moisture- sensitive compounds and their characterization by various spectroscopic methods.
Demonstrate partial but limited command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the more detailed and advanced treatment of organometallic chemistry, especially those related to structure, bonding and reactivities of main group and transition metal organometallics; transition metal cluster chemistry; and application of organometallics in organic synthesis and catalysis. Show evidence of limited abilities to apply and integrate knowledge and theory relating to the advanced principles and concepts of organometallic chemistry. Show limited ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions

|  | Fail | Demonstrate little or no evidence of command of knowledge and understanding of essential facts, concepts, principles, andtheories relating to the more detailed and advanced treatment of organometallic chemistry, especially those related to structure, bonding and reactivities of main group and transition metal organometallics; transition metal cluster chemistry; and application of organometallics in organic synthesis and catalysis. Show little or no evidence of abilities to apply and integrate knowledge and theory relating to the advanced principles and concepts of organometallic chemistry. Show little or no ability to analyze problems to most familiar situations and erroneous use of data and experimental results to draw appropriate conclusions relating to the advanced principles and applications of organometallic chemistry. Demonstrate minimally effective advanced laboratory skills and techniques, especially in the synthesis and manipulation of air- and moisture- sensitive compounds and their characterization by various spectroscopic methods. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details | No. of Hours |
|  | Lectures |  |  | 24 |
|  | Laboratory |  |  | 30 |
|  | Tutorials |  |  | 5 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  |  | CLO 1,2,3,4 |
|  | Examination |  |  | CLO 1,2,3,4 |
|  | Laboratory reports |  |  | CLO 1,2,3,4 |
|  | Test |  |  | CLO 1,2,3,4 |
| Required/recommended reading and online materials | R. H. Crabtree: The Organometallic Chemistry of the Transition Metals (Wiley, 2005, 4th ed.) <br> C. Elschenbroich and A. Salzer: Organometallics - A Concise Introduction (VCH, 1992, 2nd revised edition) Reference to specialist texts and other published materials will be made throughout the course. |  |  |  |
| Additional Course Information | Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course. |  |  |  |
| CHEM4441 | Advanced organic chemistry (6 credits) |  |  | Academic Year 2021 |
| Offering Department | Chemistry |  |  | 40 |
| Course Co-ordinator | Dr J He, Chemistry (jianhe@hku.hk) |  |  |  |
| Teachers Involved | (Dr J He,Chemistry) <br> (Dr Z X Huang,Chemistry) |  |  |  |
| Course Objectives | To provide students with knowledge in organic chemistry reaction mechanisms and organic compound structure determination. |  |  |  |
| Course Contents \& Topics | The course covers chemical bonding, advanced stereochemistry, conformational analysis, techniques for investigating reaction mechanisms, reactive intermediates, rearrangement reactions, and pericyclic reactions. |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 describe, analyze and interpret the structure and reactivity relationship of organic molecules |  |  |  |
|  | CLO 2 identify and predict the selectivities (chemoselectivity, regioselectivity and stereoselectivity) in organic reactions |  |  |  |
|  | CLO 3 describe the general approaches to study organic mechanisms |  |  |  |
|  | CLO 4 have a general understanding and working knowledge of pericyclic reactions, reactive intermediates (radicals, carbenes and nitrenes), and polar rearrangements |  |  |  |
|  | CLO 5 suggest reasonable mechanistic pathways for some types of organic reactions |  |  |  |
|  | CLO 6 apply the knowledge of reaction mechanisms in design of synthetic routes for organic compounds |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass | HEM3441 |  |  |
| Offer in 2021-2022 | Y | sem Offer | 23 : Y | Dec |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details | No. of Hours |
|  | Lectures |  |  | 36 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Examination |  |  | CLO 1,2,3,4,5,6 |
|  | Test |  |  | CLO 1,2,3,4,5,6 |

Required/recommended F.A. Carey and R.J. Sunberg, "Advanced Organic Chemistry, Part-A: Structure and Mechanism", 5th Ed.: Springer, reading and

| online materials | "Organic Chemistry", by Paula Y. Bruice, 2016, 8th Edition, Pearson, with e-text and Mastering Chemistry. <br> I. Fleming, "Pericyclic Reactions", Oxford University Press, 1999. |
| :--- | :--- |
| Additional Course <br> Information | This course is also offered to RPg students, and the course code for RPg students is CHEM6114. |

CHEM4443 $\quad$ Integrated organic synthesis (6 credits) $\quad$ Academic Year 2021

Offering Department Course Co-ordinator Teachers Involved Course Objectives

Chemistry
Prof P Chiu, Chemistry (pchiu@hku.hk)
(Dr Z X Huang,Chemistry)
To introduce aspects of modern organic reactions with relevance to and in the context of the synthesis of natural products, drugs and medicinal chemistry to provide an integrated approach to the subject, and to provide training in advanced organic laboratory skills, and further hands-on experience in synthesis and characterization, as preparation for graduate studies or research in organic chemistry.
Building on the organic chemistry covered in the foundational courses CHEM1003 and CHEM2402, this course will present modern synthetic methods and synthetic planning. The course is organized into units based on target drug molecules. In each unit, the chemical biology of these compounds are briefly presented and the syntheses of these molecules are introduced, accompanied by in-depth discussions of the reactions involved with emphasis on their mechanisms, selectivity, stereochemistry, scope and limitations. Concept of synthetic design including retrosynthetic analysis, stereoselectivity and enantioselective control elements will be emphasized. A laboratory section provides training in the practical skills of synthesis.
On successful completion of this course, students should be able to:
CLO 1 understand the rationale, selectivities, and mechanisms of various reactions and reagents in organic chemistry
CLO 2 able to solve mechanistic and synthetic chemistry problems
CLO 3 perform organic synthesis experiments at an increased level of technical difficulty, using additional skills in experimental design and execution, spectroscopic analysis, and reporting of results
CLO 4 integrate lecture material and literature search, to learn chemistry independently
Pass in CHEM3441; or
Pass in CHEM3441 (without lab component) and CHEM3443
(and Co-requisites and Impermissible combinations)

## Offer in 2021-2022

Grade Descriptors
(A+ to F)


Required/recommended reading and
online materials
Additional Course Information

Reference Books: Organic synthesis, C. Willis, M. Wills, Oxford Science Publications
Top drugs, top synthetic routes, J. Saunders, Oxford Science Publications
Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.
This course is also offered to RPg students, and the course code for RPg students is CHEM6111.

## CHEM4444

Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

| Chemical biology (6 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- |
| Chemistry | Quota | 50 |
| Prof X C Li, Chemistry (xuechenı@hku.hk) |  |  |
| (Prof X C Li,Chemistry) |  |  |
| To understand how to use chemical approaches to emulate biological systems to study natural molecules and |  |  |

generate new functional molecules. Useful as an introduction to research in areas of chemical biology, medicinal chemistry and biotechnology.


| CHEM4541 | Physical chemistry III: statistical thermodynamics and kinetics theory (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Chemistry | Quota | 40 |
| Course Co-ordinator | ---, Chemistry () |  |  |
| Teachers Involved |  |  |  |
| Course Objectives | The course presents fundamental principles and topics on statistical thermodynamics and kinetic theory in order to provide a solid foundation for students intending to further their studies in physical chemistry and related fields. |  |  |
| Course Contents \& Topics | Principles of Statistical Thermodynamics <br> - Thermodynamic laws <br> - Ensembles and partition functions: microcanonical, canonical and grand-canonical <br> - Systems of independent molecules: ideal gas <br> - Molecular degrees of freedom: translation, rotation, vibration, and electronic <br> - Ideal gas mixture: chemical equilibrium, binding, and titration <br> - Lattice statistics: Ising model and phase transition <br> - Quantum statistics <br> Chemical equilibrium and kinetics theory <br> - Rate theory: collision theory, transition state theory |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |
| Outcomes | CLO 1 understand and use the terminology and nomenclature in statistical thermodynamics and topics discussed in the course |  |  |
|  | CLO 2 demonstrate knowledge and understanding of basic concepts in statistical thermodynamics |  |  |
|  | CLO 3 understand correlation between macroscopic observables and microscopic statistical model systems |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in CHEM3541 |  |  |


| Offer in 2021-2022 | N | Offer in 2022-2023: N |  | Examination | --- |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Grade Descriptors$(A+\text { to } F)$ | A | Thorough mastery at an advanced level of extensive knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of strong analytical / critical abilities and logical thinking. Can apply the knowledge to practical questions in Physical Chemistry. |  |  |  |
|  | B | Substantial command of knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of analytical / critical abilities and logical thinking. Understand the scope of Physical Chemistry questions that can be applied with the knowledge. |  |  |  |
|  | C | General but incomplete command of knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of analytical thinking. Can apply the knowledge to familiar situations. |  |  |  |
|  | D | Partial but limited command of knowledge of knowledge of statistical thermodynamics and reaction dynamics. Demonstrate limited evidence of analytical thinking. Understand the question to be solved with knowledge. |  |  |  |
|  | Fail | Little or no ev | mand of knowledge of statistical thermodyna | and reaction dynamics. |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 24 |
|  | Laboratory |  |  |  | 24 |
|  | Tutorials |  |  |  | 6 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods Details |  |  | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | continuous assessment of on class quizzes \& assignments | 40 | CLO 1,2,3 |
|  | Examination |  |  | 60 | CLO 1,2,3 |
| Required/recommended reading and online materials | T. L. Hill, An introduction to Statistical Thermodynamics P. Atkins, Physical Chemistry |  |  |  |  |
| Additional Course Information | Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course. |  |  |  |  |
| CHEM4542 | Computational chemistry (6 credits) |  |  | Academic Year | r 2021 |
| Offering Department | Chemistry |  |  | Quota | 50 |
| Course Co-ordinator | Prof G H Chen, Chemistry (ghc@yangtze.hku.hk) |  |  |  |  |
| Teachers Involved | (Dr J Yang, Chemistry) (Prof G H Chen, Chemistry) |  |  |  |  |
| Course Objectives | This course covers topics in computational chemistry including first-principles methods and molecular dynamics methods. It is offered to undergraduate and postgraduate students interested in computational chemistry, computational physics and computational biology. |  |  |  |  |
| Course Contents \& Topics | Hartree-Fock molecular orbital method, density-functional theory, time-dependent methods, Basis sets, Force Fields, QM/MM method, free energy calculation, and computer-aided drug design. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 understand the basic concepts of density-functional theory |  |  |  |  |
|  | CLO 2 understand mechanics/m |  | numerical techniques of molec hanics method | mechanics metho | and quantum |
|  | CLO 3 employ the molecular sys |  | putational software to calculate th organic molecules, inorganic mate | chemical, physical prop and biomolecules | perties of various |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass | in CHEM3541 or |  |  |  |
| Offer in 2021-2022 | N | Offer in 2022-20 |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | A | Mastery of advanced knowledge on following topics: density-functional theory, Kohn-Sham equation, time-dependent densityfunctional theory, open system, molecular dynamics, force field, and quantum mechanics/molecular mechanics. Strong analytical and critical abilities and logical thinking, with strong ability to apply knowledge to practical problems in physical chemistry. |  |  |  |
|  | B | Substantial command of a broad range of knowledge on following topics: density-functional theory, Kohn-Sham equation, timedependent density-functional theory, open system, molecular dynamics, force field, and quantum mechanics/molecular mechanics. Evidence of analytical and critical abilities and logical thinking, with ability to apply knowledge to practical problems in physical chemistry. |  |  |  |
|  | C | Command of knowledge on following topics: density-functional theory, Kohn-Sham equation, time-dependent density-functional theory, open system, molecular dynamics, force field, and quantum mechanics/molecular mechanics. Evidence of some analytical and critical abilities and logical thinking, with ability to apply knowledge to familiar problems in physical chemistry. |  |  |  |
|  | D | Partial but limited command of knowledge on following topics: density-functional theory, Kohn-Sham equation, time-dependent density-functional theory, open system, molecular dynamics, force field, and quantum mechanics/molecular mechanics. Evidence of some coherent analytical and critical abilities and logical thinking, with limited ability to apply knowledge to practical problems in physical chemistry. |  |  |  |
|  | Fail | Little or no evidence of command of knowledge on following topics: density-functional theory, Kohn-Sham equation, timedependent density-functional theory, open system, molecular dynamics, force field, and quantum mechanics/molecular mechanics. Lack of analytical and critical abilities and logical thinking, with very little or no ability to apply knowledge to practical problems in physical chemistry. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type Course Teaching <br> \& Learning Activities | Lecture with laboratory component course |  |  |  |  |
|  | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 24 |
|  | Laboratory |  | lab sessions 6x4 hours of computational laboratory |  | 24 |
|  | Tutorials |  |  |  | 6 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments Examination |  | (continuous assessment) | 40 | CLO 1,2,3 |
|  |  |  |  | 60 | CLO 1,2,3 |


| Required/recommended reading and online materials | Attila Szabo \& Neil S. Ostlund: Modern Quantum Chemistry (1st ed.) <br> Robert G. Parr \& Weitao Yang: Density-Functional Theory of Atoms and Molecules <br> J.M. Haile: Molecular Dynamics Simulation <br> Andrew R. Leach: Molecular Modelling - Principles and Applications |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Additional Course Information | Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course. |  |  |  |  |
| CHEM4543 | Advanced physical chemistry (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Chemistry |  |  | Quota 40 |  |
| Course Co-ordinator | Prof G H Chen, Chemistry (ghc@yangtze.hku.hk) |  |  |  |  |
| Teachers Involved | (Prof D L Phillips,Chemistry) (Prof G H Chen, Chemistry) |  |  |  |  |
| Course Objectives | This course covers advanced topics in physical chemistry. It is offered for students majoring in physical chemistry and for students who are interested in postgraduate studies. |  |  |  |  |
| Course Contents \& Topics | Time-resolved spectroscopy methods, excited states and reactive intermediates, photophysics and photochemical processes, chemical reaction mechanisms, advanced quantum mechanical methods, reaction pathways and surface crossings. |  |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |  |
| Outcomes | CLO 1 understand the basic concepts of quantum chemistry, statistical thermodynamics and molecular dynamics |  |  |  |  |
|  | CLO 2 understand Hartree-Fock method, statistical ensembles, quantum statistics, H-theorem, and reaction dynamics |  |  |  |  |
|  | CLO 3 understand the elementary numerical procedures in Hartree-Fock and molecular mechanics methods |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass | HEM3541 |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offer in 2022-2023: Y |  |  | Examination May |  |
| Grade Descriptors $(A+\text { to } F)$ | A | Mastery of advanced knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Strong analytical and critical abilities and logical thinking, with strong ability to apply knowledge to practical problems in physical chemistry. |  |  |  |
|  | B | Substantial command of a broad range of knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Evidence of analytical and critical abilities and logical thinking, with ability to apply knowledge to practical problems in physical chemistry. |  |  |  |
|  | C | Command of knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Evidence of some analytical and critical abilities and logical thinking, with ability to apply knowledge to familiar problems in physical chemistry. |  |  |  |
|  |  | Partial but limited command of knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Evidence of some coherent analytical and critical abilities and logical thinking, with limited ability to apply knowledge to practical problems in physical chemistry. |  |  |  |
|  | Fail | Little or no evidence of command of knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Lack of analytical and critical abilities and logical thinking, with very little or no ability to apply knowledge to practical problems in physical chemistry. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  | tutorials/discussion |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | (continuous assessment) | 20 | CLO 1,2,3 |
|  | Exam |  |  | 80 | CLO 1,2,3 |
| Required/recommended reading and online materials | P. W. Atkins: Physical Chemistry <br> Ira N. Levine: Quantum Chemistry (Prentice Hall, 4th ed.) <br> R. C. Tolman: The Principles of Statistical Mechanics <br> R. D. Levine, R. B. Bernstein: Molecular Reaction Dynam |  |  |  |  |
| Course Website | Nil |  |  |  |  |
| Additional Course Information | This course is also offered to RPg students, and the course code for RPg students is CHEM6112. |  |  |  |  |

CHEM4544
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives
Course Contents \& Topics

Course Learning
Outcomes

Electrochemical science and technology (6 credits)
Academic Year 2021
Chemistry
Prof G K Y Chan, Chemistry (hrsccky@hku.hk)
(Prof G K Y Chan,Chemistry)
(Visiting Professor,Chemistry)
To understand the science of electrochemistry, methods to characterise electrochemical cells, and factors affecting electrochemical applications and technologies.
Thermodynamics, kinetics, and transport of electrochemical processes. Electrochemical characterization by controlled potential, current, and hydrodynamics. Voltammetry for analytical chemistry. Electrochemical power sources, sensors, synthesis and separation processes. Electrolytes, separators, and electrode materials. Models of electrochemical processes.
On successful completion of this course, students should be able to:
CLO 1 Understand the thermodynamic and kinetics of a charge transfer process at the electrode-electrolyte interface and transport of relevant species in molecular and macroscopic scales.
CLO 2 Apply voltammetry methods to characterize an electrochemical process.
CLO 3 Correlate performance of electrochemical cells to materials, design, and operation parameters.
Pre-requisites


Required/recommended K. B. Oldham, J. C. Myland, and A. B. Bond, Electrochemical Science and Technology, John Wiley \& Sons, 2012, reading and online materials ISBN 978047071045.
Bard, Allen J., Larry R. Faulkner. Electrochemical Methods: Fundamentals and Applications. 2nd Ed. Wiley, 2000. ISBN: 9780471043720.
Additional Course This course is offered every other year.
Information

## CHEM4910

Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives
Course Contents \& Topics

Course Learning Outcomes

## Chemistry literacy and research (6 credits)

Chemistry
Prof X D Li, Chemistry (xiangli@hku.hk)
(Various teachers in the Department,Chemistry)
This course is designed for final year students who would like to gain experience on research methods and techniques by working on small projects on literature research and chemistry research.
The course provides training on chemistry literature research techniques. Students will work on a small project on literature research and a short laboratory-based research project. The laboratory-based projects are provided by the students' supervisors who are assigned by the department.
On successful completion of this course, students should be able to:
CLO 1 demonstrate knowledge of academic databases and search engines of chemistry literature
CLO 2 understand the terminology and nomenclature associated with their own research project
CLO 3 demonstrate knowledge and understanding of the chemical techniques they used to do the research in their own research project
CLO 4 demonstrate knowledge and understanding of the results of their own research project and its context in the broader research area
Pre-requisites (and Co-requisites and Impermissible combinations) Offer in 2021-2022 Grade Descriptors (A+ to F)

Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major including CHEM3241, and CHEM3341, and CHEM3441, and CHEM3541. This capstone course is for Chemistry Major students only.
The earliest that a student is allowed to take this capstone course is their year 3 study.



| CHEM4911 | Capstone experience for chemistry undergraduates: HKUtopia ( 6 credits) |  | Academic Year | 2021 |
| :---: | :---: | :---: | :---: | :---: |
| Offering Department | Chemistry |  | Quota | --- |
| Course Co-ordinator | Dr A P L Tong, Chemistry (apltong@hku.hk) |  |  |  |
| Teachers Involved | (Various teachers in the Department,Chemistry) |  |  |  |
| Course Objectives | This project-based course with the theme of Chemistry for a Better Living in a Foreseeable Future aims to provide students with a capstone experience. It aims to enable students to think what are the key issues the world is facing with that have to be solved by chemistry and related technology. Students will need to apply what they have learnt in classroom and conduct literature search regarding advanced chemistry research and related technology under development to solve the problems identified in their project using various channels. |  |  |  |
| Course Contents \& Topics | No formal teaching. It is expected that students are actively engaged and should devote 120-140 hours to working on this project. <br> Students will work in groups of two or three, under the supervision of the course coordinator. The duration of the project will be two to three months. The time of running this project-based course is in the summer (May - August). |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 observe and evaluate the various issues we are facing with and determine ways in which chemistry can be used to solve the problems |  |  |  |
|  | CLO 2 integrate theory and practice, and to understand limitations of their current knowledge |  |  |  |
|  | CLO 3 work in a team and to collaborate with people with different background |  |  |  |
|  | CLO 4 express scientific ideas effectively in both written and oral forms |  |  |  |
|  | CLO 5 develop further logical, critical thinking and creativity |  |  |  |
|  | CLO 6 advocate to others the appreciation for chemistry as to its relevance to our daily life |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Students are expected to have satisfactorily completed all introductory chemistry disciplinary core courses and at least 24 credits of advanced level disciplinary core/elective chemistry courses in the Chemistry Major. <br> Students who are interested in taking the course should contact the course coordinator for application in April May. Late application may not be considered. <br> This capstone course is for Chemistry Major students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. |  |  |  |
| Offer in 2021-2022 | Y Summer Offer in | 023 : Y | Examination | No Exam |
| Grade Descriptors$(A+\text { to } F)$ | Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical analysis / evaluation of information drawn from a full range of high quality sources and to quote/reference aptly. Critical use of data and results to draw appropriate and insightful conclusions. Show integration of the full range of appropriate theories, principles, evidence and techniques. Apply highly effective organizational and presentational skills. [Work of A+ should show considerable additional work beyond that is required in wider areas relevant to the topic.] |  |  |  |
|  | Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Correct use of data of results to draw appropriate conclusions. Show general integration of theories, principles, evidence and techniques. Apply effective organizational and presentational skills. |  |  |  |
|  | C $\quad$Demonstrate ge <br> Use of relevant <br> quote/reference <br> partial integration <br> skills. | Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking, Use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/reference aptly. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Show some partial integration of theories, principles, evidence and techniques. Apply moderately effective organizational and presentational |  |  |
|  | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited ability to use data and results to draw appropriate conclusions. Show limited integration of theories, principles, evidence and techniques. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Show little or no or inapt integration of theories, principles, evidence and techniques. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Project-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Meeting with supervisor | Tutorials |  | 10 |
|  | Reading / Self study |  |  | 60 |
|  | Assessment | Group work or project |  | 80 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Oral presentation | $\begin{array}{ll}40 \% & \text { Presentation; } 10 \% \\ \text { Participation; } 10 \% \text { Peer evaluation }\end{array}$ | 60 | CLO 1,2,3,4,5,6 |

Required/recommended No specific list of textbooks and references. Students are encouraged to obtain information via various channels reading and
online materials
Additional Course Information (main library, e-journals, internet, and discussions with classmates and teachers, etc.).

Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.

| CHEM4966 |
| :--- |
| Offering Department |
| Course Co-ordinator |
| Teachers Involved |
| Course Objectives |

Course Contents \& Topics

Course Learning
Outcomes
Pre-requisites
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors Distinction/Pass/Fail
Pass

Additional Course Information


Chemistry internship (6 credits)
Chemistry
Dr H Y Au-Yeung, Chemistry (hoyuay@hku.hk)
(Dr H Y Au-Yeung,Chemistry)
This course aims to offer students the opportunities to gain work experience in the industry related to their major of study. The workplace learning experience would be of great benefits to the students to apply their knowledge gained in the study to the real work environments. Students have to take on at least 160 hours of internship work either within the University or outside the University arranged by the School/Departments.

- Within the University: The student will be supervised by a staff member (Supervisor), working on a project or various tasks as instructed by the Supervisor.
- Outside the University: The student will work in an external agency related to the major of study. The student will be supervised under a staff member of the external agency (the External Supervisor) and a staff member of the Department/School of the student (the Internal Supervisor). The work to be performed by the student will normally be instructed by the External Supervisor, with prior agreement of the Internal Supervisor.
On successful completion of this course, students should be able to:
CLO 1 apply knowledge in their major study in solving practical problems in the work place
CLO 2 gain first hand work experience in the industry related to their major study
Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major.
This capstone course is for Chemistry Major/ Chemistry Major (Intensive) students only.
The earliest that a student is allowed to take this capstone course is their year 3 study.
Y 1st sem 2nd sem Summer Offer in 2022-2023: Y Examination No Exam
Distincti Demonstrates excellent ability in applying knowledge to solve problems in the workplace. Demonstrates excellent performance in handling and carrying out the work required in the job or assigned by supervisor(s). Establishes highly effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, with excellent performance in written and oral report, requirements set out in the Course Description
and excellent evaluation by supervisor(s), etc. and excellent evaluation by supervisor(s), etc. Able to apply knowledge to solve problems in the workplace. Successfully handles and carries out the work required in the job
or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and
clients in the job. Successfully fuffils the requirements set out in the Course Description regarding working hours, written and oral report, and evaluation by supervisor(s), etc. Students demonstrating excellent performance in the above would be awarded a grade of "Distinction".
$\begin{array}{ll}\text { Fail } & \text { Very limited or no ability to solve problems in the workplace. Fails to handle or carry out the work required in the job or } \\ \text { assigned by supervisor(s). Fails to establish effective collaboration or communication with supervisor(s), other colleagues, or }\end{array}$ clients in the job. Fails to satisfy the requirements set out in the Course Description regarding working hours, written and oral report, or evaluation by supervisor(s), etc.

N

Satisfactory completion of this course can be counted towards the Capstone requirement. Details of internship will be recorded on the student's transcript. This course will be assessed on "Pass/Fail" basis. Students who are interested to enrol in this course should contact the Department to obtain the approval.
Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.

CHEM4999
Offering Department Course Co-ordinator Teachers Involved
Course Objectives
Course Contents \& Topics
Course Learning
Outcomes

## Chemistry project ( 12 credits)

Chemistry
Dr J Y Tang, Chemistry (jinyao@hku.hk)
(Various teachers in the Department,Chemistry)
To provide experience of research techniques by working on a short project under the direct supervision of a member of staff. This course would prepare students for graduate school work in chemistry.
A short research project provided by a member of staff (e.g. the students supervisor).
On successful completion of this course, students should be able to:
CLO 1 understand the terminology and nomenclature associated with their own research chemistry project
CLO 2 demonstrate knowledge and understanding of the chemical techniques they used to do the research in their own chemical project
CLO 3 demonstrate critical thinking skill in their own research project and understanding the motivation and target of the research
CLO 4 demonstrate knowledge and understanding of the results of their own chemistry project and its context in the broader research area
CLO 5 demonstrate ability to integrate the knowledge acquired from previous courses and develop fundamental knowledge of designing research plan
Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major including CHEM3241, and CHEM3341, and CHEM3441, and CHEM3541. This capstone course is for Chemistry Major/ Chemistry Major (Intensive) students only.

| combinations) | The earliest that a student is allowed to take this capstone course is their year 3 study. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Offer in 2021-2022 | Y Year long Offer in 2022-2023: Y |  |  | Examination No Exam |  |
| Grade Descriptors$(A+\text { to } F)$ | A | Show an extensive comprehension of the research project. Demonstrate very able analytical and critical thought with presence of some originality. Illuminating utilization and critical analysis / evaluation of information acquired from a wide range of high quality sources. Critical employment of data and results to synthesize appropriate and illuminating conclusions. Demonstrate integration of a wide range of appropriate theories, principles, data and methods. Employ very effective organizational and presentational skills. [Work of A+ should demonstrate substantial additional work beyond that is required in wider areas relevant to the topic.] |  |  |  |
|  | B | Show a sub information Correct utiliz and method | ension of the research project. Demonstra emonstrate ability to compose meaningful d results to form appropriate conclusions. ive organizational and presentational skills, | ale analytical and critical thi parisons between different pose general integration of | ing with use of relevant condary interpretations. eories, principles, data |
|  | C | Show a gen of relevant correct but theories, prin | te comprehension of the research project. sources. Demonstrate ability to compos tilization of data and results to form approp methods. Perform moderately effective or | sence of some analytical an mparisons between differe conclusions. Demonstrate zational and presentational | critical thinking with use interpretations. Mainly ne partial integration of ils. |
|  | D | Show a part some coher sources, bu appropriate effective org | omprehension, with knowledge of some r thinking, but with limited analytical and c mary instead of by analysis and compar monstrate limited integration of theories, $p$ presentational skills. | ant information, of the rese abilities. Show utilization Limited ability to employ les, data and methods. Pe | h project. Presence of d reference of several ta and results to form $m$ limited or marginally |
|  | Fail | Show little or coherent thi results and/ methods. Or | sion of the research project. Evidence of mployment of secondary sources and no m appropriate conclusions. Demonstrate presentational skills are of very limited use | or lack of analytical and c cal comparison of them. I or no integration of theor effective. | al abilities, logical and rrectly utilize data and , principles, data and |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Project-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Reading / Self study |  | 8 hours per week for 24 weeks or longer discussions \& meetings |  | 192 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Dissertation |  | including a written report and an oral presentation | 100 | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | Specialist texts dependant on the selected topic. |  |  |  |  |
| Additional Course Information | Third year students with exceptional academic achievement may also apply for this course |  |  |  |  |




CLO 3 understand the extent and nature of global change and environmental concerns around us
CLO 4 demonstrate the ability to make and record observations on Earth Systems processes in natural field environments

Pre-requisites
(and Co-requisites and Impermissible combinations)

| Offer in 2021-2022 | Y | 1st sem Offer in 2022-2023: Y |  | Examination Dec |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery of extensive knowledge / competencies/skills at an Earth Science introductory level required for attaining most or all of the course learning outcomes. Shows clear understanding of introductory terminology and concepts and strong abilities to apply and relate them in a range of complex interactive processes between Earth Systems. Demonstrates highly effective observational skills in field as well as organizational skills to present important observations made and uses them to draw appropriate and insightful conclusions with an impressive level of depth and original thoughts. |  |  |  |
|  | B | Demonstrate substantial command of knowledge / competencies/skills at an Earth Science introductory level required for attaining most of the course learning outcomes. Shows evidence for understanding of introductory terminology and concepts and some abilities to apply and relate them in a range of complex interactive processes between Earth Systems. Demonstrates effective observational skills in field as well as organizational skills to present important observations made and uses them to draw appropriate and insightful conclusions with some level of depth. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge / competencies/skills at an Earth Science introductory level required for attaining most of the course learning outcomes. Shows evidence for some understanding of introductory terminology and concepts and some abilities to apply and relate them in some interactive processes between Earth Systems. Demonstrates moderately effective observational skills in field as well as organizational skills to present observations made mostly correct but with some erroneous use and results to draw appropriate conclusions. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge / competencies/skills at an Earth Science introductory level required for attaining some of the course learning outcomes. Shows evidence of limited understanding of introductory terminology and concepts and limited abilities to apply and relate them in some interactive processes between Earth Systems. Demonstrates limited observational skills in field. Applies limited or barely effective organizational and presentational skills to present observed details and facts correctly. Limited ability to draw appropriate conclusions. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge / competencies/skills at an Earth Science introductory level required for attaining the course learning outcomes. Shows little or no evidence of understanding of introductory terminology and concepts and little or no abilities to apply and relate them in interactive processes between Earth Systems. Demonstrates poor observational skills in field. Applies incoherent organizational and poor presentational skills. Ineffective presentation of observed details and facts and unable to draw appropriate conclusions. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 24 |
|  | Laboratory |  |  |  | 24 |
|  | Field work |  | Compulsory 2-day fi |  | 16 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in fina course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Examination |  | Essay Questions | 40 | CLO 1,2,3 |
|  | Laboratory reports |  |  | 20 | CLO 1,2,3,4 |
|  | Project report |  | Field project report | 30 | CLO 1,2,3,4,5 |
|  | Test |  | Online MC Quizzes | 10 | CLO 1,2,3 |

Required/recommended Skinner B.J and Murck B.W. : The Blue Planet (2011)
reading and
online materials
Murphy, B and Damian N.: Earth Science Today (1999)


| ( $\mathrm{A}+$ to F$)$ |  | learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  | 12 sessions $\times 2$ hours |  | 24 |
|  | Laboratory |  | laboratory practical on rocks and minerals, earthquakes, fossil identifcation |  | 16 |
|  | Field work |  | 1 field trip |  | 8 |
|  | Group work |  | 1 group project with pres |  | 4 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Examination |  | 2-hour written exam | 40 | CLO 1,2,3,4,5 |
|  | Laboratory reports |  | Practical/field reports | 40 | CLO 1,2,3,4,5 |
|  | Project report |  | Presentation and report | 20 | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | Tarbuck E.J. and Lutgens F.K.: The Earth: An Introduction to Physical Geology (latest edition) |  |  |  |  |


| EASC1403 | Geological heritage of Hong Kong (6 credits) |  | Academic Year 2021 |  |
| :---: | :---: | :---: | :---: | :---: |
| Offering Department | Earth Sciences |  | Quota 35 |  |
| Course Co-ordinator | Dr M C Cheung, Earth Sciences (hmcc@hku.hk) |  |  |  |
| Teachers Involved | (Dr M C Cheung,Earth Sciences) |  |  |  |
| Course Objectives | To give an overview of the geology of Hong Kong, potential geological resources for tourism and the role of geology in the development of Hong Kong's infrastructure. |  |  |  |
| Course Contents \& Topics | 6 Lectures on general geology of Hong Kong, geology of Hong Kong's Country Parks, and aspects of geological knowledge pertaining to large scale construction project plus at least 4 weekend field trips (equivalent to a total of 32 hours) guided by experts to localities of geological interest. |  |  |  |
| Course Learning Outcomes | On successful comple <br> CLO 1 acquire an ap <br> CLO 2 demonstrate <br> CLO 3 enhance the <br> CLO 4 understanding | urse, students should be able to: the processes leading to the for of the major morphological fea nd analytical skills, and physical impacts on / importance of geo | n of various landform in Hong Kong ity through participatio al heritage of Hong K | the field excursion |
| Pre-requisites (and Co-requisites and Impermissible combinations) | NIL |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offer in 2022-2023: Y |  | Examination May |  |
| Grade Descriptors $(\mathrm{A}+\text { to } \mathrm{F})$ | Demonstrate thorough understanding at an advanced level of extensive knowledge and skills with evidence for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking. Evidence of original thoughts, excellent field observation and ability to solve problems. Highly effective organization and presentation skills. |  |  |  |
|  | Demonstrate substantial understanding at an advanced level of extensive knowledge and skills with evidence for attaining all the course learning outcomes. Show analytical and critical abilities and logical thinking. Evidence of original thoughts and abilities of field observation. Effective organization and presentation skills. |  |  |  |
|  |  | Demonstrate general but incomplete understanding required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking. Moderately effective organization and presentation skills. |  |  |
|  | Demonstrate partial but limited understanding for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail $\quad$No or little k <br> abilities, logi <br> and presenta | No or little knowledge about the subject. No evidence for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Very little or no ability for field observation and for solving problems. Poor organization and presentational skills. |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching | Activities | Details |  | No. of Hours |
| \& Learning Activities | Lectures | 6 sessions $\times 2$ hours |  | 12 |
|  | Field work | 4 field trips |  | 32 |
|  | Group work | 1 presentation and report |  | 20 |
|  | Reading / Self study |  |  | 60 |
|  | Assessment | Essay and exercises |  | 20 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments | attendance of compulsory guided field trips | 15 | CLO 1,2,3,4 |
|  | Essay | Individual essay and exercises | 20 | CLO 1,2,3,4 |
|  |  | 2-hour written examination | 40 | CLO 1,2,4 |



EASC1405 Offering Department Course Co-ordinator Teachers Involved Course Objectives

Course Contents \& Topics

Course Learning Outcomes

Peaceful use of nuclear technologies (6 credits) Earth Sciences
Dr S H Li, Earth Sciences (shli@hku.hk)
(Dr S H Li,Earth Sciences)
To provide students with the science backgrounds and knowledge on application of nuclear technologies in daily life and to invoke an awareness of current applications of nuclear sciences by case studies.
Man and radiation; principles of nuclear technology; case studies of nuclear techniques applied in arts, engineering, biological, physical and social sciences; radiation on earth and beyond; industrial application of nuclear techniques; nuclear techniques in medical study. Future development in nuclear technologies.
On successful completion of this course, students should be able to:
CLO 1 recognize the science fundamentals in nuclear technologies
CLO 2 explain and describe the principles of nuclear technologies applied
CLO 3 have the awareness of current applications of nuclear sciences
CLO 4 demonstrate the knowledge and understanding of the underlying concepts associated with nuclear technologies

Pre-requisites (and Co-requisites and Impermissible

## NIL

| combinations) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Offer in 2021-2022 | Offer in 2022-2023: N |  |  | Examination |  |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Field work |  |  |  | 6 |
|  | Group work |  |  |  | 6 |
|  | Project work |  |  |  | 6 |
|  | Reading / Self study |  |  |  | 92 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | Group activities and reports | 30 | CLO 1,2,3 |
|  | Examination |  | 2-hour | 50 | CLO 1,2,4 |
|  | Project reports |  | Individual Report | 20 | CLO 1,3,4 |
| Required/recommended reading and online materials | To be announced |  |  |  |  |




Required/recommended Recommended reading (e-books and regular books):
reading and
online materials
Dinosaur paleobiology. S.L. Brusatte. 2012. Wiley: New York. 322pp. [HKU main library e-book]
The complete dinosaur (2nd ed.). M.K. Brett-Surman, T.R. Holtz, Jr. \& J.O. Farlow (eds.). 2012. Indiana University


| Course Objectives | This course is hands-on field and laboratory-based that introduces basic geological and geomorphological field and mapping techniques and the use of geological equipment and air photographs, an overview of the geology and natural environment of Hong Kong. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Contents \& Topics | - Maps and map read <br> - Interpretation of g structures from outcro unconformities (lectur <br> - Interpretation and us <br> - Field observation and <br> - Field observation and <br> - Laboratory equipme | rence system (lectures and class pr d topographic maps: topographic nd structural contour lines (horizont practice) <br> graphs (class practice) of rocks, outcrops (with fieldtrips in of landscape units (with fieldtrips in | geological cross s clined strata, folded <br> g Kong) <br> g Kong) | tions, geological nd faulted strata, |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 read geological maps and comprehend 3-D geological structures from 2-D geological maps |  |  |  |
|  | CLO 2 construct a geological cross section showing interpreted subsurface rocks and structures, and natural landscape units |  |  |  |
|  | CLO 3 demonstrate techniques for basic field observations, measurements and identifications |  |  |  |
|  | CLO 4 create and interpret an internally consistent geological and landscape maps from a set of collected field observations and data |  |  |  |
|  | CLO 5 develop skills in integrating geological field data in determining a geological and landscape history and writing a structured field report |  |  |  |
|  | CLO 6 understand to the basics of a series of laboratory techniques for geological and environmental studies |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in EASC1401 or |  |  |  |
| Offer in 2021-2022 | Y 1st sem Offer | 23 : Y | Examination | No Exam |
| Grade Descriptors$(A+\text { to } F)$ | Demonstrate thorough and complete grasp of the subject in order to fulfill most or all learning outcomes. Shows strong ability to record observations on earth processes in the field and to apply knowledge to familiar and unfamiliar situations. Evidence of strong independent analytical, critical and logical thinking. Show strong ability to synthesize all observations made and knowledge in a field report and geological map with highly effective organizational and presentational skills. |  |  |  |
|  | Demonstrate substantial grasp of the subject required for most of the learning outcome. Shows evidence of ability to record observations on earth processes in the field and to apply knowledge to familiar and some unfamiliar situations. Evidence of independent analytical, critical and logical thinking. Shows ability to synthesize all observations made and knowledge in a field report and geological map with effective organizational and presentational skills. |  |  |  |
|  | Demonstrate general but incomplete grasp of the subject required for most of the learning outcome. Evidence of some ability to record observations on earth processes in the field and apply knowledge to most familiar situations. Evidence of some independent analytical, critical and logical thinking. Show ability to synthesize most observations made and knowledge in a field report and geological map with moderately effective organizational and presentational skills. |  |  |  |
|  | Demonstrate partial but limited grasp of the subject required for most of the learning outcome. Evidence of limited ability to record observations on earth processes in the field and limited application of knowledge to solve problems. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to synthesize some observations made and knowledge in a field report and geological map with barely effective organizational and presentational skills. |  |  |  |
|  | Demonstrate little or no grasp of the subject required for most of the learning outcome. Little or no evidence of ability to record observations on earth processes in the field and show very little or no ability to apply knowledge to solve problems. Evidence of little or lack of analytical and critical abilities, coherent and logical thinking. Shows very little or no ability to synthesize observations made and knowledge in a field report and geological map with incoherent organizational and poor presentational skills. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Field camps |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures | 12 sessions $\times 1$ hour |  | 12 |
|  | Field work | 5-day field camp \& 2 day trips |  | 56 |
|  | Laboratory work | 12 hours paper exercises |  | 12 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments | Data interpretation exercises | 30 | CLO 1,2 |
|  | Report | Field Work Assessments (Maps \& Reports) 50\% and Laboratory Assignment (Laboratory Report) 20\% | 70 | CLO 2,3,4,5,6 |
| Required/recommended reading and online materials | Comprehensive Course Notes provided. John Barnes: Basic Geological Mapping (Wiley, 1995, 3rd edition) |  |  |  |
| EASC2404 | Introduction to atmosphere and hydrosphere (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Earth Sciences |  | Quota | 50 |
| Course Co-ordinator | Dr B Zhang, Earth Sciences (binzh@hku.hk) |  |  |  |
| Teachers Involved | (Dr B Zhang,Earth Sciences) <br> (Dr J R Ali,Earth Sciences) |  |  |  |
| Course Objectives | This course introduces the atmosphere and hydrosphere systems, and explains at a basic level how they interact with one another. |  |  |  |
| Course Contents \& Topics | Introduction and course plan, Earth within a broader context (Solar System and other key features); Geological forces shaping the floor of the Oceans and Seas; Water Structure, Ocean Structure and Seawater Composition/Chemistry; Introduction to the Atmosphere; Heating Earth's surface and Atmosphere; Temperature; Moisture and Atmospheric Stability; Forms of condensation and precipitation; Hydrological Cycle - an overview; Air Pressure and Winds; Intro to Atmospheric Circulation and Weather Systems; Ocean Circulation; Waves; Tides; Coasts; Groundwater basics; Groundwater usage, contamination, caves and karst; Glaciers and glacial landscapes; Climate system, proxy data, causes of climate change; Effects of climate change. |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 understand the important features which distinguish Earth from the other planets within our Solar System, |  |  |  |


|  | particularly with regards to its outer fluid envelopes |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | CLO 2 appreciate that on a geological timescale, the ocean basins and the seas are continually changing their location and morphology, and why this is the case |  |  |  |
|  | CLO 3 understand the key features of water, and the critical role the compound plays in the AtmosphereHydrosphere system |  |  |  |
|  | CLO 4 understand the basic physical phenomena associated with the Atmosphere and the Oceans/Seas and their important lower-order elements |  |  |  |
|  | CLO 5 have an awareness of the scientifically "hot" Atmosphere and Hydrosphere topics |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in EASC1401 or |  |  |  |
| Offer in 2021-2022 | Y 1st sem Offer | 23 : Y | Examinatio | Dec |
| Grade Descriptors$(A+\text { to } F)$ | A $\quad$Thorough g <br> presentation <br> and to quote | Thorough grasp of the subject; evidence of strong critical abilities and logical thinking; highly effective organizational and presentational skills; insightful use and critical analysis / evaluation of information drawn from a full range of high quality sources and to quote/reference aptly; integration of the full range of appropriate theories, principles, evidence and techniques. |  |  |
|  | B $\quad$Substantial <br> skills; critica <br> secondary in | Substantial grasp of the subject; evidence of critical abilities and logical thinking; effective organizational and presentational skills; critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly; general integration of theories, principles, evidence and techniques. |  |  |
|  | C $\quad$General but <br> organization <br> different inte | General but incomplete grasp of the subject; evidence of some critical abilities and logical thinking; moderately effective organizational and presentational skills; use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/reference aptly; some partial integration of theories, principles, evidence and techniques. |  |  |
|  | Limited grasp of the subject, retention of some relevant information of the subject; evidence of limited critical abilities; limited or barely effective organizational and presentational skills; use and reference of several sources, but mainly through summary rather than analysis and comparison; limited integration of theories, principles, evidence and techniques. |  |  |  |
|  | Little or no grasp of the knowledge and understanding of the subject; little or no evidence of critical abilities and logical / coherent thinking; incoherent organization and poor presentational skills; limited use of secondary sources and no critical comparison of them; little or no or inapt integration of theories, principles, evidence and techniques. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 24 |
|  | Laboratory | including |  | 24 |
|  | Project work |  |  | 10 |
|  | Reading / Self study |  |  | 90 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | 20 | CLO 4,5 |
|  | Essay |  | 25 | CLO 1,2,3,4,5 |
|  | Examination |  | 50 | CLO 1,2,3,4,5 |
|  | Presentation |  | 5 | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | Tom S. Garrison: Oceanography: An Invitation to Marine Science Frederick K. Lutgens and Edward J. Tarbuck: The Atmosphere: An Introduction to Meteorology |  |  |  |
| Additional Course Information | If by any chance it is not possible for the group presentations to carried out, as was the case in Semester 12019 (November) due to the University campus activities being suspended, the associated individual essay mark will be increased from 25 to 30 and the group presentation score will be dropped. |  |  |  |





| EASC2409 | Regional field studies (6 credits) | Academic Year | 2021 |
| :--- | :--- | :--- | :--- |
| Offering Department | Earth Sciences | Quota | 10 |
| Course Co-ordinator | Dr J R Ali, Earth Sciences (jrali@hku.hk) |  |  |
| Teachers Involved | (Dr A A G Webb (Japan Field Trip),Earth Sciences) <br> (Dr J R Ali (Taiwan Field Trip),Earth Sciences) |  |  |
| Course Objectives | This course is field-based and introduces geology of China, Taiwan, Japan and/or regions in the vicinity of Hong <br> Kong through hands on studies and field excursions. <br> The course is compulsory for students doing the Geology (Intensive) major. |  |  |
| Course Contents | The course will introduce the following topics: |  |  |
| \& Topics | Geological studies in Southern China, Japan, and/or Taiwan  <br>  - Geological history of S. China, Japan, and/or Taiwan <br>  - Recognition of rock units and minerals in the field <br>  - Field recognition and description of geological structures <br>  - Stratigraphic measurements |  |  |





Pre-requisites (and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors ( $\mathrm{A}+$ to F )

Pass in EASC2407

| Y | 2nd sem Offer | 23 : Y | Examination | May |
| :---: | :---: | :---: | :---: | :---: |
| A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. |  |  |  |
| B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. |  |  |  |
| C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. |  |  |  |
| D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. |  |  |  |
| Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. |  |  |  |
| N |  |  |  |  |
| Lecture with laboratory component course |  |  |  |  |
| Activities |  | Details |  | No. of Hours |
| Lectures |  | 12 sess |  | 24 |
| Laboratory |  | specime microsc | observations under | 24 |
| Reading / Self study |  |  |  | 100 |
| Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
| Assignments |  |  | 35 | CLO 1,2,3,4 |
| Examination |  |  | 55 | CLO 1,2,3,4 |
| Test |  |  | 10 | CLO 1,2,3,4 |

Required/recommended Harvey Blatt and Robert J. Tracy, Petrology (Second Edition; W.H. Freman and Company, New York) reading and online materials

| EASC3403 | Sedimentary environments (6 credits) |  | Academic Year | 2021 |
| :---: | :---: | :---: | :---: | :---: |
| Offering Department | Earth Sciences |  | Quota | --- |
| Course Co-ordinator | Dr N R McKenzie, Earth Sciences (ryan00@hku.hk) |  |  |  |
| Teachers Involved | (Dr J King,Earth Sciences) <br> (Dr N R McKenzie,Earth Sciences) |  |  |  |
| Course Objectives | This course discusses the origin, diagenesis, classification and economic importance of sedimentary rocks. Students will learn features and processes of sedimentary geology, paleontology and depositional processes. |  |  |  |
| Course Contents \& Topics | - Overview of sedimentary geology <br> - Physics of erosion, transportation and sedimentation <br> - Sedimentary structures <br> - Depositional environments (non-marine) <br> - Depositional environments (marine) <br> - Sequence stratigraphy <br> - Basin analysis <br> - Sedimentary environment around Hong Kong <br> - Sedimentary environment on Mars |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 describe the nature and significance of sedimentary features and structures |  |  |  |
|  | CLO 2 identify carbonate and siliciclastic rocks in hand sample |  |  |  |
|  | CLO 3 describe the facies in a depositional environment |  |  |  |
|  | CLO 4 undertake detailed study of a stratigraphic section in the field |  |  |  |
|  | CLO 5 conduct basic observations and interpretations from outcrops |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in EASC2402 or EASC3402 |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offer | 023 : Y | Examination | May |
| Grade Descriptors$(A+\text { to } F)$ | A Demonstrate | Demonstrate thorough grasp of the subject. Show strong analytical abilities and logical thinking, with evidence of original thought. Apply highly effective lab/fieldwork skills and techniques. Apply highly effective organizational and presentational skills. |  |  |
|  | B Demonstrate | asp of the subject. Show strong analytical abilities highly effective organizational and presentational sk | gical thinking. Apply | effective lab/fieldwork |
|  | C $\quad$Demonstrate <br> effective lab/ | complete grasp of the subject. Show some analytica and techniques. Apply moderately effective organiza | ities and logical think and presentational sk | ig. Apply moderately ills. |
|  | D Demonstrate <br> lab/fieldwork | ed grasp of the subject. Show some analytical abili iques. Apply limited or barely effective organizationa | and logical thinking. A presentational skills | pply partially effective |
|  | FailDemonstrate <br> effective lab/ | sp of the subject. Evidence of little or lack of analyti and techniques. Organization and presentational skil | bilities and logical thin ineffective. | king. Apply minimally |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures | 12 sessions $\times 2$ hours |  | 24 |
|  | Laboratory | 6 sessionsx 2 hours |  | 12 |
|  | Field work | 1 day trip with field project |  | 8 |
|  | Project work | Examples for sedimentary environments |  | 12 |
|  | Reading / Self study |  |  | 90 |




Print ISBN : 9781577665076,1577665074
eText ISBN : 9781478618171.0
If you sign up for the course, plan on buying the book. The e-version is inexpensive. You will be expected to know the material from the book.

