BSc

Syllabuses and Regulations
(4-year curriculum)

2018-19

Faculty of Science
The University of Hong Kong
General Information
This booklet includes information on:

- **BSc Degree curriculum and graduation requirements**

- **List of courses and descriptions**

 A full list of Science courses and descriptions include information on course code, title, credit value, contents, semester offered, teaching and learning activities, assessment methods and grade descriptors.

- **Majors & Minors**

 Details of the Science Majors and Minors available for students.

- **Degree regulations**

 Rules that cover curriculum requirements and progression in curriculum, selection of courses, assessment, advanced standing, grading system and degree honours classification.

- **Teaching weeks**

 Teaching weeks show the dates of semesters, University holidays, revision and examination periods.

Further Information detailing instructions on the selection of courses, grading, graduation requirements, honours classification, application for advanced standing and exemption, etc, can be found in the *Handbook for BSc Students* available at http://www.scifac.hku.hk/ug/current

Updates on BSc Syllabuses and Regulations can be found at http://webapp.science.hku.hk/sr4/servlet/enquiry
CONTENTS

SECTION I	BSc Degree Curriculum and Graduation Requirements	1 - 5
SECTION II	Capstone Requirement for Science Students	6
SECTION III	Credit Unit Statement of BSc Degree Curriculum	7 - 8
SECTION IV	List of BSc Courses and English and Chinese language courses on offer in 2018-19 and 2019-20	9 - 71
SECTION V	Equivalency of HKDSE and other qualifications	72
SECTION VI	Science Majors 2018-19	73 - 331
List of Science Majors		73
Major in Astronomy		74
Major in Biochemistry		86
Major in Biological Sciences		100
Major in Chemistry		114
Major in Chemistry (Intensive)		128
Major in Decision Analytics		136
Major in Earth System Science		150
Major in Ecology & Biodiversity		164
Major in Ecology & Biodiversity (Intensive)		178
Major in Environmental Science		186
Major in Food & Nutritional Science		200
Major in Geology		214
Major in Geology (Intensive)		228
Major in Mathematics		236
Major in Mathematics / Physics		250
Major in Molecular Biology & Biotechnology		268
Major in Molecular Biology & Biotechnology (Intensive)		282
Major in Physics		290
Major in Risk Management		304
Major in Statistics		318

SECTION VII	Science Minors 2018-19	332 - 477
List of Science Minors		332
Minor in Actuarial Studies		333
Minor in Astronomy		340
Minor in Biochemistry		347
Minor in Chemistry		354
Minor in Computational & Financial Mathematics		368
Minor in Earth Sciences		375
Minor in Ecology & Biodiversity		382
Minor in Environmental Science		389
Minor in Food & Nutritional Science		397
Minor in Marine Biology		409
Minor in Mathematics		416
Minor in Molecular Biology & Biotechnology		430
Minor in Operations Research & Mathematical Programming		437
Minor in Physics		443
Minor in Plant Science		457
Minor in Risk Management