Course Website
Additional Course Information
http://www.clays.space
You can learn more by visiting the website http://www.clays.space


| EASC3408 | Geophysics (6 credits) | Academic Year | 2021 |
| :--- | :--- | :--- | :--- | :--- |
| Offering Department | Earth Sciences | Quota | --- |
| Course Co-ordinator | Dr B Zhang, Earth Sciences (binzh@hku.hk) |  |  |
| Teachers Involved | (Dr B Zhang, Earth Sciences) <br> (Prof L S Chan, Earth Sciences) |  |  |
| Course Objectives | An overview of the geophysical characteristics and processes of the solid earth and a survey of the various |  |  |






| EASC3414 | Soil and rock mechanics (6 credits) |  | Academic Year 2021 |  |
| :---: | :---: | :---: | :---: | :---: |
| Offering Department | Earth Sciences |  | Quota | 40 |
| Course Co-ordinator | Prof J J Jiao, Earth Sciences (jjiao@hku.hk) |  |  |  |
| Teachers Involved | (Dr L N Y Wong, Earth Sciences) (Prof J J Jiao,Earth Sciences) |  |  |  |
| Course Objectives | To provide a basic knowledge of soil and rock mechanics for those wishing to consider further studies on a career in engineering geology/geotechnics. |  |  |  |
| Course Contents \& Topics | Stress and strain; properties and classifications of soil and rock; clay minerals; pore pressure and effective stress; strength and failure criteria, initial stresses and their measurement; deformation; consolidation; planes of weakness in rocks; ground treatment methods. |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 understand basic concepts of stress and strain, pore pressure and effective stress, strength and failure criteria |  |  |  |
|  | CLO 2 understand basic properties and classifications of soil and rock |  |  |  |
|  | CLO 3 appreciate the process of rock deformation and soil consolidation |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in EASC3410, or already enrolled in this course |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offer in 2022-2023: Y |  | Examination May |  |
| Grade Descriptors $(A+\text { to } F)$ | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking. Apply effective organizational and presentational skills. |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking. Apply moderately effective organizational and presentational skills. |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective organizational and presentational skills. |  |  |
|  | FailDemonstrate <br> of analytical <br> ineffective. | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Organization and presentational skills are minimally effective or ineffective. |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 24 |
|  | Laboratory |  |  | 24 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments Examination |  | 30 | CLO 1,2,3 |
|  |  |  | 70 | CLO 1,2,3 |

Required/recommended reading and

[^5]| EASC3415 | Meteorology (6 credits) |  | Academic Year 2021 |  |
| :---: | :---: | :---: | :---: | :---: |
| Offering Department | Earth Sciences |  | Quota | --- |
| Course Co-ordinator | Dr Jed Kaplan, Earth Sciences (jkaplan@hku.hk) |  |  |  |
| Teachers Involved | (Dr J O Kaplan, Earth Sciences) |  |  |  |
| Course Objectives | This course will cover the five major components of meteorology: (1) thermodynamics, (2) physical meteorology, (3) observation and analysis, (4) dynamics, and (5) weather systems (cyclones, fronts, thunderstorms). The aim is to provide students with a modern understanding of drivers and behavior of weather by examining the processes that govern atmospheric structure and behavior, weather elements, and weather systems. |  |  |  |
| Course Contents \& Topics | - Atmospheric Basics <br> - Solar \& Infrared Radiation <br> - Thermodynamics <br> - Water Vapor <br> - Atmospheric Stability <br> - Clouds <br> - Precipitation Processes <br> - Satellites \& Radar <br> - Weather Reports \& Map Analysis <br> - Atmospheric Forces \& Winds <br> - General Circulation <br> - Fronts \& Air Masses <br> - Thunderstorm Fundamentals <br> - Thunderstorm Hazards <br> - Tropical Cyclones |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 describe key aspects of weather phenomena |  |  |  |
|  | CLO 2 explain essential elements of atmospheric processes gov |  | ing weather |  |
|  | CLO 3 apply physical principles to construct models for some bas |  | aspects of weather |  |
|  | CLO 4 explain synoptic charts (weather maps) |  |  |  |
|  | CLO 5 interpret Hong Kong weather (typhoons etc.) |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in EASC2404 |  |  |  |
| Offer in 2021-2022 | Y 1st sem Offer in 2022-2023 | 23 : Y | Examination | No Exam |
| Grade Descriptors$(A+\text { to } F)$ | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Demonstrate critical use of data and results to draw appropriate and insightful conclusions. Show insightful use and critical analysis / evaluation of information drawn from a full range of high quality sources and to quote/reference aptly. |  |  |  |
|  | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Demonstrate correct use of data and results to draw appropriate conclusions. Show critical use of relevant information from sources and ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. |  |  |  |
|  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Demonstrate mostly correct but some erroneous use of data and results to draw appropriate conclusions. Show use of relevant information from sources and ability to make comparisons between different interpretations and to quote/reference aptly. |  |  |  |
|  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Demonstrate limited ability to use data and results to draw appropriate conclusions. Show use and reference of several sources, but mainly through summary rather than analysis and comparison. |  |  |  |
|  | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Demonstrate misuse of data and results and/or unable to draw appropriate conclusions. Show limited use of secondary sources and no critical comparison of them. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 4 |
|  | Project work |  |  | 48 |
|  | Tutorials |  |  | 10 |
|  | Discussion |  |  | 14 |
|  | Reading / Self study |  |  | 50 |
|  | Assessment |  |  | 2 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments | problem sets | 15 | CLO 1,2,3 |
|  | Presentation | in-class presentations (weather reports) | 15 | CLO 1,4,5 |
|  | Project report | research report | 40 | CLO 1,4,5 |
|  | Test | midterm examination (1h50) | 30 | CLO 1,2,3 |

Required/recommended Stull, R. (2017). Practical Meteorology: An Algebra-based Survey of Atmospheric Science. Vancouver, Canada: reading and online materials

Dept. of Earth, Ocean \& Atmospheric Sciences, University of British Columbia. https://moodle.hku.hk/pluginfile.php/2646870/mod_resource/content/1/Practical_Meteorology-v1.02bWholeBookColor.pdf

| Offering Department | Earth Sciences |  |  | Quota | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Course Co-ordinator | Prof M F Zhou, Earth Sciences (mfzhou@hku.hk) |  |  |  |  |
| Teachers Involved |  |  |  |  |  |
| Course Objectives | To present key concepts of modern geochemistry and geochronology and their application to environmental and Earth science problems. |  |  |  |  |
| Course Contents \& Topics | 1. Principles of radiogenic isotopic dating and modern instruments <br> 2. Zircon U-Pb isotopic dating and its application <br> 3. Principles and techniques for dating mineral deposits <br> 4. Introduction to Quaternary geochronology <br> 5. Principle, development and applications of Luminescence dating |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 demonstrate knowledge of concepts and ideas of modern geochemistry |  |  |  |  |
|  | CLO 2 explain principles of radiogenic isotopic dating |  |  |  |  |
|  | CLO 3 understand how modern analytical techniques are applied to dating earth materials |  |  |  |  |
|  | CLO 4 understand how geochemical methods are applied to gain insight into process in environmental and Earth sciences |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in EASC2401 or EASC2406 or EASC2407 |  |  |  |  |
| Offer in 2021-2022 |  | Offer in 2022- |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | A | Student demonstrates thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Shows strong analytical and critical abilities and logical thinking, with evidence of original thought, and the ability to apply his/her knowledge to a wide range of problems in geochemistry, and at the same, can combine fundamental knowledge in geochemistry to understand the interactions among minerals, fluids and gases and how these processes impact fluxes of materials over geological time periods and on a global scale. Student shows the ability to apply highly effective organizat-ional and presentational skills. |  |  |  |
|  | B | Student demonstrates substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and apply his/her knowledge to a range of problems in geochemistry, and at the same combine knowledge in geochemistry to understand material fluxes among minerals, fluids and gases over geological time periods and on a global scale. Student shows the ability to apply effective organizational and presentational skills. |  |  |  |
|  | C | Student demonstrates general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply his/her knowledge to a range of problems in geochemistry and how interactions among minerals, fluids and gases impact material fluxeson a global scale. Student shows the ability to apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Student demonstrates partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to understand key topics in geochemistry and limited capability to transfer this knowledge to geological phenomena. Student shows the ability to apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Student demonstrates little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Shows very little or no ability to apply knowledge to understand basic topics related to the geochemistry and the application of these principles to geological problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 24 |
|  | Laboratory |  | Up to 24 hours |  | 24 |
|  | Group work |  |  |  | 24 |
|  | Discussion |  | Up to 24 hours |  | 24 |
|  | Reading / Self study |  |  |  | 60 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Examination |  | One 2-hour written examination | 60 | CLO 1,2,3,4 |
|  | Presentation |  |  | 20 | CLO 1,2,3,4 |
|  | Project report Geochistry by William M White (Wuley, Apr 1, 2013) |  |  | 20 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Geochemistry by William M. White (Wuley, Apr 1, 2013) |  |  |  |  |
| EASC3417 | Earth through time (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Earth Sciences |  |  | Quota | --- |
| Course Co-ordinator | Dr S C Chang, Earth Sciences (suchin@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr N R McKenzie,Earth Sciences) <br> (Dr S C Chang,Earth Sciences) |  |  |  |  |
| Course Objectives | To introduce the concept of geological time and basic geological principles. To provide an understanding of the fossil record and the integration of Earth Systems and plate tectonics. To gain an appreciation of our place in the Universe, an understanding of the evolution of Earth and life on Earth through time. |  |  |  |  |
| Course Contents \& Topics | Geological time, the origin of life, fossils and diversification of life through time, Important events in Earth history such as Snowball Earth, the Cambrian explosion of life, the Permian/Triassic mass extinction, the Cretaceous Tertiary extinction event, the origins of humans |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 define basic geological principles |  |  |  |  |
|  | CLO 2 explain critical geological relationships |  |  |  |  |
|  | CLO 3 outline the history of the development of our planet |  |  |  |  |
|  | CLO 4 interpret the geological record of evolution through time |  |  |  |  |
|  | CLO 5 compare and contrast various hypotheses put forward to explain major events in Earth history |  |  |  |  |
|  | CLO 6 describe major fossil groups |  |  |  |  |
| Pre-requisites (and Co-requisites | Pass | in EASC3403 |  |  |  |  |




Required/recommended Required reading to be announced.
reading and
online materials
Three two-hour pre-trip course meetings, including two film screenings and discussion.
Additional Course Information

Practical seminar with a documentary filmmaker.
Starting on the eastern slope of the Rocky Mountains in the northwestern U.S.A., we will make a three-week transect to the Pacific coast, covering more than 3500 km , and visiting a range of landscapes from glaciated alpine terrain, to loess plateaus, to sand dunes and deserts, and to coastlines. The Pacific Northwest of the United States encompasses range of landforms, climates, geology, soils, and biomes that are both relatively easy to access and visible over short distances.
Priority of enrollment will be given to Earth System Science major students.

EASC3999
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives
thinking skills.


|  |  | Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. She limited ability to apply knowledge to solve problems. Show some interest in the taught topics. Able to answer more than half of question correctly. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fail | Demonstrat of analytica problems. D | ence of co ilities, logic sitive attitu | wired for attaining the cour ery little or no ability to st of questions. | arning outcomes. Lack y knowledge to solve |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 28 |
|  | Tutorials |  |  |  | 10 |
|  | Field work |  |  |  | 8 |
|  | Group work |  | PBL gro |  | 10 |
|  | Project work |  | Writing |  | 30 |
|  | Reading / Self study |  |  |  | 54 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Essay |  |  | 60 | CLO 1,2,3,4 |
|  | Examination |  |  | 40 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | 1. Biogeochemistry: An Analysis of Global Change, William H. Schlesinger, Emily Bernhardt. 2. Introduction to marine biogeochemistry, Susan M. Libes, Elsevier, 2009. |  |  |  |  |

EASC4406
Offering Department
Course Co-ordinator
Teachers Involved

Earth dynamics \& global tectonics ( $\mathbf{6}$ credits)
Earth Sciences
Prof G Zhao, Earth Sciences (gzhao@hku.hk)
(Prof G Zhao,Earth Sciences)
To review the concepts and processes that shape the configuration of the Earth, from core to crust.
This course is intended to provide students with an understanding of the driving forces of Earth processes and the global outcome of these processes through an examination of direct and indirect observations, the evolution of hypotheses, and critical thinking.

| Course Contents | - Plate tectonics; orogenesis; accretionary and collisional orogensis. |
| :--- | :--- |
| \& Topics | - Mantle |

\& Topics

- Mantle convection; hot spots and plumes;
- Methods of investigation of large scale structures and processes;
- Structure and physical properties of the planet;
- Sea floor spreading; ocean ridges; transform faults;
- Subduction zones; mountain belts and orogenesis;
- Formation of continental crust;
- Continental rifts and continental margins;
- Sedimentary basins;
- Mechanism, consequence and implication of plate tectonics.
- Hadean Earth: Accretion of the Earth from the solar nebula; differentiation of the Earth; formation of the initial atmosphere and oceans; the earliest felsic crust; Late Heavy Bombardment.
- Archean cratons: greenstones and TTG gneisses; origin of komattites; role of mantle plumes in Archean crustal
formation and evolution; when did plate tectonics start on Earth?
- Paleoproterozoic collision tectonics.
- Supercontinents in Earth history: the assembly, outgrowth and breakup of supercontinents Columbia (Nuna), Rodinia and Pangea.
On successful completion of this course, students should be able to:
CLO 1 have an appreciation of the Earth as a dynamic planet
CLO 2 understand how energy release within the Earth is translated into geological processes
CLO 3 appreciate the importance of a knowledge of the history of investigation of global scale tectonic processes
CLO 4 distill of a wide range of data to differentiate competing geological theories
CLO 5 produce concise written and oral summaries of literature research on specific topics in global dynamics
Pass in EASC3403 or EASC3404 or EASC3408 or EASC3409
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors
Y 2nd sem Offer in 2022-2023: Y
(A+ to F)


## Examination May

The student should show a thorough mastery of the knowledge and skills necessary to attain all of the course outcomes, have an in-depth grasp of the subject, and provide evidence of strong analytical and logical thinking, where possible with original thought. Show outstanding and effective organizational and presentation skills, and the insightful use of data, literature reviews and other sources to undertake a high level of critical analysis and draw appropriate conclusions. Be able to integrate the full range of appropriate theories, principles, and evidence.
B The student should show a substantial knowledge of a significant range of the skills necessary for attaining most, if not all, of the course outcomes, and have a substantial grasp of the subject. Show evidence of the ability to think critically and to have effective organizational and presentational skills and make critical use of relevant information from different sources, showing the ability to make comparisons between consequent interpretations. Be capable of the general integration of theories, principles and make com The student should have a general command of the knowledge, competencies and skills required for attaining the majority of the course outcomes, and a general grasp of the subject. Show some evidence of critical ability and logical thinking and moderately effective organizational and presentational skills. The student should be moderately effective in the use of data to draw appropriate conclusions, should be able to use relevant information from sources and able to make comparisons between different interpretations, through partial integration of theories, principles and evidence.
D $\quad \begin{aligned} & \text { The student should have a partial but limited command of the knowledge, competencies and skills necessary for attaining a } \\ & \text { number of the course learning outcomes, and a limited grasp of the subject. Show evidence of some analytical competence and }\end{aligned}$ number of the course learning outcomes, and a limited grasp of the subject. Show evidence of some analytical competence and critical thinking and at least marginally effective organizational and presentational skills. Have limited ability to use data and results to draw appropriate conclusions and use and reference a variety of sources mainly in summary rather than through analysis and comparison.
Fail The student shows little or no evidence of knowledge and skills required for attaining even the minority of course learning outcomes, lacks an overall grasp of the subject area and shows an absence of analytical and critical thinking abilities. Shows little ability to a apply knowledge to solve problems and has poor and ineffective presentation and/or organizational skills. Shows little ability to a apply knowledge to solve problems and has poor and
little evidence of the integration of theories, principles and evidence.

N

| intensive Course |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 24 |
|  | Tutorials | student seminars and exercises |  | 20 |
|  | Reading / Self study | essay, presentation plus additional reading |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mappin |
|  | Assignments |  | 10 | CLO 1,2,3,4,5 |
|  | Essay | Including essays and seminars | 40 | CLO 1,2,3,4,5 |
|  | Examination ${ }_{\text {Kearey, P and Vine, F.J. Global tectonics (Oxford: Blackwell Scienc }}$ |  | 50 | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | Kearey, P and Vine, F.J. Global tectonics (Oxford: Blackwell Science, 1996, 2nd ed.) Turcotte, D and Schubert, G. Geodynamics (Cambridge Univ Press, 2002, 2nd ed.) Davies, Geoffrey F., Mantle convection for geologists (Cambridge 2011) |  |  |  |
| EASC4407 | Regional geology (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Earth Sciences |  | Quota | 40 |
| Course Co-ordinator | Dr A A G Webb, Earth Sciences (aagwebb@hku.hk) |  |  |  |
| Teachers Involved | (Dr A A G Webb,Earth Sciences) (Dr J R Ali,Earth Sciences) |  |  |  |
| Course Objectives | This course explores regional geologies as well as the approaches that geologists use to resolve regional geological questions. |  |  |  |
| Course Contents \& Topics | We will use case studies to explore how regional investigations integrating field-based and analytical research tools can test models for the evolution of large-scale geological systems. Likely case studies include exploration of various climate-tectonic interactions across mountain belts (Andes, Himalaya), the complex intraplate deformation of East Asia, and the progressive development of metamorphic core complexes via low-angle normal faults ( N . America, NE China). Students will advance their abilities to synthesize and communicate geological knowledge by creating new Wikipedia pages complete with original figures on regional geological topics of their interest. |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 appreciate the influential (and commonly conflicting) models that have been proposed to explain a range of regional tectonic phenomena |  |  |  |
|  | CLO 2 understand the various "tools" that are commonly used by geo-scientists to test and develop models for the evolution of tectonically complicated regions |  |  |  |
|  | CLO 3 carry out an in-depth scientific literature review on a key regional geological issue and to present the findings via visual and written communication in an engaging, comprehensive online format |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in EASC3402; | 03 or EASC3404) |  |  |
| Offer in 2021-2022 | Y 1st sem Offer | 23 : Y | Examinatio | No Exam |
| Grade Descriptors$(A+\text { to } F)$ | A $\quad$Thorough gr <br> presentation | ject; evidence of strong critical abilities ul use and critical analysis / evaluation of | ogical thinking; highly eff mation drawn from a full ra | ve organizational an of high quality source |
|  | Substantial grasp of the subject; evidence of critical abilities and logical thinking; effective organizational and presentational skills; critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. |  |  |  |
|  | General but incomplete grasp of the subject; evidence of some critical abilities and logical thinking; moderately effective organizational and presentational skills; use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/reference aptly. |  |  |  |
|  | D $\quad$Limited gras <br> barely effec <br> rather than a | Limited grasp of the subject, retention of some relevant information of the subject; evidence of limited critical abilities; limited or barely effective organizational and presentational skills; use and reference of several sources, but mainly through summary rather than analysis and comparison. |  |  |
|  | Fail | Little or no grasp of the knowledge and understanding of the subject; little or no evidence of critical abilities and logical / coherent thinking; incoherent organization and poor presentational skills; limited use of secondary sources and no critical comparison of them. |  |  |
| Communicationintensive Course | Y |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 28 |
|  | Laboratory | guided literature surveys \& wikipedia training |  | 20 |
|  | Reading / Self study |  |  | 80 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mappin |
|  | Assignments | assignments | 70 | CLO 1,2,3 |
|  | Test | 2 tests | 30 CLO 1,2 |  |
|  |  |  |  |  |
| EASC4408 | Special topics in earth sciences (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Earth Sciences |  | Quota | 30 |
| Course Co-ordinator |  |  | Dr M H Lee, Earth Sciences (mhlee@hku.hk) |  |  |
| Teachers Involved | Topic: Planetary system and Biogeochemistry <br> The overall aim of this special topic is to develop an advanced understanding of our planet's place within the wider universe, the origins of our planetary system, and geological processes in extreme extraterrestrial environments. Students will explore the concept of abiotic chemical evolution and learn about various important biomarkers targeted for life detection in modern space exploration missions. The course also provides opportunities to study meteorites and their relationship to the origin of the Earth, solar system \& universe, and survey planetary topics, including impacts, differentiation, and volcanism on planetary objects. |  |  |  |
| Course Objectives |  |  |  |  |
| Course Contents | The course will cover | aspects of planetary science. Th | owing topics will be coucher | ered in lectures: |



EASC4911
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Earth system: contemporary issues ( 6 credits)
Academic Year 2021
Quota
Earth Sciences
Dr S C Chang, Earth Sciences (suchin@hku.hk)
(Dr S C Chang,Earth Sciences)
This is a capstone course that provides students with an opportunity to synthesize and correlate the knowledge gained in previous courses in Earth System Science for them to gain a more in-depth appreciation and awareness of the Earth System, the interplay between its component parts, and some of the global issues. Students will also get some basic concepts on how to do strategic analysis on global trends of natural resources.
Course Contents


|  | geologic map and cross sections in a small ( $\sim 1 \mathrm{~km} x \sim 1 \mathrm{~km}$ ) area that they have not previously visited. ( $5 \%$ for each one-day field exam) <br> $10 \%$ will be awarded for professional conduct. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 Describe the petrography and petrogenesis of rocks and minerals. |  |  |  |
|  | CLO 2 Identify geological setting from lithologies and stratigraphy. |  |  |  |
|  | CLO 3 Measure, record and analyse structural data. |  |  |  |
|  | CLO 4 Construct geological maps and cross-sections. |  |  |  |
|  | CLO 5 Synthesize varied geological information pertaining to an area in order to derive a basic model of tectonic evolution. |  |  |  |
|  | CLO 6 Identify and basically evaluate areas of potential natural hazard/economic potential. |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in at least 24 cr Geology Major (Inten This must include eith This capstone course The earliest that a stu | anced level (level 3 or 4 ) disciplinary <br> n, or student must be already enrolle gy Major/ Geology Major (Intensive) ed to take this capstone course is | re/elective courses <br> in EASC3403, EASC udents only. r year 3 study. | he Geology Major / 04 and EASC3409. |
| Offer in 2021-2022 | Y 2nd sem Offe | 023 : Y | Examinatio | No Exam |
| Grade Descriptors$(A+\text { to } F)$ | Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply highly fieldwork skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills. |  |  |  |
|  | Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Apply effective fieldwork skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills. |  |  |  |
|  | Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective fieldwork skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply partially effective fieldwork skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills. |  |  |
|  | Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Apply minimally effective or ineffective fieldwork skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Field camps |  |  |  |
| Course Teaching <br> \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures | 18 sessions $\times 1$ hour |  | 18 |
|  | Field work | 18 field days $\times 5$ hours/day |  | 90 |
|  | Reading / Self study |  |  | 72 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments | Area Maps \& Cross-sections (3 x 20\% each | 60 | CLO 1,2,3,4 |
|  | Report | 1 Final Report (15\%) + 10\% for professional conduct | 25 | CLO 1,2,3,4,5,6 |
|  | Test | 3 Field Test (5\% each) | 15 | CLO 1,2,3,4 |

Additional Course Course Coordinator reserve the right to withdraw any students with unsatisfactory performance in pre-requisite Information courses underway during the semester (semester 2) prior to leaving for field camp (May/June). This will be decided on satisfactory mid-term examination result or laboratory performance.

| EASC4966 | Earth sciences internship (6 credits) |  |  |  | Academic Year | 2021 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Offering Department | Earth Sciences |  |  |  | Quota |  |
| Course Co-ordinator | Dr M C Cheung, Earth Sciences (hmcc@hku.hk) |  |  |  |  |  |
| Teachers Involved | (Dr M C Cheung,Earth Sciences) |  |  |  |  |  |
| Course Objectives | This course aims to offer students the opportunities to gain work experience in the industry related to their major of study. The workplace learning experience would be of great benefits to the students to apply their knowledge gained in the study to the real work environments. Students have to take on at least 160 hours of internship work either within the University or outside the University arranged by the School/Departments. |  |  |  |  |  |
| Course Contents \& Topics | (1) Within the various tasks <br> (2) Outside the will be supervis Department/Sc be instructed by | university: T as instructed e university: ised under a chool of the by the Extern | he studen by the Sup The stude staff memb tudent (th al Supervis | will be ervisor. t will w er of the Interna or, with | upervisor), workin <br> to the major of s pervisor) and a st formed by the stu pervisor. | on a <br> udy. T <br> aff mem dent w |
| Course Learn | On successful completion of this course, students should be able to: |  |  |  |  |  |
| Outcomes | CLO 1 gain at least 4 weeks of work experience in a geosciences-related firm or the Governme |  |  |  |  |  |
|  | CLO 2 acquire an understanding and appreciation of the real work environment |  |  |  |  |  |
|  | CLO 3 have some experience with applying learned knowledge to solving real world problems |  |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in at leas System Scienc This course is Earth System The earliest th | st 24 credits ce Majors. not a capsto Science and hat a student | f advanced <br> ne course Geology M is allowed | level <br> and stu ajors. take th | ive courses in the <br> fill the capstone | Geolo <br> quirem |
| Offer in 2021-2022 | Y 1st sem | 2nd sem | Summer | Offer in | Examination | No Ex |
| Grade Descriptors Distinction/Pass/Fail | Distincti on | Demonstrates excellent ability in applying knowledge to solve problems in the workplace. Demonstrates excellent performance in handling and carrying out the work required in the job or assigned by supervisor(s). Establishes highly effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, with excellent performance in written and oral report, and excellent evaluation by supervisor(s), etc. |  |  |  |  |
|  | Pass A | Able to apply knowledge to solve problems in the workplace. Successfully handles and carries out the work required in the job or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and |  |  |  |  |



| ENVS1401 | Introduction to environmental science (6 credits) | Academic Year | 2021 |
| :--- | :--- | :--- | :--- |
| Offering Department | Earth Sciences | Quota | --- |
| Course Co-ordinator | Dr C Not, Earth Sciences (cnot@hku.hk) |  |  |
| Teachers Involved | (Dr C Dingle,School of Biological Sciences) |  |  |
|  | (Dr C Not,Earth Sciences) |  |  |



| Assessment Methods <br> and Weighting | Methods | Details | Weighting in final <br> course grade (\%) | Assessment <br> Methods <br> to CLO Mapping |
| :--- | :--- | :--- | :--- | :--- |




|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of critical, logical and/or coherent thinking. Organization and presentational skills are minimally effective or ineffective. Misuse of data and results and/or unable to draw appropriate conclusions. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching <br> \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  | 12 sessions x 2 hours |  | 24 |
|  | Laboratory |  | 10 labs x 2 hours |  | 20 |
|  | Project work |  | group project |  | 20 |
|  | Reading / Self study |  |  |  | 90 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | lab exercises and project | 60 | CLO 1,2,3,4 |
|  | Test |  | 2 Tests | 40 | CLO 1,2,3 |
| Required/recommended reading and online materials | Garrison, 2004. Oceanography: An Invitation to Marine Science. 5th edition. Brooks Cole. Cronin, 2009. Paleoclimates: Understanding Climate Change Past and Present. Columbia University Press. |  |  |  |  |
| Additional Course Information | Course will be offered every year starting from 2014-2015 and coordinated by DES. |  |  |  |  |
| ENVS3999 | Directed studies in environmental science (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Earth Sciences |  |  | Quota | --- |
| Course Co-ordinator | Dr C Dingle, Biological Sciences (cdingle@hku.hk) |  |  |  |  |
| Teachers Involved | (Various teachers (ERS),Earth Sciences) (Various teachers (SBS),Biological Sciences) |  |  |  |  |
| Course Objectives | This is a Capstone Course designed to provide an opportunity for Environmental Science students to integrate the knowledge obtained through their Environmental Science courses. Through this course, students will enhance their knowledge on a particular topic in environmental science and critical thinking skills through self-directed learning. Both the written and oral report emphasize communication skills. |  |  |  |  |
| Course Contents \& Topics | The directed study is typically a review of the literature on a specific topic related to environmental sciences, undertaken under the supervision of a staff member. However, the exact format of the project is flexible and alternative formats can be considered with the approval of the supervisor and the Course Coordinator. The topic is flexible, but must be related to the field of environmental science. Students should seek approval from a prospective supervisor prior to selecting this course. After admission to the course is approved by the course coordinator, students will work under the guidance of their supervisor to complete the study and the research report. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 complete a research task independently in one or more topical areas of the major |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Environmental Science Major. <br> This capstone course is for Environmental Science Major students only. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. |  |  |  |  |
| Offer in 2021-2022 | Y 1st sem 2nd sem Offer in 2022-2023: Y |  |  | Examination No Exam |  |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrates excellent understanding of the topic, excellent development of argument, logical analysis and insight into the topic, with evidence of original thought. Insightful use and critical analysis of information drawn from a full range of high quality sources to draw appropriate and insightful conclusions. Presented in high academic standard. Work of A+ should show considerable additional work beyond that is required in wider areas relevant to the topic. |  |  |  |
|  | B | Most aspects of the chosen topic were addressed and researched adequately. Demonstrates understanding of most key concepts, evidence of elementary analysis and development of argument. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations. Presented in adequate standard. |  |  |  |
|  | C | Demonstrate general but incomplete grasp of the chosen topic. Most aspects of the chosen topic were addressed and researched at a very basic level. Mostly correct but some erroneous use of relevant information from sources, demonstrates mainly description, and shows basic understanding, but lacking depth. |  |  |  |
|  | D | Demonstrate partial but limited grasp of the chosen topic, with retention of some relevant information. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited to draw appropriate conclusions from the sources. |  |  |  |
|  | Fail | Show little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Project-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Reading / Self study |  | research work \& report |  | 120 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Oral | ntation |  | 20 | CLO 1,2 |
|  | Research report |  |  | 80 | CLO 1,2 |

ENVS4955
Offering Department Course Co-ordinator Teachers Involved Course Objectives

Environmental science in practice ( 6 credits)
Earth Sciences
Dr M Yasuhara, Biological Sciences (yasuhara@hku.hk)
(Dr M Yasuhara,Biological Sciences)
To provide students experiential learning experience in the field of environmental science. The course is primarily based on an array of experiential studies covering essential areas of environmental science during a residential fieldtrip.
Students to attend a residential field trip outside Hong Kong to learn about environmental science in practice. The






Required/recommended reading and online materials

## Additional Course

 InformationG. A. Anastassiou \& R. A. Mezei: Numerical Analysis Using Sage (Springer Undergraduate Texts in Mathematics and Technology, 2015).
K. K. Tung: Topics in Mathematical Modeling (Princeton University Press, 2016,
https://www2.karlin.mff.cuni.cz/~prusv/ncmm/notes/download/topics-in-mathematical-modeling.pdf)
During 2021-2022, the course will be taught by Dr. Ryoko Oishi-Tomiyasu of Kyushu University with local assistance from Dr. Kane and the mathematics department at HKU. Some aspects of the course will be delivered in an online setting, with face-to-face support.
Students may have to bring their own laptops to class.

## MATH1821 <br> Offering Department <br> Course Co-ordinator <br> Teachers Involved <br> Course Objectives

Course Contents
\& Topics

Mathematical methods for actuarial science I (6 credits)
Mathematics
Dr C W Wong, Mathematics (cwwongab@hku.hk)
(Dr C W Wong,Mathematics)
This course is the first of the two mathematics courses designed to provide actuarial science students with a solid background of calculus of one and several variables and an introduction to linear algebra. The course focuses on single variable calculus and elementary matrix theory. It aims at students with Core Mathematics plus Module 1 or Core Mathematics plus Module 2 background.

- Functions; graphs; inverse functions.
- Limits, continuity and differentiability.
- Mean value theorem; implicit differentiation; L'Hopital's rule.
- Bisection method and Newton's method.
- Higher order derivatives, maxima and minima, graph sketching.
- Taylor approximation and error estimation.
- Improper integrals, partial fractions, integration by parts.
- Numerical integration, Trapezoidal rule and Simpson's rule.
- Basic matrix and vector (of orders 2 and 3 ) operations, determinants.
- Simple differential equations.

Course Learning On successful completion of this course, students should be able to:
Outcomes

## Pre-requisites

(and Co-requisites and Impermissible combinations)

Offer in 2021-2022
Grade Descriptors ( $\mathrm{A}+$ to F )

CLO 1 describe properties of a function and an inverse function
CLO 2 evaluate various kinds of limits, and determine continuity and differentiability of functions
CLO 3 apply advanced rules/techniques of differentiation and integration to compute derivatives and integrals; sketch graphs of functions
CLO 4 approximate integrals by numerical methods
CLO 5 perform matrix and vector operations, compute determinants
CLO 6 solve simple first and second order ordinary differential equations
Level 4 or above in HKDSE Mathematics plus Module 1, or Level 4 or above in HKDSE Mathematics plus Module 2, or equivalent; and
Not for students who have passed MATH1013 or (MATH1851 and MATH1853), or have already enrolled in these courses.
For BSc(ActuarSc) students only.

| Y 1st sem Offer in 2022-2023: Y Examination Dec |
| :--- | :--- | :--- |


| A | Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| B | Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors. |  |  |  |
| C | Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors. |  |  |  |
| D | Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors. |  |  |  |
| Fail | Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution. |  |  |  |
| N |  |  |  |  |
| Lecture-based course |  |  |  |  |
| Activities |  | Details |  | No. of Hours |
| Lectures |  |  |  | 36 |
| Tutorials |  |  |  | 12 |
| Reading / Self study |  |  |  | 100 |
| Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
| Assignments |  |  | 10 | CLO 1,2,3,4,5,6 |
| Examination |  |  | 50 | CLO 1,2,3,4,5,6 |
| Test |  |  | 40 | CLO 1,2,3,4,5,6 |

George B. Thomas; as revised by Maurice D. Weir and Joel Hass: Thomas' Calculus (Addison Wesley, 12th edition)
http://moodle.hku.hk/
Timetable:
http://hkumath.hku.hk/~math/Timetable/timetable2122_S1.pdf

## MATH1851

Offering Department
Course Co-ordinator Teachers Involved

## Calculus and ordinary differential equations (6 credits) <br> Academic Year 2021 <br> Mathematics

Prof Y K Lau (1st sem); Dr X Zhang (2nd sem), Mathematics (yklau@maths.hku.hk; xzhang@maths.hku.hk)
(Dr L Xu,Mechanical Engineering)

|  | (Dr X Zhang,Mathematics) <br> (Dr Y Chen,Mechanical Engineering) (Prof K W Chow,Mechanical Engineering) (Prof Y K Lau,Mathematics) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Course Objectives | In this course, students will be introduced to fundamental concepts of calculus and ordinary differential equations with a view on applications in different engineering fields. A concrete foundation of mathematics that underpins the various engineering subjects will be built. Mathematical concepts and principles, as well as some typical engineering applications, would be emphasized so that students could enhance their mathematical skills in solving engineering problems, and be well prepared in learning a higher level of applied mathematics required in different engineering disciplines. |  |  |  |  |
| Course Contents \& Topics | - Differential and integral calculus (single variable) [limits and continuity, derivatives, (higher-order) derivatives of <br>  representation of curves, polar coordinates, indefinite integrals, integration by parts, partial fractions decomposition, definite integrals, the fundamental theorem of calculus, and their applications] <br> - Ordinary differential equations [first order equations, integrating factors and linear equations, Bernoulli equations, separable equations, homogeneous equations, exact differential equations, higher-order homogeneous linear equations with constant coefficients, characteristic polynomials, methods of undetermined coefficients and variation of parameters, higher-order inhomogeneous linear ordinary differential equations, choice of particular solutions and physical implication of resonance, Cauchy-Euler equations, and their applications] <br> - Laplace transforms [Laplace transforms of elementary functions, inverse Laplace transforms, transforms of derivatives and integrals, derivatives of Laplace transform, first and second shifting theorems, convolutions, partial fractions, solution of linear differential equations (initial value problems) using Laplace transforms] |  |  |  |  |
| Course Learning Outcomes | CLO 1 demonstrate knowledge and understanding of basic calculus and ordinary differential equations as well as their relationship with some typical physical/engineering applications: unerringly perform the calculation details for the solution, and accurately correlate the solution approach with the fundamental concepts involved |  |  |  |  |
|  | CLO 2 apply mathematical skills to model and solve some basic physical/engineering problems: analyze the given problem, identify the appropriate mathematical skills, articulate a convincing rationale for the approach used, clearly give the mathematical formulation, and correctly find the solution |  |  |  |  |
|  | CLO 3 | 3 understand well established methods to solve differential equations, and correlate qualitatively with potential applications in engineering topics like oscillations and electric circuits. Identify the occurrence of resonance where large amplitude displacements can be expected |  |  |  |
|  | CLO 4 explore the technique and usage of integral transform, using the Laplace transform as an illustrative example. Appreciate the power of these techniques in initial value problems and applications like vibrations and signal processing |  |  |  |  |
|  | CLO 5 be well prepared to cope with a higher level of engineering mathematics required in different engineering disciplines |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Level 2 or above in Module 1, or Module 2 of HKDSE Mathematics or equivalent, or Pass in MATH1011. <br> (This course is exclusively for Engineering students.) |  |  |  |  |
| Offer in 2021-2022 | Y 1st sem 2nd sem Offer in 2022-2023: Y |  |  |  | Examination Dec May |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and methods and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems. |  |  |  |
|  | B | Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and methods and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems and methods or their applications and presentation or with some minor computational errors. |  |  |  |
|  | C | Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems and methods, but with some inadequacies in applying them through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors. |  |  |  |
|  |  | Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems and methods, but with substantial inadequacies in applying them through incorrectly analysing problems with poor argument or presentation or with substantial computational errors. |  |  |  |
|  | Fail | Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems and methods or their applications, and not being able to complete the solution. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  |  | Details | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  |  | Details | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  |  |  | CLO 1,2,3,4,5 |
|  | Examination |  |  |  | CLO 1,2,3,4,5 |
|  | Test |  |  | 2 tests | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | (Textbook) Introduction to Calculus and Differential Equations (Pearson) <br> G.B. Thomas, et al.: Thomas' Calculus (Pearson Education, 2005, 11th ed.) <br> R.K. Nagle, et al.: Fundamentals of Differential Equations and Boundary Value Problems (Pearson Education, 2008, 5th ed.) |  |  |  |  |
| Course Website | http://moodle.hku.hk/ |  |  |  |  |
| Additional Course Information | There will be no 'make-up' for a missed test or assignment under normal circumstances. Students are advised not to take MATH1851 and MATH1853 together in the same semester. This course is offered by the Department of Mathematics and the Faculty of Engineering. <br> Timetable: <br> http://hkumath.hku.hk/~math/Timetable/timetable2122_S1.pdf <br> http://hkumath.hku.hk/~math/Timetable/timetable2122_S2.pdf |  |  |  |  |






|  | D <br> Fail | Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  | Students are expected to classes. | videos online before | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | Tutorials, assignments, participation, etc. | 10 | CLO 1,2,3,4,5 |
|  | Examination |  |  | 50 | CLO 1,2,3,4,5 |
|  | Test |  |  | 40 | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | Spence, Insel \& Friedberg: Elementary Linear Algebra -- A Matrix Approach (Pearson, 2014) |  |  |  |  |
| Course Website | http://moodle.hku.hk/ |  |  |  |  |
| Additional Course Information | Timetable: http://hkumath.hku.hk/~math/Timetable/timetable2122_S1.pdf http://hkumath.hku.hk/~math/Timetable/timetable2122_S2.pdf |  |  |  |  |
| MATH2102 <br> Offering Department Course Co-ordinator Teachers Involved Course Objectives | Linear algebra II (6 credits) |  |  | Academic Year 2021 |  |
|  | Mathematics |  |  | Quota | --- |
|  | Dr T W Ching, Mathematics (Imtching@maths.hku.hk) |  |  |  |  |
|  | (Dr T W Ching,Mathematics) |  |  |  |  |
|  | This is a follow-up of the course Linear Algebra I. It aims at introducing the general concept of vector spaces, subspaces, dimensions, inner product spaces, etc. The course prepares the foundation on linear algebra for students' future study in mathematics and other disciplines. Many examples of applications will be drawn on different subject areas. |  |  |  |  |
| Course Contents \& Topics | 1. Vector spaces: definition of field, subspaces/quotient spaces, direct sum, existence of basis, dual space <br> 2. Linear transformations: kernel and image, isomorphisms, matrix representations of linear transformations, determinant <br> 3. Linear operator: eigenvalues and eigenspaces, algebraic/geometric multiplicity, diagonalizability, invariant subspaces, cyclic subspaces, Cayley-Hamilton theorem, Jordan canonical form <br> 4. Inner product space: Inner product, orthonormal basis, orthogonal complement and projection <br> 5. Linear operators on inner product space: adjoints of operators, orthogonal/unitary operators, orthogonal/unitary diagonalization of self-adjoint/normal operators, symmetric bilinear form and quadratic form <br> 6. Additional selected topics up to the instructor |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 identify vector space structures and apply relevant knowledge to some practical problems |  |  |  |  |
|  | CLO 2 understand the notion of subspaces and compute basis, dimension, etc |  |  |  |  |
|  | CLO 3 understand the base-free nature of linear transformations/operators. Relate the calculations of linear transformations to that of matrices by choosing particular basis |  |  |  |  |
|  | CLO 4 be able to solve eigenvalue problem for linear operators and apply it to the problem of diagonalization CLO 5 understand the notions of inner product space and adjoints of operators. Be able to do calculation |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in MATH2101 or (MATH1821 and MATH2822) |  |  |  |  |
| Offer in 2021-2022 | Y | 2nd sem Offer in 2022-2023: Y |  | Examination May |  |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems. |  |  |  |
|  | B | Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors. |  |  |  |
|  | C | Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors. |  |  |  |
|  | D | Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors. |  |  |  |
|  | Fail | Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |



MATH2241
Offering Department Course Co-ordinator Teachers Involved

## Introduction to mathematical analysis (6 credits) Academic Year 2021 <br> Mathematics <br> Quota

Dr T W Ching (1st sem); Dr Y M Chan (2nd sem), Mathematics (Imtching@maths.hku.hk; ymchan@maths.hku.hk) (Dr T W Ching,Mathematics)
(Dr Y M Chan,Mathematics)
Course Objectives To introduce students to the basic ideas and techniques of mathematical analysis.


Pre-requisites (and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors ( $\mathrm{A}+$ to F )

Pass in MATH1821.
For $\mathrm{BSc}($ ActuarSc) students only.


Required/recommended reading and online materials Course Website
Additional Course Information

George B. Thomas; as revised by Maurice D. Weir and Joel Hass: Thomas' Calculus (Addison Wesley, 12th edition)
Keith Matthews: Elementary Linear Algebra (Url: www.numbertheory.org/book/)
http://moodle.hku.hk/
Timetable:
http://hkumath.hku.hk/~math/Timetable/timetable2122_S2.pdf

MATH3001
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents
\& Topics
Course Learning
Outcomes

## Development of mathematical ideas ( 6 credits)

Mathematics
TBC, Mathematics ()
To acquaint the students with the origin and growth of basic mathematical concepts. To assist the students to gain a deeper insight and broader view of mathematics as a discipline and human endeavour. To provide the students with an opportunity to write on and talk about mathematics, and to engage in independent study.

- Selected topics in the development of mathematics from ancient to modern times depending on interest of the students and the lecturer, with attention paid to the evolvement of mathematical ideas and the process of mathematical thinking and problem solving.
On successful completion of this course, students should be able to:
CLO 1 understand and describe the origin and development of basic mathematical concepts
CLO 2 recognize and demonstrate the intellectual and the socio-cultural aspects of mathematics, and appreciate mathematics as both an academic discipline and a human endeavour
CLO 3 discuss, argue, and write about the development of various mathematical concepts and ideas
CLO 4 engage in independent study on a topic about the history or development of mathematics
Pass in MATH2101, MATH2102, MATH2211 and MATH2241


| and Weighting |  |  | course grade (\%) | Methods to CLO Mapping |
| :---: | :---: | :---: | :---: | :---: |
|  | Examination |  | 50 |  |
|  | Test |  | 50 |  |
| Required/recommended reading and online materials | To be decided by the cou H. Eves and C.V. Newso Reinhart and Winston, 19 <br> G. Polya: How to Solve It <br> R. Laubenbacher and D. <br> R. Calinger (ed.): Classic <br> C. Boyer: A History of Ma <br> V. Katz: A History of Math | uctor. troduction , 3rd editi on Univer <br> $y$ : Mathem matics ( (Wiley, (Harper C | damental Concepts <br> -Verlag, 1999) <br> V.C. Merzbach)) | Mathematics (Holt, |
| MATH3002 | Mathematics seminar (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Mathematics |  | Quota | 12 |
| Course Co-ordinator | Prof T W Ng; Dr C Y Hui, Mathematics (ntw@maths.hku.hk; chhui@maths.hku.hk) |  |  |  |
| Teachers Involved | (Dr C Y Hui,Mathematics) (Prof T W Ng,Mathematics) |  |  |  |
| Course Objectives | This is a seminar style course intended for those who have very strong interests and good ability in mathematics. Students will be given book chapters and elementary research articles for private study and then make presentations in front of the whole class. Individual meetings with the instructors will be arranged prior to their presentations. Active participation in all the discussions is expected. The aim of the course is to let students learn how to initiate self/independent study in mathematics. |  |  |  |
| Course Contents \& Topics | Topics chosen by the instructors, including chapters from books and elementary research articles. |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 Initiate private independent study on some interesting mathematical topics |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in MATH2012, MATH2101, MATH2211 and MATH2241 Subject to approval by the Department. |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offer in 2022-2023: Y |  | Examination No Exam |  |
| Grade Descriptors $(A+\text { to } F)$ | Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Actively engage in and contribute substantially and fruitfully to class discussions. Apply highly effective organizational and presentational skills. |  |  |  |
|  | Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Good participation in class discussions with generally good contributions. Apply effective organizational and presentational skills. |  |  |  |
|  | Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Make some but not substantial fruitful contributions to class discussions. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Contribute only in a limited way to fruitful and meaningful class discussions. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Make little or no meaningful contributions to class discussions. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Project-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Meeting with supervisor | meeting of the whole class for up to three hours each teaching week |  | 36 |
|  | Reading / Self study | individual meetings with the instructors |  | 72 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Oral presentation |  | 50 | CLO 1 |
|  | Research report |  | 50 | CLO 1 |
| Course Website | http://moodle.hku.hk/ |  |  |  |
| Additional Course Information | (i) Senior students who are interested in taking a seminar course are recommended to take MATH4910. <br> (ii) This course is not a capstone course. <br> Timetable: <br> http://hkumath.hku.hk/~math/Timetable/timetable2122_S2.pdf |  |  |  |

MATH3301
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives $\quad$ This course aims to present those fundamental topics and techniques of algebra that are finding wide applications in mathematics and the applied sciences. It is complete in itself, and may also be followed by MATH4302 Algebra II and MATH7502 Topics in Applied Discrete Mathematics.
Course Contents - Groups: examples of groups, subgroups, cosets, Lagrange theorem, quotient groups, normal subgroups, group \& Topics homomorphisms, direct product of groups, group actions.

- Rings: examples of rings, integral domains, ideals, fields of fractions, principal ideal domains, unique factorization domains.
- Fields: definition and examples of fields.
- Polynomials: polynomial rings in one variable over fields and over the integers.

Course Learning
Outcomes


Pre-requisites
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors ( $\mathrm{A}+$ to F )

Pass in MATH2101


To be decided by the course instructor.
Required/recommended
reading and
online materials

Course Website
Additional Course
Information
S. Lang: Undergraduate Algebra (Springer, 2004)
J.B. Fraleigh: A First Course in Abstract Algebra (Addison-Wesley, 1989, 4th edition)
I.N. Herstein: Abstract Algebra (Prentice-Hall, 1996)
T.W. Hungerford: Abstract Algebra: An Introduction (Saunders College Publishing, 1990, 2nd edition)
http://moodle.hku.hk/
Timetable:
http://hkumath.hku.hk/~math/Timetable/timetable2122_S1.pdf

MATH3303
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Matrix theory and its applications ( 6 credits)
Mathematics
Dr Y M Chan, Mathematics (ymchan@maths.hku.hk)
(Dr M Huang,Mathematics)
Matrix theory has a close connection with other mathematical subjects such as linear algebra, functional analysis, and combinatorics. It also plays an important role in the development of many subjects in science, engineering, and social sciences. In this course, students will be taught the fundamentals of matrix analysis and its application to various kinds of practical problems. Mathematical software may be used in the course, so that students can learn how to use the computer to solve matrix problems.
Course Contents \& Topics

- Eigenvalues and eigenvectors: similarities, applications on difference equations and differential equations.
- Orthogonality: inner products and the induced norms, orthogonality of null spaces and column spaces, applications to over- or under-determined systems, least squares fit. Unitary, normal, and hermitian matrices: Schur's triangularization theorem. Variational description of eigenvalues: applications in optimization and in eigenvalue estimation.
- Singular value decomposition: polar decomposition, pseudo inverse, spectral norm of matrices, interlacing inequalities for singular values. Jordan form and applications.
On successful completion of this course, students should be able to:
CLO 1 have a good understanding on matrices, determinants, linear transformations, eigenvalues and eigenvectors
CLO 2 understand the concept of similar matrices and the eigenvalue decomposition
CLO 3 understand the concept of orthogonality
CLO 4 understand the concept of unitary, normal, and Hermitian matrices
CLO 5 find the singular value decomposition of a matrix and apply the theory of singular values to study polar decomposition, pseudo inverse and spectral norm of matrices
CLO 6 understand the concept of the Jordan blocks, Jordan matrices and the Jordan canonical form of a matrix Pass in MATH2101 and MATH2102

N Offer in 2022-2023: N

## Examination

Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argument and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems. applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.
C Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.
D Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with

Fail
substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or
with substantial computational errors. Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.


Course Website
Additional Course Information
http://moodle.hku.hk
MATH3301 recommended but not required.
Timetable:
http://hkumath.hku.hk/~math/Timetable/timetable2122_S2.pdf


| MATH3403 | Functions of a complex variable (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Mathematics | Quota | --- |
| Course Co-ordinator | Dr K K Wong, Mathematics (kkwong@maths.hku.hk) |  |  |
| Teachers Involved | (Dr K K Wong,Mathematics) |  |  |
| Course Objectives | This course is indispensable for studies in higher mathematical analysis and the more theoretical aspects of physics. In this course, the students are introduced to the fundamental concepts and properties of analytic functions and are shown how to look at analyticity from different points of view. At the same time, the techniques of solving problems without losing sight of the geometric picture are emphasized. |  |  |
| Course Contents \& Topics | - Complex number system. <br> - Analytic functions and elementary functions. <br> - The Cauchy-Riemann equations. <br> - Cauchy's theorem and its applications. <br> - Taylor's series. <br> - Laurent's series. <br> - Zeros, singularities and poles. <br> - The Residue Theorem and its applications. |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |
| Outcomes | CLO 1 recognize the theory of functions of a complex variable as a rigorous and foundational subject in mathematics |  |  |
|  | CLO 2 grasp the techniques from Cauchy-Rieman formulas to study analytic functions from diffe | expansion and | Cauch |
|  | CLO 3 compute contour integrals by calculating residues |  |  |




|  | Examination |  | 50 | CLO 1,2,3,4,5 |
| :--- | :--- | :--- | :--- | :---: |
|  | Test | 50 | CLO 1,2,3,4,5 |  |
| Required/recommended <br> reading and <br> online materials | D.F. Parkhurst: Introduction to Applied Mathematics for Environmental Science (Springer) |  |  |  |
| Course Website | E.A. Coddington: An Introduction to Ordinary Differential Equations (Prentice-Hall) |  |  |  |
| Additional Course | http://moodle.hku.hk/ | Timetable: <br> Information | http://hkumath.hku.hk/~math/Timetable/timetable2122_S2.pdf |  |



| MATH3600 | Discrete mathematics (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Mathematics | Quota | --- |
| Course Co-ordinator | Dr K H Law, Mathematics (lawkaho@connect.hku.hk) |  |  |
| Teachers Involved | (Dr K H Law,Mathematics) |  |  |
| Course Objectives | To introduce students to the basic ideas and techniques of discrete mathematics. |  |  |
| Course Contents \& Topics | - Counting: combinations, permutations, pigeonhole principle, inclusion-exclusion, recurrence relations, and generating functions. <br> - Graph theory: paths, circuits, trees, connectivity, planarity, etc. <br> - Applications of counting techniques and graph theory. |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |
| Outcomes | CLO 1 demonstrate knowledge and understanding of the basic ideas and techniques of discrete mathematics |  |  |
|  | CLO 2 solve various real-world problems by using counting techniques and graph theory |  |  |
|  | CLO 3 develop their ability to read, comprehend, and create mathematical arguments |  |  |
| Pre-requisites (and Co-requisites and Impermissible | Pass in (MATH1013 and any 1 of Leve MATH courses) or MATH2014 or (MATH | d MATH1853 an | any 1 |




MATH3901
Offering Department Course Co-ordinator Teachers Involved Course Objectives

| Operations research I (6 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- |
| Mathematics | Quota | --- |
| Dr Z Qu, Mathematics (zhengqu@maths.hku.hk) |  |  |
| (Dr Z Qu,Mathematics) |  |  |
| The objective is to provide a fundamental account of the basic results and techniques of Linear Programming (LP) |  |  |
| and its related topics in operations research. The topics include the simplex method, the dual simplex method, |  |  |



|  | D | Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Fail | Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution. |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching | Activities |  | Details | No. of Hours |
| \& Learning Activities | Lectures |  |  | 36 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Met |  | Details | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Examination Test |  |  | CLO 1,2,3 |
|  |  |  |  | CLO 1,2,3 |
| Required/recommended reading and online materials | Instructor's lecture notes |  |  |  |
| Course Website | http://moodle.hku.hk/ |  |  |  |
| Additional Course Information | Timetable: http://hkumath.hku.hk/~math/Timetable/timetable2122_S1.pdf |  |  |  |
| MATH3905 | Queueing theory and simulation (6 credits) |  |  | Academic Year 2021 |
| Offering Department | Mathematics |  |  | --- |
| Course Co-ordinator | Dr G Han, Mathematics (ghan@maths.hku.hk) |  |  |  |
| Teachers Involved | This course introduces students to the models and theory of queueing system, as well as the technique of simulation as a practical tool of analysis. |  |  |  |
| Course Objectives |  |  |  |  |
| Course Contents \& Topics | - Markov, birth-and-death, and Poisson processes, exponential models. <br> - Markovian queueing networks. Imbedded Markov-chain queueing models. <br> - Simulation of queueing models and discrete-event systems. <br> - Introduction of the Monte Carlo (MC) method and Markov Chain Monte Carlo (MCMC) method. |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 understand the terminology and nomenclature appropriate to queueing theory |  |  |  |
|  | CLO 2 demonstrate knowledge and understanding of various queueing models |  |  |  |
|  | CLO 3 formulate concrete problems using queueing theoretical approaches |  |  |  |
|  | CLO 4 become familiar with fundamental principles of simulation and compare different simulation techniques |  |  |  |
|  | CLO 5 use Monte Carlo method and Markov Chain Monte Carlo method to conduct numerical simulations |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in (MATH2101 and MATH2211) or MATH2014 or (MATH1821 and MATH2822) |  |  |  |
| Offer in 2021-2022 | N Offer in 2022- |  |  | --- |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate an excellent understanding of key concepts and ideas by being able to identify appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and to solve problems with some innovative approaches. |  |  |
|  | B | Demonstrate a good understanding of key concepts and ideas by being able to identify appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors. |  |  |
|  |  | Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors. |  |  |
|  | D | Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors. |  |  |
|  | Fail | Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution. |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details | No. of Hours |
|  | Lectures |  |  | 36 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Assessment Methods to CLO Mapping |
|  | Examination |  |  | CLO 1,2,3,4,5 |
|  | Test |  |  | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | R.B. Cooper: Introduction to Queueing Theory (Edward Arnold, 1981, 2nd ed.) <br> S.M. Ross: Introduction to Probability Models (Academic Press, 1993, 7th ed., San Diego, California) <br> S.M. Ross: A Course in Simulation (Macmillan, 1991) <br> P. Glasserman: Monte Carlo Methods in Financial Engineering (Springer Science \& Business Media, 2004) |  |  |  |
| Course Website | http://moodle.hku.hk/ |  |  |  |


| MATH3906 | Financial calculus (6 credits) | Academic Year | 2021 |
| :--- | :--- | :--- | :--- |
| Offering Department | Mathematics | Quota | --- |
| Course Co-ordinator | Dr G Li, Mathematics (lotusli@maths.hku.hk) |  |  |
| Teachers Involved | (Dr G Li,Mathematics) |  |  |




Required/recommended Bondy, J. A., and U. S. R. Murty. Graph Theory with Applications. London: Macmillan, 1976. Print.


## MATH4302

Offering Department Course Co-ordinator
Teachers Involved
Course Objectives
Course Contents \& Topics

Course Learning Outcomes

## Pre-requisites

(and Co-requisites and Impermissible combinations)

| Algebra II (6 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- |
| Mathematics | Quota | --- |
| Prof J H Lu, Mathematics (jhlu@maths.hku.hk) |  |  |
| (Prof J H Lu,Mathematics) |  |  |
| This course is an extension of MATH3301 and continues with more advanced topics in algebra. The course may |  |  |
| be followed by MATH7501 and MATH7502. |  |  |
| - Principal ideal domains and unique factorization domains; |  |  |
| - Structure theorem for finitely generated modules of principal ideal domains with applications to finitely generated |  |  |
| abelian groups and canonical forms of matrices; |  |  |
| - Field extensions; introduction to Galois theory. |  |  |
| On successful completion of this course, students should be able to: |  |  |
| CLO 1 understand basic examples of principal ideal domains and why principal ideal domains are unique |  |  |
| factorization domains |  |  |




| MATH4406 | Introduction to partial differential equations (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Mathematics | Quota |  |
| Course Co-ordinator | Dr T K Wong, Mathematics (takkwong@maths.hku.hk) |  |  |
| Teachers Involved | (Dr T K Wong,Mathematics) |  |  |
| Course Objectives | This course introduces students to the basic techniques for solving partial differential equations as well as the underlying theories. |  |  |
| Course Contents \& Topics | - Laplace, heat and wave equations. Classification of partial differential equations. Boundary-value, initial-value and eigenvalue problems. Separation of variables, Fourier series, linearity and superposition, Duhamel's principle, |  |  |




Required/recommended W. Boothby: An introduction to differential manifolds and Riemannian Geometry (Academic Press, 2002, 2nd Ed.) reading and online materials
Course Website
Additional Course
Information John M. Lee: Introduction to smooth manifolds (Springer, 2002)
http://moodle.hku.hk/
Timetable:
http://hkumath.hku.hk/~math/Timetable/timetable2122_S2.pdf

MATH4602
Offering Department
Course Co-ordinator Teachers Involved

| Scientific computing (6 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- |
| Mathematics | Quota | --- |
| Prof W K Ching, Mathematics (wching@hku.hk) |  |  |
| (Prof W K Ching,Mathematics) |  |  |





|  | P. Glasserman: Monte Carlo Methods in Financial Engineering (Latest Edition) (Springer-Verlag) <br> J. Ruf \& W. Wang; Neural networks for option pricing and hedging: a literature review. Journal of Computational Finance 24 (1), 1-46, 2020. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Website | http://moodle.hku.hk/ |  |  |  |
| Additional Course Information | Timetable: http://hkumath.hku.hk/~math/Timetable/timetable2122_S1.pdf |  |  |  |
| MATH4910 | Senior mathematics seminar (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Mathematics |  | Quota | 12 |
| Course Co-ordinator | (Dr T K Wong,Mathematics) (Dr X Zhang,Mathematics) |  |  |  |
| Course Objectives | This seminar style capstone course aims to provide students with the experience of intense reading of journal articles and book chapters, followed by group discussions through which knowledge acquisition and synthesis will be attained. Students will look at particular mathematical topics in depth, and will master the topics through reading, listening, discussing and writing. |  |  |  |
| Course Contents \& Topics | This seminar course may be in the form of research seminar, reading seminar, or a combination of both. Research seminar provides first-hand research experience to students, who will discuss the advancement of knowledge brought about by the readings, and the difficulties they encounter in the research process. Reading seminar involves discussions on arguments delivered by the authors of books or articles, and how convincing the arguments are. Participants will experience the process of argumentation in the construction of knowledge and development of research idea. Student performance is manifested in their preparedness, quality of comments, responsiveness to comments and overall engagement in the seminar. The end product is a research paper or written report and oral presentations. Topics will be chosen by the instructors, including journal articles and book chapters. |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 explain and discuss the contents of the topics they studied |  |  |  |
|  | CLO 2 critique and argue about the ideas and theories of the work they studied |  |  |  |
|  | CLO 3 organize and synthesize the material they have learned, and report orally and in writing using mathematical language |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | This capstone course is for Mathematics / Mathematics (Intensive), and Mathematics/Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study. <br> Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics/ Mathematics (Intensive), and Mathematics/Physics Majors; and subject to approval by the Department. |  |  |  |
| Offer in 2021-2022 | A 2nd sem Offer in 2022-2023: N |  | Examination No Exam |  |
| Grade Descriptors $(A+\text { to } F)$ | A $\quad$Demonstrate an <br> analyses and rai <br> application of the | analyses and raising critical points in group discussion. Demonstrate clear and critical analysis, coherent synthesis, and effective application of the knowledge through writing and oral presentation using mathematical language. |  |  |
|  | Demonstrate a good understanding of the material by mostly clear and effective presentation. Engage actively in group discussion most of the time by providing helpful points and asking questions that advance the discussion. Demonstrate mostly clear and effective analysis, synthesis, and application of the knowledge through writing and oral presentation using mathematical language. |  |  |  |
|  | Demonstrate a general understanding of the material by moderately effective presentation. Engage in group discussion most of the time with some useful input. Demonstrate moderately clear and effective analysis, synthesis, and application of the knowledge through writing and oral presentation using mathematical language. |  |  |  |
|  | Demonstrate a basic but limited understanding of the material by partially effective presentation. Plays a passive role, or gives limited useful contribution to group discussion. Demonstrate limited or barely effective analysis, synthesis, and application of the knowledge through writing and oral presentation using mathematical language. |  |  |  |
|  | Demonstrate inadequate understanding of the material by barely effective or ineffective presentation. Little or no participation in and contribution to group discussion. Demonstrate inadequate or ineffective analysis, synthesis, and application of the knowledge through writing and oral presentation using mathematical language. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Project-based course |  |  |  |
| Course Teaching <br> \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Meeting with supervisor | Seminars: Students take turns to give presentations to the whole class; group discussions. |  | 36 |
|  | Reading / Self study | Reading material and preparation for presentations and discussions; writing of reports/research papers. |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Oral presentation | Based on seminar presentations, class participations and group discussions. | 60 | CLO 1,2,3 |
|  | Research report | Written report / research paper: Individual and/or group reports/research papers totally no more than 10,000 words. | 40 | CLO 1,2,3 |
| Required/recommended reading and online materials | TBC |  |  |  |
| Course Website | http://moodle.hku.hk/ |  |  |  |
| Additional Course Information | Timetable: |  |  |  |
| MATH4911 | Mathematics capstone project (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Mathematics |  | Quota | --- |
| Course Co-ordinator | Prof T W Ng, Mathematics (ntw@maths.hku.hk) |  |  |  |
| Teachers Involved | (Prof T W Ng,Mathematics) |  |  |  |


| Course Objectives | This course aims to provide students an experience of engaging in a project which requires integration and/or application of the mathematical knowledge they have acquired. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Contents \& Topics | Students will work collaboratively in small groups on a project under the guidance of their supervisor(s). Emphasis of this capstone project is on the integration and/or application of mathematical knowledge acquired by the students. The project topic is not limited to academic context, but can also be extended to a community or corporate outreach project. Projects may take the form of a combination of literature research, survey, data analysis, creation of artifacts or media contents, exhibition, public lectures, development of solution plan for the problem under study, etc. Assessment may take the form of written report, oral presentation, media production, portfolio, and/or peer evaluation, etc. Topics are either chosen by the supervisor(s), or proposed by the students and approved by their supervisor(s). |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 integrate and apply mathematical knowledge they have previously acquired |  |  |  |
|  | CLO 2 work collaboratively with others |  |  |  |
|  | CLO 3 communicate their project topic to experts and/or lay audiences through suitable media using appropriate mathematical terms and language |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible | This capstone course is for Mathematics / Mathematics (Intensive), and Mathematics/Physics Majors students only. This course is for third and fourth year students only. The earliest that a student is allowed to take this capstone course is their year 3 study. <br> Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics/ Mathematics (Intensive), and Mathematics/Physics Majors; and subject to approval by the Department. |  |  |  |
| combinations) |  |  |  |  |
| Offer in 2021-2022 | N Offer in 2022-2023: N |  | Examination |  |
| Grade Descriptors $(A+\text { to } F)$ | Demonstrate excellent and creative integration and/or application of the mathematical knowledge previously acquired. Take initiative in, and collaborate highly effectively on, the project. Communicate effectively through suitable media using appropriate mathematical terms and language. |  |  |  |
|  | Demonstrate good integration and/or application of the mathematical knowledge previously acquired. Participate actively in, and collaborate mostly effectively on, the project. Communicate mostly effectively through suitable media using appropriate mathematical terms and language. |  |  |  |
|  | Demonstrate a general level of integration and/or application of the mathematical knowledge previously acquired. Demonstrate moderately effective collaboration on the project. Moderately effective communication using mathematical terms and language. |  |  |  |
|  | Demonstrate some partial integration and/or application of the mathematical knowledge previously acquired. Demonstrate barely effective collaboration on the project. Show limited ability to effectively communicate using mathematical terms and language. |  |  |  |
|  | Demonstrate weak or poor integration and/or application of the mathematical knowledge previously acquired. Show passive participation in, and ineffective collaboration on, the project. Communicate ineffectively using mathematical terms and language. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Project-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Meeting with supervisor | Students meet with their supervisor(s) to present results or to discuss their progress. |  | 20 |
|  | Assessment | Project work: Students work on their project |  | 130 |
| Assessment Methods and Weighting | Methods | Details | course grade (\%) | Assessment Methods to CLO Mapping |
|  | Dissertation | Coursework assessment: Based on participation and collaboration throughout the whole project. | 20 | CLO 1,2,3 |
|  | Oral presentation | Oral presentation components of the project may include seminars, lectures, oral reports, audio recordings, etc. | 30 | CLO 1,2,3 |
|  | Research report | Written report / media production: This part may include written reports, booklets, exhibition materials, video productions, computer software, etc. | 50 | CLO 1,2,3 |
| Required/recommended reading and online materials | TBC |  |  |  |
| Course Website | http://moodle.hku.hk/ |  |  |  |
| Additional Course Information | The offered topics and application procedure are released by email from the Department. Sophomore or above students who have declared Major in Mathematics/Mathematics (Intensive) will receive emails in June. The application results will be announced in late July or early August. For enquiry, please contact the Department. The final report must be submitted by the end of the semester. The deadline for submission will be announced in the due course. |  |  |  |
| MATH4966 | Mathematics internship (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Mathematics |  | Quota |  |
| Course Co-ordinator | Dr T K Wong, Mathematics (internship@maths.hku.hk) |  |  |  |
| Teachers Involved | (All teaching staff,Mathematics) |  |  |  |
| Course Objectives | This course aims to offer students the opportunities to gain work experience in the industry related to their major of study. The workplace learning experience would be of great benefits to the students to apply their knowledge gained in the study to the real work environments. Students have to take on at least 160 hours of internship work either within the University or outside the University arranged by the department. |  |  |  |
| Course Contents \& Topics | Within the university: each student will be supervised by a staff member (supervisor), working on a project or various tasks as instructed by the supervisor. <br> Outside the university: each student will carry out approved work under the guidance and supervision of an external supervisor. |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: <br> CLO 1 gain work experience in an industry related to mathematical sciences |  |  |  |
| Outcomes |  |  |  |  |

CLO 2 have an understanding of how mathematics is used to solve real-world problems

Pre-requisites (and Co-requisites and Impermissible combinations)

Offer in 2021-2022 Grade Descriptors Distinction/Pass/Fail

This capstone course is for Mathematics / Mathematics (Intensive), and Mathematics/Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study.
Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics/ Mathematics (Intensive), and Mathematics/Physics Majors; and subject to approval by the Department.
Y 1st sem 2nd sem Summer Offer in 2022-2023: Y Examination No Exam
Distincti Demonstrates excellent ability in applying knowledge to solve problems in the workplace. Demonstrates excellent on performance in handling and carrying out the work required in the job or assigned by supervisor(s). Establishes highly performance in handing and carrying out the work required in the job or assigned by supervisor(s). Establishes highly effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, with excellent performance in written and oral report, and excellent evaluation by supervisor(s), etc.


## Additional Course

 InformationSatisfactory completion of this course can be counted towards the Capstone requirement. Details of internship will be recorded on the student's transcript. This course will be assessed on "Pass/Fail" basis. Students who are interested to enrol in this course should contact the Department to obtain the approval.
Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.

MATH4999
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents

## \& Topics

Course Learning
Outcomes

Pre-requisites (and Co-requisites and Impermissible combinations)

Offer in 2021-2022
Grade Descriptors
(A+ to F)

## Mathematics project ( 12 credits)

Mathematics
Prof X Yuan, Mathematics (xmyuan@hku.hk)
(All teaching staff,Mathematics)
The aim of the course is to provide students with the opportunity to formulate and to investigate, in depth, problems of practical interest and/or to have a foretaste of mathematical research. The work, to be done on an individual basis, is considered a highly desirable part of the training of a mathematician.
The subject matter of the project will be determined by consultation between the student and his/her supervisor. The projects will be selected from areas of pure and applied mathematics. Students must achieve good standing and get the approval from both the prospective supervisor and the course co-ordinator to take this course.
On successful completion of this course, students should be able to:
CLO 1 study independently and in depth an advanced topic that is not available in the regular curriculum
CLO 2 analyze and synthesize information gathered from different sources
CLO 3 articulate their findings and conclusions
CLO 4 give an exposition of their work in a written report
This capstone course is for Mathematics / Mathematics (Intensive), and Mathematics/Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study.
Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics/ Mathematics (Intensive), and Mathematics/Physics Majors; and subject to approval by the Department.


|  |  |  |  | to CLO Mapping |
| :---: | :---: | :---: | :---: | :---: |
|  | Dissertation | Written report plus oral presentation | 100 | CLO 1,2,3,4 |
| Additional Course Information | The offered topics and application procedure are released by email from the Department. Sophomore or above students who have declared Major in Mathematics/Mathematics (Intensive) will receive emails in June. The application results will be announced in late July or early August. For enquiry, please contact the Department. The final report must be submitted by the end of the $2 n d$ semester. The deadline for submission will be announced in the due course. |  |  |  |









| MATH7503 | Topics in mathematical programming and optimization (6 credits) |  | Academic Year | 2021 |
| :---: | :---: | :---: | :---: | :---: |
| Offering Department | Mathematics |  | Quota | --- |
| Course Co-ordinator | Prof X Yuan, Mathematics (xmyuan@hku.hk) |  |  |  |
| Teachers Involved | (Prof X Yuan,Mathematics) |  |  |  |
| Course Objectives | To learn a selection of advanced and up-to-date topics in mathematical programming and continuous optimization, including theory, numerical algorithms and applications. |  |  |  |
| Course Contents \& Topics | A deeper and wider study in some advanced topics related to optimization and its applications. This course covers a selection of topics including convex programming, nonconvex programming, saddle point problems, variational inequalities, optimization theory and algorithms suitable for contemporary applications in various areas such as machine learning, artificial intelligence, imaging processing, and computer vision. The selected topics may vary from year to year. |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 understand the advanced concept and approach of the mathematical programming topic(s) and/or optimization approaches as appropriate in Scientific Computing, Operations Research, Data Science, etc |  |  |  |
|  | CLO 2 demonstrate knowledge and understanding of the underlying theory and techniques of the various formulations and algorithms plus their extensions |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in MATH3901, MATH3904 and approval of the course coordinator. |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offe | A 2nd sem Offer in 2022-2023: Y | Examination | No Exam |
| Grade Descriptors $(A+\text { to } F)$ | A $\quad$Demonstrate <br> applications <br> and being ab | Demonstrate an excellent understanding of key concepts and ideas by being able to identify appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and to solve problems with some innovative approaches. |  |  |
|  | Demonstrate a good understanding of key concepts and ideas by being able to identify appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors. |  |  |  |
|  | Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors. |  |  |  |
|  | Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors. |  |  |  |
|  | Fail | Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution. |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 36 |
|  | Reading / Self study | include presentations |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |



CLO 3 understand the basic properties of $L^{\wedge} p$ spaces

|  |  | understand | ties of $L^{\wedge} p$ spaces |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pre-requisites (and Co-requisites and Impermissible combinations) | A good grade in MATH3401 and approval by the course coordinator |  |  |  |  |
| Offer in 2021-2022 | $\frac{\text { 1st sem Offer in 2022-2023: Y }}{\text { Demonstrate a thorough understanding of all concepts and ide }}$ |  |  | Examination Dec |  |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate a thorough understanding of all concepts and ideas by being able to draw complex connections among various concepts and apply the theorems through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation, and with some innovative approaches to solving problems. |  |  |  |
|  | B | Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, reasoning, identifying the appropriate theorems, applications, or presentation. |  |  |  |
|  |  | Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with acceptable argument and presentation. |  |  |  |
|  |  | Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation. |  |  |  |
|  | Fail | Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, and not being able to complete the solution. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Examination |  | Written/oral end-of-term assessment | 50 | CLO 1,2,3 |
|  | Test |  | Written test/Presentations | 50 | CLO 1,2,3 |

Required/recommended reading and online materials
S. Axler: Measure, Integration and Real Analysis (Springer)
G.B. Folland: Real Analysis (Wiley Inter-science)
G.B. Folland: A Guide to Advanced Real Analysis (MMA)
H.L Royden: Real Analysis (Pearson)
W. Rudin: Real and Complex Analysis (McGraw Hill)
E.M. Stein and R. Shakarchi: Real Analysis (Princeton Lectures)

Course Website
Additional Course http://moodle.hku.hk/

Information
http://hkumath.hku.hk/~math/Timetable/timetable2122_S2.pdf

| PHYS1000 | Introduction to astronomy (6 credits) |  | Academic Year | 2021 |
| :---: | :---: | :---: | :---: | :---: |
| Offering Department | Physics |  | Quota | --- |
| Course Co-ordinator | Dr J C S Pun, Physics (jcspun@hku.hk) |  |  |  |
| Teachers Involved | (Dr J C S Pun, Physics) |  |  |  |
| Course Objectives | This is an introductory course on astronomy, including both the observational aspect of the field and a descriptive survey of the solar system, the Sun, stars, galaxies and the universe. Selected special topics such as extrasolar planets, neutron stars, black holes and dark matter will also be included. The course will include observing sessions with telescopes (subject to weather conditions). |  |  |  |
| Course Contents \& Topics | Topics covered include the observational aspect of astronomy (including constellations and planets), the physics of our solar system, and our own Sun, stars and their evolution, galaxies, black holes, and cosmology. It also provides students with a basic understanding of the relationship of the science of astronomy to life, and how our nature works on the macroscopic level. The course will arrange for observing activities of the Sun and the night sky with telescopes. |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 identify and describe the major objects in our Solar System and our universe (including stars and galaxies), and explain their main properties |  |  |  |
|  | CLO 2 use the celestial sphere model to describe the apparent trajectories of celestial objects |  |  |  |
|  | CLO 3 review the evolution of the world-view from the geocentric model to the heliocentric model and the discovery of the expansion of the universe on our world-view |  |  |  |
|  | CLO 4 apply quantitative physical laws, including Kepler's three laws of planetary motion, Newton's law of universal gravitation, Doppler shift formula and Hubble's law to calculate and solve simple astronomical problems |  |  |  |
|  | CLO 5 explain the evolution of stars and the evolution of the universe |  |  |  |
|  | CLO 6 communicate astronomical problems and solutions using appropriate astronomical terminology and good English |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Nil |  |  |  |
| Offer in 2021-2022 | N Offer in 2022-2023: N |  | Examination | --- |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective observation skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective observation skills and techniques. Correct use of data of results to draw appropriate conclusions. |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective observation skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective observation skills and techniques. Limited ability to use data and results to draw appropriate conclusions. |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective observation skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 32 |
|  | Laboratory |  |  | 6 |
|  | Reading / Self study |  |  | 82 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | 40 | CLO 1,2,3,4,5,6 |
|  | Examination | 2-hour written exam | 50 | CLO 1,2,3,4,5,6 |
|  | Laboratory reports | Observations with telescope | 10 | CLO 1,2,3,4,5,6 |
| Required/recommended reading and online materials | E. Chaisson and S. McMillan: Astronomy Today (Pearson, 2011) |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |
| PHYS1001 | University physics (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Physics |  | Quota | --- |
| Course Co-ordinator | Dr F K Chow, Physics (judychow@hku.hk) |  |  |  |
| Teachers Involved | (Dr F K Chow,Physics) |  |  |  |
| Course Objectives | This is an introductory, calculus-based physics course for the students who want to have an overview in physics at the university level. |  |  |  |
| Course Contents \& Topics | It covers mechanics, gravitation, oscillations, waves and sound, heat and thermodynamics, electricity and magnetism, and physical optics. Conceptual ideas in physics are emphasized and the mathematical treatment is moderate. |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: CLO 1 describe and explain the fundamental physical principles CLO 2 apply these principles, together with logical and mathematical reasoning, to situations of the physical world CLO 3 analyse and solve problems with the aids of mathematics CLO 4 acquire and interpret experimental data to examine the physical laws |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Pre-requisites
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022 N
Grade Descriptors ( $\mathrm{A}+$ to F )

NIL
N Offer in 2022-2023: N

## Examination

Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and
presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.
Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familia and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques Correct use of data of results to draw appropriate conclusions.
Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.
techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Semonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

|  | Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. <br> Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching | Activities | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  | 36 |
|  | Laboratory |  |  | 3 |
|  | Tutorials |  |  | 9 |
|  | Reading / Self study |  |  | 72 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | 35 | CLO 1,2,3,4 |
|  | Examination | 2-hour written exam | 50 | CLO 1,2,3 |
|  | Laboratory reports |  | 15 | CLO 1,4 |

Required/recommended reading and
online materials
Course Website

PHYS1050
Offering Department
Course Co-ordinator

Teachers Involved
Course Objectives
Course Contents \& Topics

Course Learning
Outcomes

Pre-requisites (and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors
( $\mathrm{A}+$ to F )

Physics for engineering students ( $\mathbf{6}$ credits)
Physics
Dr C C Ling, Physics (ccling@hku.hk)
(Dr C C Ling,Physics)
This course offers a comprehensive training of physics for engineers. It covers the major physical laws on mechanics, electricity and magnetism. A calculus-based approach is adopted.
This course will introduce and discuss the following topics:
Units and Dimensional Analysis, Motion of a Particle in One and Two Dimensions, Newton's Laws of Motion, Friction, Circular Motion, Force, Impulse and Momentum, Force Polygon and Static Equilibrium, Work and Energy, System of Particles, Moment of Inertia and Rotation of a Rigid Body, Simple Harmonic Motion and Pendulum; Electrostatic Fields and Potential, Gauss's Law, DC circuits, Magnetic field due to Moving Charges, Force on a Moving Charge in Magnetic Field, Biot-Savart law, Ampere's law, Electromagnetic Induction, Faraday's Law, Eddy Currents, AC circuits, Phases in Capacitive and Inductive Circuits, Power, DC and AC Generators, Transformer.
On successful completion of this course, students should be able to:
CLO 1 describe and explain the physical principles of mechanics, electricity and magnetism
CLO 2 apply these principles to situations of the physical and engineering world
CLO 3 analyze and solve basic problems using the calculus-based approach
CLO 4 acquire and interpret experimental data to examine the physical laws
Level 3 or above in HKDSE Physics or Combined Science with Physics components or equivalent; and
(Level 2 or above in Module 1, or Module 2 of HKDSE Mathematics or equivalent, or Pass in MATH1011) (This course is exclusive for Engineering students.)

N Offer in 2022-2023: N

## Examination

Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques Correct use of data of results to draw appropriate conclusions.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.
Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.
Fail

|  | problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Communication- | N |  |  |  |  |
| intensive Course |  |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Laboratory |  |  |  | 6 |
|  | Tutorials |  |  |  | 8 |
|  | Reading / Self study |  |  |  | 72 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  |  | 10 | CLO 1,2,3 |
|  | Examination |  | 2-hour written exam | 70 | CLO 1,2,3 |
|  | Laboratory reports |  |  | 10 | CLO 1,4 |
|  | Test |  |  | 10 | CLO 1,2,3 |
| Required/recommended reading and online materials | Lecture notes provided by Course Coordinator <br> R. Serway and J.W. Jewett: Physics for Scientists and Engineers (Thomson, 2009, 8th edition) <br> R. D. Knight: Physics for Scientists and Engineers (Pearson, 2008, 2nd edition) |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| PHYS1055 | How things work (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Physics |  |  | Quota | --- |
| Course Co-ordinator | Dr M K Yip, Physics (mankit@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr M K Yip,Physics) |  |  |  |  |
| Course Objectives | This course is designed for students in all disciplines and all years who are curious about science in daily life. The course covers the working principles and mechanisms of the things and phenomena around us. Logical thinking and appreciation of science are emphasized with mathematics kept at a minimum. Students are trained to develop scientific intuition and to understand that many "magical" things in everyday life can be predictable. |  |  |  |  |
| Course Contents \& Topics | Topics include: the science in the household and the science of driving, sports and amusement. Daily applications are explored with simple and lucid explanations. Developments in optical recording, medical imaging for diagnosis and the magnetic levitated trains in public transportation are introduced as examples of the modern technology. Contents of the course are constantly updated to reflect the advances in modern science and technology. |  |  |  |  |
| Course Learning Outcomes | CLO 1 describe and discuss the physical principles that are behind the household appliances and the scientific issues in daily life |  |  |  |  |
|  | CLO 2 demonstrate their knowledge to related topics qualitatively |  |  |  |  |
|  | CLO 3 criticize and express views in logical and effective ways |  |  |  |  |
|  | CLO 4 recognize the significance of science and technology |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | NIL |  |  |  |  |
| Offer in 2021-2022 | Y | sem Offe | 023 : Y | Examinatio | May |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  |  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 80 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  |  | 25 | CLO 1,2,3,4 |
|  | Examination |  | 2-hour written exam | 50 | CLO 1,2,3,4 |
|  | Presentation |  |  | 25 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | L. A. Bloomfield: How Things Work: The Physics of Everyday Life (John Wiley \& Sons, Inc, 2008, 3rd edition) |  |  |  |  |
| Course Website | http://www.physics.hku.hk/~phys1055/ |  |  |  |  |


| PHYS1056 | Weather, climate and climate change (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Physics | Quota | --- |



Pre-requisites
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors (A+ to F)

CLO 2 explain basic physical and chemical processes involved in food preparation
CLO 3 illustrate how preparation method affects the flavor and texture of food
CLO 4 analyze common methods of food preparation and understand scientific reasons for performing procedures in certain ways
NIL

A
A Offer in 2022-2023: N Examination --- learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  | inlcuding demonstration (12 hours) |  | 24 |
|  | Reading / Self study |  |  |  | 72 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | essay \& student presentations | 70 | CLO 1,2,3,4 |
|  | Examination |  |  | 30 | CLO 1,2,3,4 |

Required/recommended


Lecture notes provided by Course Coordinator
reading and Lister and H. Blumenthal: Kitchen Chemistry (Royal Society of Chemistry, 2005)
online materials $\quad$ S. T. Beckett: The Science of Chocolate (Royal Society of Chemistry, 2005)
R. L. Wolke: What Einstein Told His Cook (W.W. Norton \& Company Inc., New York, 2002

Peter Barham: The Science of Cooking (Springer-Verlag, Berlin, 2001) A. Gardiner and S. Wilson: The Inquisitive
Cook (Exploratorium, Henry Holt and Company, LLC, New York, 1998)
H. McGee: On food and cooking: The Science and Lore of the Kitchen (HarperCollins Publishers, London, 1991)



discovery of the expansion of the universe on our world-view
CLO 4 apply quantitative physical laws, including Kepler's three laws of planetary motion, Newton's law of universal gravitation, Doppler shift formula and Hubble's law to calculate and solve simple astronomical problems
CLO 5 explain the evolution of stars and the evolution of the universe
CLO 6 communicate astronomical problems and solutions using appropriate astronomical terminology and good English
Pre-requisites
(and Co-requisites and Impermissible combinations)

| Offer in 2021-2022 | Y | 1st sem 2nd sem | Offer in 2022-2023: Y | Examination | Dec May |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective observation skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective observation skills and techniques. Correct use of data of results to draw appropriate conclusions. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective observation skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective observation skills and techniques. Limited ability to use data and results to draw appropriate conclusions. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective observation skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Laboratory |  |  |  | 12 |
|  | Tutorials |  |  |  | 8 |
|  | Reading / Self study |  |  |  | 64 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  |  | 25 | CLO 1,2,3,4,5,6 |
|  | Examination <br> Test |  | 2-hour written exam | 50 | CLO 1,2,3,4,5,6 |
|  |  |  |  | 25 | CLO 1,2,3,4,5,6 |

Required/recommended E. Chaisson and S. McMillan: Astronomy Today (Pearson, 2011)
reading and
online materials
Course Website
http://moodle.hku.hk

PHYS2055
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents \& Topics

Course Learning Outcomes

Introductory relativity (6 credits)
Academic Year
2021
Physics
Dr K M Lee, Physics (kmlee@lily.physics.hku.hk)
(Dr K M Lee, Physics)
This course aims at introducing students the essence of special relativity. It is designed as an elective for students in all disciplines and all years with science background. It is also a discipline elective for the physics major/minor and astronomy minor. Completion of this course is one of the pre-requisites for PHYS4653 and PHYS4654.
Topics include: "Common-sense" concepts of space and time versus Einstein's conceptions of space and time, Examples of time dilation and space contraction, Paradoxes of relativity including the famous twin paradox and the "pole-in-the-barn", Four vectors and Lorentz invariant, Some discussion on general relativity.
On successful completion of this course, students should be able to:
CLO 1 recall the setup and significance of Michelson-Morley experiment
CLO 2 state the basic postulates and the spacetime concept of special relativity
CLO 3 explain time dilation and length contraction
CLO 4 describe Lorentz transformation and its applications
CLO 5 state the resolution of the twin and pole-in-the-barn paradoxes
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors
(A+ to F)

Pass in PHYS1050 or PHYS1150 or PHYS1250 or ENGG1300

Y 2nd sem Offer in 2022-2023: Y

## Examination May

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.


Required/recommended Lecture notes provided by Course Coordinator
reading and
online materials
Susan J. Colley: Vector Calculus (Pearson, 2011, 4th edition)
Allen B. Downey: Physical Modeling in MATLAB (Green Tea Press, 2008)
Joel Hass, Maurice D. Weir, and George B. Thomas Jr.: University Calculus: Early Transcendentals (Pearson,


|  | computational tools, techniques, and methods in physics and related fields using the Python programming language. Students are expected to spend a substantial amount of time in writing computer programs to solve physical problems. After completion, interested students may take the sequel courses PHYS3151, PHYS4150 or PHYS4151 to further their studies in computational physics. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Course Contents \& Topics | Topics include: basics of computer programming; Python programming for physicists; introduction to objectoriented programming in Python; scientific programming with Matplotlib, NumPy, and SciPy; simple error analysis in scientific programming; solution of non-linear equations with application in quantum physics; Calculus and numerical methods with relevant examples in physics; numerical solution of ordinary differential equations with application to pendulum motion. |  |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |  |
| Outcomes | CLO 1 demonstrate knowledge in basic computational techniques and methods in physics |  |  |  |  |
|  | CLO 2 apply Python programming language and relevant packages to solve simple physical problems |  |  |  |  |
|  | CLO 3 employ appropriate numerical methods for solving ordinary differential equations that commonly arise in physics |  |  |  |  |
|  | CLO 4 review the numerical methods for simulation of various physical systems |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in MATH1013 or MATH1821 or MATH1851 or PHYS1150 |  |  |  |  |
| Offer in 2021-2022 | Y | 2nd sem Offer in 2022-2023: Y |  | Examination | May |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 30 |
|  | Laboratory |  |  |  | 18 |
|  | Project work |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 64 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Examination |  | 2-hour | 50 | CLO 1,2,3,4 |
|  | Laboratory reports |  |  | 20 | CLO 1,2 |
|  | Presentation |  |  | 10 | CLO 1,2,3,4 |
|  | Project report |  |  | 20 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Lecture notes provided by Course Coordinator <br> Christian Hills: Learning Scientific Programming with Python (Cambridge University Press, 2016) <br> Andi Klein and Alexander Godunov: Introductory computational physics (Cambridge University Press, 2010) <br> Mark Newman: Computational Physics (CreateSpace Independent Publishing Platform, 2012) <br> Hans Petter Langtangen: A Primer on Scientific Programming with Python (Springer, 2016, 5th edition) <br> Matt A. Wood: Python and Matplotlib Essentials for Scientists and Engineers (Morgan \& Claypool, 2015) |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| PHYS2250 | Introductory mechanics (6 credits) |  |  | Academic Y | 2021 |
| Offering Department | Physics |  |  | Quota | --- |
| Course Co-ordinator | Dr M K Yip, Physics (mankit@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr M K Yip,Physics) |  |  |  |  |
| Course Objectives | This calculus-based course covers the foundation of Newtonian mechanics in one semester. It is a core course for physics major, a discipline elective for physics minor, as well as an elective course for those who want to learn fundamental Newtonian mechanics concepts and to link them up with their studies in fields like engineering, chemistry and mathematics. Problem solving and analytical skills will be extensively used. They are supplemented by numerical skills occasionally. Upon completion, interested students may take PHYS3350 to continue their study in Lagrangian mechanics. |  |  |  |  |
| Course Contents \& Topics | Topics include: Kinematics, Newton's Laws of Motion and Their Applications, Linear Momentum and its Conservation, Variable Mass Problems, System of Particles and Centre of Mass, Torque and Rotation, Moment of Inertia, Angular Momentum and its Conservation, Work, Energy and its Conservation, Gravitation, Simple Harmonic Motions, Damped and Driven Oscillations, Wave Equation, Energy in Wave Motion, Interference and the Principle of Superposition. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 describe and explain the fundamental physical principles |  |  |  |  |
|  | CLO 2 apply these principles, together with logical and mathematical reasoning, to situations of the physical CLO 3 analyse and solve problems with the aids of mathematics |  |  |  |  |
|  |  |  |  |  |  |

CLO 4 acquire and interpret experimental data to examine the physical laws

Pre-requisites (and Co-requisites and Impermissible combinations)

Offer in 2021-2022
Grade Descriptors (A+ to F)

Pass in PHYS1050 or PHYS1150 or PHYS1250 or ENGG1300


Required/recommended
reading and online materials
Course Website
D. Kleppner and Robert J. Kolenkow: An Introduction to Mechanics (Cambridge University Press, 2013, 2nd edition) P.A Tipler and G. Mosca: Physics for Scientists and Engineers (Freeman, 2008, 6th edition) http://moodle.hku.hk

PHYS2255

Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Introductory electricity and magnetism ( 6 credits) Physics
Dr J C S Pun, Physics (jcspun@hku.hk)
(Dr J C S Pun, Physics)
This calculus-based course covers the foundation of electricity and magnetism in one semester. It is a core course for physics major, a discipline elective for physics minor, as well as an elective course for those who want to learn fundamental electricity and magnetism concepts and to link them up with their studies in fields like engineering, chemistry and mathematics. Problem solving and analytical skills will be extensively used. They are supplemented by numerical skills occasionally. Upon completion, interested students may take PHYS3450 to further their study in electromagnetism.
Topics include: electric force and electric field; Gauss' law and electric conductors; electric potential energy and potential; capacitance and DC circuits; magnetic force; magnetic field and Ampere's law; Faraday's law of induction; inductance and Lenz's law; Maxwell's equations; wave nature of light; diffraction and interference.
On successful completion of this course, students should be able to:
CLO 1 describe and explain the fundamental physical principles
CLO 2 apply these principles, together with logical and mathematical reasoning, to situations of the physical world
CLO 3 analyse and solve problems with the aids of mathematics
CLO 4 acquire and interpret experimental data to examine the physical laws
Pass in PHYS1050 or PHYS1150 or PHYS1250 or ENGG1310
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors (A+ to F)

| Y | 2nd sem Offer in 2022 - 2023 : Y | Examination May |
| :--- | :--- | :--- |
| A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course <br> learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability <br> to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and <br> presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and <br> insightful conclusions. |  |
| B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course <br> learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar <br> and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. <br> Correct use of data of results to draw appropriate conclusions. |  |
| C | Demonstrate general but incomplete command of knowlegge and skills required for attaining most of the course learning <br> outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most <br> familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and <br> techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. |  |
| D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. <br> Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply |  |



| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
| :---: | :---: | :---: | :---: | :---: |
|  | Assignments |  | 10 | CLO 1,2,3,4 |
|  | Examination | 2-hour written exam | 50 | CLO 1,2,3 |
|  | Laboratory reports |  | 15 | CLO 1,4 |
|  | Test |  | 25 | CLO 1,2,3 |
| Required/recommended reading and online materials | P. A. Tipler and G. Mosca: Physics for Scientists and Engineers (Freeman, 2008, 6th edition) <br> R. Resnick, D. Halliday, and K. Krane: Physics Volume 1 (John Wiley and Sons, 2002, 5th edition) <br> R. Resnick, D. Halliday, and K. Krane: Physics Volume 2 (John Wiley and Sons, 2002, 5th edition) |  |  |  |


(Prof H F Chau,Physics)


Required/recommended Lecture notes provided by Course Coordinator

| reading and |  |
| :--- | :--- |
| online materials | Robert Eisberg and Robert Resnick: Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (John <br> Wiley \& Sons, 1985) <br>  <br> Randy Harris: Modern Physics (Pearson, 2014, 2nd edition) <br> Kenneth S. Krane: Modern Physics (John Wiley \& Sons, 2012, 3rd edition) <br> Raymond A. Serway, Clement J. Moses, and Curt A. Moyer: Modern Physics (Cengage Learning, 2005, 3rd edition) <br> Paul A. Tipler and Gene Mosca: Physics for Scientists and Engineers Extended Version (W. H. Freeman and <br>  <br> Company, 2008, 6th edition) |


| PHYS2650 | Modern astronomy (6 credits) | Academic Year 2021 |
| :---: | :---: | :---: |
| Offering Department | Physics | Quota |
| Course Co-ordinator | Dr J J L Lim, Physics (jilim@hku.hk) |  |
| Teachers Involved | (Dr J J L Lim, Physics) |  |
| Course Objectives | This course takes you from the beginnings to the forefronts of contemporary astronomical research - in a journey from the Solar System to the Big Bang - with an emphasis on the most important methodologies and discoveries in astronomy. Advanced physical concepts are explained with a minimum of mathematics: you will only be required to know and manipulate simple algebra. An intermediate astronomy course for students in all disciplines and all years, it also is the second course in our series of two compulsory courses to introduce basic astronomy knowledge, methods, and recent advances for astronomy minors. This primary aim of this course is to take students to the cutting-edge of contemporary astronomy. After completing this course, interested students may take PHYS3650, PHYS3653 and/or PHYS3660, which are core or discipline elective courses for astronomy minor and astrophysics theme of physics major. |  |
| Course Contents \& Topics | Scale of the Solar and Exo-planetary Systems, Astrometry and Scale of the Galaxy, Scale of the Universe, Expansion and Accelerated Expansion of the Universe, Hubble Parameter, Dark Matter and Dark Energy, Cosmology, Critical Density, Cosmic Structure, Cosmic Microwave Background, Inflation, Neutrino Astrophysics |  |
| Course Learning | On successful completion of this course, students should be able to: |  |



|  | Fail | of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching <br> \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 18 |
|  | Reading / Self study |  |  |  | 80 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  |  | 20 | CLO 1,2,3,4 |
|  | Examination |  |  | 50 | CLO 1,2,3,4 |
|  | Test |  |  | 30 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Lecture notes provided by Course Coordinator <br> W. Demtroder, Atoms, molecules and photons (Springer, 2nd, 2011) <br> K. Krane, Introductory nuclear physics (John Wiley \& Sons, 1988) <br> B. H. Bransden and C. J. Joachain: Physics of Atoms and Molecules (Pearson, 2nd, 2003) |  |  |  |  |
| Course Website | http://www.physics.hku.hk/~phys2628/ |  |  |  |  |
| PHYS3150 | Theoretical physics (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Physics |  |  | Quota | --- |
| Course Co-ordinator | Dr C J Wang, Physics (cjwang@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr C J Wang, Physics) |  |  |  |  |
| Course Objectives | This is the third level course in our series of courses that introduces problem solving, mathematical and computational skill sets that are commonly used in the study of university-level physics. We focus on the analytical and computer algebra techniques in solving physics problems. It is one of the core electives for physics major and an elective course for the computational physics and theoretical physics themes. This is also an essential course for those who plan to pursue postgraduate studies in mathematical and theoretical physics. |  |  |  |  |
| Course Contents \& Topics | This course will introduce and address the following topics: (i) Functions of a complex variable and their applications (Cauchy's integral formula, calculus of residues, etc); (ii) Advanced methods in solving and classifying differential equations commonly appears in physics (such as series solution, second solution, Green's function, and singular points); (iii) Properties of special functions widely used in Physics (Gamma functions, Beta functions, Bessel functions, spherical harmonics etc.), (iv) Integral transforms (Fourier transforms and Laplace transforms); (v) The use of Mathematica in solving simple analytical problems appearing in topics (i)-(iv). |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 analyse and examine the analytical properties of complex functions |  |  |  |  |
|  | CLO 2 calculate various definite integrals using the method of residues |  |  |  |  |
|  | CLO 3 analyse and solve typical partial differential equations |  |  |  |  |
|  | CLO 4 apply the special functions in handling various physical problems |  |  |  |  |
|  | CLO 5 use the Fourier series and Fourier transform in analysing periodic functions and waves, and understand the basics of Laplace transforms |  |  |  |  |
|  | CLO 6 use Mathematica to solve simple analytical problems in physics |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in MATH2211 or PHYS2150 or PHYS2155 |  |  |  |  |
| Offer in 2021-2022 | Y | sem Offer | 23 : Y | Examination | Dec |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  |  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lectu | ased course |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 80 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | Including computational assignments | 30 | CLO 1,2,3,4,5,6 |
|  | Examination Test |  | 3-hour written exam | 60 | CLO 1,2,3,4,5 |
|  |  |  |  | 10 | CLO 1,2,3,4,5 |

Required/recommended Lecture notes provided by Course Coordinator reading and


| PHYS3350 | Classical mechanics (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Physics | Quota |  |
| Course Co-ordinator | Prof S Q Shen, Physics (sshen@hku.hk) |  |  |
| Teachers Involved | (Prof S Q Shen,Physics) |  |  |
| Course Objectives | This course covers Lagrangian mechanics in the advanced undergraduate level with rigorous mathematical treatment. It is one of the core electives for physics major and an elective course for the theoretical physics theme. This is also an essential course for those who plan to pursue postgraduate studies in physics or related disciplines. Problem solving and analytical skills will be extensively used. They are supplemented by numerical skills occasionally. |  |  |
| Course Contents \& Topics | This course will be essentially divided into two parts. In the first part, fundamental concepts related to Lagrangian mechanics will be treated. Topics include the variational principle, conservation laws and its relation to Newtonian mechanics. In the second part, we shall discuss applications of the Lagrangian mechanics. Topics include the central force problem, the coupled harmonic oscillators and rigid-body dynamics. Lagrangian mechanics in noninertial frame will also be discussed. |  |  |



|  | D <br> Fail | outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  |  | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 80 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | Including computational assignments | 20 | CLO 1,2,3,4 |
|  | Examination |  | 2-hour written exam | 60 | CLO 1,2,3,4 |
|  | Test |  |  | 20 | CLO 1,2,3,4 |
| Required/recommended reading and online materials Course Website | Lecture notes provided by Course Coordinator <br> D. J. Griffiths: Introduction to Quantum Mechanics (Pearson Prentice Hall, 2004, 2nd ed.) |  |  |  |  |
|  | http://moodle.hku.hk |  |  |  |  |
| PHYS3450 | Electromagnetism (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Physics |  |  | Quota | --- |
| Course Co-ordinator | Prof S J Xu, Physics (sjxu@hku.hk) |  |  |  |  |
| Teachers Involved | (Prof S J Xu,Physics) |  |  |  |  |
| Course Objectives | This course covers the basics of electromagnetism at the advanced undergraduate level with vigorous mathematical treatment. It is one of the core electives for physics major and an elective course for the theoretical physics theme. This is also an essential course for those who plan to pursue postgraduate studies in physics or related disciplines. Problem solving and analytical skills will be extensively used. They are supplemented by numerical skills occasionally. Upon completion, interested students may take the sequel course PHYS4450 to further their studies in electromagnetism. |  |  |  |  |
| Course Contents \& Topics | Topics include introduction to vectors, electric fields and potential, methods in electrostatics, conductors and dielectrics, magnetostatics and electromagnetic induction, magnetic properties of materials and Maxwell's |  |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |  |
| Outcomes | CLO 1 identify the fundamental physics in electrostatics and magnetism |  |  |  |  |
|  | CLO 2 apply mathematical tools to describe electrostatics and magnetism |  |  |  |  |
|  | CLO 3 use the Maxwell's equations to explain various electro |  |  | nd magnetic phenom |  |
|  | CLO 4 differentiate between electrostatics in vacuum and in did |  |  | c materials |  |
|  | CLO 5 differentiate between magnetism in vacuum and in magnetic materials |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in PHYS2150 and PHYS2255, knowledge of PHYS2155 will be advantageous |  |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Off |  | 023 : Y | Examination May |  |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  |  | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 80 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | Including computational assignments | 20 | CLO 1,2,3,4,5 |
|  | Examination |  | 3-hour written exam | 60 | CLO 1,2,3,4,5 |
|  | Test |  |  | 20 | CLO 1,2,3,4,5 |
| Required/recommended reading and | Lecture notes provided by Course Coordinator <br> D. J. Griffiths: Introduction to Electrodynamics, 3rd ed., (Prentice-Hall, 1999). |  |  |  |  |



Required/recommended Lecture notes provided by Course Coordinator
reading and
online materials
Stephen J. Blundell and Katherine M. Blundell, Concepts in Thermal Physics, Oxford University Press, 2010
Course Websit
Herbert B. Callen, Thermodynamics and an Introduction to Thermostatistics, John Willey \& Sons, Inc. (1985) http://moodle.hku.hk

PHYS3551

| PHYS3551 | Introductory solid state physics (6 credits) | Academic Year 2021 |
| :---: | :---: | :---: |
| Offering Department | Physics | Quota |
| Course Co-ordinator | Prof J Gao, Physics (jugao@hku.hk) |  |
| Teachers Involved |  |  |
| Course Objectives | To provides a broad introduction to modern theories of the behaviour and properties of the solid state of matter. It is designed as a self-contained course which at the same time will serve as a basis for more advanced courses and projects in solid state physics. |  |
| Course Contents \& Topics | Crystal structures and symmetry. The formation of crystals. The reciprocal lattice and X-ray diffraction in crystals Lattice vibrations and thermal properties. Free-electron theory of metals. Energy bands; metals, semiconductors, and insulators. If time permits, special topics such as superconductor will be briefly mentioned. |  |
| Course Learning | On successful completion of this course, students should be able to: |  |
| Outcomes | CLO 1 demonstrate knowledge for crystal structures and characterization |  |
|  | CLO 2 describe the behavior of solid matter and explain the underlying physical concepts |  |
|  | CLO 3 apply physical principles and mathematical equations to discuss the physical properties of materials |  |
|  | CLO 4 apply essential skills of making measurements with appropriate instruments in physics experiments |  |
|  | CLO 5 interpret the experimental data and compare with the prediction of underlying physical principle |  |
| Pre-requisites (and Co-requisites | Pass in PHYS2260 and PHYS2265 |  |



Required/recommended C. Kittel: Introduction to Solid State Physics (John Wiley, 1986, 6th ed.)
reading and
online materials


|  | Tutorials | 7 sessions |  | 12 |
| :---: | :---: | :---: | :---: | :---: |
|  | Reading / Self study |  |  | 80 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | 40 | CLO 1,2,3,4 |
|  | Examination | 2-hour written exam | 60 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | To Measure the Sky by Frederick R. Chromey An Introduction to Modern Astrophysics by Bradley Carroll \& Dale A. Ostlie |  |  |  |
| Course Website | http://www.physics.hku.hk/~phys3650/ |  |  |  |
| PHYS3651 | The physical universe (6 credits) |  | Academic Year | 2021 |
| Offering Department | Physics |  | Quota | --- |
| Course Co-ordinator | Dr K M Lee, Physics (kmlee@lily.physics.hku.hk) |  |  |  |
| Teachers Involved | (Dr K M Lee,Physics) |  |  |  |
| Course Objectives | To introduce basic physical principles of astronomy and build a foundation in modern astrophysics. |  |  |  |
| Course Contents \& Topics | Topics include: the sky and celestial coordinates, spherical geometry, optics and telescopes, basic celestial mechanics, two-body problem, radiative transfer, and blackbody radiation. |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 calculate the transformation between differen |  | nate systems |  |
|  | CLO 2 describe the formation of spectral lines and b |  | f telescopes |  |
|  | CLO 3 derive the orbits in two body problem from first |  |  |  |
|  | CLO 4 recall the radiative transfer equation |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in PHYS1650 and (PHYS2250 or PHYS2265) |  |  |  |
| Offer in 2021-2022 | N Offer in 2022-202 |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | DD <br> St <br> kn | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |
|  | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 36 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 80 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | 12 | CLO 1,2,3,4 |
|  | Examination | 2-hour written exam | 60 | CLO 1,2,3,4 |
|  | Presentation |  | 13 | CLO 2,4 |
|  | Test |  | 15 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Lecture notes provided by Course Coordinator <br> Bradley W. Carroll and Dale A. Ostlie, An Introduction to Modern Astrophysics, 2nd ed. (Pearson, 2007) <br> George B. Rybicki and Alan P. Lightman, Radiative Processes in Astrophysics (Wiley-Interscience, 1985) <br> Frank H. Shu, The Physical Universe: An Introduction to Astronomy (University Science Books, 1982) <br> A. C. Phillips, The Physics of Stars (John Wiley \& Sons, 1999) <br> F. Mandl, Statistical Physics, 2nd ed. (John Wiley \& Sons, 1988) |  |  |  |
| Course Website | http://www.physics.hku.hk/~phys3651/ |  |  |  |
| PHYS3652 | Principles of astronomy (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Physics |  | Quota | --- |
| Course Co-ordinator | Dr L X Dai, Physics (lixindai@hku.hk) |  |  |  |
| Teachers Involved | (Dr L X Dai,Physics) |  |  |  |
| Course Objectives | To introduce or review a number of basic physical principles, and explain how these principles are applied in astronomy to gain knowledge of the Universe. |  |  |  |
| Course Contents \& Topics | Topics include: special relativity, Doppler effect; interaction of light and matter, spectral lines; single-dish telescopes and interferometers; binary stars and stellar parameters, exoplanets; classification of stellar spectra. |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 describe and explain the physical principles discussed |  |  |  |
|  | CLO 2 associate the correct physical principles with the observed properties of certain astronomical objects |  |  |  |
|  | CLO 3 apply their understanding of the physical principle discussed to explain or compute the observed properties of select astronomical objects |  |  |  |

Pre-requisites (and Co-requisites and Impermissible combinations)
Offer in 2021-2022 ( $\mathrm{A}+$ to F )


Required/recommended reading and online materials

PHYS3653
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents

## \& Topics

Course Learning
Outcomes

Pre-requisites (and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors ( $\mathrm{A}+$ to F )

| and Weighting |  |  | course grade (\%) | Methods to CLO Mapping |
| :---: | :---: | :---: | :---: | :---: |
|  | Assignments |  | 30 | CLO 1,2,3 |
|  | Examination | 2-hour written exam | 50 | CLO 1,2,3 |
|  | Test |  | 20 | CLO 1,2,3 |
| Required/recommended reading and online materials | An Introduction to Modern Astrophysics, by Bradley Carroll \& Dale A. Ostlie |  |  |  |
| Course Website | http://www.physics.hku.hk/~phys3653/ |  |  |  |
| PHYS3660 | Astronomy laboratory (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Physics |  | Quota | 9 |
| Course Co-ordinator | Dr S C Y Ng, Physics (ncy@astro.physics.hku.hk) |  |  |  |
| Teachers Involved | (Dr S C Y Ng,Physics) |  |  |  |
| Course Objectives | This course trains students with basics of extracting scientific information with astronomical observations. The focus is on practical experience in operating telescopes, data acquisition and reduction, and interpretation of the results rather than verification of known astronomical theories. It is one of the core electives for astronomy minor and an elective course for the astrophysics and experimental physics themes. Upon completion, interested students may apply the techniques learnt here in observational astronomy related capstone courses. |  |  |  |
| Course Contents \& Topics | This course will cover the following topics: basics working principles of optical telescopes and CCDs; setting up and hands-on operations of small optical telescopes; error analysis and basic statistics related to the astronomy laboratories; introduction to the magnitude system and celestial coordinates, the color magnitude diagram; observations and data reduction techniques in multi-wavelength astronomy; introduction to data analysis software packages. |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 acquire astronomy observation techniques |  |  |  |
|  | CLO 2 conduct observations to verify the physical principle(s) in astronomy |  |  |  |
|  | CLO 3 apply analytical methods required to interpret and analyze results, and draw conclusions from the data |  |  |  |
|  | CLO 4 use of effective written and verbal communication skills through written laboratory reports and oral presentation |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in (PHYS2265 or PHYS2650); and Pass in PHYS3650, or already enrolled in this course. |  |  |  |
| Offer in 2021-2022 | Y 1st sem Offer | 23 : Y | Examination Dec |  |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. |  |  |
|  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. |  |  |
|  | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures | Working principle of telescopes, error analysis, data analysis skills |  | 8 |
|  | Laboratory | Conduct astronomy observational and data analysis laboratories |  | 28 |
|  | Project work | Presentation and preparation |  | 20 |
|  | Reading / Self study |  |  | 64 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Laboratory reports | 8 reports | 70 | CLO 1,2,3,4 |
|  | Presentation | 1 oral presentation | 15 | CLO 1,2,3,4 |
|  | Test | 1 in-class test | 15 | CLO 1,3,4 |
| Required/recommended reading and online materials | Lecture notes provided by Course Coordinator <br> L. M. Golden, Laboratory Experiments in Physics for Modern Astronomy, Springer-Verlag (2013) <br> R. Buchheim, The Sky is Your Laboratory: Advanced Astronomy Projects for Amateurs, Praxis (2007) |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |
| PHYS3750 | Laser and spectroscopy (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Physics |  | Quota | --- |
| Course Co-ordinator | Dr T T Luu, Physics (ttluu@hku.hk) |  |  |  |
| Teachers Involved | (Dr T T Luu, Physics) |  |  |  |
| Course Objectives | The course covers major types of lasers and laser spectroscopy in the advanced undergraduate level. It is an |  |  |  |




|  | Project work | Presentation and preparation |  | 20 |
| :---: | :---: | :---: | :---: | :---: |
|  | Reading / Self study |  |  | 64 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{gathered} \text { Assessment } \\ \text { Methods } \\ \text { to CLO Mapping } \end{gathered}$ |
|  | Laboratory reports | 8 lab reports | 70 | CLO 1,2,3,4 |
|  | Presentation | 1 oral presentation | 15 | CLO 2,3 |
|  | Project report | 1 full project report | 15 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Lab manuals provided by Course Coordinator <br> L. Lyons, A Practical Guide to Data Analysis for Physical Science Students, CUP (1991) <br> P. Horowitz and W. Hill, The Art of Electronics, CUP (1989) <br> Python tutorial at https://www.python.org/about/gettingstarted/ |  |  |  |
| PHYS3850 | Physical Optics (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Physics |  | Quota | --- |
| Course Co-ordinator | Dr D K Ki, Physics (dkki@hku.hk) |  |  |  |
| Teachers Involved | (Dr D K Ki,Physics) |  |  |  |
| Course Objectives | This course covers the development of modern physical optics, with particular attention to the physical properties and applications of light in the advanced undergraduate level. It is an elective course for the experimental physics theme. |  |  |  |
| Course Contents \& Topics | Wave theory of electromagnetic radiations and light; Review of geometric optics; The propagation and superposition of light waves; Interference, Diffraction and Coherence of light; Fourier optics; Some topics of modern optics. |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 explain and calculate the fundamental properties including propagation, reflection, refraction, polarization, interference and diffraction of light waves by using the theory of waves |  |  |  |
|  | CLO 2 apply the the such as refra | to design optical a | measuring optical prop | erties of materials, |
|  | CLO 3 apply essentia reflection-enh | o design various op ms | or devices, such | anti-reflection and |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in PHYS2250 and |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offe | 023 : Y | Examinatio | May |
| Grade Descriptors$(A+\text { to } F)$ | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. |  |  |  |
|  | Demonstrate substantial command of the knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities, reasoned logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. |  |  |  |
|  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective observation skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. |  |  |
|  | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures | 12 chapters |  | 36 |
|  | Laboratory | Completing the relevant laboratory experiment and submitting reports |  | 6 |
|  | Tutorials | Tutorials about the key points and question solving skills |  | 8 |
|  | Reading / Self study | Reading and reviewing lecture notes and developing problem-solving skills |  | 80 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments | 4 assignments | 20 | CLO 1,2,3 |
|  | Examination | 2-hour written exam | 40 | CLO 1,2,3 |
|  | Laboratory reports | Two experiments | 15 | CLO 1 |
|  | Test | Mid-term test | 25 | CLO 1,2,3 |
| Required/recommended reading and online materials | Lecture Notes prepared by Course Coordinator E. Hecht: Optics (Addison-Wesley, 2017, 5th edition) |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |

PHYS3851
Offering Department Course Co-ordinator Teachers Involved

Atomic and nuclear physics (6 credits)
Academic Year 2021
Physics Quota
Dr J H C Lee, Physics (jleehc@hku.hk)
(Dr J H C Lee,Physics)





| PHYS4151 |
| :--- |
| Offering Department |
| Course Co-ordinator |
| Teachers Involved |

Course Objectives

Data analysis and modeling in physics (6 credits) Physics
Prof H F Chau, Physics (hfchau@hku.hk)
(Prof H F Chau,Physics)
This course covers commonly used data analysis and computational modeling techniques in physics and related subjects with special emphasis on their uses in complex systems, nonlinear systems and adaptive systems. The focus is on the basic principles rather than blind usage of computer packages and apps although we do use packages in the course. This is an elective course for the computational physics and experimental physics themes. This is also an essential course for who plan to pursue postgraduate studies in computational physics and complex systems and work in related areas.
Basic data analysis techniques such as linear and non-linear fittings, determination of the goodness of the fit, commonly used hypothesis testing techniques in physics; modeling physics and related systems via continuous, discrete and agent-based approaches; introduction to complex systems, complex adaptive systems and nonlinear dynamics; the use of computer packages such as Matlab and Mathematica in modeling and data analysis although the emphasis is on the basic principles and concepts behind rather than features and usage of those packages; depending on mutual interests of the course coordinator and students, illustrative examples will be drawn from conventional fields such as classical mechanics, electromagnetism and quantum mechanics as well as more recent fields like biophysics, econophysics and sociophysics.
On successful completion of this course, students should be able to:
CLO 1 describe and explain state-of-the-art modeling methods used in physics
CLO 2 apply basic modeling techniques, together with logical and mathematical reasoning, to situations of the physical world
CLO 3 analyse and solve problems with the aid of computer packages such as Matlab
CLO 4 critically interpret experimental data from physics experiments
Pass in (MATH3301 or MATH3401 or MATH3403 or MATH3405 or PHYS2160 or PHYS3150); and (PHYS3350 or PHYS3351 or PHYS3450 or PHYS3550)

N Offer in 2022-2023: Y

## Examination

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective computer modeling skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.
B Demonstrate substantial command of the knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities, reasoned logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations using effective organizational and presentation skills. Apply effective computer modeling skills and techniques. Correct use of data of results to draw appropriate conclusions.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective computer familiar situations. Apply moderately effective organizational and presentational skilis. Apply moderately effective comp
modeling skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. modeling skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective computer modeling skills and techniques. Limited ability to use data and results to draw appropriate conclusions.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective computer modeling skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.

| intensive Course Course Type | Lecture with laboratory component course |  |  |
| :---: | :---: | :---: | :---: |
| Course Teaching \& Learning Activities | Activities | Details | No. of Hours |
|  | Lectures |  | 36 |
|  | Laboratory |  | 12 |
|  | Tutorials |  | 8 |
|  | Reading / Self study |  | 80 |
| Assessment Methods and Weighting | Methods | Details | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | CLO 1,2,3,4 |
|  | Examination | 2-hour written exam | CLO 1,2,4 |
|  | Presentation |  | CLO 1,4 |
|  | Project report |  | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Lecture notes provide <br> J. R. Taylor: An Introd <br> B. Hahn and D. Valen <br> L. Lam: Nonlinear Phy <br> N. Boccara: Modeling <br> A.-L. Barabasi and H. | Coordinator or Analysis (Univ. Sci al Matlab for Enginee inners (World Sci., 19 stems (Springer, 2nd Fractal Concepts in S | d., 2013) |



Required/recommended Lecture notes provided by Course Coordinator
reading and
online materials
Course Website
H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, (Pearson Education Inc, 2004)

PHYS4351
Offering Department Course Co-ordinator Teachers Involved Course Objectives

| Advanced quantum mechanics (6 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- |
| Physics | Quota | --- |
| Dr C Xiao, Physics (congxiao@hku.hk) |  |  |
| (Dr C Xiao,Physics) |  |  |
| Build on the advanced undergraduate level course PHYS3351, this course further discusses concepts and |  |  |
| mathematical techniques in quantum mechanics through special topics and applications. This is an elective course |  |  |

for the theoretical physics theme. This is also an essential course for those who plan to pursue postgraduate studies in physics or related disciplines.

| Course Contents \& Topics | Identical particles; Pauli exclusion principle; fermion and bosons; WKB approximation; time-independent, nondegenerate and degenerate perturbation theory; time dependent perturbation theory; scattering, cross section, partial waves and Born approximation; variational method. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Course Learning Outcomes | On s CLO CLO CLO | sful comple iew the per ly physics monstrate antum syst | ourse, students should ory and some other a describe the physical and discuss the und | thods on various qua rious quantum syste concepts associat | m systems <br> with the selected |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in (PHYS2155 or PHYS3150) and PHYS3351 |  |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offer in 2022-2023: Y |  |  | Examination May |  |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  |  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  |  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 80 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  |  | 20 | CLO 1,2,3 |
|  | Examination |  | 3-hour written exam | 60 | CLO 1,2,3 |
|  | Test |  |  | 20 | CLO 1,2,3 |
| Required/recommended reading and online materials | Lecture notes provided by Course Coordinator <br> D. J. Griffiths: Introduction to Quantum Mechanics (Pearson Prentice Hall, 2004, 2nd edition). |  |  |  |  |




| Outcomes | CLO 1 demonstrate knowledge for crystal structures and characterization |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | CLO 2 describe the behavior of solid matter and explain the underlying physical concepts |  |  |  |  |
|  |  | ply physica | and mathematical equa | the physical propert | of materials |
|  | CLO 4 discuss the physics of metals, semiconductors, and superconductivity |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in (PHYS2255 or PHYS2261) and PHYS3351 |  |  |  |  |
| Offer in 2021-2022 | Y | A 1st sem Offer in 2022-2023: Y |  | Examination | Dec |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 80 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  |  | 20 | CLO 1,2,3,4 |
|  | Examination |  | 2-hour written exam | 60 | CLO 1,2,3,4 |
|  | Test |  |  | 20 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Lecture notes provided by course coordinator. <br> C. Kittel: Introduction to solid state physics (John Wiley, 1996). <br> N.W. Ashcroft and D.N. Mermin: Solid state physics (Holt, Rinehart and Winston, 1987). |  |  |  |  |
| PHYS4650 | Stellar physics (6 credits) |  |  | Academic Yea | ar 2021 |
| Offering Department | Physics |  |  | Quota | --- |
| Course Co-ordinator | Dr S C Y Ng, Physics (ncy@astro.physics.hku.hk) |  |  |  |  |
| Teachers Involved | (Dr S C Y Ng,Physics) |  |  |  |  |
| Course Objectives | To introduce the basic theory of stellar structure and evolution. It follows a vigorous mathematical treatment that stresses on the underlying physical processes. Knowledge in quantum mechanics and statistical mechanics will be advantageous. |  |  |  |  |
| Course Contents \& Topics | Topics include: Definition of stars. The H-R diagram. Stellar structure equations. Polytropic model. Elementary stellar radiation processes. Simple stellar nuclear processes. Saha equation. Stability of stars. Zero-age main sequence stars and their evolution. The solar neutrino problem. Late stage evolution of stars. Supernova explosion. If time permits, special topics selected from below will be briefly mentioned: star formation, brown dwarfs and planets, AGB stars and planetary nebulae, binary stars and their evolution, Cepheid variables and theory of stellar pulsation, and introduction to helioseismology. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 describe what is stars and to classify different types of stars |  |  |  |  |
|  | CLO 2 analytically calculate and solve problems related to the structure and evolution of stars including the use of stellar structure equations and Saha equations |  |  |  |  |
|  | CLO 3 critically examine the physical processes occurring in stars and how these processes affect the evolution of stars |  |  |  |  |
|  | CLO 4 assess selected research papers in the field of stellar astrophysics |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in PHYS3351 and PHYS3651 |  |  |  |  |
| Offer in 2021-2022 | N | N Offer in 2022-2023: N |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |



## PHYS4652

Offering Department
Course Co-ordinator

| Planetary science (6 credits) | Academic Year | 2021 |
| :--- | :--- | :--- |
| Physics | Quota | --- |
| Dr M H Lee, Physics (mhlee@hku.hk) |  |  |





| PHYS4656 | Advanced astrophysics (6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department | Physics | Quota |  |
| Course Co-ordinator | Dr S C Y Ng, Physics (ncy@astro.physics.hku.hk) |  |  |
| Teachers Involved | (Dr S C Y Ng,Physics) |  |  |
| Course Objectives | Built on PHYS3653, this course covers selected astrophysics topics at the advanced undergraduate level. Foci include high energy processes, basic theory of stellar structure and evolution, and introduction to compact objects. It follows a vigorous mathematical treatment that stresses on the underlying physical processes. This is an elective course for the astrophysics theme. This is also an essential course for those who plan to pursue postgraduate studies in astrophysics. |  |  |
| Course Contents \& Topics | Topics include: radiation mechanisms; stellar structure equations; polytropic model; elementary stellar radiation processes; simple stellar nuclear processes; stellar formation; late stage of stellar evolution; supernova explosion; compact stellar; cosmic rays; if time permits, additional selected topics will be covered. |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |
| Outcomes | CLO 1 describe what is stars and to classify different types of stars |  |  |
|  | CLO 2 analytically calculate and solve problems related to the structure and evolution of stars including the use of stellar structure equations and Saha equations |  |  |
|  | CLO 3 critically examine the physical processes occurring in stars and how these processes affect the evolution of stars |  |  |
|  | CLO 4 apply physics principles to describe the physical properties of various astrophysical systems |  |  |
|  | CLO 5 demonstrate knowledge and discuss the underlying physical concepts associated with the astrophysical systems and their dynamic interactive processes |  |  |
|  | CLO 6 assess selected research papers in the field of stellar astrophysics |  |  |
| Pre-requisites | Pass in PHYS3651 or PHYS3653 or (PHYS3351 and PHYS3450) |  |  |




| PHYS4850 | Particle physics (6 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- | :--- |
| Offering Department | Physics | Quota |  |
| Course Co-ordinator | Dr Y J Tu, Physics (yanjuntu@hku.hk) |  |  |
| Teachers Involved | (Dr Y J Tu,Physics) |  |  |

CLO 2 apply these principles, together with logical and mathematical reasoning, to analyze particle physics processes.
CLO 3 capture the frontier and progress of particle physics.
CLO 4 apply basic experimental skill in particle physics
Pass in PHYS3351
Pre-requisites (and Co-requisites and Impermissible combinations) Offer in 2021-2022 Grade Descriptors (A+ to F)

| Offer in 2022-2023: Y |  |  | Examination | --- |
| :---: | :---: | :---: | :---: | :---: |
| A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. |  |  |  |
| B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. |  |  |  |
| C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. |  |  |  |
| D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. |  |  |  |
| Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. |  |  |  |
| N |  |  |  |  |
| Lecture with laboratory component course |  |  |  |  |
| Activities |  | Details |  | No. of Hours |
| Lectures |  |  |  | 36 |
| Laboratory |  |  |  | 9 |
| Tutorials |  |  |  | 8 |
| Reading / Self study |  |  |  | 80 |
| Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
| Assignments |  |  | 10 | CLO 1,2,3 |
| Examination |  | 3-hour written exam | 50 | CLO 1,2,3 |
| Laboratory reports |  |  | 20 | CLO 1,2,4 |
| Test |  |  | 20 | CLO 1,2,3 |

Required/recommended reading and

Lecture notes provided by Course Coordinator
online materials
Donald H. Perkins: Introduction to High Energy Physics (Cambridge University Press, 2000, 4th edition)

| PHYS4966 |
| :--- |
| Offering Department |
| Course Co-ordinator |
| Teachers Involved |
| Course Objectives |

Course Learning
Outcomes

Pre-requisites (and Co-requisites and Impermissible combinations)

Offer in 2021-2022
Grade Descriptors Distinction/Pass/Fail

| Physics internship (6 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- |
| Physics | Quota | --- |

Physics
(NIL,Physics)
This capstone course is offered to students majoring in physics, physics (intensive), math/physics or astronomy. It should be taken normally in the summer immediately before their final year of study. Students gain working experience in the field of physics or astronomy through intern placement. They should use what they have learnt in their majors in this intern. Passing a pre-approved internship is recognized as having completed an elective in one of the four themes.
Students will work as an intern for at least 160 hours within the University or outside the University in a company, government department or NGO. The work nature must be related to physics or astronomy. The internship should be arranged by the Department or obtained by students themselves. In the latter case, it must be approved before the commencement of the internship.
On successful completion of this course, students should be able to:
CLO 1 apply physics or astronomy knowledge that students have learnt in their majors to real working environment
CLO 2 help to create, propose or design part of the project that they are working on during the internship
CLO 3 employ effective technical and inter-personal communication skills to people of different background, culture, gender and nationality
Pass in at least 24 credits of advanced level (3XXX level or above) disciplinary core/elective courses of the Physics Major, Physics (Intensive) Major, Mathematics/Physics Major or Astronomy Major curriculum.
This capstone course is for Astronomy, Mathematics/Physics, Physics, and Physics (Intensive) Majors students only.
The earliest that a student is allowed to take this capstone course is their year 3 study.
Y Summer Offer in 2022-2023: Y Examination No Exam

Distincti Demonstrates excellent ability in applying knowledge to solve problems in the workplace. Demonstrates excellent on performance in handling and carrying out the work required in the job or assigned by supervisor(s). Establishes highly effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, with excellent performance in written and oral report, and excellent evaluation by supervisor(s), etc.
Pass Able to apply knowledge to solve problems in the workplace. Successfully handles and carries out the work required in the job or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, written and oral report, and evaluation by supervisor(s), etc. Students demonstrating excellent performance in the above would be oral report, and evaluation by
awarded a grade of "Distinction".
Very limited or no ability to solve problems in the workplace. Fails to handle or carry out the work required in the job or

|  | Faila <br> c <br> re | assigned by supervisor(s). Fails to establish effective collaboration or communication with supervisor(s), other colleagues, or clients in the job. Fails to satisfy the requirements set out in the Course Description regarding working hours, written and oral report, or evaluation by supervisor(s), etc. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |
| Course Type | Internship |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Internship work | It is expected that students are to work at least 160 hours (or the equivalent of 4 weeks full-time) |  | 160 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Written report | Written report, employer's feedback and oral presentation | 100 | CLO 1,2,3 |
| Required/recommended reading and online materials | To be provided by individual project supervisor |  |  |  |
| Additional Course Information | Satisfactory completion of this course can be counted towards the Capstone requirement. Details of internship will be recorded on the student's transcript. This course will be assessed on "Pass/Fail" basis. Students who are interested to enrol in this course should contact the Department to obtain the approval. <br> Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator. |  |  |  |

## PHYS4999 Offering Department <br> Course Co-ordinator

Teachers Involved
Course Objectives

| Physics project (12 credits) | Academic Year 2021 |
| :--- | :--- |
| Physics | Quota |
| Dr F C C Ling, Physics (ccling@hku.hk) |  |
| (Various teachers in the department,Physics) |  |
| This capstone course is offered to students majoring in physics, physics (intensive), math/physics or astronomy. It |  |
| is designed for those who are interested in tackling a research project in physics and/or astronomy. It should be |  |
| taken normally in their final year of study. Students investigate a specific problem, either theoretical, experimental |  |
| or numerical, under the supervision of an academic staff using the knowledge the student gained in all years of |  |
| their major studies. The available projects are close to postgraduate level research in physics and/or |  |
| astronomy. Passing a pre-approved project is recognized as having completed an elective in one of the four |  |
| themes. |  | themes.

Students interested in taking this course should contact their prospective supervisors in May to determine the contents and the nature of their projects in the coming academic year. They must get the approval from both the prospective supervisor and the course coordinator to take this course.

For theoretical and numerical projects: Students will receive training in research literature reading and reviewing, and make investigation which is close to research work in nature, under the supervision of a staff member. The student may need to perform some original calculations, to fill in mathematical gaps of some sophisticated derivations, or a combination of both. For numerical projects, students also need to use computers to find numerical or simulation results.

For experimental projects: Students will carry out experiments in research labs under the supervision of a staff member. The student will receive a comprehensive training in advanced experimental techniques, including preparation of samples, determination of physical properties, measurement of small signals obscured by noise, laser, high-vacuum and low-temperature techniques and so on. Wide reading of the relevant scientific literature and originality in experimental design are expected.
On successful completion of this course, students should be able to:
CLO 1 plan and execute a theoretical, numerical or experimental research project on a topic in physics or astronomy
CLO 2 review the knowledge of a physics or astronomy problem in depth through literature review of books and research journals based on what they have learnt in their majors
CLO 3 criticize existing approaches for solving the selected physics or astronomy problem
CLO 4 describe and explain connections between the physical principles and the study problem
CLO 5 (for theoretical or computational projects) identify the key issues of the problem and solve them independently either by analytical or numerical means, and compare the results with predictions or existing solutions
CLO 6 (for experimental projects) propose and execute physics experiments or astronomical observations, analyze results and sources of errors of the experiment or observation in comparison with predictions
CLO 7 (for projects involving team work) collaborate and communicate effectively in the team, which may comprise of people of different culture, gender and nationality
Pre-requisites (and Co-requisites and Impermissible combinations)

Offer in 2021-2022
Grade Descriptors (A+ to F)

Pass in at least 24 credits of advanced level (3XXX level or above) disciplinary core/elective courses of the Physics Major, Physics (Intensive) Major, Mathematics/Physics Major or Astronomy Major curriculum.
This capstone course is for Astronomy, Mathematics/Physics, Physics, and Physics (Intensive) Majors students only.
The earliest that a student is allowed to take this capstone course is their year 3 study.


|  | Fail | logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Project-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Meeting with supervisor |  |  |  | 54 |
|  | Reading / Self study |  |  |  | 126 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Oral presentation |  | Including supervisor's comments (10\%) | 30 | CLO 2,4,5,6 |
|  | Research report |  |  | 70 | CLO 1,2,3,4,5,6,7 |
| Required/recommended reading and online materials | To be provided by individual project supervisor |  |  |  |  |
| PHYS7350 | Graduate classical mechanics (6 credits) |  |  | Academic Year | ar 2021 |
| Offering Department | Physics |  |  | Quota | --- |
| Course Co-ordinator | TBC, Physics () |  |  |  |  |
| Teachers Involved | (TBC,Physics) |  |  |  |  |
| Course Objectives | TBC |  |  |  |  |
| Course Contents \& Topics | TBC |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in PHYS4350 |  |  |  |  |
| Offer in 2021-2022 | $\mathrm{N} \quad$ Off | er in 2022-2023 |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  |  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
| Required/recommended reading and online materials | TBC |  |  |  |  |
| PHYS7351 | Graduate quantum mechanics (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Physics |  |  | Quota |  |
| Course Co-ordinator | Prof S Q Shen, Physics (sshen@hku.hk) |  |  |  |  |
| Teachers Involved | (Prof S Q Shen, Physics) |  |  |  |  |
| Course Objectives | This graduate level course covers the theory and advanced techniques in quantum mechanics, and their applications to select topics in condensed matter physics. This is an elective course for the theoretical physics theme. |  |  |  |  |
| Course Contents \& Topics | The course will cover the following topics: Dirac notation, quantum dynamics, the second quantization, symmetry and conservation laws, permutation symmetry and identical particles, perturbation and scattering theory, introduction of relativistic quantum mechanics. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 formulate and solve problems in quantum mechanics using Dirac notation |  |  |  |  |
|  | CLO 2 | examine and predict the properties of identical quantum particles |  |  |  |
|  | CLO 3 | argue the importance of symmetry and conservation laws in quantum mechanics |  |  |  |
|  | CLO 4 | explain physical phenomena in the modern language of quantum mechanics |  |  |  |
|  | $\begin{aligned} & \text { CLO } 5 \\ & \text { CLO } 6 \end{aligned}$ |  |  |  |  |
|  |  | recognise the connection between relativity and quantum mechanics |  |  |  |

Pre-requisites
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors ( $\mathrm{A}+$ to F )

|  |
| :--- |
|  |
|  |
|  |
| Communication- |
| intensive Course |
| Course Type |
| Course Teaching |
| \& Learning Activities |
| Assessment Methods |
| and Weighting |

Pass in PHYS3150 and PHYS4351

| Y | 1st sem Offe | 23 : Y | Examination | Dec |
| :---: | :---: | :---: | :---: | :---: |
| A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
| B | Demonstrate substantial command of the knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
| C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
| D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
| Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| N |  |  |  |  |
| Lecture-based course |  |  |  |  |
| Activities |  | Details |  | No. of Hours |
| Lectures |  |  |  | 36 |
| Tutorials |  |  |  | 12 |
| Reading / Self study |  |  |  | 80 |
| Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
| Assignments |  |  | 40 | CLO 1,2,3,4,5,6 |
| Examination |  | 3-hour written exam | 60 | CLO 1,2,3,4,5,6 |

Required/recommended reading and

Lecture notes provided by Course Coordinato
online $\quad$ J. J. Sakurai: Modern Quantum Mechanics (Addison-Wesley, 1994)
online materials

Graduate electromagnetism (6 credits)
Academic Year 2021
Physics Quota
Prof Z D Wang, Physics (zwang@hku.hk)
(Prof Z D Wang,Physics)
This graduate level course covers the theory of classical electromagnetic field, enabling them to master key analytical tools for solving real physics problems. This is an elective course for the theoretical physics theme.
This course will introduce and discuss the following topics: boundary-value problems in electrostatics and Green Function method; electrostatics of media; magnetostatics; Maxwell's equations and conservation laws; gauge transformations; electromagnetic waves and wave guides.
On successful completion of this course, students should be able to:
CLO 1 analyse and solve various electrostatic and magnetostatic problems with Green's Function
CLO 2 comprehend and explain many electromagnetic phenomena
CLO 3 recognise and comprehend the important concepts of conservation laws and gauge transformations, which should be very helpful for doing research in future
Pass in PHYS3150 and PHYS4450

| N | Offer in 2022-2023 : Y |  | Examination | --- |
| :---: | :---: | :---: | :---: | :---: |
| A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
| B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
| C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
| D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
| Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| N |  |  |  |  |
| Lecture-based course |  |  |  |  |
| Activities |  | Details |  | No. of Hours |
| Lectures |  |  |  | 36 |
| Tutorials |  |  |  | 12 |
| Reading / Self study |  |  |  | 80 |
| Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
| Assignments |  |  | 40 | CLO 1,2,3 |
| Examination |  | 3-hour written exam | 60 | CLO 1,2,3 |

J.D. Jackson: Classical Electrodynamics (John Wiley \& Sons, 1999)
reading and


PHYS7551
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives
Course Contents
\& Topics
Course Learning
Outcomes

## Pre-requisites

(and Co-requisites and Impermissible combinations) Offer in 2021-2022 Grade Descriptors (A+ to F)


|  |  | skills and techniques. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems using limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 80 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  |  | 15 | CLO 1,2,3,4 |
|  | Examination |  | 3-hour written exam | 70 | CLO 1,2,3,4 |
|  | Test |  |  | 15 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Lecture notes provided by Course Coordinator <br> C. Kittel: Introduction to Solid State Physics (John Wiley, 1996) <br> N.W. Ashcroft and D.N. Mermin: Solid State Physics (Holt, Rinehart and Winston, 1987) |  |  |  |  |
| PHYS7650 | Stellar atmospheres (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Physics |  |  | Quota | --- |
| Course Co-ordinator | TBC, Physics () |  |  |  |  |
| Teachers Involved | (TBC,Physics) |  |  |  |  |
| Course Objectives | TBC |  |  |  |  |
| Course Contents \& Topics | TBC |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | TBC |  |  |  |  |
| Offer in 2021-2022 | N Offer in 2022 - |  |  | Examination | --- |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of the knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities, reasoned logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations using effective organizational and presentation skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective observation skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems using limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching <br> \& Learning Activities | Acti |  | Details |  | No. of Hours |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
| Required/recommended reading and online materials | TBC |  |  |  |  |



CLO 2 identify and compare optical and transport properties of two-dimensional electron gas with external fields, especially quantum Hall effects
CLO 3 recognize the fundamental principles and important applications of scanning tunneling microscopy in the study of nano physics
CLO 4 describe the basic physics of one-dimensional electron systems including carbon nanotubes and semiconductor nanowires
CLO 5 understand the central physics of zero-dimensional quantum dots and nanocrystals, single electron effects Pass in PHYS3551 and PHYS4351

Pre-requisites (and Co-requisites and Impermissible combinations)



|  | of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 36 |
|  | Laboratory |  |  | 2 |
|  | Field work |  |  | 8 |
|  | Tutorials |  |  | 8 |
|  | Reading / Self study |  |  | 80 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | 20 | CLO 1,2,4,5 |
|  | Examination | 2-hour written exam | 60 | CLO 1,2,4,5 |
|  | Laboratory reports |  | 10 | CLO 2,3 |
|  | Presentation |  | 10 | CLO 2,4,5 |
| Required/recommended reading and online materials | Merril Eisenbud and Thomas Gesell: Environmental Radioactivity: from Natural, Industrial, and Military Sources (Academic Press, 1997) <br> Robert C. Morris: The Environmental Case for Nuclear Power (Paragon House, 2000) <br> David Bodansky: Nuclear Energy - Principles, Practices and Prospects (American Institute of Physics Press, 1996) |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |
| ENVS3010 | Sustainable energy and environment (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Physics |  | Quota | --- |
| Course Co-ordinator | Prof A B Djurisic, Physics (dalek@hku.hk) |  |  |  |
| Teachers Involved | (Prof A B Djurisic,Physics) |  |  |  |
| Course Objectives | In this course, the students will learn about sustainability and environmental impact of different energy technologies, including conventional energy sources as well as renewable and/or clean energy sources. The technological challenges, potential for future development, and environmental impacts (community, regional, and global) will be discussed. |  |  |  |
| Course Contents \& Topics | The course will cover energy production and use, environmental impact of energy use, fossil fuels and methods for making them more sustainable, clean fuels, electricity generation, renewable energy technologies (with emphasis on biomass, wind and solar energy), hydrogen, energy storage, and energy conservation. |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 define the concept of sustainable development |  |  |  |
|  | CLO 2 explain the challenges and potential for development of $v$ |  | energy technologies |  |
|  | CLO 3 compare the environmental impact of conventional and new energy technologies |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in CHEM2041 or ENVS2001 or ENVS2002 or PHYS2260 |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Off | 023 : Y | Examinatio | May |
| Grade Descriptors$(A+\text { to } F)$ | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |
|  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  |  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |
|  | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 36 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 80 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments | debate questions performance | 10 | CLO 1,2,3 |
|  | Examination | 2-hour written exam | 50 | CLO 1,2,3 |
|  | Presentation |  | 40 | CLO 2,3 |
| Required/recommended reading and online materials | Lecture notes provided by Course Coordinator <br> Godfrey Boyle: Renewable Energy: Power for a Sustainable Future (Oxford University Press, 2003) <br> G. Boyle, B. Everett, and J. Ramage: Energy Systems and Sustainability: Power for a Sustainable Future (The Open University, 2003) <br> R. M. Dell and D. A. J. Rand: Clean Energy (The Royal Society of Chemistry, 2004) |  |  |  |
| Course Website |  |  |  |  |


| ENTR2001 | Professional and leadership development (6 credits) |  | Academic Year |  |
| :---: | :---: | :---: | :---: | :---: |
| Offering Department | Faculty |  | Quota | 24 |
| Course Co-ordinator | Dr R Law, Faculty (rockylaw@hku.hk) |  |  |  |
| Teachers Involved | (Dr R Law,Faculty of Science) (Ms J Lloyd,CEDARS) |  |  |  |
| Course Objectives | This course is to provide opportunity for: <br> 1. Students to develop an entrepreneurial mindset and be better prepared for entering into any entrepreneurial environment <br> 2. Students to further sharpen their communication skills, such as presentation and pitching of ideas <br> 3. Students to further enhance their networking skills, such as in social events <br> 4. Students to understand how different personalities and working / leadership styles fit into team work |  |  |  |
| Course Contents \& Topics | This course aims at increasing students' awareness of some important entrepreneurial skills and providing them with platforms to hone essential skills necessary to succeed as a leader in operating an entrepreneurial venture. One of the course components will also allow students to self-reflect and develop practical sense on how different personalities and work styles can help build leadership capacity as well as foster stronger team collaboration. |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 acquire basic knowledge about how different personalities and working / leadership styles fit into team work |  |  |  |
|  | CLO 2 gain insight into the fundamentals of starting and operating a business by meeting industry practitioners |  |  |  |
|  | CLO 3 sharpen their communication and career preparation skills in CV and cover letter writing, interview, networking, presentation, negotiation, group discussion, case analysis and problem solving |  |  |  |
|  | CLO 4 recognize and adapt work style differences to establish stronger relationships at workplace in a startup company |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Any level 1 undergraduate course |  |  |  |
| Offer in 2021-2022 | Y 1st sem Offer in 2022-2023: Y |  | Examination No Exam |  |
| Grade Descriptors Distinction/Pass/Fail | Distincti on | Demonstrate excellence in applying knowledge to solve problems in the course work. Demonstrate excellence in handling and carrying out the work assigned by teacher(s) and external professional trainer(s). Establishes highly effective collaboration and communication with supervisor(s) and team members in the course. Successfully fulfills the requirements set out in the Course Description regarding attendance, assignments, reports, and evaluation by teacher(s), external trainer(s), etc. |  |  |
|  | Pass | Able to apply knowledge to solve problems in the course work. Successfully handles and carries out the work assigned by teacher(s) and external professional trainers. Establishes effective collaboration and communication with teacher(s) and team members in the course. Successfully fulfills the requirements set out in the Course Description regarding attendance, assignments, reports, and evaluation by teacher(s) and external professional trainer(s), etc. |  |  |
|  |  | Very limited or no ability to solve problems in the course work. Fails to handle or carry out the work assigned by teacher(s) and external professional trainer(s). Fails to establish effective collaboration or communication with supervisor(s) and team members. Fails to satisfy the requirements set out in the Course Description regarding attendance, assignments, reports, or evaluation by teacher(s) and external professional trainer(s), etc. |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching | Activities | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  | 37 |
|  | Tutorials |  |  | 12 |
|  | Project work |  |  | 43 |
|  | Reading / Self study |  |  | 42 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments | Include in class and home assignments | 40 | CLO 1,2,3,4 |
|  | Essay | Experiential learning activities and reflective journal | 10 | CLO 1,2,3,4 |
|  | Project reports | Include Job Application Review \& Mock Interview and Group Presentation | 50 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Business and Administrative Communication by Kitty Locker and Donna Kienzler Organizational Behavior by Stephen P. Robbins and Timothy A. Judge Group Dynamics by Donelson R. Forsyth <br> Talk Like TED: The 9 Public-Speaking Secrets of the World's Top Minds by Carmine Gallo |  |  |  |
| Additional Course Information | This course is opened up for year 2 students or beyond. However, priority will be given to year 3 students. |  |  |  |
| ENTR3001 | Science-based innovation development (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Faculty |  | Quota | 24 |
| Course Co-ordinator | Dr M Kotaka, Biomedical Sciences (masayo@hku.hk) |  |  |  |
| Teachers Involved | (Dr B B H Yuen,Biomedical Sciences) <br> (Dr M Kotaka,Biomedical Sciences) <br> (Mr J E Broer,Biomedical Sciences) |  |  |  |
| Course Objectives | 1. Stimulate students to contemplate how business opportunities can be generated from science and technology. <br> 2. Teach students the process of translating scientific ideas to commercial products and/or services and the challenges therein. <br> 3. Help students to understand the different regulatory requirements for science and technology based business opportunities, including the different stages of clinical trial required for biomedical-related products/ services. <br> 4. Inspire students to identify potential business ideas from science and technology research and to synthesise a feasible action plan for a start-up company |  |  |  |
| Course Contents \& Topics | Topics will include identification of business opportunities from science and technology, the stages involved in translation of science into a commercial product, understanding the challenges of translating scientific ideas into products, understanding the regulatory requirements for technology-based products. |  |  |  |
| Course Learning |  |  |  |  |



CLO 6 to draft a business proposal

Pre-requisites (and Co-requisites and Impermissible combinations) Offer in 2021-2022 Grade Descriptors (A+ to F)

Pass in IIMT1611 and ENTR2001, or already enrolled in these courses

| Y | 2nd sem Offer | 023 : Y | Examination | No Exam |
| :---: | :---: | :---: | :---: | :---: |
| A | Candidate has consistently demonstrated a thorough understanding and skills required for attaining all the course learning outcomes. S/he has shown the ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. S/he has demonstrated highly effective organizational and presentation skills |  |  |  |
| B | Candidate frequently demonstrated a substantial understanding and skills required for attaining at least most of the course learning outcomes. S/he has shown the ability to apply knowledge to familiar and unfamiliar situations. $\mathrm{S} / \mathrm{he}$ has demonstrated effective organizational and presentation skills. |  |  |  |
| C | Candidate demonstrated general but incomplete understanding and skills required for attaining most of the course learning outcomes. Some of the responses are well organized, clear but with insufficient elaboration - there is significant room for improvement to achieve a more satisfactory level. S/he has demonstrated moderately effective organizational and presentation skills. |  |  |  |
| D | Candidate demonstrated partial but limited understanding and skills required for attaining some of the course learning outcomes. Solutions to questions and problems contain unstructured but relevant observations. Candidate has shown marginal interest in the subject. S/he has demonstrated limited or barely effective organizational and presentation skills. |  |  |  |
| Fail | Candidate showed little or no evidence of basic familiarity with the subject, nor demonstration of sufficient effort to basic project and course requirement. Organizational and presentation skills are minimally effective or ineffective. |  |  |  |
| N |  |  |  |  |
| Lecture-based course |  |  |  |  |
| Activities |  | Details |  | No. of Hours |
| Lectures |  |  |  | 36 |
| Project work |  |  |  | 48 |
| Reading / Self study |  |  |  | 40 |
| Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
| Assignments |  |  | 20 | CLO 1,2,3,4 |
| Presentation |  |  | 30 | CLO 1,2,3,4,5,6 |
| Project reports |  | report | 50 | CLO 1,2,3,4,5,6 |

Required/recommended reading and online materials
Course Website

Business Model Generation by Alex Osterwalder
Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation by Tim Brown http://moodle.hku.hk

ENTR4966
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives
Course Contents
\& Topics

Course Learning
Outcomes

## Pre-requisites

(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors
Distinction/Pass/Fail

| Entrepreneurship internship (6 credits) | Academic Year 2021 |  |
| :--- | :--- | :--- |
| Faculty | Quota | 24 |
| Dr R Law, Faculty (rockylaw@hku.hk) |  |  |
| (All academic staff in Faculty of Science,) |  |  |
| This course is to provide opportunity for students: |  |  |
| 1. To practice what they learned related to entrepreneurship through prior university coursework in real-life work |  |  |
| environment. |  |  |
| 2. To acquire first-hand experience in industries for the preparation of their own business ventures. |  |  |
| Students taking this course will work as an intern for at least 160 hours in at least 20 working days within the |  |  |
| University or outside the University in a company (preferably technology based startup company). The internship |  |  |

Students taking this course will work as an intern for at least 160 hours in at least 20 working days within the
University or outside the University in a company (preferably technology based startup company). The internship may be arranged by the Faculty or obtained by students themselves.

1. Within the university: The student will be supervised by a staff member (Supervisor), working on a project or various tasks as instructed by the Supervisor.
2. Outside the university: The student will be supervised under a staff member of the external agency (the External Supervisor) and a staff member of the Faculty/School /Department of the student (the Internal Supervisor).
On successful completion of this course, students should be able to:
CLO 1 to integrate and apply knowledge gained in coursework in a real-life setting
CLO 2 to experience the culture of a real organization and challenges encountered in entrepreneurship
CLO 3 to further improve problem-solving and collaborative skills in a real-life setting
CLO 4 to gain hand-on experience from external startup companies or internal research group about their daily operation and special activities that will help them to prepare for their own startup venture in the near future
Pass in ENTR3001 and ENTR3002
Students must be in their Year 3 study or beyond, as well as minoring in Science Entrepreneurship.

Y Summer Offer in 2022-2023: Y Examination No Exam
Distincti Demonstrates excellent ability in applying knowledge to solve problems in the workplace. Demonstrates excellent performance in handling and carrying out the work required in the job or assigned by supervisor(s). Establishes highly effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, with excellent performance in written and oral report,
and excellent evaluation by supervisor(s), etc. or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, written and oral report, and evaluation by supervisor(s), etc. Students demonstrating excellent performance in the above would be awarded a grade of "Distinction".
Very limited or no ability to solve problems in the workplace. Fails to handle or carry out the work required in the job or assigned by supervisor(s). Fails to establish effective collaboration or communication with supervisor(s), other colleagues, or clients in the job. Fails to satisfy the requirements set out in the Course Description regarding working hours, written and oral report, or evaluation by supervisor(s), etc.
Communication- N
intensive Course
Course Type
Course Teaching
\& Learning Activities

|  | Internship work | (or the equivalent of 4 weeks fulltime) |  | 160 |
| :---: | :---: | :---: | :---: | :---: |
|  | Reading / Self study |  |  | 20 |
|  | Assessment | Presentation |  | 5 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Oral presentation |  | 30 | CLO 1,2,3,4 |
|  | Supervisor's feedback | A Standardized evaluation form will be provided to internal/external supervisor | 20 | CLO 1,2,3,4 |
|  | Written report |  | 50 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Students will be briefed with materials appropriate to the individual internship assignment by the internship supervisor(s) and/or the corresponding Faculty members. |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |
| Additional Course Information | Students are to submit a written report of no more than 2000 words, together with a presentation about their internship experience. |  |  |  |


| ENTR4999 | Entrepreneurship project (6 credits) | Academic Year 2021 |  |
| :---: | :---: | :---: | :---: |
| Offering Department | Faculty | Quota | 24 |
| Course Co-ordinator | Dr R Law, Faculty (rockylaw@hku.hk) |  |  |
| Teachers Involved | (All academic staff in Faculty of Science,) |  |  |
| Course Objectives | 1. Apply entrepreneurship-related knowledge gained through prior university coursework and hand-on experiences gained from prior Internship course to carry out in-depth business potential evaluation and to develop start-up proposals. |  |  |
| Course Contents \& Topics | This course is offered to the supervision and guid years of study to practice and product identification result from their hands-o Hackathon activities an thereafter. | amme in Science Ent e the knowledge the nducting technology tren dents are expected to the HKU DreamCatch tc.) and to develop | reneurship. Under have gained in all d, market analysis articipate, with the s initiative, various tart-up companies |
| Course Learning | On successful completion of this course, students should be able to: |  |  |
| Outcomes | CLO 1 to integrate and apply theoretical knowledge in a real-life setting |  |  |
|  | CLO 2 to adopt appropriate tools to analyze real-life entrepreneurship issues |  |  |
|  | CLO 3 to further improve presentation, problem-solving and collaborative skills in tackling real-life problems |  |  |
|  | CLO 4 to build a team, with members from different specialized areas, that is ready for business venture |  |  |
|  | CLO 5 to prepare a viable business plan that is ready for fund raising activities |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Students must be in their Year 3 study or beyond, as well as minoring in Science Entrepreneurship. |  |  |
| Offer in 2021-2022 | Y 1st sem Offer in | Examination | No Exam |
| Grade Descriptors $(A+\text { to } F)$ | A $\quad$Candidate has c <br> outcomes. S/he h <br> demonstrated hig | outcomes. S/he has shown the ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. S/he has demonstrated highly effective organizational and presentation skills. |  |
|  | Candidate frequently demonstrated a substantial understanding and skills required for attaining at least most of the course learning outcomes. S/he has shown the ability to apply knowledge to familiar and unfamiliar situations. S/he has demonstrated effective organizational and presentation skills. |  |  |
|  | Candidate demonstrated general but incomplete understanding and skills required for attaining most of the course learning outcomes. Some of the responses are well organized, clear but with insufficient elaboration - there is significant room for improvement to achieve a more satisfactory level. S/he has demonstrated moderately effective organizational and presentation skills. |  |  |
|  | Candidate demonstrated partial but limited understanding and skills required for attaining some of the course learning outcomes. Solutions to questions and problems contain unstructured but relevant observations. Candidate has shown marginal interest in the subject. S/he has demonstrated limited or barely effective organizational and presentation skills. |  |  |
|  | Candidate showed little or no evidence of basic familiarity with the subject, nor demonstration of sufficient effort to basic project and course requirement. Organizational and presentation skills are minimally effective or ineffective. |  |  |
| Communicationintensive Course | N |  |  |
| Course Type | Project-based course |  |  |
| Course Teaching \& Learning Activities | Activities | Details | No. of Hours |
|  | Meeting with supervisor | Supervisor meet students in the beginning, middle and the end of this course for briefing and coaching purpose. | 15 |
|  | Reading / Self study | Students will be working on their projects with guidance from the supervisor to build a business proposal | 120 |
|  | Assessment | Presentation | 5 |
| Assessment Methods and Weighting | Methods | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Dissertation | 60 | CLO 1,2,3,4,5 |
|  | Oral presentation | 40 | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | Students will be briefed with materials appropriate to the project by the project supervisor(s). |  |  |
| Course Website | http://moodle.hku.hkStudents are expected |  |  |
| Additional Course |  |  |  |

Information Students are to submit a written report or a business proposal of no more than 10,000 words, together with a presentation about their project.


| Required/recommended <br> reading and <br> online materials | TBC |
| :--- | :--- |
| Additional Course <br> Information | Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the <br> following qualifications are exempted from taking SCNC1111. It is optional for them to take this course. Those who <br> do not take this course should take a 6-credit disciplinary elective course of the science major in lieu. |
|  | - Level 4 or above in Mathematics Extended Part Module 1 or 2 in the Hong Kong Diploma of Secondary Education <br> (HKDSE) |
| - Level 5 or above in Mathematics Higher Level in International Baccalaureate (IB) <br> - Grade B or above in Mathematics and Further Mathematics in General Certificate of Education Advanced Level <br> (GCEAL) |  |



|  | Fail $\begin{aligned} & \text { Demonstrate } \\ & \text { of analytical } \\ & \text { problems. M } \\ & \text { minimally eff }\end{aligned}$ | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | Y |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching | Activities | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  | 33 |
|  | Tutorials |  |  | 10 |
|  | Reading / Self study |  |  | 102 |
|  | Assessment | 3 hour in-class quiz |  | 3 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments | tutorials and homework | 20 | CLO 1,2,3,4,5,6 |
|  | Examination |  | 45 | CLO 1,2,3,4 |
|  | Presentation | project presentation | 20 | CLO 1,2,3,4,5,6 |
|  | Test | 3 quizzes | 15 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Biology: Concepts and Connections by Campbell, Mitchell, \& Reece 2nd Edition (1999, Benjamin/Cummings) Chemistry: An Atoms First Approach by Zumdahl \& Zumdahl (2012 Cengage) |  |  | /Cummings) |
| Additional Course Information | Candidates who have been admitted to Year 1 in 2021-22 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1112. It is optional for them to take this course. Those who do not take this course should take a 6-credit disciplinary elective course of the science major in lieu. <br> - Level 4 or above in Biology, Chemistry, and Physics in the Hong Kong Diploma of Secondary Education (HKDSE) <br> - Level 5 or above in Biology, Chemistry, and Physics Higher Level in International Baccalaureate (IB) <br> - Grade B or above in Biology, Chemistry, and Physics in General Certificate of Education Advanced Level (GCEAL) <br> - Biology, Chemistry, and Physics qualification in Gao Kao will be considered on a case-by-case basis |  |  |  |


| SCNC1113 | everything that has ever happened ( 6 credits) | Academic Year | 2021 |
| :---: | :---: | :---: | :---: |
| Offering Department |  | Quota | 50 |
| Course Co-ordinator | Dr W M Y Cheung, Faculty (willmyc@hku.hk) |  |  |
| Teachers Involved | (Dr H F Yu,Physics) <br> (Dr W M Y Cheung,Faculty of Science) <br> (Prof Q A Parker,Physics) |  |  |
| Course Objectives | By exploring the Big History of our planet: from the Big Bang of the Universe, the synthesis of different chemical substances, through the evolution of various species on Earth, to the establishment of modern human society, the course aims to: <br> (1) discuss the process of scientific discovery, and how our current body of knowledge about Nature was established; <br> (2) develop students' understanding of the multi-disciplinary nature of science; <br> (3) develop students' understanding of the importance of science and technology to our society, in formulating policies in the society, and solving the future problems of our planet; <br> (4) increase scientific literacy. |  |  |
| Course Conten | Part I: From the Cosmos to the Atom |  |  |
| \& Topics | Main theme: How fundamental interactions between the building block know it; <br> Topics include: Big bang, nucleosynthesis, cosmic expansion, cooling equilibrium of our planet Earth. <br> Part II: From the Atom to Life <br> Main theme: How we understand the transition from non-living matter to Topics include: Origin of life, evolution, natural selection and tree of life <br> Part III: From Life to Mind to Society <br> Main theme: How our modern civilised society emerges through the de of knowledge; how science, technology, human society and environme Topics include: Neural network and the emergence of intelligence, his role of science in human civilisation and the contemporary world. <br> Part IV: Looking into the Future <br> Main theme: Outlook on the future of science, technology, human soci faced by humankind that could be addressed by science and technolog Topics include: Students will attend one of several parallel modules on technology, climate change, energy crisis, bioethics and artificial intellig | er shape the Univ iverse, star forma rsified biosphere <br> nt of intelligence ce one another; velopment of mo <br> environment; key <br> at suit their intere | rse today as we tion, and thermal n earth today; and accumulation dern science, the challenges to be ts, such asnano- |
| Course Learning | On successful completion of this course, students should be able to: |  |  |
| Outcomes | CLO 1 appreciate and elaborate on the significance of major events in the development and formation of our Universe, our Earth system and our modern society |  |  |
|  | CLO 2 explain, with some level of depth and details, how a number of major theories allows us to understand the workings of the world |  |  |
|  | CLO 3 understand how different science disciplines fit and emerge from one another as a collective effort of the humankind to understand Nature |  |  |
|  | CLO 4 critically assess the mutual influence between science and human society, the role of science in our society as well as the making of science policy in our local region |  |  |
|  | CLO 5 evaluate some of the major challenges faced by humankind, and discuss solutions from a multi-disciplinary perspective |  |  |
|  | CLO 6 test claims and engage in historical analysis based on theories and practices from multiple disciplines |  |  |




| SCNC2122 | Marine life science: a North East Pacific perspective (6 <br> credits) |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Offering Department | Faculty | Academic Year | Quota |
| Course Co-ordinator | Dr T Vengatesen, Biological Sciences (rajan@hku.hk) |  |  |
| Teachers Involved | (Dr T Vengatesen, Biological Sciences) <br> (Prof G A Williams,Biological Sciences) <br> (Prof R S S Wu,Biological Sciences) <br> (Prof S Kwok,Earth Sciences) |  |  |
| Course Objectives | Marine Life Science is an integrated study of how the oceans influence large and small scale patterns of marine <br> biology through biophysical interactions. By studying the temperate cold waters of the NE Pacific Ocean, students <br> will learn marine habitats as habitable planet, to appreciate the dynamics of marine biodiversity, the complex <br> interactions between the physical and biological components, fishery, and the services the coastal oceans provide <br> to human. This course will provide an excellent opportunity for students to experience the diversity of marine life on <br> the other side of the Pacific. |  |  |
| Course Contents | Lectures from both HKU and UBC teachers will introduce 'marine life science'; with a focus on biodiversity, <br> abundance and distribution of species, productivity, coastal pollution, fisheries, aquaculture and climate change. |  |  |
| \& Topics | The course will also introduce the commercial aspects of marine life, i.e. eel-grass, aquaculture and climate <br> change mitigation through management of coastal ecosystems. All these lectures will be discussed through a <br> series of field observations, presentations from guest lecturers and group discussions. There will be an excellent <br> opportunity to touch and learn about Canada's wonderful marine life diversity in the Vancouver Aquarium, and <br> northern Vancouver Fish Hatchery. Students will be learning Canada's coastal plankton biodiversity through vising <br> the Marina (Reed point marina) and the Sea-grass habitat. There will also be several opportunities to explore the <br> intertidal zone, exposed and protected coastal habitats, sandy beaches and estuaries in the Vancouver Island. <br> Marine biodiversity survey techniques and methods of studying marine life in the field will be emphasized. Students <br> will be exposed to a different learning environment involving not only HKU teachers and students but also UBC <br> teachers and students, bringing diverse range of expertise, cultures, and learning opportunities from both sides of |  |  |



CLO 3 apply literature search skills to identify and develop a research topic
CLO 4 practice and master scientific writing and presentation skills
CLO 5 demonstrate interpersonal skills in collaborating with their peers in a scientific setting
CLO 6 devise a research proposal and evaluate their peers' works


| STAT1005 | Essential skills for undergraduates: foundations of data science ( 6 credits) |  |  | 2021 |
| :---: | :---: | :---: | :---: | :---: |
| Offering Department | Statistics \& Actuarial Science $\quad$ Quota |  |  | 210 |
| Course Co-ordinator | (Dr A S M Lau,Statistics \& Actuarial Science) <br> (Dr R Luo,Computer Science) <br> (Dr Y Huang,Statistics \& Actuarial Science) |  |  |  |
| Course Objectives | $\begin{aligned} & \text { The o } \\ & \text { teach } \\ & \text { pre-re } \\ & \text { Stude } \\ & \text { spect } \\ & \text { Speci } \\ & \text { the p } \\ & \text { predic } \\ & \text { and a } \end{aligned}$ | e introduces designed ites. <br> will engage of data scien <br> $y$, the cours se of transfo and inference. tical abilities | cepts and propriate <br> a work-flo om initial <br> xposure to to a form udies invo nts. | ate students. The rounds and without <br> ey will study a full ion of final results. <br> of data curation for ions in estimation, the computational |
| Course Contents \& Topics |  | introduction w with sele of tools for th <br> nagement and ources, data xtraction; nt (IDE) ns of data; D <br> lytics ments on pr (1): mode (2): indep e. <br> (3): regres | nce <br> tudies. <br> n <br> and its i uction to Explora ation <br> ness, ran mple, estim <br> s, forecast | sociated questions <br> ty of results; data ed Development ation, smoothing, <br> hypothesis testing |
| Course Learning Outcomes | On su <br> CLO <br> CLO <br> CLO | sful complet | ourse, stu data; sum ring elem simple da | ce to bear |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Not for students who have passed or already enrolled in any of the following courses: COMP2501, STAT1015; and Not for Year 2 or above BSc(ActuarSc) and BEng(CompSc) students; and <br> Not for Year 2 or above students majoring in Computer Science/Decision Analytics/Risk Management/Statistics; and <br> Not for Year 4 or above students from any curriculum. |  |  |  |
| Offer in 2021-2022 | A 1st sem Offer in 2022-2023: Y |  |  | No Exam |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |
|  |  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture with laboratory component course |  |  |  |
| Course Teaching | Activities |  | Details | No. of Hours |
| \& Learning Activities | Lectures |  |  | 36 |
|  | Project work |  |  | 20 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 40 |
|  | Assessment |  |  | 20 |
| Assessment Methods and Weighting | Methods |  | Details | Assessment Methods to CLO Mapping |
|  | Assignments |  | Written discussio | CLO 1,2,3 |
|  | Presentation |  |  | CLO 1,2,3 |
|  | Project report |  | In small | CLO 1,2,3 |
| Course Website | http://moodle.hku.hk |  |  |  |
| STAT1015 | Introduction to data science (6 credits) |  |  | Academic Year 2021 |
| Offering Department | Statistics \& Actuarial Science |  |  | 40 |
| Course Co-ordinator | Prof J J F Yao, Statistics \& Actuarial Science (jeffyao@hku.hk) |  |  |  |
| Teachers Involved | (Dr A S M Lau,Statistics \& Actuarial Science) |  |  |  |






| reading and online materials | Hogg, R. V., Tanis, E. A., and Zimmerman, D. L. (2015). Probability and Statistical Inference (9th Edition). Pearson. <br> Freund, J. E. and Perles B. M. (2003). Statistics: A First Course (8th Edition). Prentice Hall. <br> Fernandes, M. (2009). Statistics for Business and Economics. Bookboon. <br> Hooke, R. (1983). How to Tell the Liars from the Statisticians. Marcel Dekker. <br> Levine, D. M., Stephan, D. F., and Szabat, K. A. (2016). Statistics for Managers Using Microsoft Excel (8th <br> Edition). Pearson. <br> Larson, R. and Farber, B. (2015). Elementary Statistics: Picturing the World (6th Edition). Pearson. <br> Bluman, A. G. (2014). Elementary Statistics: A Step by Step Approach (9th Edition). McGraw-Hill. <br> Triola, M. F. (2018). Elementary Statistics (13th Edition). Pearson. <br> Newbold, P., Carlson, W. L., and Thorne, B. M. (2013). Statistics for Business and Economics (8th Edition). Pearson. |
| :---: | :---: |
| Course Website | http://moodle.hku.hk |
| Additional Course Information | Students who intend to major in "Decision Analytics" or "Risk Management" or "Statistics" should take STAT2601 instead of this course. <br> Other references: <br> Wonnacott, T. H. and Wonnacott, R. J.: Introductory Statistics (Wiley, New York, 1972, 2nd edition) <br> Dixon, W. J. and Massey, Jr, F. J.: Introduction to Statistical Analysis (McGraw Hill, 1983, 4th edition) |

STAT2601
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Probability and statistics I ( 6 credits)
Statistics \& Actuarial Science
Dr K P Wat, Statistics \& Actuarial Science (watkp@hku.hk)
(Dr K P Wat,Statistics \& Actuarial Science)
The discipline of statistics is concerned with situations in which uncertainty and variability play an essential role and forms an important descriptive and analytical tool in many practical problems. Against a background of motivating problems this course develops relevant probability models for the description of such uncertainty and variability.
Course Contents Sample spaces; Operations of events; Probability and probability laws; Conditional probability; Independence;
\& Topics Discrete random variables; Cumulative distribution function (cdf); Probability mass function (pmf); Bernoulli, binomial, geometric, and Poisson distributions; Continuous random variables; Cumulative distribution function (cdf); Probability density function (pdf); Exponential, gamma, and normal distributions; Functions of a random variable; Joint distributions; Marginal distributions; Conditional distributions; Independent random variables; Functions of jointly distributed random variables; Expected value; Variance and standard deviation; Covariance and correlation.
On successful completion of this course, students should be able to:
CLO 1 understand the basic concepts in probability theory
CLO 2 gain some insights to statistics and inference
CLO 3 solve real-world problems by using probability calculations
CLO 4 pursue their further studies in statistics and quantitative analysis
Pre-requisites
(and Co-requisites and Impermissible combinations)

| Offer in 2021-2022 |
| :--- |
| Grade Descriptors |

## (A+ to F)

Pass or already enrolled in MATH2014 or (MATH2101 and MATH2211); and
Not for students who have passed in STAT1603, STAT2901 or already enrolled in these courses; and Not for BSc(ActuarSc) students.
Y 1st sem 2nd sem Offer in 2022-2023: Y Examination Dec May

Y 1st sem 2nd sem Offer in 2022-2023: Y Examination Dec May
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and
to apply knowledge
presentational skills.
Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course
learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar learning outcomes. Show evidence of analytical and critical abilities and logical thinking,
and some unfamiliar situations. Apply effective organizational and presentational skills.
and some unfamiliar situations. Apply effective organizational and presentational skills.
Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most
D familiar situations. Apply moderately effective organizational and presentational skills.
Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

| problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching | Activities | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  | 36 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments | Coursework (assignments, tutorials, and class test(s)) | 30 | CLO 1,2,3 |
|  | Examination | One 2-hour written examination | 70 | CLO 1,2,3 |

Required/recommended reading and online materials

Blitzstein, J. K. and Hwang, J. (2019). Introduction to Probability (2nd Edition). CRC Press.
Ghahramani, S. (2019). Fundamentals of Probability with Stochastic Processes (4th Edition). CRC Press.
Pitman, J. (1993). Probability. Springer.
DeGroot, M. H. and Schervish, M. J. (2014). Probability and Statistics (4th Edition). Pearson.
Ross, S. M. (2019). A First Course in Probability (10th Edition). Prentice Hall.
Ross, S. M. (2019). Introduction to Probability Models (12th Edition). Academic Press.
Miller, I. and Miller, M. (2014). John E. Freund's Mathematical Statistics with Applications (8th Edition). Prentice Hall.
Hogg, R. V., McKean, J. W., and Craig, A. T. (2019). Introduction to Mathematical Statistics (8th Edition). Prentice Hall.
Hogg, R. V., Tanis, E. A., and Zimmerman, D. L. (2020). Probability and Statistical Inference (10th Edition). Pearson.
Casella, G. and Berger, R. L. (2002). Statistical Inference (2nd Edition). Duxbury Press.

Miller, M. B. (2014). Mathematics and Statistics for Financial Risk Management (2nd Edition). Wiley.
Chung, K. L. (2001). A Course in Probability Theory (3rd Edition). Academic Press.

| Course Website |
| :--- |
|  |
| STAT2602 |
| Offering Department |
| Course Co-ordinator |
| Teachers Involved |

Probability and statistics II (6 credits)
Statistics \& Actuarial Science
Dr J Xu, Statistics \& Actuarial Science (xujf@hku.hk)
(Dr D Y Zhang,Statistics \& Actuarial Science)
(Dr J Xu,Statistics \& Actuarial Science)
(Dr Z Liu,Statistics \& Actuarial Science)
Course Objectives This course builds on STAT2601, introducing further the concepts and methods of statistics. Emphasis is on the two major areas of statistical analysis: estimation and hypothesis testing. Through the disciplines of statistical modelling, inference and decision making, students will be equipped with both quantitative skills and qualitative perceptions essential for making rigorous statistical analysis of real-life data.

| Course Contents | 1. Overview: random sample; sampling distributions of statistics; moment generating function; large-sample theory: |
| :--- | :--- |
| \& Topics | laws of large numbers and Central Limit Theorem; likelihood; sufficiency; factorisation criterion; |
|  | 2. Estimation: estimator; bias; mean squared error; standard error; consistency; Fisher information; Cramer-Rao |

Lower Bound; efficiency; method of moments; maximum likelihood estimator;
3. Hypothesis testing: types of hypotheses; test statistics; p-value; size; power; likelihood ratio test; NeymanPearson Lemma; generalized likelihood ratio test; Pearson chi-squared test; Wald tests;
4. Confidence interval: confidence level; confidence limits; equal-tailed interval; construction based on hypothesis tests.
On successful completion of this course, students should be able to:
CLO 1 apprehend the objectives of statistics and its relation to probability theory
CLO 2 relate a real-life problem to a formal framework for statistical inference
CLO 3 conduct standard parametric statistical inference by means of estimation and hypothesis testing
CLO 4 reckon the general applicability of statistics in a broad range of subject areas
Pass in STAT2601; and
Not for students who have passed in STAT3902, or already enrolled in this course.
(and Co-requisites and Impermissible combinations)

| Offer in 2021-2022 |
| :--- |
| Grade Descriptors |

( $\mathrm{A}+$ to F )

| Y | 1st sem 2nd sem | Offer in 2022-2023: Y | Examination | Dec May |
| :---: | :---: | :---: | :---: | :---: |
| A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
| B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
| C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
| D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
| Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| N |  |  |  |  |
| Lecture-based course |  |  |  |  |
| Activities |  | Details |  | No. of Hours |
| Lectures |  |  |  | 36 |
| Tutorials |  |  |  | 12 |
| Reading / Self study |  |  |  | 100 |
| Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
| Assignments |  | Coursework (assignments, tutorials and a class test) | 25 | CLO 1,2,3,4 |
| Examination |  | One 2-hour written examination | 75 | CLO 1,2,3,4 |

Required/recommended reading and online materials

Bickel, P.J. \& Doksum, K.A. (2001). Mathematical Statistics: Basic Ideas and Selected Topics. Prentice Hall: Upper Saddle River, N.J.
Hogg, R.V. \& Craig, A.T. (1989). Introduction to Mathematical Statistics. Macmillan: New York.
Miller, I. \& Miller, M. (2004). John E. Freund's Mathematical Statistics with Applications. Pearson Prentice Hall: Upper Saddle River.
Course Website
http://moodle.hku.hk

STAT2603
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents \& Topics

## Data management with SAS ( 6 credits)

Statistics \& Actuarial Science
Dr G C S Lui, Statistics \& Actuarial Science (csglui@hku.hk)
(Dr G C S Lui,Statistics \& Actuarial Science)
This course is designed for students who want to learn the statistical software (SAS) for data management and elementary data analysis. This course focuses on using SAS to manage data set input and output, work with different data types, manipulate and transform data, perform random sampling and descriptive data analysis, and create summary reports and graphics.
Data management system for statistical projects. Data validation and cleaning techniques. SAS programming topics, including the following: Data set input and output. Working with different data types. Data manipulation. Data transformation. File manipulation. File management. Data reporting, summarization, presentation and graphics. Basic data analysis. Structured query language.




STAT2902
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives
Course Contents
\& Topics

Course Learning
Outcomes

Financial mathematics (6 credits)
Statistics \& Actuarial Science
Prof K C Yuen, Statistics \& Actuarial Science (kcyuen@hku.hk)
(Prof K C Yuen, Statistics \& Actuarial Science)
This course introduces the fundamental concepts of financial mathematics which plays an important role in the development of basic actuarial techniques. Practical applications of these concepts are also covered.
Key topics include: measurement of interest, annuities certain; discounted cash flow analysis; yield rates; amortization schedules and sinking funds; bonds and related securities; practical applications such as real estate mortgage and short sales; stochastic approaches to interest; and key terms of financial analysis such as yield curves, spot rates, forward rates, duration, convexity, and immunization.
On successful completion of this course, students should be able to:
CLO 1 understand basic concepts of financial mathematics
CLO 2 understand and formulate elementary financial problems
CLO 3 apply compound interest theory to tackle some practical financial problems
CLO 4 show an understanding of the term structure of interest rates
CLO 5 show an understanding of simple stochastic models for investment returns
Pre-requisites
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors
(A+ to F)
Pass in STAT2901, or already enrolled in this course; and
Not for students who have passed in STAT3615, or already enrolled in this course.

$$
\begin{array}{ll|l}
\text { Y } 2 n d \text { sem } & \text { Offer in } 2022-2023: Y & \text { Examination May }
\end{array}
$$

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability
to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and to apply knowledge


Required/recommended Kellison, S. G.: The Theory of Interest (Irwin: Illinois, 2008, 3rd edition)
reading and
online materials
Course Website

STAT3010
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Image processing and computer vision (6 credits)
Statistics \& Actuarial Science
Dr Y Cao, Statistics \& Actuarial Science (yuancao@hku.hk)
(Dr Y Cao,Statistics \& Actuarial Science; Mathematics)
The course is a first-level course that introduces basic concepts of production and manipulation of digital images. Materials are covered in both theoretical and computational aspects. On the theoretical foundations, the course introduces mathematical tools for image processing including representation of two-dimensional data, time and frequency domain representations, filtering and enhancement, the Fourier transform, convolution, interpolation, color images, and techniques for animation. On the computational side, algorithms and their implementation are emphasized during the lectures and exercised during computer labs or tutorials.
Course Contents Course content include the following topics
\& Topics - Imaging systems and representation of digital images;

- Image transformation and filtering;
- Image resolutions, sub-sampling and interpolation;
- Principles of colors in digital images, their manipulation for special image effects;
- Display of 2-D or 3-D information from images such as perspective viewing the generation of anaglyphs for 3D effects;
- Three-dimensional vision and motion;
- Image processing methods, techniques, and tools, such as OpenCV, Tensorflow, PyTorch, MATLAB Computer Vision, Google Cloud Vision, etc.
Course Learning
Outcomes

On successful completion of this course, students should be able to:
CLO 1 Understand the mathematical theory of image formation
CLO 2 Understand the mathematical theory of image transformation and filtering
CLO 3 Implement algorithms and methods of image processing using a computing language
CLO 4 Achieve simple image processing tasks on real-world images and videos



Required/recommended Michael H Kutner, Christopher J. Nachtsheim, John Neter, William Li: Applied Linear Statistical Models (McGrawreading and online materials Hill/Irwin; 5th edition)
Berry, D. A. \& Lindgren, B. W.: Statistics: Theory and Methods (Duxbury Belmont, 1996)
Draper, N. R. \& Smith, H.: Applied Regression Analysis (Wiley, New York, 1998)
Krzanowski, W. J.: An Introduction to Statistical Modelling (Arnold, London, 1998)
Montgomery, D. C. \& Peck, E. A.: Introduction to Linear Regression Analysis (Wiley, New York, 1992)
Course Website
http://moodle.hku.hk

STAT3602
Offering Department Course Co-ordinator Teachers Involved Course Objectives

## Statistical inference (6 credits)

Statistics \& Actuarial Science
Academic Year 2021
Prof S M S Lee, Statistics \& Actuarial Science (smslee@hku.hk)
(Prof S M S Lee, Statistics \& Actuarial Science)
This course covers the advanced theory of point estimation, interval estimation and hypothesis testing. Using a mathematically-oriented approach, the course provides a solid and rigorous treatment of inferential problems, statistical methodologies and the underlying concepts and theory. It is suitable in particular for students intending


|  |  | learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | Coursework (assignments, tutorials, and a class test) | 25 | CLO 1,2,3 |
|  | Examination |  | One 2-hour written examination | 75 | CLO 1,2,3 |
| Required/recommended reading and online materials | S. M. Ross: Introduction to Probability Models (9th edition) |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |



Required/recommended D. C. Montgomery: Design and Analysis of Experiments (Wiley, 1997, 4th edition) reading and $\quad$ D. R. Cox: Planning of Experiments (Wiley, 1958)
online materials $\quad$ A. L. Edwards: Experimental Design in Psychological Research (Harper \& Row, 1985, 5th edition)
G. A. Ferguson \& Y. Takane: Statistical Analysis in Psychology and Education (McGraw Hill, 1989, 6th edition)
C. R. Hicks \& K. V. Turner Jr.: Fundamental Concepts in the Design of Experiments (Oxford, 1999, 5th edition)
P. W. M. John: Statistical Design and Analysis of Experiments (Macmillan, 1971)
R. L. Moson, R. F. Gungst, \& J. L. Hess: Statistical Design and Analysis of Experiments (Wiley, 1989)

Course Website http://moodle.hku.hk

| STAT3605 | Quality control and management (6 credits) |  |  | Academic Year 2021 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Offering Department | Statistics \& Actuarial Science |  |  | Quota | --- |
| Course Co-ordinator | TBC, Statistics \& Actuarial Science () |  |  |  |  |
| Teachers Involved |  |  |  |  |  |
| Course Objectives | The successful control of quality in production is a matter of primary importance to a company's prosperity. This course provides an overview of quality compromise which involves both the producer and the consumer. It presents a variety of statistical solutions including control charts, acceptance and sequential sampling plans, reliability, and life-testing. Contemporary quality management systems such as total quality control, zero defects, six-sigma, and ISO-9000 will be introduced. The student is brought to the frontier of today's quality control and management ideas. |  |  |  |  |
| Course Contents \& Topics | Probability distributions and their applications, process variability, sampling and statistical inference. Process control, variables and attributes control charts. Operating characteristic curves. Single, double and sequential sampling plans. MIL-STD-105D and Dodge-Romig schemes. Variables sampling. Reliability and lifetesting. Elementary experimental designs. Management of quality control, total quality control, zero defects, sixsigma, and ISO 9000. |  |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |  |
| Outcomes | CLO 1 appreciate the practicality of statistical concepts and methods in general |  |  |  |  |
|  | CLO 2 understand how certain specific statistical methods can benefit various production situations |  |  |  |  |
|  | CLO 3 know the traditional and modern systems of quality management |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or STAT2602 or (STAT1603 and any University level 2 course) or STAT3902 |  |  |  |  |
| Offer in 2021-2022 | N | A Offer in 2022-2023: N |  | Examination --- |  |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | Coursework (assignments, tutorials, and a class test) | 25 | CLO 1,2,3 |
|  | Examination One 2-hour written examination |  |  | 75 CLO 1,2,3 <br> 1986 5th edition)  |  |
| Required/recommended reading and online materials | A. J. Duncan: Quality Control and Industrial Statistics (Irwin, Homewoor, 1986, 5th edition) <br> D. C. Montgomery: Statistical Quality Control (New York: Wiley, 1996, 3rd edition) <br> J. Banks: Principles of Quality Control (New York: Wiley, 1989) <br> E. L. Grant \& R. S. Leavenworth: Statistical Quality Control (New York: McGraw-Hill, 1988, 6th edition) <br> I. D. Hill: An Introduction to Sampling Inspection (The Institute of Engineering Inspection Monograph, London, 1961) <br> G. B. Wetherill: Sampling Inspection and Quality Control (London: Methuen, 1977, 2nd edition) <br> A. V. Feigenbaum: Total Quality Control (New York: McGraw-Hill, 1983, 3rd edition) |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| STAT3606 | Business logistics (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Statistics \& Actuarial Science |  |  | Quota | --- |
| Course Co-ordinator | Dr O T K Choi, Statistics \& Actuarial Science (ochoi@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr O T K Choi,Statistics \& Actuarial Science) |  |  |  |  |
| Course Objectives | Modern business corporations are increasingly using logistics as a management tool, for example, in capital budgeting problems, production planning, scheduling, transportations and deciding location for a new factory. This course addresses the business applications of logistics. |  |  |  |  |
| Course Contents \& Topics | In this course, students will apply the analytical skills with aid of computer techniques in solving the business logistic problems. Topics include optimization techniques applied in allocation of resources, financial planning, transportation, assignment, inventory control and queuing problems. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 solve linear programming with Graphical approach, Simplex method and hands-on Excel Solving function |  |  |  |  |
|  | CLO 2 set up and solve network flow problems using least-cost approach, MODI method and Vogel's approximation. <br> CLO 3 understand decision theory and its applications |  |  |  |  |
|  |  |  |  |  |  |




Fung, W. K. and Hu, Y. Q.: Statistical DNA Forensics: Theory, Methods and Computation (Wiley, Sussex, 2008)

Course Website

STAT3609
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives


Required/recommended reading and online materials

Bodie, Z., Kane, A., Marcus, A. J., and Jain, R. (2014). Investments (Asia Global Edition). McGraw-Hill.
Elton, E. J., Gruber, M. J., Brown, S. J., and Goetzmann, W. N. (2014). Modern Portfolio Theory and Investment Analysis (9th Edition). Wiley.
Luenberger, D. G. (2009). Investment Science (International Edition). Oxford University Press.
Capiński, M. J. and Kopp, E. (2014). Portfolio Theory and Risk Management. Cambridge University Press.
Defusco, R. A., McLeavey, D. W., Pinto, J. E., and Runkle D. E. (2007). Quantitative Investment Analysis, CFA Institute Investment Series (2nd Edition). Wiley.
Ruppert, D. (2004). Statistics and Finance: An Introduction. New York: Springer.
http://moodle.hku.hk

STAT3610
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents
\& Topics

Risk management and insurance ( 6 credits)
Academic Year
2021
Statistics \& Actuarial Science
Dr R W L Wong, Statistics \& Actuarial Science (rwong@hku.hk)
(Dr R W L Wong, Statistics \& Actuarial Science)
This course provides knowledge on basic risk and its management, as well as basic financial planning through insurance products, to students. It allows students to understand the statistical, financial and legal principles underlying the techniques for managing the insurable risks faced by organisations and individuals. This course aims at students who have minimal background in quantitative methods, it involves very minimal quantitative calculations.
The course introduces and explains:

- risk in our society,
- insurance and risk,
- introduction to risk management,
- fundamental legal principles, and analysis of insurance contracts,
- life insurance, their contractual provisions,
- individual health insurance coverages.

| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | CLO 1 understand the general risks faced by organisations and individuals and the generic risk management principle |  |  |  |  |
|  | CLO 2 demonstrate knowledge and understanding of the underlying financial and legal principles of the insurance industry |  |  |  |  |
|  | CLO 3 understand how risk can be managed through insurance |  |  |  |  |
|  | CLO 4 compare and contrast different types of commercial and personal insurance products |  |  |  |  |
|  | CLO 5 plan for and arrange their own personal insurance needs |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or STAT2601 or (STAT1603 and any University level 2 course) or STAT2901. <br> (Not available to Actuarial Science students) |  |  |  |  |
| Offer in 2021-2022 | N Offer in 2022-2023: N |  |  | Examination |  |
| Grade Descriptors$(A+\text { to } F)$ | A $\begin{gathered}\text { D } \\ \\ \text { lea } \\ \text { lo } \\ \text { to } \\ \text { p }\end{gathered}$ | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B ${ }^{\text {d }}$ | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching <br> \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | Coursework (assignments, tutorials, and a class test) | 25 | CLO 1,3 |
|  | Examination |  | One 2-hour written examination | 75 | CLO 1,2,3,4,5 |
| Required/recommended reading and online materials | Trieschmann, J., Hoyt, R. E. and Sommer, D.: Risk Management and Insurance (South-Western, 2005, 12th edition) |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| STAT3611 | Computer | r-aided d | is (6 credits) | Academic Year | 2021 |
| Offering Department | Statistics \& | Actuarial |  | Quota | --- |
| Course Co-ordinator | Dr E K F Lam | m, Statisti | ial Science (hrntlkf@hku.hk) |  |  |
| Teachers Involved |  |  |  |  |  |
| Course Objectives | A wide range of statistical analyses and methods are presented using data sets from social sciences research and scientific studies. Measuring uncertainty, describing patterns of variability and the inter-relationship between several variables are essential aspects of scientific investigations that require good understanding of statistics. This computer-oriented but non-mathematical course develops the important concepts and methods of statistics. The course makes extensive use of computers through the user friendly statistical software JMP. No knowledge of a programming language is required. |  |  |  |  |
| Course Contents \& Topics | Data exploration, formulation of testable hypotheses, the evaluation of evidence and forecasting on the basis of past experience. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 summarize and describe the quantitative and qualitative data using some simple statistical measures |  |  |  |  |
|  | CLO 2 describe the patterns of variability and the inter-relationship between several continuous or discrete variables |  |  |  |  |
|  | CLO 3 carry out simple statistical analyses based on some real life data, formulate testable hypotheses, make appropriate statistical inferences and make interpretations on the findings |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or (STAT1603 and any University level 2 course); and Not for students who have passed in or have already enrolled in any of these courses: STAT2601, STAT2901, STAT3616 |  |  |  |  |
| Offer in 2021-2022 | N Offer | $r$ in 2022-2023: N |  | Examination | --- |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve |  |  |  |


| problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 36 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments | Coursework (assignments, practical work, and a term test) | 40 | CLO 1,2,3 |
|  | Examination One 2-hour written examination |  | 60 | CLO 1,2,3 |
| Required/recommended reading and online materials | G. C. Canavos \& D. M E. R. Babbie: The Pra J. E. Freund \& G. A. S R. Hooke: How to tell D. G. Kleinbaum, L. (Duxbury Press, 1988 D. M. Levine, M. L. edition) | introduction to Modern Business al Research (Wadsworth Pub. Co tics - A First Course (Prentice Hall the Statisticians (Marcel Dekker) \& K. E. Muller: Applied Regress <br> D. Stephan: Statistics for Manag | ics (Duxbury Press, mont, 7th edition) edition) <br> nalysis and Other <br> Using Microsoft Exc | 9, 2nd edition) <br> ivariable Methods <br> Prentice Hall, 2nd |
| Course Website | http://moodle.hku.hk |  |  |  |
| Additional Course Information | CogSc or CompSc stu <br> Other reference: <br> J. T. McClave \& F. H. M. R. Middleton: Data <br> J. Neter, W. Wasserm <br> P. Newbold: Statistics <br> I. Olkin, L. J. Gleser, <br> J. G. Peatman: Introd | taken STAT1301 should obtain <br> tatistics (Maxwell Macmillian, 5th ing Microsoft EXCEL 5.0 (Duxbury) Whitmore: Applied Statistics (Ally and Economics (Prentice-Hall, Probability Models and Application lied Statistics (Harper) | val from the dept. <br> Bacon) <br> tional Editions, 3rd <br> Prentice-Hall, 2nd ed. |  |

STAT3612
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

## Statistical machine learning ( 6 credits)

Statistics \& Actuarial Science
Dr C Wang, Statistics \& Actuarial Science (stacw@hku.hk)
(Dr C Wang, Statistics \& Actuarial Science)
Machine learning is the study of computer algorithms that build models of observed data in order to make predictions or decisions. Statistical machine learning emphasizes the importance of statistical theory and methodology in the algorithmic development. This course provides a comprehensive and practical coverage of essential machine learning concepts and a variety of learning algorithms under supervised and unsupervised settings.
Basics of machine learning, generalized linear models, variable selection, regularization, cross-validation, treebased methods, dimension reduction, principal component analysis, cluster analysis.
On successful completion of this course, students should be able to:
CLO 1 get familiar with the workflow of a data science or machine learning project
CLO 2 understand and apply a wide range of statistical machine learning methods, and recognize their characteristics, strengths and weaknesses
CLO 3 identify and use appropriate techniques for a particular data science project
CLO 4 evaluate the quality of the resulting model in terms of prediction accuracy and model explainability
CLO 5 apply R programming for solving data-scientific problems
Pass in STAT2602 or (STAT1603 and any University level 2 course) or STAT3902; and
Pass in STAT3600 or STAT3907, or already enrolled in these courses; and
Not for students who have passed in STAT4904, or already enrolled in this course; and Not for BSc(Actuarial Science) students.
BSc(Actuarial Science) students are advised to take STAT4904 Statistical learning for risk modelling instead.
Y 1st sem Offer in 2022-2023: Y Examination No Exam

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods |




responses and missing data. Case studies of major applications of sample survey methods in the public and private sectors, with some examples on the analysis and application of the statistical data thus produced, will be discussed.

| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | CLO 1 demonstrate knowledge and understanding of the various steps to be taken in the planning and implementation of sample surveys |  |  |  |
|  | CLO 2 design different sample schemes and select the most efficient and suitable one for adoption for a particular survey - make statistical inference on parameters based on a sample |  |  |  |
|  | CLO 3 judge whether the statistics presented by other survey takers are trustworthy |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass or already enrolled in BIOL2102, or (ECON1280 and any University level 2 course), or (STAT1601 and any University level 2 course), or (STAT1602 and any University level 2 course), or STAT2601, or (STAT1603 and any University level 2 course), or STAT2901. |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offer in 2022-2023: Y |  | Examination May |  |
| Grade Descriptors $(A+\text { to } F)$ | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching | Activities | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  | 36 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments | Coursework (assignments, tutorials, and a class test) | 25 | CLO 1,2,3 |
|  | Examination | One 2-hour written examination | 75 | CLO 1,2,3 |


| Required/recommended | S. L. Lohr: Sampling: Design and Analysis, 2nd edition (Duxbury Press, 2010) |
| :--- | :--- |
| reading and | R. L. Scheaffer, W. Mendenhall, \& R. L. Ott: Elementary Survey Sampling (Duxbury Press, 2011, 7th edition) |
| online materials | W. G. Cochran: Sampling Techniques (John Wiley \& Sons Ltd., 1997) |
|  | R. M. Groves, F. J. Fowler, M. P. Couper, J. M. Lepkowski, E. Singer, R. Tourangeau: Survey Methodology (John |
|  | Wiley \& Sons Ltd., 2009, 2nd edition) |
|  | L. Kish: Survey Sampling (John Wiley \& Sons, Inc., 1995) |
|  | P. Salant \& D. A. Dillman: How to Conduct Your Own Survey (John Wiley \& Sons, Inc., 1994) |
| Course Website | http://moodle.hku.hk |


| STAT3618 | Derivatives and risk management (6 credits) |  |  | Academic Yea | 202 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Offering Department |  | \& Ac | ial Science | Quota |  |
| Course Co-ordinator | Dr K P Wat, Statistics \& Actuarial Science (watkp@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr K P Wat, Statistics \& Actuarial Science) |  |  |  |  |
| Course Objectives | Nowadays all risk managers must be well versed in the use and valuation of derivatives. The two basic types of derivatives are forwards (having a linear payoff) and options (having a non-linear payoff). All other derivatives can be decomposed to these underlying payoffs or alternatively they are variations on these basic ideas. This course aims at demonstrating the practical use of financial derivatives in risk management. Emphases are on pricing and hedging strategies, and the no-arbitrage principle. |  |  |  |  |
| Course Contents \& Topics | Rev forw Eur the hed opti | w of futur rds and futur ean and lack-Scho ing and th s and exc | s, forwards and options and the no-arb ures; interest rate futures and swaps; merican options using the binomial-tre es option pricing model; the Greeks: role of market-makers; exotic option hange options. | strategies using options; put-call opean and Amer erpretation; impli options, compo | futures <br> arity; <br> can op <br> d vola <br> und op |
| Cours | On successful completion of this course, students should be able to: |  |  |  |  |
| Outcomes | CLO 1 use futures, forwards, options and swaps to formulate financial strategies |  |  |  |  |
|  | CLO 2 determine the payoff and the value of various derivative products using binomial tree and Black-Scholes formula |  |  |  |  |
|  | CLO 3 explain how derivative products can be used as tools to manage financial risk |  |  |  |  |
|  | CLO 4 recognize how to decompose complicated derivatives into a portfolio of standard derivatives |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Not for students who have passed or already enrolled in any of the following courses: FINA2322, STAT3905, STAT3910; and |  |  |  |  |
| Offer in 2021-2022 | Y | 1st sem | Offer in 2022-2023: Y | Examination | Dec |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B |  | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course |  |  |


|  |  | learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | Coursework (assignments, tutorials, and class test(s)) | 40 | CLO 1,3 |
|  | Examination |  | One 2-hour written examination | 60 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | McDonald, R. L. (2013). Derivatives Markets (3rd Edition). Pearson. <br> Hull, J. C. (2018). Options, Futures, and Other Derivatives (10th Edition). Pearson. <br> Hull, J. C. (2018). Risk Management and Financial Institutions (5th Edition). Wiley. |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| STAT3620 | Modern nonparametric statistics (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Statistics \& Actuarial Science |  |  | Quota | --- |
| Course Co-ordinator | TBC, Statistics \& Actuarial Science (ug_enquiry@saas.hku.hk) |  |  |  |  |
| Teachers Involved | (TBC,Statistics \& Actuarial Science) |  |  |  |  |
| Course Objectives | The course aims to acquaint students with the fundamentals, basic properties and use of classical and modern nonparametric statistical methods for data analysis. |  |  |  |  |
| Course Contents \& Topics | Topics may include: order-statistics; goodness-of-fit tests; rank tests for single-sample and two-independent samples; tests for designed experiments; permutation tests; tests for trends and association; jackknife and bootstrapping methods; nonparametric regression. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 identify appropriate nonparametric methods for analyzing data |  |  |  |  |
|  | CLO 2 perform a variety of nonparametric statistical analyses |  |  |  |  |
|  | CLO 3 gain a working proficiency in the use of statistical software for data management and performing basic nonparametric statistical analyses |  |  |  |  |
|  | CLO 4 effectively communicate findings and conclusions |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in STAT2602 or STAT3902 |  |  |  |  |
| Offer in 2021-2022 | N Offer in 2022-2023: Y |  |  | Examination | --- |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  |  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | Coursework (assignments, tutorials and a class test) | 50 | CLO 1,2,3,4 |
|  | Examination |  | One 2-hour written examination | 50 | CLO 1,2,3 |
| Required/recommended reading and online materials | Alvo, M. and Yu, P.L.H.: Statistical Methods for Ranking Data (Springer, 2014) <br> Gibbons, J.D. and Chakraborti, S.: Nonparametric Statistical Inference, 5th edition (CRC press, 2011) <br> Higgins, James: Introduction to Modern Nonparametric Statistics (Duxbury Press, 2004) <br> Sprent, P. and Smeeton, N.C.: Applied Nonparametric Statistical Methods, 4th edition (CRC press, 2007) <br> Wasserman, L.: All of Nonparametric Statistics (Springer, 2016) |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |





|  | until-death random variable is the basic building block by which models for life insurances, designed to reduce the financial impact of the random event of untimely death, are developed. This course introduces the concepts of life contingencies and the basic mathematical skills for modelling life insurance products. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Contents \& Topics | Key topics include: survival distributions; life table functions; select and ultimate tables; life insurance models; life annuity models; loss-at-issue random variable; benefit premiums. |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |
| Outcomes | CLO 1 calculate the expected values, variances, probabilities, and percentiles for survival-time random variables |  |  |  |
|  | CLO 2 define the continuous survival-time random variable that arises from the discrete survival-time random variable using some assumptions for fractional ages |  |  |  |
|  | CLO 3 define present-value-of-benefit random variables defined on survival-time random variables |  |  |  |
|  | CLO 4 define and calculate the expected values, variances and probabilities for present-value-of-benefit random variables, present-value-of-loss-at-issue random variables, and present-value-of-loss random variables |  |  |  |
|  | CLO 5 calculate benefit premiums for life insurances and annuities |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | (Pass in STAT2602 and STAT3615) or <br> (Pass in STAT2902 and (Pass in STAT3902 or already enrolled in this course)) or (Pass in STAT2602 and STAT2902) |  |  |  |
| Offer in 2021-2022 | Y 1st sem Offer | 23 : Y | Examination Dec |  |
| Grade Descriptors $(A+\text { to } F)$ | A Demonstrate <br> learning outc <br> to apply kno <br> presentation <br> B  | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |
|  | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 36 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments | Coursework (assignments, tutorials, class test(s) and participation) | 50 | CLO 1,2,3,4,5 |
|  | Examination | One 3-hour written examination | 50 | CLO 1,2,3,4,5 |

Required/recommended Bowers. N.L., Gerber, H.U., Hickman, J.C., Jones, D.A. \& Nesbitt, C.J.: Actuarial Mathematics (1997, 2nd edition), reading and Itasca, Illinois: The Society of Actuaries
Dickson, C.M.D., Hardy, M.R., and Waters, H.R.: Actuarial Mathematics for Life Contingent Risks (Cambridge:

| online materials | $\begin{array}{l}\text { Dickson, C.M.D., Hardy, M.R., and } \\ \text { Cambridge University Press, 2009) }\end{array}$ |
| :--- | :--- |

Course Website http://moodle.hku.hk

STAT3902
Offering Department Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents \& Topics



STAT3905
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives
Course Contents \& Topics
Course Learning
Outcomes

Introduction to financial derivatives ( 6 credits)
Academic Year 2021
Statistics \& Actuarial Science
Dr K C Cheung, Statistics \& Actuarial Science (kccg@hku.hk)
(Dr K C Cheung, Statistics \& Actuarial Science)
This course aims at providing an understanding of the fundamental concepts of financial derivatives. Emphases are on basic trading and hedging strategies, and the no-arbitrage principle.
Derivatives; short-selling; forward contracts; call options; put options; equity-linked CD; spreads and collars; hedging; financial forwards and futures; commodity swaps; interest rate swaps; put-call parity.
On successful completion of this course, students should be able to:
CLO 1 define and recognize the definitions of terms commonly used in derivatives markets
CLO 2 evaluate the payoff, profit, and properties of basic derivative contracts, including forwards, futures, options, and swaps
CLO 3 explain how derivative securities can be used as tools to manage financial risk

Pre-requisites (and Co-requisites and Impermissible combinations)
Offer in 2021-2022 Grade Descriptors ( $\mathrm{A}+$ to F )

|  |
| :--- |
|  |
|  |
|  |
| Communication- <br> intensive Course |
| Course Type |
| Course Teaching |
| \& Learning Activities |
| Assessment Methods |
| and Weighting |

Pass in STAT2902; and
Not for students who have passed in STAT3618, or have already enrolled in this course; and Not for students who have passed in FINA2322, or have already enrolled in this course; and For BSc(Actuarial Science) students only.
Y 1st sem Offer in 2022-2023: Y Examination Dec

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B $\quad$ Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.
N
Lecture-based course

| Activities | Details |  | No. of Hours |
| :--- | :--- | :--- | :---: |
| Lectures |  |  | 36 |
| Tutorials |  |  | 12 |
| Reading / Self study | Details | Weighting in final <br> course grade (\%) | Assessment <br> Methods |
| Methods |  |  | 25 |
| to CLO Mapping |  |  |  |$|$| CLO 1,2,3 |
| :---: | :---: | :---: |

Required/recommended McDonald, R. L.: Derivatives Markets (Pearson, 2013, 3rd edition), Chapters 1-9.
reading and online materials
Course Websit

| STAT3906 | Risk theory I (6 credits) |  | Academic Year | 2021 |
| :---: | :---: | :---: | :---: | :---: |
| Offering Department | Statistics \& Actuarial Science |  | Quota | --- |
| Course Co-ordinator | Dr K C Cheung, Statistics \& Actuarial Science (kccg@hku.hk) |  |  |  |
| Teachers Involved | (Dr K C Cheung,Statistics \& Actuarial Science) |  |  |  |
| Course Objectives | Risk theory is one of the main topics in actuarial science. Risk theory is the applications of statistical models and stochastic processes to insurance problems such as the premium calculation. |  |  |  |
| Course Contents \& Topics | Severity models; frequency models; collective risk models; coverage modifications; risk measures. |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 understand the individual risk model and the collective risk model, evaluate the distribution and expectation of the total claim amounts |  |  |  |
|  | CLO 2 estimate the premium of a policyholder and the total claim amounts using the information of the claim amounts made in previous years |  |  |  |
|  | CLO 3 calculate some commonly used risk measures and explain their use and limitation |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in STAT3903, or already enrolled in this course; or Pass in MATH3603 or STAT3603 |  |  |  |
| Offer in 2021-2022 | Y 1st sem Offer in 2022-2023: Y |  | Examination Dec |  |
| Grade Descriptors $(A+\text { to } F)$ | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 36 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments | Coursework (assignments, | 25 | CLO 1,2,3 |


|  | tutorials, and a class test) |  |  |
| :--- | :--- | :--- | :--- |
| Examination | One 3-hour written examination | 75 | CLO 1,2,3 |

Required/recommended Klugman S. A., Panjer H. H., \& Willm G E. Les Models: From Data to Decisions (John Wiley \& Sons, Inc.,
reading and online materials
Course Website

2012, 4th edition)
http://moodle.hku.hk


Required/recommended R. S. Pindyck \& D. L. Rubinfeld: Econometric Models and Economic Forecasts (McGraw-Hill, 1998, 4th edition) reading and Abraham \& J. Ledolter: Statistical Methods for Forecasting (John Wiley \& Sons, 2005, 2nd edition)

online materials $\quad$| G. E. P. Box, G. M. Jenkins \& G. Reinsel: Time Series Analysis: Forecasting and Control (Prentice Hall, 1994, 3rd |
| :--- |
| edition) |

Course Website http://moodle.hku.hk

STAT3908
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents
\& Topics

Credibility theory and loss distributions (6 credits)
Statistics \& Actuarial Science
Dr K C Cheung, Statistics \& Actuarial Science (kccg@hku.hk)
(Dr K C Cheung,Statistics \& Actuarial Science)
Credibility is an example of a statistical estimate. The idea of credibility is very useful in premium calculation. Insurance loss varies according to the business nature, what distribution should be used to fit a particular loss is both of theoretical interest and practical importance. This course covers important actuarial and statistical methods.
Limited fluctuation approach; Buhlman's approach; Bayesian approach; empirical Bayes parameter estimations; construction and selection of parametric models; properties and estimation of failure time and loss distributions, determination of the acceptability of a fitted model; comparison of fitted models; simulation of both discrete and continuous random variables.
On successful completion of this course, students should be able to:
CLO 1 apply limited fluctuation (classical) credibility including criteria for both full and partial credibility
CLO 2 perform Bayesian analysis using both discrete and continuous models
CLO 3 apply Buhlmann and Buhlmann-Straub models and understand the relationship of these to Bayesian model





| and Weighting |  |  | course grade (\%) | Methods <br> to CLO <br> Mapping |
| :---: | :---: | :---: | :---: | :---: |
|  | Assignments | Assignments, tutorials/example classes, group discussions, project and presentation | 50 | $\underset{\substack{\text { CLO, } \\ \text { CL, } 4,5,6,7,8}}{ }$ |
|  | Examination | One 2-hour written examination | 50 | $\begin{gathered} \text { CLO } \\ \text { 1,2,3,4,5,6,7,8 } \end{gathered}$ |
| Required/recommended reading and online materials | D. Babbel \& F. J. Fabozzi: Investment Management for Insurers (Frank J. Fabozzi \& Assoc., 1999) <br> Z. Bodie, A. Kane, \& A. Marcus: Investments (McGraw-Hill, 2005, 7th edition) <br> Crouhy, Galai, \& Mark: Risk Management (2001) <br> F. J. Fabozzi: Handbook of Fixed Income Securities (McGraw-Hill, 2005, 7th edition) <br> Litterman: Modern Investment Management: An Equilibrium Approach (2003) |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |
| Additional Course Information | Other references: J. L. Maginn, D.L. Tuttle, J.E. Pinto \& D.W. McLeavey: Managing Investment Portfolios, A Dynamic Process (Wiley, 2007, 3rd edition) <br> Tilman: Asset / Liability Management of Financial Institutions (2003) |  |  |  |
| STAT3953 | Fundamentals of actuarial practice (6 credits) |  | Academic Year 2021 |  |
| Offering Department | Statistics \& Actuarial Science |  | Quota | --- |
| Course Co-ordinator | Dr A G Benchimol, Statistics \& Actuarial Science (benchi@hku.hk) |  |  |  |
| Teachers Involved | (Dr A G Benchimol, Statistics \& Actuarial Science) |  |  |  |
| Course Objectives | This course teaches students about the business environment and exposes them to practical real-world situations using the actuarial control cycle as a framework. |  |  |  |
| Course Contents \& Topics | This course provides an overview on selected materials relating to the following topics: Role of the Professional Actuary, External Forces, Risk in Actuarial Problems, Design and Pricing of Actuarial Solutions. Emphasis will be placed on applications to various financial security programmes including individual life insurance, group insurance, social security plans, retirement plans, investment funds and property and casualty insurance. |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |
|  | CLO 1 provide introductory description of financial security systems, common actuarial techniques and practical experiences |  |  |  |
|  | CLO 2 describe actuarial practices, principles, approaches, methods, commonalities, problems and solutions |  |  |  |
|  | CLO 3 explain actuarial practices across the traditional areas of practice |  |  |  |
|  | CLO 4 explain actuarial practices as applied directly on behalf of financial security system providers or as a consultant to those providers |  |  |  |
|  | CLO 5 apply actuarial skills in nontraditional and emerging areas of practice |  |  |  |
|  | CLO 6 provide context for the specific mathematical and technical skills developed in the basic actuarial courses |  |  |  |
|  | CLO 7 prepare for the professional role as an Associate of the Society of Actuaries |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in STAT3 |  |  |  |
| Offer in 2021-2022 | Y 1st sem | 23 : Y | Examination | No Exam |
| Grade Descriptors$(A+\text { to } F)$ | AD <br> le <br> le <br> to <br> pr | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |
|  | BDe <br> lea <br> and <br> a | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |
|  |  | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |
|  | Fail $\begin{aligned} & \text { ( }\end{aligned}$ | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organizational and presentational skills are minimally effective or ineffective. |  |  |
| Communicationintensive Course | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |
| Course Teaching \& Learning Activities | Activities | Details |  | No. of Hours |
|  | Lectures |  |  | 36 |
|  | Tutorials |  |  | 12 |
|  | Reading / Self study |  |  | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Presentation | oral presentation | 25 | CLO 4,5,6 |
|  | Project reports | written report | 50 | CLO 4,5,6,7 |
|  | Test | in-class quizzes | 25 | CLO 1,2,3,4,5,6,7 |
| Required/recommended reading and online materials | Klugman, S.: Understanding Actuarial Practice (Society of Actuaries, 2012) <br> Bellis, C., Klugman, S., Shepherd, J., and Lyon, R.: Understanding Actuarial Management: The Actuarial Control Cycle (Institute of Actuaries of Australia, 2010, 2nd ed.) <br> Brown, R.L. and Gottlieb, L.R.: Introduction to Ratemaking and Loss Reserving for Property and Casualty Insurance (ACTEX Publications, Inc., 2007, 3rd ed.) <br> Segal, S.: Corporate Value of Enterprise Risk Management: The Next Step in Business Management (Wiley, 2011) |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |





| Course Co-ordinator | Dr D Y Zhang, Statistics \& Actuarial Science (doraz@hku.hk) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Teachers Involved | (Dr D Y Zhang,Statistics \& Actuarial Science) <br> (Dr Y Huang,Statistics \& Actuarial Science) |  |  |  |  |
| Course Objectives | This course introduces omics data acquisition techniques and emphasizes advanced statistical tools to analyze the high-throughput omics data. This course is designed for learners with basic background knowledge in molecular biology who are interested in different aspects of omics and bioinformatics. This course aims to introduce the tools and techniques needed to obtain, analyze, and interpret a variety of modern genome-scale data types. |  |  |  |  |
| Course Contents \& Topics | Introduction to molecular biology, omics, and high throughput technologies, analysis of microarray data, analysis of high-throughput data, experimental design commonly encountered in genomic data analysis, functional genomics, enrichment analysis. |  |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |  |
| Outcomes | CLO 1 Obtain an overview of current computational systems biology approaches for omics data analysis |  |  |  |  |
|  | CLO 2 Understand the principles behind data pre-processing, quality control and analysis of large-scale biological datasets |  |  |  |  |
|  | CLO 3 Apply basic computational and statistical tools to analyze multiple omics data types |  |  |  |  |
|  | CLO 4 Learn the basics of machine learning analysis for omics sample clustering and classification |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in STAT2602, and pass or already enrolled in STAT3612 <br> Knowledge in basic molecular biology/biochemistry/bioinformatics, undergraduate level statistics knowledge and programming skills are needed. |  |  |  |  |
| Offer in 2021-2022 | N Offer in 2022 - |  |  | Examination | --- |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Assignments |  | Coursework (assignments; may include project report) | 60 | CLO 1,2,3,4 |
|  | Examination |  | One 2-hour written examination | 40 | CLO 1,2,3,4 |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| STAT4601 <br> Offering Department | Time-series analysis (6 credits) |  |  | Academic Year 2021 |  |
|  | Statistics \& Actuarial Science |  |  | Quota | --- |
| Course Co-ordinator | Prof G Li, Statistics \& Actuarial Science (gdli@hku.hk) |  |  |  |  |
| Teachers Involved | (Prof G Li,Statistics \& Actuarial Science) |  |  |  |  |
| Course Objectives | A time series consists of a set of observations on a random variable taken over time. Time series arise naturally in climatology, economics, environment studies, finance and many other disciplines. The observations in a time series are usually correlated; the course establishes a framework to discuss this. This course distinguishes different type of time series, investigates various representations for the processes and studies the relative merits of different forecasting procedures. Students will analyse real time-series data on the computer. |  |  |  |  |
| Course Contents \& Topics | Stationarity and the autocorrelation functions; linear stationary models; linear non-stationary modes; model identification; estimation and diagnostic checking; seasonal models and forecasting methods for time series. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 recognize a stationary vs non-stationary time series |  |  |  |  |
|  | CLO 2 understand some basic properties of commonly used time series models such as AR (autoregressive), MA (moving average) and ARMA models |  |  |  |  |
|  | CLO 3 transform non-stationary time series into stationary ones |  |  |  |  |
|  | CLO 4 identify different time series models based on autocorrelation functions |  |  |  |  |
|  | CLO 5 fit a suitable AR, MA or ARMA model to real data using SAS (after transforming to stationarity if necessary) |  |  |  |  |
|  | CLO 6 perform goodness of fit tests for such models |  |  |  |  |
|  | CLO 7 do forecasting with these fitted time series models |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in STAT3600; and <br> Not for students who have passed in STAT3614, or have already enrolled in this course; and Not for students who have passed in STAT3907, or have already enrolled in this course. |  |  |  |  |
| Offer in 2021-2022 | Y 2nd sem Offer |  | 023 : Y | Examination | May |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar |  |  |  |


|  | C |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course |  | N |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | Coursework (assignments, tutorials, and a class test) | 40 | CLO 1,2,3,4,5,6,7 |
|  | Examination |  | One 2-hour written examination | 60 | CLO 1,2,3,4,6,7 |
| Required/recommended reading and online materials | J. D. Cryer \& K.S. Chan: Time Series Analysis with Applications in R (Springer, 2008, 2nd edition) Bovas Abraham \& Johannes Ledolter: Statistical Methods for Forecasting (John Wiley \& Sons, 2005, 2nd edition) W. W .S. Wei: Time Series Analysis: Univariate and Multivariate Methods (Addison-Wesley, 2006, 2nd edition) W. K. Li: Diagnostic Checks in Time Series (Chapman \& Hall/CRC, 2004) Howell Tong: Non-linear Time Series: A Dynamical System Approach (Oxford University Press, 1990) |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| STAT4602 | Multivariate data analysis (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Statistics \& Actuarial Science |  |  | Quota | 50 |
| Course Co-ordinator | Prof T W K Fung, Statistics \& Actuarial Science (wingfung@hku.hk) |  |  |  |  |
| Teachers Involved | (Prof T W K Fung,Statistics \& Actuarial Science) |  |  |  |  |
| Course Objectives | In many designed experiments or observational studies, the researchers are dealing with multivariate data, where each observation is a set of measurements taken on the same individual. These measurements are often correlated. The correlation prevents the use of univariate statistics to draw inferences. This course develops the statistical methods for analysing multivariate data through examples in various fields of application and hands-on experience with the statistical software SAS. |  |  |  |  |
| Course Contents \& Topics | Problems with multivariate data. Multivariate normality and transforms. Mean structure for one sample. Tests of covariance matrix. Correlations: Simple, partial, multiple and canonical. Multivariate regression. Principal components analysis. Factor analysis. Problems for means of several samples. Multivariate analysis of variance. Discriminant analysis. Classification. Multivariate linear model. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 analyze multivariate data with main SAS procedures, such as PROC IML, PROC REG, PROC CORR, PROC CANCORR, PROC PRINCOMP, PROC FACTOR, PROC DISCRIM, PROC CANDISC and etc |  |  |  |  |
|  | CLO 2 compare the mean structure of multiple measurements for one or more than one population(s) by multivariate MANOVA and profile analysis |  |  |  |  |
|  | CLO 3 investigate the linear associations among one/two group(s) of variables by multiple, partial and canonical correlation and multivariate regression |  |  |  |  |
|  | CLO 4 explore the latent linear structure of a data set with multiple measurements by principal components analysis and factor analysis |  |  |  |  |
|  | CLO 5 classify observations of a population with one or more than one measurements by discriminant analysis |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass | AT3600 or |  |  |  |
| Offer in 2021-2022 | Y | sem Offe | 023 : Y | Examination | May |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Meth |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |






| In | (Prof G Yin,Statistics \& Actuarial Science) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Course Objectives | This course aims to introduce Bayesian methodologies and computational techniques of Markov Chain Monte Carlo methods, and applications in machine learning. |  |  |  |  |  |
| Course Contents \& Topics | This course covers the fundamental Bayesian formulation, prior elicitation, posterior inference. For Markov Chain Monte Carlo methods, the contents include the Gibbs sampler, the Metropolis-Hastings algorithm, approximate Bayesian computation, the Hamiltonian Monte Carlo algorithm. For more advanced Bayesian modeling, hierarchical models and nonparametric Bayes are covered. |  |  |  |  |  |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |  |  |
| Outcomes | CLO 1 generate samples from any distribution |  |  |  |  |  |
|  | CLO 2 use M |  | ethods for approximation |  |  |  |
|  | CLO 3 apply |  | ds to real problems |  |  |  |
|  | CLO 4 develop |  | etric Bayesian models |  |  |  |
|  | CLO 5 apply B |  | thods in machine learning tasks |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in STAT3600 or STAT3602 or STAT3603 or STAT3902 |  |  |  |  |  |
| Offer in 2021-2022 | N | Offer in 2022-2023: Y |  | Examination |  | --- |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |  |
|  | Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |  |
| Communicationintensive Course | N |  |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  |  | No. of Hours |
|  | Lectures |  |  |  |  | 36 |
|  | Tutorials |  |  |  |  | 12 |
|  | Reading / Self study |  |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details |  | ting in final e grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | Coursework (assignments, tutorials, and class test(s)) |  | 50 | CLO 1,2,3,4,5 |
|  | Examination |  | One 2-hour written examination |  | 50 | CLO 1,2,3,4,5 |
| STAT4710 <br> Offering Department <br> Course Co-ordinator | Capstone experience for statistics undergraduates (6 credits) |  |  |  | Academic Year 2021 |  |
|  | Statistics \& Actuarial Science |  |  |  | Quota | 50 |
|  | Prof G Yin, Statistics \& Actuarial Science (ug_enquiry@saas.hku.hk) |  |  |  |  |  |
| Teachers Involved | (Various teachers as the assessors of oral presentations and written reports,Statistics \& Actuarial Science) |  |  |  |  |  |
| Course Objectives | This project-based course aims to provide students with capstone experience to formulate and investigate real life problems in the area of statistics, risk management, finance, climate, social science, medicine and scientific research by integrating and applying the statistical theories and quantitative techniques learnt in their junior university years. |  |  |  |  |  |
| Course Contents \& Topics | No formal teaching. Students are expected to devote 120-140 hours working on this project. Students will work in groups of three to five under the supervision of a teacher. Students are required to give a presentation on their work two to three weeks before the end of the semester, and submit their final report at the end of the semester. <br> It aims to help the students to establish a good and solid foundation of life-long learning skills, and to enable students to equip with hands-on experience in solving real life problems starting from identification of the key variable(s) of interest, literature search, model formulation, data analysis or simulation, technical report writing and presentation of the results. Students will need to find an interesting topic of their own, conduct literature search regarding the most recent research related to the problem, make suggestions to improve the current situations or even solve the problem identified in their project. |  |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |  |
|  | CLO 1 formulate a problem using statistical or risk management ideas for a particular issue we are facing with and determine ways in which statistics/risk management can be used to solve the problems or to make predictions |  |  |  |  |  |
|  | CLO 2 integrate theory and practice, and to understand limitations of their current knowledge |  |  |  |  |  |
|  | CLO 3 work in a team and to collaborate with people with different background |  |  |  |  |  |
|  | CLO 4 express ideas effectively in both written and oral forms |  |  |  |  |  |
|  | CLO 5 develop further logical, critical thinking, creativity, technical report writing, communication and consultation skills |  |  |  |  |  |
|  | CLO 6 advocate to others the appreciation of statistics/risk management as to its relevance to our daily life |  |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Students are expected to have satisfactorily completed at least 24 credits of advanced level disciplinary core/elective courses in the Decision Analytics/Risk Management/Statistics Majors. Students who are interested in taking the course should submit their applications to the Department. <br> This capstone course is only for students majoring in Decision Analytics/Risk Management/Statistics, and is mutually exclusive with STAT3799, STAT4766 and STAT4799. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. |  |  |  |  |  |




STAT4767
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives
Course Contents
\& Topics
Course Learning
Outcomes

Pre-requisites
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors Distinction/Pass/Fail

## Actuarial science internship (6 credits)

Statistics \& Actuarial Science
Dr K P Wat, Statistics \& Actuarial Science (watkp@hku.hk)
(Various teachers as the assessors of oral presentations and written reports,Statistics \& Actuarial Science)
This course is offered to actuarial science students who take on a 6 -month full time or similar internships. The objective is for a student to complete this course as a project based on his/her internship.
This course will include a written report which should emphasize important working/ educational experiences encountered by the student during his/her internship. In many situations, this would mean a report of the project(s) that the student has been involved in during his/her internship.
On successful completion of this course, students should be able to:
CLO 1 gain practical experiences during internship
CLO 2 describe basic actuarial practices learned during the internship
CLO 3 explain how actuarial theories learned in University can be applied in practice
CLO 4 provide context for specific technical skills developed in basic actuarial courses
Pass in at least 24 credits of advanced level disciplinary core/elective courses in BSc(Actuarial Science) programme including STAT3901; and
This capstone course is only for BSc(Actuarial Science) students; and is mutually exclusive with STAT4711. The earliest that a student is allowed to take this capstone course is their year 3 study.
Y 1st sem 2nd sem Offer in 2022-2023: Y Examination No Exam

Distincti Demonstrates excellent ability in applying knowledge to solve problems in the workplace. Demonstrates excellent Distincti Demonstrates excellent abl a on performance in handling and carrying out the work required in the job or assigned by supervisor(s). Establishes highly
effective collaboration and communication with supervisor(s), colleagues, and clients in the job Successfully fulfills the effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the
requirements set out in the Course Description regarding working hours, with excellent performance in written and oral report, requirements set out in the Course Description
and excellent evaluation by supervisor(s), etc.


Additional Course Information
http://moodle.hku.hk
Despite no weighting for this assessment component, the completion of the employer's evaluation form by the employer/direct supervisor is required for passing the course.
Satisfactory completion of this course can be counted towards the Capstone requirement. Details of internship will be recorded on the student's transcript. This course will be assessed on "Pass/Fail" basis. Students who are interested to enrol in this course should contact the Department to obtain the approval.
Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.

## Statistics and actuarial science project (6 credits) <br> Academic Year 2021

Quota
Statistics \& Actuarial Science
Prof S M S Lee, Statistics \& Actuarial Science (smslee@hku.hk)
(Various teachers as the assessors of oral presentations and written reports,Statistics \& Actuarial Science)
Each year a few projects suitable for Actuarial Science students will be offered to provide students with practical experience in approaching a real problem, in report writing and in oral presentation.
These projects, under the supervision of individual staff members, involve the applications of statistics and/or probability in a wide range of problems of practical and/or academic interests.
On successful completion of this course, students should be able to:
CLO 1 formulate meaningful research problems
CLO 2 learn and apply advanced techniques in probability and/or statistics to solve real life problems
CLO 3 summarize and present research findings in a professional manner
Pass in at least 24 credits of advanced level disciplinary core/elective courses in BSc(Actuarial Science) programme including STAT3902 and STAT3907; and
Pass or already enrolled in at least one of the following courses: STAT3911, STAT4602, STAT4904; and
This capstone course is only for BSc (Actuarial Science) students; and subject to the consent of course coordinator. This course is mutually exclusive with STAT4711.
The earliest that a student is allowed to take this capstone course is their year 3 study.
Offer in 2021-2022
Grade Descriptors
(A+ to F)

Y 1st sem 2nd sem Offer in 2022-2023: Y Examination No Exam
A Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical analysis / evaluation of information drawn from a full range of high quality sources and to quote/reference aptly. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills. [Work of A+ should show considerable additional work beyond that is required in wider areas relevant to the topic.]
B Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.
Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Use of relevant information from sources, showing ability to make comparisons between different interpretations and to

|  |  | quote/reference aptly. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | D | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Project-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Reading / Self study |  |  |  | 120 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Oral presentation |  | oral presentation \& in-class discussion | 40 | CLO 1,2,3 |
|  | Research report |  | written report | 60 | CLO 1,2,3 |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| Additional Course Information | Approval is subject to past academic performance. |  |  |  |  |
| STAT4799 | Statistics project (12 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Statistics \& Actuarial Science |  |  | Quota | 50 |
| Course Co-ordinator | Prof S M S Lee, Statistics \& Actuarial Science (smslee@hku.hk) |  |  |  |  |
| Teachers Involved | (Various teachers as the assessors of oral presentations and written reports,Statistics \& Actuarial Science) |  |  |  |  |
| Course Objectives | Each year a few projects suitable for students majoring in Decision Analytics/ Risk Management/ Statistics will be offered to provide students with practical experience in approaching a real problem, in report writing and in oral presentation. |  |  |  |  |
| Course Contents \& Topics | These projects, under the supervision of individual staff members, involve the applications of statistics and/or probability in a wide range of problems of practical and/or academic interests. |  |  |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: <br> CLO 1 gain first-hand experience in solving a research or applied problem in statistics or related areas <br> CLO 2 develop skills in important technical tools, including the use of computer software or programs, for typical statistical research and data analyses |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Decision Analytics/Risk Management/Statistics Majors including STAT3600; and <br> Pass or already enrolled in at least one of the following courses: STAT3612, STAT3911, STAT4601, STAT4602; and <br> Not for students who have already enrolled in STAT3799 in this academic year. <br> This capstone course is only for students majoring in Decision Analytics/Risk Management/Statistics; and subject to the consent of course coordinator. <br> This course is mutually exclusive with STAT4710. <br> The earliest that a student is allowed to take this capstone course is their year 3 study. |  |  |  |  |
| Offer in 2021-2022 | Y | Year long Offer in 2022-2023: Y |  | Examination No Exam |  |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical analysis / evaluation of information drawn from a full range of high quality sources and to quote/reference aptly. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills. [Work of A+ should show considerable additional work beyond that is required in wider areas relevant to the topic.] |  |  |  |
|  | B | Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking Use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/reference aptly. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fail | Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Project-based course |  |  |  |  |
| Course Teaching \& Learning Activities | Activities |  | Details |  | No. of Hours |
|  | Reading / Self study |  | the student is expected to meet \& discuss with a supervisor regularly in the course of the project |  | 240 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
|  | Dissertation |  | written report | 60 | CLO 1,2,3 |
|  | Oral presentation |  | oral presentation \& in-class discussion | 40 | CLO 1,2,4 |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| Additional Course | Approval is subject to past academic performance. |  |  |  |  |

STAT4901 Offering Department Course Co-ordinator Teachers Involved Course Objectives

Course Contents \& Topics

Course Learning Outcomes

Risk theory II ( 6 credits)
Academic Year
2021
Statistics \& Actuarial Science
Quota
TBC, Statistics \& Actuarial Science ()
This course is an advanced course in risk theory which extends various topics discussed in STAT3906. It discusses utility theory, ruin theory, aggregate claims process, and related topics.
Utility theory; discrete ruin model; compound Poisson risk model; ruin probability; reinsurance; adjustment coefficient; Lundbergs inequality; Tijms approximation; non-homogeneous birth process; contagion model; mixed Poisson process; inflation model; IBNR (Incurred But Not Reported) claims; mixed Erlang distributions; stop-loss moments; equilibrium distributions.
On successful completion of this course, students should be able to:
CLO 1 understand utility theory including some commonly used utility functions, Jensens inequality, risk aversion and utility maximization
CLO 2 define discrete and continuous ruin models
CLO 3 calculate the adjustment coefficient, Lundbergs inequality and Tijms approximation in ruin theory
CLO 4 understand the effect of reinsurance and change of parameters on ruin probability
CLO 5 understand non-homogeneous birth process and its applications as contagion models for claim frequencies CLO 6 understand mixed Poisson process and its applications including the inflation model and the IBNR model
CLO 7 derive the relationship between stop-loss moments and equilibrium distributions
Pass in STAT3906
(and Co-requisites and Impermissible combinations)
Offer in 2021-2022
Grade Descriptors
(A+ to F)
N

Required/recommended Klugman S.A., Panjer H.H., \& Willmot G.E.: Loss Models: From Data to Decisions (John Wiley \& Sons, 2007, 3rd reading and online materials Klugman
edition).
Kaas R., Goovaerts M., Dhaene J., \& Denuit M.: Modern Actuarial Risk Theory (Springer, 2004, 1st edition). Bowers N.L., Gerber H.U., Hickman J.C. \& Jones D.A.: Actuarial Mathematics (Society of Actuaries, 1997, 2nd edition).
Willmot G.E. \& Lin X.S.: Lundberg Approximations for Compound Distributions with Insurance Applications (Springer, 2000, 1st edition).
Course Website
http://moodle.hku.hk

STAT4902
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Selected topics in actuarial science ( $\mathbf{6}$ credits)
Academic Year 2021
Statistics \& Actuarial Science
Quota
Dr J T Y Wong, Statistics \& Actuarial Science (jefftywong@hku.hk)
(Dr J T Y Wong,Statistics \& Actuarial Science)
This course is an advanced course in actuarial science which discusses selected topics which potential graduate students will find useful. It focuses on tools that are in the frontier of actuarial risk management with examples on applications.
The contents will be chosen from the following topics:
Enterprise risk management; Risk identification and taxonomy; Copulas; Extreme value theory; Applications to risk management with emphasis in insurance; Other topics as determined by the instructor
On successful completion of this course, students should be able to:
CLO 1 understand, identify and classify different types of risks
CLO 2 understand and apply copula to model risk dependence
CLO 3 understand and apply extreme value theory
CLO 4 explain approaches for managing risks
Pass in STAT3906

| and Impermissible combinations) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Offer in 2021-2022 | Y 2nd sem Offer in 2022-2023: N |  |  | Examination May |  |
| Grade Descriptors$(A+\text { to } F)$ | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | Fai | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods Details |  |  | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | Coursework (assignments, tutorials and class test(s)) | 25 | CLO 1,2,3,4 |
|  | Examination One 2-hour written examination |  |  | 75 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | - Financial Enterprise Risk Management, Sweeting P., (Cambridge University Press, 2017, 2nd edition) <br> - Actuarial Theory for Dependent Risks, Denuit M., Dhaene J., Goovaerts M., Kaas R., (Wiley, 2005, 1st edition) <br> - Loss Models: Further Topics, Klugman S.A., Panjer H.H., Willmot G.E., (Wiley, 2013, 1st edition) |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| STAT4903 | Actuarial techniques for general insurance (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Statistics \& Actuarial Science |  |  | Quota | --- |
| Course Co-ordinator | Dr A G Benchimol, Statistics \& Actuarial Science (benchi@hku.hk) |  |  |  |  |
| Teachers Involved | (Dr A G Benchimol,Statistics \& Actuarial Science) |  |  |  |  |
| Course Objectives | The purpose of this course is to develop knowledge of the basic techniques for ratemaking and estimating claim liabilities for general insurance. Application of the actuarial techniques to resolve general insurance problems will be emphasized. The course also provides general knowledge on the general insurance markets in Hong Kong and China. Students will acquire the fundamental concept on general insurance actuarial science together with the supporting calculations. |  |  |  |  |
| Course Contents \& Topics |  | eneral Insurance roduction of gene gulations on gen <br> asic techniques for w to read and us temaking related temaking related temaking related Iculate the under re premium meth ss ratio methods ting differential and nsiderations whe <br> stimating claim lia ta requirement ild and analyze c serving techniques nsiderations whe timate recoveries praise and valida <br> pplications using . predictive mod | Hong Kong, Taiwan and PRC markets <br> e <br> pages <br> oss adjustment expenses se provisions <br> e final rates <br> ment triangles <br> the claim liabilities <br> claim adjustment expenses timated results <br> odeling in General Insurance ise Risk Management, etc. |  |  |
| Course Learning Outcomes | On successful completion of this course, students should be able to: |  |  |  |  |
|  | CLO 1 understand the feature and underlying risk of general insurance products |  |  |  |  |
|  | CLO 2 calculate the premium rate for basic general insurance pros |  |  |  |  |
|  | CLO 3 estimate the claims liabilities for general insurance produc |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass | in STAT3906 |  |  |  |
| Offer in 2021-2022 | Y 1st sem Offe |  | sem Offer in 2022-2023: Y | Examination Dec |  |
| Grade Descriptors $(A+\text { to } F)$ | A | Demonstrate learning outc to apply kno presentation | ery at an advanced level of extensive ong analytical and critical abilities and lo de range of complex, familiar and unfan | dge and skills required for hinking, with evidence of or situations. Apply highly effe | ttaining all the course nal thought, and ability ive organizational and |



| and Weighting | Methods |  | Details | Weighting in final course grade (\%) | Assessment Methods to CLO Mapping |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Assignments |  | Coursework (assignments, class test(s) and computer-based project (s)) | 25 | CLO 1,2,3 |
|  | Examination |  | One 2-hour written examination | 75 | CLO 1,2,3 |
| Required/recommended reading and online materials | An Introduction to Statistical Learning, with Applications in R, James, Witten, Hastie, Tibshirani, 2013, New York: Springer |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| STAT7609 | Research methods in statistics (6 credits) |  |  | Academic Year 2021 |  |
| Offering Department | Statistics \& Actuarial Science |  |  | Quota |  |
| Course Co-ordinator | Prof J J F Yao, Statistics \& Actuarial Science (jeffyao@hku.hk) |  |  |  |  |
| Teachers Involved | (Prof J J F Yao,Statistics \& Actuarial Science) |  |  |  |  |
| Course Objectives | This course introduces some statistical concepts and methods which potential graduate students will find useful in preparing for work on a research degree in statistics. Focus is on applications of state-of-the-art statistical techniques and their underlying theory. |  |  |  |  |
| Course Contents \& Topics | Contents may (1) Basic asy theorems; delt (2) Parametric signed likeliho (3) Nonparam nonparametric <br> (4) Computati <br> (5) Robust me <br> (6) U-statistics <br> (7) Other topic | ay be sele symptotic elta meth ric and no hood ratio ametric s ric regress ationally-in methods: ics, projec pics as de | modes of convergence; stochastic or th expansions; saddlepoint approxima likelihood methods: high-order approxim mpirical likelihood. <br> erence: sample quantiles; sign an estimation; kernel methods. ods: cross-validation; bootstrap; perm robustness; M-estimator; L-estimator; <br> the instructor. | rs; laws of large nu ons. <br> mations; profile likelih <br> rank tests; Kolmog <br> tation methods. R-estimator; estimatin | mbers; central limit od and its variants; rov-Smirnov test; functions. |
| Course Learning | On successful completion of this course, students should be able to: |  |  |  |  |
| Outcomes | CLO 1 comprehend the language and technicalities found in statistic |  |  | research literature |  |
|  | CLO 2 understand the use of standard mathematical tools for conduc |  |  | g statistical research |  |
|  | CLO 3 apply a variety of research tools to solve standard statistical p |  |  | blems |  |
|  | CLO 4 acquire exposure to some developments in contemporary statistical research |  |  |  |  |
| Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in STAT | T3600 or |  |  |  |
| Offer in 2021-2022 | Y 1st sem | m Offer | 23 : Y | Examination | Dec |
| Grade Descriptors$(A+\text { to } F)$ | AD | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |  |  |  |
|  | B De <br> lea <br> and | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. |  |  |  |
|  | C $\quad \begin{aligned} & \text { De } \\ & \text { out } \\ & \text { fan }\end{aligned}$ | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. |  |  |  |
|  | D $\begin{aligned} & \text { De } \\ & \text { Sh } \\ & \text { kn }\end{aligned}$ | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. |  |  |  |
|  | FailD <br> of <br> pro | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |  |  |  |
| Communicationintensive Course | N |  |  |  |  |
| Course Type | Lecture-based course |  |  |  |  |
| Course Teaching | Activities |  | Details |  | No. of Hours |
| \& Learning Activities | Lectures |  |  |  | 36 |
|  | Tutorials |  |  |  | 12 |
|  | Reading / Self study |  |  |  | 100 |
| Assessment Methods and Weighting | Methods |  | Details | Weighting in final course grade (\%) | $\begin{aligned} & \text { Assessment } \\ & \text { Methods } \\ & \text { to CLO Mapping } \end{aligned}$ |
|  | Assignments |  | Coursework (assignments, tutorials, and a class test) | 25 | CLO 1,2,3,4 |
|  | Examination |  | One 2-hour written examination | 75 | CLO 1,2,3,4 |
| Required/recommended reading and online materials | Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Chapman \& Hall: New York. Owen, A.B. (2001). Empirical Likelihood. Chapman \& Hall: Boca Raton. <br> Shao, J. (1999). Mathematical Statistics. Springer: New York. <br> Vaart, A. (1998). Asymptotic Statistics. Cambridge: Cambridge University Press. |  |  |  |  |
| Course Website | http://moodle.hku.hk |  |  |  |  |
| STAT7610 | Advanced probability (6 credits) |  |  | Academic Ye | ar 2021 |
| Offering Department | Statistics \& Actuarial Science |  |  | Quota | --- |
| Course Co-ordinator | Prof H L Yang, Statistics \& Actuarial Science (hlyang@hku.hk) |  |  |  |  |
| Teachers Involved | (Prof H L Yang,Statistics \& Actuarial Science) |  |  |  |  |
| Course Objectives | This course provides an introduction to measure theory and probability. The course will focus on some basic |  |  |  |  |

concepts in theoretical probability which are important for students to do research in actuarial science, probability and statistics.


Required/recommended Jean Jacod and Philip Protter: Probability Essentials (Universitext, Springer-Verlag, reading and online materials Course Website

STAT7611
Offering Department
Course Co-ordinator
Teachers Involved
Course Objectives

Course Contents \& Topics

New York, 2004, 2nd edition)
Chung K. L.: A Course in Probability Theory (Academic Press, 2001, 3rd edition)
http://moodle.hku.hk

## Computational statistics (6 credits)

Academic Year 2021
Statistics \& Actuarial Science
Prof G Yin, Statistics \& Actuarial Science (gyin@hku.hk)
(Prof G Yin,Statistics \& Actuarial Science)
This course aims to give undergraduate and postgraduate students in statistics a background in modern computationally intensive methods in statistics. It emphasizes the role of computation as a fundamental tool of discovery in data analysis, of statistical inference, and for development of statistical theory and methods.
Contents include: Bayesian statistics, Markov chain Monte Carlo methods including Gibbs sampler, the MetropolisHastings algorithm, and data augmentation; Generation of random variables including the inversion methods, rejection sampling, the sampling/importance resampling method; Optimization techniques including Newton' s method, expectation-maximization (EM) algorithm and its variants, and minorization-maximization (MM) algorithms; Integration including Laplace approximations, Gaussian quadrature, the importance sampling method; and other topics such as Hidden Markov models, neural networks, and Bootstrap methods.
On successful completion of this course, students should be able to:
CLO 1 understand the importance of the technique for generating random variables in Bayesian statistics, Monte Carlo integration and bootstrapping methods
CLO 2 realize the advantages and disadvantages of the Newton-Raphson algorithm and the Fisher scoring algorithm and apply them to fit generalized linear models
CLO 3 understand the essence and basic principle of the EM-type algorithms and MM-type algorithms, realize their range of application, and apply them to solve practical problems
CLO 4 apply EM-type algorithms to find the posterior mode and apply Markov chain Monte Carlo methods to generate posterior samples
CLO 5 apply Bootstrap methods to obtain estimated standard errors of estimators and confidence intervals of parameters for both parametric and non-parametric cases
Pass in STAT3600 or STAT3907

Y 1st sem Offer in 2022-2023: Y Examination Dec
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.


Required/recommended R.H. Myers et al., 2010: Generalized Linear Models (2nd ed.), Wiley


## Degree Regulations

SECTION X Degree Regulations

## REGULATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE <br> (BSc)

These regulations apply to students admitted under the 4-year curriculum to the BSc degree curriculum to the first year in the academic year 2017-18 and thereafter, students admitted directly to the second year in the academic year 2018-19 and thereafter, and students admitted directly to the third year in the academic year 2019-20 and thereafter.
(See also General Regulations and Regulations for First Degree Curricula)

## Definitions

Sc1 ${ }^{1}$ For the purpose of these regulations and the syllabuses for the BSc degree, unless the context otherwise requires:
"Science course" means any course offered by the Faculty of Science, and the School of Biomedical Sciences.
"Advanced Science course" means any level 3, 4 or above course offered by the Faculty of Science and the School of Biomedical Sciences.
"Course" means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.
"Syllabus" means courses taught by departments, centres, and schools, offered under a degree curriculum.
"Credits" or "credit-units" means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.

## Admission to the BSc degree

Sc2 To be eligible for admission to the BSc degree, candidates shall:
(a) comply with the General Regulations;
(b) comply with the Regulations for First Degree Curricula; and
(c) satisfy all the requirements of the curriculum in accordance with these regulations and the syllabuses.

## Period of study

Sc3 The curriculum for the BSc degree shall normally require eight semesters of full-time study, extending over not fewer than four academic years, and shall include any assessment to be held during and/or at the end of each semester. Candidates shall not in any case be permitted to extend their studies beyond the maximum period of registration of six academic years.

[^6]
## Selection of courses

Sc4 Candidates shall select their courses in accordance with these regulations and the guidelines specified in the syllabuses before the beginning of each semester. Any change to the selection of courses shall be made only during the add/drop period of the semester in which the course begins, and such changes shall not be reflected in the transcript of the candidate. Requests for changes after the designated add/drop period of the semester shall not be considered.

## Curriculum requirements and progression in curriculum

## Sc5

(a) Candidates shall satisfy the requirements prescribed in UG5 of the Regulations of First Degree Curricula.
(b) Candidates shall take not fewer than 240 credits, in the manner specified in these regulations and the syllabuses.
(c) Candidates shall take at least 96 credits of Science courses including all required courses of the major programme of the BSc degree curriculum.
(d) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements may be fewer than 24 credits.
(e) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load of 288 credits for the normative period of study specified in the curriculum regulations, save as provided for under Sc5(f).
(f) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load of 432 credits for the maximum period of registration specified in the curriculum regulations.
(g) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The number of transferred credits will be recorded on the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.
(h) Candidates shall be recommended for discontinuation of their studies if they have:
(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or
(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or
(iii) exceeded the maximum period of registration specified in Sc3, unless otherwise permitted by the Board of the Faculty.

## Advanced standing

Sc6 Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum in accordance with UG2 of the Regulations for First Degree Curricula. Credits granted for advanced standing will be recorded on the transcript of the candidate but shall not be included in the calculation of the GPA.

## Assessment

## Sc7

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.
(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate's absence from any examination. Any supplementary examination shall be part of that academic year's examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.
(c) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.
(d) Candidates are required to make up for failed courses in the following manner: repeating the failed course by undergoing instruction and satisfying the assessment, or for elective courses, taking another course in lieu and satisfying the assessment requirements.
(e) There shall be no appeal against the results of examinations and all other forms of assessment.

## Award of BSc Degree

Sc8 To be eligible for the award of the BSc degree, candidates shall have:
(a) satisfied the requirements in UG5 of the Regulations for First Degree Curricula;
(b) passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the regular major programme, or 144 credits (or a higher credit requirement by the accredited bodies) of the prescribed courses in the intensive major programme, of the BSc degree curriculum.

## Honours classification

## Sc9

(a) Honours classifications shall be awarded in five divisions: First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the Degree of BSc in accordance with the following Graduation GPA scores, with all courses taken (including failed courses, but not including courses approved by the Senate graded as 'Pass', 'Fail' or 'Distinction') carrying weightings which are proportionate to their credit values ${ }^{2}$ :

| Class of honours | GGPA range |
| :--- | :---: |
| First Class Honours | $3.60-4.30$ |
| Second Class Honours | $(2.40-3.59)$ |
| $\quad$ Division One | $3.00-3.59$ |
| $\quad$ Division Two | $2.40-2.99$ |
| Third Class Honours | $1.70-2.39$ |
| Pass | $1.00-1.69$ |

(b) Honours classification may not be determined solely on the basis of a candidate's Graduation GPA and the Board of Examiners for the Degree of BSc may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Graduation GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.
(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

[^7]
## REGULATIONS FOR THE DEGREE OF <br> BACHELOR OF SCIENCE (BSc)

These regulations apply to students admitted under the 4-year curriculum to the BSc degree curriculum to the first year in the academic year 2015-16 and 2016-17, students admitted directly to the second year in the academic year 2017-18, and students admitted directly to the third year in the academic years 2017-18 and 2018-19.
(See also General Regulations and Regulations for First Degree Curricula)

## Definitions

Sc1 ${ }^{1}$ For the purpose of these regulations and the syllabuses for the BSc degree, unless the context otherwise requires:
"Science course" means any course offered by the Faculty of Science, and the School of Biomedical Sciences.
"Advanced Science course" means any level 3, 4 or above course offered by the Faculty of Science and the School of Biomedical Sciences.
"Course" means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.
"Syllabus" means courses taught by departments, centres, and schools, offered under a degree curriculum.
"Credits" or "credit-units" means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.

## Admission to the BSc degree

Sc2 To be eligible for admission to the BSc degree, candidates shall:
(a) comply with the General Regulations;
(b) comply with the Regulations for First Degree Curricula; and
(c) satisfy all the requirements of the curriculum in accordance with these regulations and the syllabuses.

## Period of study

Sc3 The curriculum for the BSc degree shall normally require eight semesters of full-time study, extending over not fewer than four academic years, and shall include any assessment to be held during and/or at the end of each semester. Candidates shall not in any case be permitted to extend their studies beyond the maximum period of registration of six academic years.

[^8]
## Selection of courses

Sc4 Candidates shall select their courses in accordance with these regulations and the guidelines specified in the syllabuses before the beginning of each semester. Any change to the selection of courses shall be made only during the add/drop period of the semester in which the course begins, and such changes shall not be reflected in the transcript of the candidate. Requests for changes after the designated add/drop period of the semester shall not be considered.

## Curriculum requirements and progression in curriculum

## Sc5

(a) Candidates shall satisfy the requirements prescribed in UG5 of the Regulations of First Degree Curricula.
(b) Candidates shall take not fewer than 240 credits, in the manner specified in these regulations and the syllabuses.
(c) Candidates shall take at least 96 credits of Science courses including all required courses of the major programme of the BSc degree curriculum.
(d) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements may be fewer than 24 credits.
(e) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load of 288 credits for the normative period of study specified in the curriculum regulations, save as provided for under Sc5(f).
(f) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load of 432 credits for the maximum period of registration specified in the curriculum regulations.
(g) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The number of transferred credits will be recorded on the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.
(h) Candidates shall be recommended for discontinuation of their studies if they have:
(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or
(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or
(iii) exceeded the maximum period of registration specified in Sc3, unless otherwise permitted by the Board of the Faculty.

## Advanced standing

Sc6 Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum in accordance with UG2 of the Regulations for First Degree Curricula. Credits granted for advanced standing will be recorded on the transcript of the candidate but shall not be included in the calculation of the GPA.

## Assessment

## Sc7

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.
(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate's absence from any examination. Any supplementary examination shall be part of that academic year's examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.
(c) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.
(d) Candidates are required to make up for failed courses in the following manner: repeating the failed course by undergoing instruction and satisfying the assessment, or for elective courses, taking another course in lieu and satisfying the assessment requirements.
(e) There shall be no appeal against the results of examinations and all other forms of assessment.

## Award of BSc Degree

Sc8 To be eligible for the award of the BSc degree, candidates shall have:
(a) satisfied the requirements in UG5 of the Regulations for First Degree Curricula;
(b) passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the regular major programme, or 144 credits (or a higher credit requirement by the accredited bodies) of the prescribed courses in the intensive major programme, of the BSc degree curriculum.

## Honours classification

## Sc9

(a) Honours classifications shall be awarded in five divisions: First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the Degree of BSc in accordance with the following Graduation GPA scores, with all courses taken (including failed courses, but not including courses approved by the Senate graded as 'Pass', 'Fail' or 'Distinction') carrying equal weighting:

| Class of honours | GGPA range |
| :--- | :---: |
| First Class Honours | $3.60-4.30$ |
| Second Class Honours | $(2.40-3.59)$ |
| $\quad$ Division One | $3.00-3.59$ |
| $\quad$ Division Two | $2.40-2.99$ |
| Third Class Honours | $1.70-2.39$ |
| Pass | $1.00-1.69$ |

(b) Honours classification may not be determined solely on the basis of a candidate's Graduation GPA and the Board of Examiners for the Degree of BSc may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Graduation GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.
(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

## REGULATIONS FOR THE DEGREE OF <br> BACHELOR OF SCIENCE <br> (BSc)

These regulations apply to students admitted under the 4-year curriculum to the BSc degree curriculum to the first year in the academic years 2014-15, and students admitted directly to the third year in the academic years 2016-17.
(See also General Regulations and Regulations for First Degree Curricula)

## Definitions

Sc1 ${ }^{1}$ For the purpose of these regulations and the syllabuses for the BSc degree, unless the context otherwise requires:
"Science course" means any course offered by the Faculty of Science, and the School of Biomedical Sciences.
"Advanced Science course" means any level 3, 4 or above course offered by the Faculty of Science and the School of Biomedical Sciences.
"Course" means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.
"Syllabus" means courses taught by departments, centres, and schools, offered under a degree curriculum.
"Credits" or "credit-units" means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.

## Admission to the BSc degree

Sc2 To be eligible for admission to the BSc degree, candidates shall:
(a) comply with the General Regulations;
(b) comply with the Regulations for First Degree Curricula; and
(c) satisfy all the requirements of the curriculum in accordance with these regulations and the syllabuses.

## Period of study

Sc3 The curriculum for the BSc degree shall normally require eight semesters of full-time study, extending over not fewer than four academic years, and shall include any assessment to be held during and/or at the end of each semester. Candidates shall not in any case be permitted to extend their studies beyond the maximum period of registration of six academic years.

## Selection of courses

[^9]Sc4 Candidates shall select their courses in accordance with these regulations and the guidelines specified in the syllabuses before the beginning of each semester. Any change to the selection of courses shall be made only during the add/drop period of the semester in which the course begins, and such changes shall not be reflected in the transcript of the candidate. Requests for changes after the designated add/drop period of the semester shall not be considered.

## Curriculum requirements and progression in curriculum

## Sc5

(a) Candidates shall satisfy the requirements prescribed in UG5 of the Regulations of First Degree Curricula.
(b) Candidates shall take not fewer than 240 credits, in the manner specified in these regulations and the syllabuses.
(c) Candidates shall take at least 96 credits of Science courses including all required courses of the major programme of the BSc degree curriculum.
(d) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements may be fewer than 24 credits.
(e) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load of 288 credits for the normative period of study specified in the curriculum regulations, save as provided for under Sc5(f).
(f) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load of 432 credits for the maximum period of registration specified in the curriculum regulations.
(g) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The number of transferred credits will be recorded on the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.
(h) Candidates shall be recommended for discontinuation of their studies if they have:
(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or
(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or
(iii) exceeded the maximum period of registration specified in Sc3, unless otherwise permitted by the Board of the Faculty.

## Advanced standing

Sc6 Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum in accordance with UG2 of the Regulations for First Degree Curricula. Credits granted for advanced standing will be recorded on the transcript of the candidate but shall not be included in the calculation of the GPA.

## Assessment

## Sc7

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.
(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate's absence from any examination. Any supplementary examination shall be part of that academic year's examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.
(c) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.
(d) Candidates are required to make up for failed courses in the following manner: repeating the failed course by undergoing instruction and satisfying the assessment, or for elective courses, taking another course in lieu and satisfying the assessment requirements.
(e) There shall be no appeal against the results of examinations and all other forms of assessment.

## Award of BSc Degree

Sc8 To be eligible for the award of the BSc degree, candidates shall have:
(a) satisfied the requirements in UG5 of the Regulations for First Degree Curricula;
(b) passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the major programme of the BSc degree curriculum.

## Honours classification

## Sc9

(a) Honours classifications shall be awarded in five divisions: First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the Degree of BSc in accordance with the following Cumulative GPA scores, with all courses taken (including failed courses, but not including courses approved by the Senate graded as 'Pass', 'Fail' or 'Distinction') carrying equal weighting:

| Class of honours | CGPA range |
| :--- | :---: |
| First Class Honours | $3.60-4.30$ |
| Second Class Honours | $(2.40-3.59)$ |
| $\quad$ Division One | $3.00-3.59$ |
| $\quad$ Division Two | $2.40-2.99$ |
| Third Class Honours | $1.70-2.39$ |
| Pass | $1.00-1.69$ |

(b) Honours classification may not be determined solely on the basis of a candidate's Cumulative GPA and the Board of Examiners for the Degree of BSc may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Cumulative GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.
(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

## REGULATIONS FOR THE DEGREE OF <br> BACHELOR OF SCIENCE <br> (BSc)

These regulations apply to students admitted under the 4-year curriculum to the BSc degree curriculum to the first year in the academic year 2013-14, and students admitted directly to the third year in the academic year 2015-16.
(See also General Regulations and Regulations for First Degree Curricula)

## Definitions

Sc1 ${ }^{1}$ For the purpose of these regulations and the syllabuses for the BSc degree, unless the context otherwise requires:
"Science course" means any course offered by the Faculty of Science, and the School of Biomedical Sciences.
"Advanced Science course" means any level 3, 4 or above course offered by the Faculty of Science and the School of Biomedical Sciences.
"Course" means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.
"Syllabus" means courses taught by departments, centres, and schools, offered under a degree curriculum.
"Credits" or "credit-units" means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.

## Admission to the BSc degree

Sc2 To be eligible for admission to the BSc degree, candidates shall:
(a) comply with the General Regulations;
(b) comply with the Regulations for First Degree Curricula; and
(c) satisfy all the requirements of the curriculum in accordance with these regulations and the syllabuses.

## Period of study

Sc3 The curriculum for the BSc degree shall normally require eight semesters of full-time study, extending over not fewer than four academic years, and shall include any assessment to be held during and/or at the end of each semester. Candidates shall not in any case be permitted to extend their studies beyond the maximum period of registration of six academic years.

[^10]
## Selection of courses

Sc4 Candidates shall select their courses in accordance with these regulations and the guidelines specified in the syllabuses before the beginning of each semester. Any change to the selection of courses shall be made only during the add/drop period of the semester in which the course begins, and such changes shall not be reflected in the transcript of the candidate. Requests for changes after the designated add/drop period of the semester shall not be considered.

## Curriculum requirements and progression in curriculum

## Sc5

(a) Candidates shall satisfy the requirements prescribed in UG5 of the Regulations of First Degree Curricula.
(b) Candidates shall take not fewer than 240 credits, in the manner specified in these regulations and the syllabuses.
(c) Candidates shall take at least 96 credits of Science courses including all required courses of the major programme of the BSc degree curriculum.
(d) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements may be fewer than 24 credits.
(e) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load of 288 credits for the normative period of study specified in the curriculum regulations, save as provided for under Sc5(f).
(f) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load of 432 credits for the maximum period of registration specified in the curriculum regulations.
(g) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The number of transferred credits will be recorded on the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.
(h) Candidates shall be recommended for discontinuation of their studies if they have:
(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or
(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or
(iii) exceeded the maximum period of registration specified in Sc3, unless otherwise permitted by the Board of the Faculty.

## Advanced standing

Sc6 Advanced standing may be granted to candidates in recognition of studies completed successfully in an approved institution of higher education elsewhere in accordance with UG2 of the Regulations for First Degree Curricula. Credits granted for advanced standing will be recorded on the transcript of the candidate but shall not be included in the calculation of the GPA.

## Assessment

## Sc7

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.
(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate's absence from any examination. Any supplementary examination shall be part of that academic year's examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.
(c) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.
(d) Candidates are required to make up for failed courses in the following manner: repeating the failed course by undergoing instruction and satisfying the assessment, or for elective courses, taking another course in lieu and satisfying the assessment requirements.
(e) There shall be no appeal against the results of examinations and all other forms of assessment.

## Award of BSc Degree

Sc8 To be eligible for the award of the BSc degree, candidates shall have:
(a) satisfied the requirements in UG5 of the Regulations for First Degree Curricula;
(b) passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the major programme of the BSc degree curriculum.

## Honours classification

## Sc9

(a) Honours classifications shall be awarded in five divisions: First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the Degree of BSc in accordance with the following Cumulative GPA scores, with all courses taken (including failed courses, but not including courses approved by the Senate graded as 'Pass', 'Fail' or 'Distinction') carrying equal weighting:

| Class of honours | CGPA range |
| :--- | :---: |
| First Class Honours | $3.60-4.30$ |
| Second Class Honours | $(2.40-3.59)$ |
| $\quad$ Division One | $3.00-3.59$ |
| $\quad$ Division Two | $2.40-2.99$ |
| Third Class Honours | $1.70-2.39$ |
| Pass | $1.00-1.69$ |

(b) Honours classification may not be determined solely on the basis of a candidate's Cumulative GPA and the Board of Examiners for the Degree of BSc may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Cumulative GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.
(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

## REGULATIONS FOR FIRST DEGREE CURRICULA ${ }^{1}$

Regulations for First Degree Curricula (for students admitted under the 4-year curriculum to the first year in the academic year 2019-20 and thereafter, and students admitted directly to the second year in the academic year 2020-21 and thereafter, and students admitted directly to the third year in the academic year 2021-22)
(See also General Regulations)

## UG 1 Definitions:

For the purpose of regulations and syllabuses for all first degree curricula unless otherwise defined -

An 'academic year' comprises two semesters, the first semester to commence in September and end in December, and the second semester to commence in January and end in May/June, on dates as prescribed by the Senate. It includes, normally at the end of each semester, a period during which candidates are assessed. For some curricula, a 'summer semester' may be organized in addition to the normal two semesters. Clinical curricula have extended semesters.
A 'summer semester' normally comprises seven to eight weeks of intensive timetabled teaching and assessment to commence four weeks after the end of the second semester assessment period, and to conclude about one week before the start of the next academic year.
The 'maximum period of registration' is equivalent to a period which is $150 \%$ of the curriculum's normative period of study as specified in the degree regulations, provided that where this results in a residual fraction of an academic year, the fractional period shall be extended to one full academic year.
'Degree curriculum' means the entire study requirements for the award of an undergraduate degree.
'Major programme' means the study requirements, including a capstone experience, for a single major area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 72 credits nor more than 96 credits, as prescribed in the syllabuses for a degree curriculum.
'Minor programme' means the study requirements for a single minor area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 36 credits nor more than 48 credits, as prescribed in the syllabuses for a degree curriculum.
'Professional core' refers to the study requirements, including a capstone experience, prescribed in the regulations and syllabuses for disciplinary studies in degree curricula which are not structured as major/minor programmes for reasons relating to professional qualification and/or accreditation.
'Course' means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.
'Disciplinary elective course' or 'Disciplinary Elective' means any course offered in the same major or minor programme or the professional core which can be taken by candidates to fulfill the curriculum requirements as specified in the syllabuses of the degree curriculum.
'Elective course' or 'Elective' means any course offered within the same or another curriculum, other than compulsory courses in the candidate's degree curriculum, that can be

[^11]taken by the candidate in order to complete the credit requirements of the degree curriculum.
'Capstone experience' refers to one or more courses within the major programme or professional core which are approved by the Board of the Faculty for the purpose of integrating knowledge and skills acquired, and which are prescribed in the syllabuses of the degree curriculum.
'Syllabus' means courses taught by departments, centres, and schools, offered under a degree curriculum.
'Prerequisite' means a course or a group of courses which candidates must have completed successfully or a requirement which candidates must have fulfilled before being permitted to take the course in question.
'Corequisite' means a course which candidates must take in conjunction with the course in question.
'Credits' or 'credit-units' means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.
'Grade Points’ are standardized measurements of candidates' academic achievement in courses taken to satisfy the requirements of the degree curriculum and are expressed as a scale prescribed in these regulations.
'Grade Point Average' is a numerical measure of a candidate's academic achievement over a specified period of time. Each course attempted (including each failed course) is assigned a numerical value, with all courses carrying equal weighting. This numerical value is the product of grade points earned for the course and the credit value of that course. The 'Grade Point Average' is the sum of these numerical values divided by the total number of credits attempted:

(where 'i' stands for all passed and failed courses taken by the student over a specified period)
'Semester Grade Point Average' or 'Semester GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) during a given semester.
'Year Grade Point Average' or 'Year GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) during a given academic year.
'Cumulative Grade Point Average' or 'Cumulative GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) at the time of calculation.
'Graduation Grade Point Average' or 'Graduation GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) at the point of graduation. For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core courses with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.
'Assessment' refers to judgment about the quality and extent to which a student has achieved the stated learning objectives or learning outcomes. It includes all types of assessment activities which allow for such a judgment to be made. For the purpose of interpreting the relevant provisions of the Ordinance and the Statutes and where appropriate,
reference to 'examination' or 'examinations' in the Ordinance and the Statutes shall include and cover all forms of 'assessment' and its related processes.
A 'transcript' refers to a transcript of the record of study of a candidate, issued by the Registry of the University.

UG 2 Advanced standing:
Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum. Candidates who are awarded Advanced Standing will not be granted any further credit transfer for those studies for which Advanced Standing has been granted. The amount of credits to be granted for advanced standing shall be determined by the Board of the Faculty, in accordance with the following principles:
(a) at least half the number of credits of the degree curriculum normally required for award of the degree shall be accumulated through study at this University or from transfer of credits for courses completed at other institutions in accordance with Regulation UG 4(d); and
(b) in accordance with Statute III. 5 and notwithstanding the granting of advanced and/or transfer credits, a minimum of two semesters of study at this University shall be required before a candidate is considered for the award of a first degree, other than a degree in medicine or surgery, and a minimum of four semesters of study at this University shall be required before a candidate is considered for a first degree in medicine or surgery.
Credits granted for advanced standing shall not normally be included in the calculation of the GPA unless permitted by the Board of the Faculty but will be recorded on the transcript of the candidate.

## UG 3 Period of study:

The period of study of the curriculum shall be specified in the regulations governing the degree. To be eligible for award of the degree, a candidate shall fulfill all curriculum requirements within the maximum period of registration, unless otherwise permitted or required by the Board of the Faculty.

## UG 4 Progression in curriculum:

(a) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements is fewer than 24 credits.
(b) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load for the normative period of study specified in the curriculum regulations, save as provided for under UG4(c).
(c) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load for the maximum period of registration specified in the curriculum regulations.
(d) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The
number of transferred credits may be recorded in the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.
(e) Unless otherwise permitted by the Board of the Faculty, candidates shall be recommended for discontinuation of their studies if they have:
(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or
(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or
(iii) exceeded the maximum period of registration specified in the regulations of the degree.

## UG 5 Requirements for graduation:

To be eligible for admission to the degree, candidates shall fulfill the following requirements in addition to the requirements prescribed in the regulations and syllabuses governing the degree curriculum within the maximum period of registration:
(a) successful completion of 12 credits in English language enhancement, including 6 credits in Core University English ${ }^{2}$ and 6 credits in an English in the Discipline course ${ }^{3}$;
(b) successful completion of 6 credits in Chinese language enhancement ${ }^{4}$;
(c) unless otherwise prescribed in the curriculum regulations and syllabuses, successful completion of 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry ${ }^{5}$ with not more than 24 credits of course being selected within one academic year except where candidates are required to make up for failed credits; and
(d) successful completion of a capstone experience as specified in the syllabuses of the degree curriculum.

## UG 6 Exemption:

Candidates may be exempted, with or without special conditions attached, from any of the requirements in UG 5 by the Senate in exceptional circumstances. Candidates who are so

[^12]exempted must replace the number of exempted credits with courses of the same credit value.

## UG 7 Assessment:

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.
(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate's absence from any examination. Any supplementary examination shall be part of that academic year's examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.
(c) Candidates suspended under Statute XXXI shall not be allowed to take, present themselves for, and participate in any assessments during the period of suspension, unless otherwise permitted by the Senate.
(d) Candidates shall not be permitted to repeat a course for which they have received a $D$ grade or above for the purpose of upgrading.
(e) Candidates are required to make up for failed courses in the following manner as prescribed in the curriculum regulations:
(i) undergoing re-assessment/re-examination in the failed course to be held no later than the end of the following semester (not including the summer semester); or
(ii) re-submitting failed coursework, without having to repeat the same course of instruction; or
(iii) repeating the failed course by undergoing instruction and satisfying the assessments; or
(iv) for elective courses, taking another course in lieu and satisfying the assessment requirements.
(f) There shall be no appeal against the results of examinations and all other forms of assessment.

## UG 8 Grading system:

(a) The grades, their standards and the grade points for assessment shall be as follows ${ }^{6}$ :

| Grade | Standard | Grade Point |
| :---: | :---: | :---: |
| A+ |  | 4.3 |
| A | Excellent | 4.0 |
| A- |  | 3.7 |
| B+ |  | 3.3 |
| B | Good | 3.0 |
| B- |  | 2.7 |
| C+ |  | 2.3 |
| C | Satisfactory | 2.0 |
| C- |  | 1.7 |
| D+ | Pass | 1.3 |
| D | Pass | 1.0 |
| F | Fail | 0 |

[^13](b) Special permission may be given by Senate for courses in individual curricula to be graded as 'Pass', 'Fail' or 'Distinction'. Such courses will not be included in the calculation of the GPA.

## UG 9 Honours classifications:

(a) Honours classifications shall be awarded in five divisions ${ }^{7}$ : First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the degree in accordance with the following Graduate GPA scores, with all courses taken (including failed courses) carrying equal weighting which are proportionate to their credit values ${ }^{8}$ :

| Class of honours | GGPA range |  |
| :--- | :---: | :---: |
| First Class Honours | $3.60-4.30$ |  |
| Second Class Honours |  | $(2.40-3.59)$ |
| $\quad$ Division One |  | $3.00-3.59$ |
| $\quad$ Division Two |  | $2.40-2.99$ |
| Third Class Honours |  | $1.70-2.39$ |
| Pass | $1.00-1.69$ |  |

(b) Honours classification may not be determined solely on the basis of a candidate's Graduation GPA and the Board of Examiners for the degree may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Graduation GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.
(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

[^14]
## REGULATIONS FOR FIRST DEGREE CURRICULA ${ }^{1}$

Regulations for First Degree Curricula (for students admitted under the 4-year curriculum to the first year in the academic year 2018-19, students admitted directly to the second year in the academic year 2019-20, and students admitted directly to the third year in the academic year 2020-21)
(See also General Regulations)

## UG 1 Definitions:

For the purpose of regulations and syllabuses for all first degree curricula unless otherwise defined -

An 'academic year' comprises two semesters, the first semester to commence in September and end in December, and the second semester to commence in January and end in May/June, on dates as prescribed by the Senate. It includes, normally at the end of each semester, a period during which candidates are assessed. For some curricula, a 'summer semester' may be organized in addition to the normal two semesters. Clinical curricula have extended semesters.

A 'summer semester' normally comprises seven to eight weeks of intensive timetabled teaching and assessment to commence four weeks after the end of the second semester assessment period, and to conclude about one week before the start of the next academic year.
The 'maximum period of registration' is equivalent to a period which is $150 \%$ of the curriculum's normative period of study as specified in the degree regulations, provided that where this results in a residual fraction of an academic year, the fractional period shall be extended to one full academic year.
'Degree curriculum' means the entire study requirements for the award of an undergraduate degree.
'Major programme' means the study requirements, including a capstone experience, for a single major area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 72 credits nor more than 96 credits, as prescribed in the syllabuses for a degree curriculum.
'Minor programme' means the study requirements for a single minor area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 36 credits nor more than 48 credits, as prescribed in the syllabuses for a degree curriculum.
'Professional core' refers to the study requirements, including a capstone experience, prescribed in the regulations and syllabuses for disciplinary studies in degree curricula which are not structured as major/minor programmes for reasons relating to professional qualification and/or accreditation.
'Course' means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.
'Disciplinary elective course' or 'Disciplinary Elective' means any course offered in the same major or minor programme or the professional core which can be taken by candidates to fulfill the curriculum requirements as specified in the syllabuses of the degree curriculum.
'Elective course' or 'Elective' means any course offered within the same or another

[^15]curriculum, other than compulsory courses in the candidate's degree curriculum, that can be taken by the candidate in order to complete the credit requirements of the degree curriculum.
'Capstone experience' refers to one or more courses within the major programme or professional core which are approved by the Board of the Faculty for the purpose of integrating knowledge and skills acquired, and which are prescribed in the syllabuses of the degree curriculum.
'Syllabus' means courses taught by departments, centres, and schools, offered under a degree curriculum.
'Prerequisite' means a course or a group of courses which candidates must have completed successfully or a requirement which candidates must have fulfilled before being permitted to take the course in question.
'Corequisite' means a course which candidates must take in conjunction with the course in question.
'Credits' or 'credit-units' means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.
'Grade Points’ are standardized measurements of candidates' academic achievement in courses taken to satisfy the requirements of the degree curriculum and are expressed as a scale prescribed in these regulations.
'Grade Point Average' is a numerical measure of a candidate's academic achievement over a specified period of time. Each course attempted (including each failed course) is assigned a numerical value, with all courses carrying equal weighting. This numerical value is the product of grade points earned for the course and the credit value of that course. The 'Grade Point Average' is the sum of these numerical values divided by the total number of credits attempted:

(where ' i ' stands for all passed and failed courses taken by the student over a specified period)
'Semester Grade Point Average' or 'Semester GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) during a given semester.
'Year Grade Point Average' or 'Year GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) during a given academic year.
'Cumulative Grade Point Average' or 'Cumulative GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) at the time of calculation.
'Graduation Grade Point Average' or 'Graduation GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) at the point of graduation. For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core courses with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.
'Assessment' refers to judgment about the quality and extent to which a student has achieved the stated learning objectives or learning outcomes. It includes all types of assessment activities which allow for such a judgment to be made. For the purpose of
interpreting the relevant provisions of the Ordinance and the Statutes and where appropriate, reference to 'examination' or 'examinations' in the Ordinance and the Statutes shall include and cover all forms of 'assessment' and its related processes.
A 'transcript' refers to a transcript of the record of study of a candidate, issued by the Registry of the University.

## UG 2 Advanced standing:

Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum. Candidates who are awarded Advanced Standing will not be granted any further credit transfer for those studies for which Advanced Standing has been granted. The amount of credits to be granted for advanced standing shall be determined by the Board of the Faculty, in accordance with the following principles:
(a) at least half the number of credits of the degree curriculum normally required for award of the degree shall be accumulated through study at this University or from transfer of credits for courses completed at other institutions in accordance with Regulation UG 4(d); and
(b) in accordance with Statute III. 5 and notwithstanding the granting of advanced and/or transfer credits, a minimum of two semesters of study at this University shall be required before a candidate is considered for the award of a first degree, other than a degree in medicine or surgery, and a minimum of four semesters of study at this University shall be required before a candidate is considered for a first degree in medicine or surgery.
Credits granted for advanced standing shall not normally be included in the calculation of the GPA unless permitted by the Board of the Faculty but will be recorded on the transcript of the candidate.

## UG 3 Period of study:

The period of study of the curriculum shall be specified in the regulations governing the degree. To be eligible for award of the degree, a candidate shall fulfill all curriculum requirements within the maximum period of registration, unless otherwise permitted or required by the Board of the Faculty.

## UG 4 Progression in curriculum:

(a) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements is fewer than 24 credits.
(b) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load for the normative period of study specified in the curriculum regulations, save as provided for under UG4(c).
(c) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load for the maximum period of registration specified in the curriculum regulations.
(d) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The number of transferred credits may be recorded in the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.
(e) Unless otherwise permitted by the Board of the Faculty, candidates shall be recommended for discontinuation of their studies if they have:
(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or
(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or
(iii) exceeded the maximum period of registration specified in the regulations of the degree.

## UG 5 Requirements for graduation:

To be eligible for admission to the degree, candidates shall fulfill the following requirements in addition to the requirements prescribed in the regulations and syllabuses governing the degree curriculum within the maximum period of registration:
(a) successful completion of 12 credits in English language enhancement, including 6 credits in Core University English ${ }^{2}$ and 6 credits in an English in the Discipline course ${ }^{3}$;
(b) successful completion of 6 credits in Chinese language enhancement ${ }^{4}$;
(c) successful completion of 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry ${ }^{5}$ with not more than 24 credits of course being selected within one academic year except where candidates are required to make up for failed credits; and
(d) successful completion of a capstone experience as specified in the syllabuses of the degree curriculum.

## UG 6 Exemption:

Candidates may be exempted, with or without special conditions attached, from any of the
${ }^{2}$ Candidates who have achieved Level 5** in English Language in the Hong Kong Diploma of Secondary Education Examination, or equivalent, may at the discretion of the Faculty be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.
${ }^{3}$ (a) To satisfy the English in the Discipline (ED) requirement, candidates who have passed the ED course for a Major but subsequently change that Major are required to pass the ED course for the new Major, or either of the double Majors finally declared upon graduation irrespective of whether the second Major is offered within or outside of the candidates' home Faculty.
(b) Candidates declaring double Majors can, if they fail in the ED course for one of the Majors, either (i) re-take and successfully complete that failed ED course, or (ii) successfully complete the ED course for the other Major, irrespective of whether the Major is offered within or outside of the candidates' home Faculty.
(c) Candidates who undertake studies in double Majors or double degrees are not required to take a second ED course but may be advised by the Faculty to do so.
${ }^{4}$ Candidates who have not studied Chinese language during their secondary education may be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.
${ }^{5}$ Candidates registered for dual degree studies are required to successfully complete 24 credits of courses in the Common Core Curriculum, selecting one course from each Area of Inquiry, within the curriculum of the first degree, as appropriate.
requirements in UG 5 by the Senate in exceptional circumstances. Candidates who are so exempted must replace the number of exempted credits with courses of the same credit value.

## UG 7 Assessment:

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.
(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate's absence from any examination. Any supplementary examination shall be part of that academic year's examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.
(c) Candidates suspended under Statute XXXI shall not be allowed to take, present themselves for, and participate in any assessments during the period of suspension, unless otherwise permitted by the Senate.
(d) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.
(e) Candidates are required to make up for failed courses in the following manner as prescribed in the curriculum regulations:
(i) undergoing re-assessment/re-examination in the failed course to be held no later than the end of the following semester (not including the summer semester); or
(ii) re-submitting failed coursework, without having to repeat the same course of instruction; or
(iii) repeating the failed course by undergoing instruction and satisfying the assessments; or
(iv) for elective courses, taking another course in lieu and satisfying the assessment requirements.
(f) There shall be no appeal against the results of examinations and all other forms of assessment.

## UG 8 Grading system:

(a) The grades, their standards and the grade points for assessment shall be as follows ${ }^{6}$ :

| Grade | Standard | Grade Point |
| :---: | :---: | :---: |
| A+ |  | 4.3 |
| A | Excellent | 4.0 |
| A- |  | 3.7 |
| B+ |  | 3.3 |
| B | Good | 3.0 |
| B- |  | 2.7 |
| C+ |  | 2.3 |
| C | Satisfactory | 2.0 |
| C- |  | 1.7 |
| D+ | Pass | 1.3 |
| D | Pass | 1.0 |
| F | Fail | 0 |

[^16](b) Special permission may be given by Senate for courses in individual curricula to be graded as 'Pass', 'Fail' or 'Distinction'. Such courses will not be included in the calculation of the GPA.

## UG 9 Honours classifications:

(a) Honours classifications shall be awarded in five divisions ${ }^{7}$ : First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the degree in accordance with the following Graduate GPA scores, with all courses taken (including failed courses) carrying equal weighting which are proportionate to their credit values ${ }^{8}$ :

| Class of honours | GGPA range |
| :---: | :---: |
| First Class Honours | 3.60-4.30 |
| Second Class Honours | (2.40-3.59) |
| Division One | 3.00-3.59 |
| Division Two | 2.40-2.99 |
| Third Class Honours | $1.70-2.39$ |
| Pass | 1.00-1.69 |

(b) Honours classification may not be determined solely on the basis of a candidate's Graduation GPA and the Board of Examiners for the degree may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Graduation GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.
(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

[^17]
## REGULATIONS FOR FIRST DEGREE CURRICULA ${ }^{1}$

Regulations for First Degree Curricula (for students admitted under the 4-year curriculum to the first year in the academic year 2017-18, students admitted directed to the second year in the academic year 2018-19 and students admitted directly to the third year in the academic year 2019-20)
(See also General Regulations)

## UG 1 Definitions:

For the purpose of regulations and syllabuses for all first degree curricula unless otherwise defined -

An 'academic year' comprises two semesters, the first semester to commence in September and end in December, and the second semester to commence in January and end in May/June, on dates as prescribed by the Senate. It includes, normally at the end of each semester, a period during which candidates are assessed. For some curricula, a 'summer semester' may be organized in addition to the normal two semesters. Clinical curricula have extended semesters.
A 'summer semester' normally comprises seven to eight weeks of intensive timetabled teaching and assessment to commence four weeks after the end of the second semester assessment period, and to conclude about one week before the start of the next academic year.
The 'maximum period of registration' is equivalent to a period which is $150 \%$ of the curriculum's normative period of study as specified in the degree regulations, provided that where this results in a residual fraction of an academic year, the fractional period shall be extended to one full academic year.
'Degree curriculum' means the entire study requirements for the award of an undergraduate degree.
'Major programme' means the study requirements, including a capstone experience, for a single major area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 72 credits nor more than 96 credits, as prescribed in the syllabuses for a degree curriculum.
'Minor programme' means the study requirements for a single minor area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 36 credits nor more than 48 credits, as prescribed in the syllabuses for a degree curriculum.
'Professional core' refers to the study requirements, including a capstone experience, prescribed in the regulations and syllabuses for disciplinary studies in degree curricula which are not structured as major/minor programmes for reasons relating to professional qualification and/or accreditation.
'Course' means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.
'Disciplinary elective course' or 'Disciplinary Elective' means any course offered in the same major or minor programme or the professional core which can be taken by candidates to fulfill the curriculum requirements as specified in the syllabuses of the degree curriculum.

[^18]'Elective course' or 'Elective' means any course offered within the same or another curriculum, other than compulsory courses in the candidate's degree curriculum, that can be taken by the candidate in order to complete the credit requirements of the degree curriculum.
'Capstone experience' refers to one or more courses within the major programme or professional core which are approved by the Board of the Faculty for the purpose of integrating knowledge and skills acquired, and which are prescribed in the syllabuses of the degree curriculum.
'Syllabus' means courses taught by departments, centres, and schools, offered under a degree curriculum.
'Prerequisite' means a course or a group of courses which candidates must have completed successfully or a requirement which candidates must have fulfilled before being permitted to take the course in question.
'Corequisite' means a course which candidates must take in conjunction with the course in question.
'Credits' or 'credit-units' means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.
'Grade Points' are standardized measurements of candidates' academic achievement in courses taken to satisfy the requirements of the degree curriculum and are expressed as a scale prescribed in these regulations.
'Grade Point Average' is a numerical measure of a candidate's academic achievement over a specified period of time. Each course attempted (including each failed course) is assigned a numerical value, with all courses carrying equal weighting. This numerical value is the product of grade points earned for the course and the credit value of that course. The 'Grade Point Average' is the sum of these numerical values divided by the total number of credits attempted:

(where 'i' stands for all passed and failed courses taken by the student over a specified period)
'Semester Grade Point Average' or 'Semester GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) during a given semester.
'Year Grade Point Average' or 'Year GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) during a given academic year.
'Cumulative Grade Point Average' or 'Cumulative GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) at the time of calculation.
'Graduation Grade Point Average' or 'Graduation GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) at the point of graduation. For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core courses with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.
'Assessment' refers to judgment about the quality and extent to which a student has achieved the stated learning objectives or learning outcomes. It includes all types of
assessment activities which allow for such a judgment to be made. For the purpose of interpreting the relevant provisions of the Ordinance and the Statutes and where appropriate, reference to 'examination' or 'examinations' in the Ordinance and the Statutes shall include and cover all forms of 'assessment' and its related processes.
A 'transcript' refers to a transcript of the record of study of a candidate, issued by the Registry of the University.

## UG 2 Advanced standing:

Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum. Candidates who are awarded Advanced Standing will not be granted any further credit transfer for those studies for which Advanced Standing has been granted. The amount of credits to be granted for advanced standing shall be determined by the Board of the Faculty, in accordance with the following principles:
(a) at least half the number of credits of the degree curriculum normally required for award of the degree shall be accumulated through study at this University or from transfer of credits for courses completed at other institutions in accordance with Regulation UG 4(d); and
(b) in accordance with Statute III. 5 and notwithstanding the granting of advanced and/or transfer credits, a minimum of two semesters of study at this University shall be required before a candidate is considered for the award of a first degree, other than a degree in medicine or surgery, and a minimum of four semesters of study at this University shall be required before a candidate is considered for a first degree in medicine or surgery.
Credits granted for advanced standing shall not normally be included in the calculation of the GPA unless permitted by the Board of the Faculty but will be recorded on the transcript of the candidate.

## UG 3 Period of study:

The period of study of the curriculum shall be specified in the regulations governing the degree. To be eligible for award of the degree, a candidate shall fulfill all curriculum requirements within the maximum period of registration, unless otherwise permitted or required by the Board of the Faculty.

## UG 4 Progression in curriculum:

(a) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements is fewer than 24 credits.
(b) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load for the normative period of study specified in the curriculum regulations, save as provided for under UG4(c).
(c) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load for the maximum period of registration specified in the curriculum regulations.
(d) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The number of transferred credits may be recorded in the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.
(e) Unless otherwise permitted by the Board of the Faculty, candidates shall be recommended for discontinuation of their studies if they have:
(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or
(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or
(iii) exceeded the maximum period of registration specified in the regulations of the degree.

## UG 5 Requirements for graduation:

To be eligible for admission to the degree, candidates shall fulfill the following requirements in addition to the requirements prescribed in the regulations and syllabuses governing the degree curriculum within the maximum period of registration:
(a) successful completion of 12 credits in English language enhancement, including 6 credits in Core University English ${ }^{2}$ and 6 credits in an English in the Discipline course ${ }^{3}$;
(b) successful completion of 6 credits in Chinese language enhancement ${ }^{4}$;
(c) successful completion of 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry ${ }^{5}$ with not more than 24 credits of course being selected within one academic year except where candidates are required to make up for failed credits; and
(d) successful completion of a capstone experience as specified in the syllabuses of the degree curriculum.

## UG 6 Exemption:

Candidates may be exempted, with or without special conditions attached, from any of the
${ }^{2}$ Candidates who have achieved Level 5** in English Language in the Hong Kong Diploma of Secondary Education Examination, or equivalent, may at the discretion of the Faculty be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.
${ }^{3}$ (a) To satisfy the English in the Discipline (ED) requirement, candidates who have passed the ED course for a Major but subsequently change that Major are required to pass the ED course for the new Major, or either of the double Majors finally declared upon graduation irrespective of whether the second Major is offered within or outside of the candidates' home Faculty.
(b) Candidates declaring double Majors can, if they fail in the ED course for one of the Majors, either (i) re-take and successfully complete that failed ED course, or (ii) successfully complete the ED course for the other Major, irrespective of whether the Major is offered within or outside of the candidates' home Faculty.
(c) Candidates who undertake studies in double Majors or double degrees are not required to take a second ED course but may be advised by the Faculty to do so.
${ }^{4}$ Candidates who have not studied Chinese language during their secondary education may be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.
${ }^{5}$ Candidates registered for dual degree studies are required to successfully complete 24 credits of courses in the Common Core Curriculum, selecting one course from each Area of Inquiry, within the curriculum of the first degree, as appropriate.
requirements in UG 5 by the Senate in exceptional circumstances. Candidates who are so exempted must replace the number of exempted credits with courses of the same credit value.

## UG 7 Assessment:

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.
(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate's absence from any examination. Any supplementary examination shall be part of that academic year's examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.
(c) Candidates suspended under Statute XXXI shall not be allowed to take, present themselves for, and participate in any assessments during the period of suspension, unless otherwise permitted by the Senate.
(d) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.
(e) Candidates are required to make up for failed courses in the following manner as prescribed in the curriculum regulations:
(i) undergoing re-assessment/re-examination in the failed course to be held no later than the end of the following semester (not including the summer semester); or
(ii) re-submitting failed coursework, without having to repeat the same course of instruction; or
(iii) repeating the failed course by undergoing instruction and satisfying the assessments; or
(iv) for elective courses, taking another course in lieu and satisfying the assessment requirements.
(f) There shall be no appeal against the results of examinations and all other forms of assessment.

## UG 8 Grading system:

(a) The grades, their standards and the grade points for assessment shall be as follows ${ }^{6}$ :

| Grade | Standard | Grade Point |
| :---: | :---: | :---: |
| A+ |  | 4.3 |
| A | Excellent | 4.0 |
| A- |  | 3.7 |
| B+ |  | 3.3 |
| B | Good | 3.0 |
| B- |  | 2.7 |
| C+ |  | 2.3 |
| C | Satisfactory | 2.0 |
| C- |  | 1.7 |
| D+ | Pass | 1.3 |
| D | Pass | 1.0 |
| F | Fail | 0 |

[^19](b) Special permission may be given by Senate for courses in individual curricula to be graded as 'Pass', 'Fail' or 'Distinction'. Such courses will not be included in the calculation of the GPA.

## UG 9 Honours classifications:

(a) Honours classifications shall be awarded in five divisions ${ }^{7}$ : First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the degree in accordance with the following Graduate GPA scores, with all courses taken (including failed courses) carrying equal weighting which are proportionate to their credit values ${ }^{8}$ :

| Class of honours | GGPA range |
| :---: | :---: |
| First Class Honours | 3.60-4.30 |
| Second Class Honours | (2.40-3.59) |
| Division One | 3.00-3.59 |
| Division Two | 2.40-2.99 |
| Third Class Honours | $1.70-2.39$ |
| Pass | 1.00-1.69 |

(b) Honours classification may not be determined solely on the basis of a candidate's Graduation GPA and the Board of Examiners for the degree may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Graduation GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.
(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

[^20]
## REGULATIONS FOR FIRST DEGREE CURRICULA ${ }^{1}$

Regulations for First Degree Curricula (for students admitted under the 4-year curriculum to the first year in the academic years in 2014-15, 2015-16 and 2016-17, students admitted directed to the second year in the academic year 2017-18, and students admitted directed to the third year in the academic years 2016-17, 2017-18 and 2018-19)
(See also General Regulations)

## UG 1 Definitions:

For the purpose of regulations and syllabuses for all first degree curricula unless otherwise defined -

An 'academic year' comprises two semesters, the first semester to commence in September and end in December, and the second semester to commence in January and end in May/June, on dates as prescribed by the Senate. It includes, normally at the end of each semester, a period during which candidates are assessed. For some curricula, a 'summer semester' may be organized in addition to the normal two semesters. Clinical curricula have extended semesters.
A 'summer semester' normally comprises seven to eight weeks of intensive timetabled teaching and assessment to commence four weeks after the end of the second semester assessment period, and to conclude about one week before the start of the next academic year.
The 'maximum period of registration' is equivalent to a period which is $150 \%$ of the curriculum's normative period of study as specified in the degree regulations, provided that where this results in a residual fraction of an academic year, the fractional period shall be extended to one full academic year.
'Degree curriculum' means the entire study requirements for the award of an undergraduate degree.
'Major programme' means the study requirements, including a capstone experience, for a single major area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 72 credits nor more than 96 credits, as prescribed in the syllabuses for a degree curriculum.
'Minor programme' means the study requirements for a single minor area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 36 credits nor more than 48 credits, as prescribed in the syllabuses for a degree curriculum.
'Professional core' refers to the study requirements, including a capstone experience, prescribed in the regulations and syllabuses for disciplinary studies in degree curricula which are not structured as major/minor programmes for reasons relating to professional qualification and/or accreditation.

[^21](The Regulations for First Degree Curricula applicable to cohorts admitted in 2012-13 and 2013-14 under the 4 -year '2012 curriculum' can be found in the Calendar for 2013-14, and in the Calendar for 2014-15 for the cohorts admitted in 2014-15 and 2015-16.)
'Course' means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.
'Disciplinary elective course' or 'Disciplinary Elective' means any course offered in the same major or minor programme or the professional core which can be taken by candidates to fulfill the curriculum requirements as specified in the syllabuses of the degree curriculum.
'Elective course' or 'Elective' means any course offered within the same or another curriculum, other than compulsory courses in the candidate's degree curriculum, that can be taken by the candidate in order to complete the credit requirements of the degree curriculum.
'Capstone experience' refers to one or more courses within the major programme or professional core which are approved by the Board of the Faculty for the purpose of integrating knowledge and skills acquired, and which are prescribed in the syllabuses of the degree curriculum.
'Syllabus' means courses taught by departments, centres, and schools, offered under a degree curriculum.
'Prerequisite' means a course or a group of courses which candidates must have completed successfully or a requirement which candidates must have fulfilled before being permitted to take the course in question.
'Corequisite' means a course which candidates must take in conjunction with the course in question.
'Credits' or 'credit-units' means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.
'Grade Points’ are standardized measurements of candidates’ academic achievement in courses taken to satisfy the requirements of the degree curriculum and are expressed as a scale prescribed in these regulations.
'Grade Point Average' is a numerical measure of a candidate's academic achievement over a specified period of time. Each course attempted (including each failed course) is assigned a numerical value, with all courses carrying equal weighting. This numerical value is the product of grade points earned for the course and the credit value of that course. The 'Grade Point Average' is the sum of these numerical values divided by the total number of credits attempted:

(where ' i ' stands for all passed and failed courses taken by the student over a specified period)
'Semester Grade Point Average' or 'Semester GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) during a given semester.
'Year Grade Point Average' or 'Year GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) during a given academic year.
'Cumulative Grade Point Average' or 'Cumulative GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) at the time of calculation.
'Assessment' refers to judgment about the quality and extent to which a student has achieved the stated learning objectives or learning outcomes. It includes all types of assessment activities which allow for such a judgment to be made. For the purpose of interpreting the relevant provisions of the Ordinance and the Statutes and where appropriate,
reference to 'examination' or 'examinations' in the Ordinance and the Statutes shall include and cover all forms of 'assessment' and its related processes.
A 'transcript' refers to a transcript of the record of study of a candidate, issued by the Registry of the University.

UG 2 Advanced standing:
Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum. Candidates who are awarded Advanced Standing will not be granted any further credit transfer for those studies for which Advanced Standing has been granted. The amount of credits to be granted for advanced standing shall be determined by the Board of the Faculty, in accordance with the following principles:
(a) at least half the number of credits of the degree curriculum normally required for award of the degree shall be accumulated through study at this University or from transfer of credits for courses completed at other institutions in accordance with Regulation UG 4(d); and
(b) in accordance with Statute III. 5 and notwithstanding the granting of advanced and/or transfer credits, a minimum of two semesters of study at this University shall be required before a candidate is considered for the award of a first degree, other than a degree in medicine or surgery, and a minimum of four semesters of study at this University shall be required before a candidate is considered for a first degree in medicine or surgery.
Credits granted for advanced standing shall not normally be included in the calculation of the GPA unless permitted by the Board of the Faculty but will be recorded on the transcript of the candidate.

## UG 3 Period of study:

The period of study of the curriculum shall be specified in the regulations governing the degree. To be eligible for award of the degree, a candidate shall fulfill all curriculum requirements within the maximum period of registration, unless otherwise permitted or required by the Board of the Faculty.

## UG 4 Progression in curriculum:

(a) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements is fewer than 24 credits.
(b) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load for the normative period of study specified in the curriculum regulations, save as provided for under UG4(c).
(c) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load for the maximum period of registration specified in the curriculum regulations.
(d) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The
number of transferred credits may be recorded in the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.
(e) Unless otherwise permitted by the Board of the Faculty, candidates shall be recommended for discontinuation of their studies if they have:
(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or
(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or
(iii) exceeded the maximum period of registration specified in the regulations of the degree.

## UG 5 Requirements for graduation:

To be eligible for admission to the degree, candidates shall fulfill the following requirements in addition to the requirements prescribed in the regulations and syllabuses governing the degree curriculum within the maximum period of registration:
(a) successful completion of 12 credits in English language enhancement, including 6 credits in Core University English ${ }^{2}$ and 6 credits in an English in the Discipline course ${ }^{3}$;
(b) successful completion of 6 credits in Chinese language enhancement ${ }^{4}$;
(c) successful completion of 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry ${ }^{5}$ with not more than 24 credits of course being selected within one academic year except where candidates are required to make up for failed credits; and
(d) successful completion of a capstone experience as specified in the syllabuses of the degree curriculum.

## UG 6 Exemption:

Candidates may be exempted, with or without special conditions attached, from any of the
${ }^{2}$ Candidates who have achieved Level $5^{* *}$ in English Language in the Hong Kong Diploma of Secondary Education Examination, or equivalent, may at the discretion of the Faculty be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.
${ }^{3}$ (a) To satisfy the English in the Discipline (ED) requirement, candidates who have passed the ED course for a Major but subsequently change that Major are required to pass the ED course for the new Major, or either of the double Majors finally declared upon graduation irrespective of whether the second Major is offered within or outside of the candidates' home Faculty.
(b) Candidates declaring double Majors can, if they fail in the ED course for one of the Majors, either (i) re-take and successfully complete that failed ED course, or (ii) successfully complete the ED course for the other Major, irrespective of whether the Major is offered within or outside of the candidates' home Faculty.
(c) Candidates who undertake studies in double Majors or double degrees are not required to take a second ED course but may be advised by the Faculty to do so.
${ }^{4}$ Candidates who have not studied Chinese language during their secondary education may be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.
${ }^{5}$ Candidates registered for double degree studies are required to successfully complete 24 credits of courses in the Common Core Curriculum, selecting one course from each Area of Inquiry, within the curriculum of the first degree, as appropriate.
requirements in UG 5 by the Senate in exceptional circumstances. Candidates who are so exempted must replace the number of exempted credits with courses of the same credit value.

## UG 7 Assessment:

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.
(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate's absence from any examination. Any supplementary examination shall be part of that academic year's examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.
(c) Candidates suspended under Statute XXXI shall not be allowed to take, present themselves for, and participate in any assessments during the period of suspension, unless otherwise permitted by the Senate.
(d) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.
(e) Candidates are required to make up for failed courses in the following manner as prescribed in the curriculum regulations:
(i) undergoing re-assessment/re-examination in the failed course to be held no later than the end of the following semester (not including the summer semester); or
(ii) re-submitting failed coursework, without having to repeat the same course of instruction; or
(iii) repeating the failed course by undergoing instruction and satisfying the assessments; or
(iv) for elective courses, taking another course in lieu and satisfying the assessment requirements.
(f) There shall be no appeal against the results of examinations and all other forms of assessment.

## UG 8 Grading system:

(a) The grades, their standards and the grade points for assessment shall be as follows ${ }^{6}$ :

| Grade | Standard | Grade Point |
| :---: | :---: | :---: |
| A+ |  | 4.3 |
| A | Excellent | 4.0 |
| A- |  | 3.7 |
| B+ |  | 3.3 |
| B | Good | 3.0 |
| B- |  | 2.7 |
| C+ |  | 2.3 |
| C | Satisfactory | 2.0 |
| C- |  | 1.7 |
| D+ | Pass | 1.3 |
| D | Pass | 1.0 |
| F | Fail | 0 |

[^22](b) Special permission may be given by Senate for courses in individual curricula to be graded as 'Pass', 'Fail' or 'Distinction'. Such courses will not be included in the calculation of the GPA.

## UG 9 Honours classifications:

(a) Honours classifications shall be awarded in five divisions ${ }^{7}$ : First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the degree in accordance with the following Cumulative GPA scores, with all courses taken (including failed courses) carrying equal weighting:

| Class of honours | CGPA range |
| :---: | :---: |
| First Class Honours | $3.60-4.30$ |
| Second Class Honours | (2.40-3.59) |
| Division One | $3.00-3.59$ |
| Division Two | $2.40-2.99$ |
| Third Class Honours | $1.70-2.39$ |
| Pass | 1.00-1.69 |

(b) Honours classification may not be determined solely on the basis of a candidate's Cumulative GPA and the Board of Examiners for the degree may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Cumulative GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.
(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

[^23]
## REGULATIONS FOR FIRST DEGREE CURRICULA ${ }^{1}$

Regulations for First Degree Curricula (for students admitted under the 4-year curriculum to the first year in the academic year 2013-14, and students admitted directly to the third year in 2015-16)
(See also General Regulations)

## UG 1 Definitions:

For the purpose of regulations and syllabuses for all first degree curricula unless otherwise defined -

An 'academic year' comprises two semesters, the first semester to commence in September and end in December, and the second semester to commence in January and end in May/June, on dates as prescribed by the Senate. It includes, normally at the end of each semester, a period during which candidates are assessed. For some curricula, a 'summer semester' may be organized in addition to the normal two semesters. Clinical curricula have extended semesters.

A 'summer semester' normally comprises seven to eight weeks of intensive timetabled teaching and assessment to commence four weeks after the end of the second semester assessment period, and to conclude about one week before the start of the next academic year.
The 'maximum period of registration' is equivalent to a period which is $150 \%$ of the curriculum's normative period of study as specified in the degree regulations, provided that where this results in a residual fraction of an academic year, the fractional period shall be extended to one full academic year.
'Degree curriculum' means the entire study requirements for the award of an undergraduate degree.
'Major programme' means the study requirements, including a capstone experience, for a single major area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 72 credits nor more than 96 credits, as prescribed in the syllabuses for a degree curriculum.
'Minor programme' means the study requirements for a single minor area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 36 credits nor more than 48 credits, as prescribed in the syllabuses for a degree curriculum.
'Professional core' refers to the study requirements, including a capstone experience, prescribed in the regulations and syllabuses for disciplinary studies in degree curricula which are not structured as major/minor programmes for reasons relating to professional qualification and/or accreditation.
'Course' means a course of study, with a credit value expressed as a number of credit-units

[^24](The Regulations for First Degree Curricula applicable to cohorts admitted in 2012-13 and 2013-14 under the 4 -year '2012 curriculum' can be found in the Calendar for 2013-14, and in the Calendar for 2014-15 for the cohorts admitted in 2014-15 and 2015-16.)
as specified in the syllabuses for a degree curriculum.
'Disciplinary elective course' or 'Disciplinary Elective' means any course offered in the same major or minor programme or the professional core which can be taken by candidates to fulfill the curriculum requirements as specified in the syllabuses of the degree curriculum.
'Elective course' or 'Elective' means any course offered within the same or another curriculum, other than compulsory courses in the candidate's degree curriculum, that can be taken by the candidate in order to complete the credit requirements of the degree curriculum.
'Capstone experience' refers to one or more courses within the major programme or professional core which are approved by the Board of the Faculty for the purpose of integrating knowledge and skills acquired, and which are prescribed in the syllabuses of the degree curriculum.
'Syllabus' means courses taught by departments, centres, and schools, offered under a degree curriculum.
'Prerequisite' means a course or a group of courses which candidates must have completed successfully or a requirement which candidates must have fulfilled before being permitted to take the course in question.
'Corequisite' means a course which candidates must take in conjunction with the course in question.
'Credits' or 'credit-units' means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.
'Grade Points' are standardized measurements of candidates' academic achievement in courses taken to satisfy the requirements of the degree curriculum and are expressed as a scale prescribed in these regulations.
'Grade Point Average' is a numerical measure of a candidate's academic achievement over a specified period of time. Each course attempted (including each failed course) is assigned a numerical value, with all courses carrying equal weighting. This numerical value is the product of grade points earned for the course and the credit value of that course. The 'Grade Point Average' is the sum of these numerical values divided by the total number of credits attempted:
$$
G P A=\frac{\sum_{i} \text { Course Grade Point } \times \text { Course Credit Value }}{\sum_{i} \text { Course Credit Value }}
$$
(where ' i ' stands for all passed and failed courses taken by the student over a specified period)
'Semester Grade Point Average' or 'Semester GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) during a given semester.
'Year Grade Point Average' or 'Year GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) during a given academic year.
'Cumulative Grade Point Average' or 'Cumulative GPA' is the GPA in respect of courses attempted by a candidate (including failed courses) at the time of calculation.
'Assessment' refers to judgment about the quality and extent to which a student has achieved the stated learning objectives or learning outcomes. It includes all types of assessment activities which allow for such a judgment to be made. For the purpose of interpreting the relevant provisions of the Ordinance and the Statutes and where appropriate, reference to 'examination' or 'examinations' in the Ordinance and the Statutes shall include
and cover all forms of 'assessment' and its related processes.
A 'transcript' refers to a transcript of the record of study of a candidate, issued by the Registry of the University.

## UG 2 Advanced standing:

Advanced standing may be granted to candidates in recognition of studies completed successfully in an approved institution of higher education elsewhere. Candidates who are awarded Advanced Standing will not be granted any further credit transfer for those studies for which Advanced Standing has been granted. The amount of credits to be granted for advanced standing shall be determined by the Board of the Faculty, in accordance with the following principles:
(a) at least half the number of credits of the degree curriculum normally required for award of the degree shall be accumulated through study at this University or from transfer of credits for courses completed at other institutions in accordance with Regulation UG 4(d); and
(b) in accordance with Statute III. 5 and notwithstanding the granting of advanced and/or transfer credits, a minimum of two semesters of study at this University shall be required before a candidate is considered for the award of a first degree, other than a degree in medicine or surgery, and a minimum of four semesters of study at this University shall be required before a candidate is considered for a first degree in medicine or surgery.

Credits granted for advanced standing shall not normally be included in the calculation of the GPA unless permitted by the Board of the Faculty but will be recorded on the transcript of the candidate.

## UG 3 Period of study:

The period of study of the curriculum shall be specified in the regulations governing the degree. To be eligible for award of the degree, a candidate shall fulfill all curriculum requirements within the maximum period of registration, unless otherwise permitted or required by the Board of the Faculty.

## UG 4 Progression in curriculum:

(a) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements is fewer than 24 credits.
(b) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load for the normative period of study specified in the curriculum regulations, save as provided for under UG4(c).
(c) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load for the maximum period of registration specified in the curriculum regulations.
(d) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The
number of transferred credits may be recorded in the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.
(e) Unless otherwise permitted by the Board of the Faculty, candidates shall be recommended for discontinuation of their studies if they have:
(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or
(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or
(iii) exceeded the maximum period of registration specified in the regulations of the degree.

## UG 5 Requirements for graduation:

To be eligible for admission to the degree, candidates shall fulfill the following requirements in addition to the requirements prescribed in the regulations and syllabuses governing the degree curriculum within the maximum period of registration:
(a) successful completion of 12 credits in English language enhancement, including 6 credits in Core University English ${ }^{2}$ and 6 credits in an English in the Discipline course ${ }^{3}$;
(b) successful completion of 6 credits in Chinese language enhancement ${ }^{4}$;
(c) successful completion of 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry ${ }^{5}$ with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits; and
(d) successful completion of a capstone experience as specified in the syllabuses of the degree curriculum.

## UG 6 Exemption:

${ }^{2}$ Candidates who have achieved Level 5** in English Language in the Hong Kong Diploma of Secondary Education Examination, or equivalent, may at the discretion of the Faculty be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.
${ }^{3}$ (a) To satisfy the English in the Discipline (ED) requirement, candidates who have passed the ED course for a Major but subsequently change that Major are required to pass the ED course for the new Major, or either of the double Majors finally declared upon graduation irrespective of whether the second Major is offered within or outside of the candidates' home Faculty.
(b) Candidates declaring double Majors can, if they fail in the ED course for one of the Majors, either (i) re-take and successfully complete that failed ED course, or (ii) successfully complete the ED course for the other Major, irrespective of whether the Major is offered within or outside of the candidates' home Faculty.
(c) Candidates who undertake studies in double Majors or double degrees are not required to take a second ED course but may be advised by the Faculty to do so.
${ }^{4}$ Candidates who have not studied Chinese language during their secondary education may be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.
${ }^{5}$ Candidates registered for double degree studies are required to successfully complete 24 credits of courses in the Common Core Curriculum, selecting one course from each Area of Inquiry, within the curriculum of the first degree, as appropriate.

Candidates may be exempted, with or without special conditions attached, from any of the requirements in UG 5 by the Senate in exceptional circumstances. Candidates who are so exempted must replace the number of exempted credits with courses of the same credit value.

## UG 7 Assessment:

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.
(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate's absence from any examination. Any supplementary examination shall be part of that academic year's examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.
(c) Candidates shall not be permitted to repeat a course for which they have received a $D$ grade or above for the purpose of upgrading.
(d) Candidates are required to make up for failed courses in the following manner as prescribed in the curriculum regulations:
(i) undergoing re-assessment/re-examination in the failed course to be held no later than the end of the following semester (not including the summer semester); or
(ii) re-submitting failed coursework, without having to repeat the same course of instruction; or
(iii) repeating the failed course by undergoing instruction and satisfying the assessments; or
(iv) for elective courses, taking another course in lieu and satisfying the assessment requirements.
(e) There shall be no appeal against the results of examinations and all other forms of assessment.

## UG 8 Grading system:

(a) The grades, their standards and the grade points for assessment shall be as follows ${ }^{6}$ :

| Grade |  | Standard | Grade Point |
| :--- | :---: | :---: | :---: |
| A+ |  | 4.3 |  |
| A | Excellent | 4.0 |  |
| A- | E | 3.7 |  |
| B+ |  | 3.3 |  |
| B |  |  | 3.0 |
| B- | Good | 2.7 |  |
| C+ |  | 2.3 |  |
| C |  | 2.0 |  |
| C- |  |  | 1.7 |
| D+ |  |  | 1.3 |
| Datisfactory |  | 1.0 |  |
| F |  |  | 0 |

(b) Special permission may be given by Senate for courses in individual curricula to be

[^25]graded as 'Pass', 'Fail' or 'Distinction'. Such courses will not be included in the calculation of the GPA.

## UG 9 Honours classifications:

(a) Honours classifications shall be awarded in five divisions ${ }^{7}$ : First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the degree in accordance with the following Cumulative GPA scores, with all courses taken (including failed courses) carrying equal weighting:

| Class of honours | CGPA range |
| :---: | :---: |
| First Class Honours | $3.60-4.30$ |
| Second Class Honours | (2.40-3.59) |
| Division One | 3.00-3.59 |
| Division Two | $2.40-2.99$ |
| Third Class Honours | 1.70-2.39 |
| Pass | 1.00-1.69 |

(b) Honours classification may not be determined solely on the basis of a candidate's Cumulative GPA and the Board of Examiners for the degree may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Cumulative GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.
(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

[^26]
## Teaching Weeks



Teaching Weeks 2021-22 for Undergraduate and Taught Postgraduate Students


## Notes:

First Semester: 12 Mondays and Tuesdays, 11 Wednesdays, 12 Thursdays, 11 Fridays, 12 Saturdays
Second Semester: 11.5 Mondays, 12 Tuesdays and Wednesdays, 13 Thursdays, 12 Fridays and Saturdays

## Useful contacts and websites



## Useful contacts and websites

| Faculty of Science | Office Location | Ground Floor, Chong Yuet Ming Physics Building |
| :---: | :---: | :---: |
|  | Tel | 39172683 |
|  | Fax | 28584620 |
|  | Email | science@hku.hk (General Enquiries) |
|  |  | sci.ug.enquiry@hku.hk (Academic Matters) |
|  |  |  |
|  |  | Enrichment Opportunities) |
|  | Website | https://www.scifac.hku.hk/ |
|  | (Please visit https://www.scifac.hku.hk/ for the latest updates of BSc courses, timetables, notices and forms) |  |
| Departments/Schools |  |  |
| Biological Sciences | Website | https://www.biosch.hku.hk/ |
| Biomedical Sciences | Website | http://www.sbms.hku.hk/ |
| Chemistry | Website | https://www.chemistry.hku.hk/ |
| Earth Sciences | Website | https://www.earthsciences.hku.hk/ |
| Mathematics | Website | https://hkumath.hku.hk/web/index.php |
| Physics | Website | https://www.physics.hku.hk/ |
| Statistics and Actuarial Science | Website | https://saasweb.hku.hk/ |
| Academic Advising Office | Tel | 39170128 |
|  | Website | http://aao.hku.hk |
| Academic Services Office | Office Location | G04, Run Run Shaw Building |
|  | Tel | 28592433 |
|  | Fax | 25401405 |
|  | Email | asoffice@hku.hk |
|  | Website | http://www.ase.hku.hk |
| Common Core courses | Website | https://commoncore.hku.hk/ |
| HKU Worldwide Undergraduate Exchange Programme | Website | https://aal.hku.hk/studyabroad/ |
| Centre of Development and | Tel | 39172305 |
| Resources for Students (CEDARS) | Website | https://www.cedars.hku.hk/ |
| University Health Service | Tel | 39172501 (General enquiries) |
|  |  | 25494686 (Medical appointments only) |
|  | Website | http://www.uhs.hku.hk |
| Plagiarism | Website | https://tl.hku.hk/plagiarism/ |


[^0]:    ${ }^{+}$Candidates who have been admitted to Year 1 in 2020-21 (and thereafter) and have achieved any one of the following qualifications are exempted from taking SCNC1111:

[^1]:    ${ }^{1}$ Candidates who have been admitted to Year 1 in 2018-19 (and thereafter) and have achieved any one of the following qualifications are exempted from this requirement, and Core University English is optional. Those who do not take this course should take a 6-credit elective course in lieu, see Regulation UG6:

    - Level 5 or above in English Language in the HKDSE
    - holder of a Bachelor's degree from an English-medium university
    - achieved Grade A or above in English Language GCE Advanced Level (AL) / Advanced Subsidiary Level (ASL)
    - achieved an overall IELTS score of no less than 7 AND with all sub-scores no less than 6.5 on the Reading, Speaking, Listening and Writing Tests
    - achieved an overall TOEFL Internet-based test score of no less than 94 AND no less than a 24 on the writing, a 20 on the speaking, a 20 on the listening, AND a 19 on the reading sections
    - achieved in International Baccalaureate (IB) Grade 4 or above in English A1/ English Language A/ English A: Literature/ English A: Language and Literature (HL); or Grade 5 or above in English B/ English Language B (HL); or Grade 5 or above in English A1/ English Language A/ English A: Literature/ English A: Language and Literature (SL)
    - achieved Grade 4 or above on the Advanced Placement (AP) English Language/ English Language and Composition/ English Literature and Composition Test
    - achieved a NEW Scholastic Aptitude Test (SAT) score of 35 or above on both the Writing \& Language Test and Reading Test (from 2016)
    - achieved Grade B or above in H1 General Paper at the Singapore GCE A-level
    - achieved Grade A or better in English language at Malaysia SPM examination
    - achieved Grade A2 or better in Malaysia UEC-Senior English Language
    - attained merit (3 points) or above in each set of credits in New Zealand NCEA Literacy (10 credits made up of 5 credits in reading and 5 credits in writing)
    - achieved a score of $95 \%$ or better in English at All India Senior School Certificate Examination / Higher School Certificate
    - achieved a final score of $90 \%$ or better in English at Grade 12 Canadian high school curriculum
    - achieved Grade B or better in English Language at Sri Lanka Ordinary examination
    - achieved a score of 90 or better in English in the Russian Unified State Exam (Единый государственный экзамен, ЕГЭ, Yediniy gosudarstvenniy ekzamen, EGE)
    - Academic Speaking and Writing test conducted by CAES for students who have not taken any of the above tests
    $>$ When applying to take the Academic Speaking and Writing Test, students should provide evidence to the home Faculty and the CAES1000 Course Coordinator that they were admitted to HKU using qualifications other than those included in the above list.
    $>$ Applicants are required to show the evidence of those other qualifications to the assessor on the day of the Academic Speaking and Writing Test.
    > If any applicants failed to provide any evidence that they were admitted to HKU using qualifications other than those included in the above list provided by CAES, the CAES assessor has the rights not to allow the applicant to take the test.

[^2]:    ^ Availability of courses in 2022-2023 is subject to change.

[^3]:    Note:
    HL: Higher Level
    SL: Standard Level
    AL: Advanced Level

[^4]:    Required/recommended Organic Chemistry, by Paula Y. Bruice, 8th Global Edition, Chapters 1-12.

[^5]:    R. E. Goodman: Introduction to Rock Mechanics (John Wiley \& Sons, 1989)

[^6]:    1 This regulation should be read in conjunction with UG1 of the Regulations for First Degree Curricula.

[^7]:    2 For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core course with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.

[^8]:    1 This regulation should be read in conjunction with UG1 of the Regulations for First Degree Curricula.

[^9]:    1 This regulation should be read in conjunction with UG1 of the Regulations for First Degree Curricula.

[^10]:    1 This regulation should be read in conjunction with UG1 of the Regulations for First Degree Curricula.

[^11]:    ${ }^{1}$ These regulations are applicable to candidates admitted from 2019-20 onwards. Reference in these regulations to the powers of the Boards of Faculties shall be applicable to Senate Boards of Studies which administer first degree curricula.

[^12]:    ${ }^{2}$ Candidates who have achieved Level 5** in English Language in the Hong Kong Diploma of Secondary Education Examination, or equivalent, may at the discretion of the Faculty be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.
    ${ }^{3}$ (a) To satisfy the English in the Discipline (ED) requirement, candidates who have passed the ED course for a Major but subsequently change that Major are required to pass the ED course for the new Major, or either of the double Majors finally declared upon graduation irrespective of whether the second Major is offered within or outside of the candidates' home Faculty.
    (b) Candidates declaring double Majors can, if they fail in the ED course for one of the Majors, either (i) re-take and successfully complete that failed ED course, or (ii) successfully complete the ED course for the other Major, irrespective of whether the Major is offered within or outside of the candidates' home Faculty.
    (c) Candidates who undertake studies in double Majors or double degrees are not required to take a second ED course but may be advised by the Faculty to do so.
    ${ }^{4}$ Candidates who have not studied Chinese language during their secondary education may be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.
    ${ }^{5}$ Candidates registered for dual degree studies are required to successfully complete 24 credits of courses in the Common Core Curriculum, selecting one course from each Area of Inquiry, within the curriculum of the first degree, as appropriate.

[^13]:    ${ }^{6}$ UG 8 is not applicable to the respective Professional Core of the BDS and MBBS curricula.

[^14]:    ${ }^{7}$ UG 9 is not applicable to the BChinMed, BDS and MBBS curricula.
    ${ }^{8}$ For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core course with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.

[^15]:    ${ }^{1}$ These regulations are applicable to candidates admitted from 2018-19 onwards. Reference in these regulations to the powers of the Boards of Faculties shall be applicable to Senate Boards of Studies which administer first degree curricula.

[^16]:    ${ }^{6}$ UG 8 is not applicable to the respective Professional Core of the BDS and MBBS curricula.

[^17]:    ${ }^{7}$ UG 9 is not applicable to the BChinMed, BDS and MBBS curricula.
    ${ }^{8}$ For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core course with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.

[^18]:    ${ }^{1}$ These regulations are applicable to candidates admitted from 2017-18 onwards. Reference in these regulations to the powers of the Boards of Faculties shall be applicable to Senate Boards of Studies which administer first degree curricula.

[^19]:    ${ }^{6}$ UG 8 is not applicable to the respective Professional Core of the BDS and MBBS curricula.

[^20]:    ${ }^{7}$ UG 9 is not applicable to the BChinMed, BDS and MBBS curricula.
    ${ }^{8}$ For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core course with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.

[^21]:    ${ }^{1}$ These regulations are applicable to candidates admitted from 2016-17 onwards to the first year of first degree curricula under the 4 -year ' 2012 curriculum', the 2 -year curriculum in respect of the $\mathrm{BSc}(\mathrm{IM})$, the 5 -year curriculum in respect of the BA\&BEd(LangEd), BEd\&BSc, BEd\&BSocSc, BSc(Sp\&HearSc), and BNurs, and the 6 -year curriculum in respect of the BChinMed, BDS and MBBS. Reference in these regulations to the powers of the Boards of Faculties shall be applicable to Senate Boards of Studies which administer first degree curricula.

[^22]:    ${ }^{6}$ UG 8 is not applicable to the respective Professional Core of the BDS and MBBS curricula.

[^23]:    ${ }^{7}$ UG 9 is not applicable to the BChinMed, BDS and MBBS curricula.

[^24]:    ${ }^{1}$ These regulations are applicable to candidates admitted from 2016-17 onwards to the first year of first degree curricula under the 4 -year ' 2012 curriculum', the 2 -year curriculum in respect of the $\mathrm{BSc}(\mathrm{IM})$, the 5 -year curriculum in respect of the BA\&BEd(LangEd), BEd\&BSc, BEd\&BSocSc, BSc(Sp\&HearSc), and BNurs, and the 6 -year curriculum in respect of the BChinMed, BDS and MBBS. Reference in these regulations to the powers of the Boards of Faculties shall be applicable to Senate Boards of Studies which administer first degree curricula.

[^25]:    ${ }^{6}$ UG 8 is not applicable to the respective Professional Core of the BDS and MBBS curricula.

[^26]:    ${ }^{7}$ UG 9 is not applicable to the BChinMed, BDS and MBBS curricula.

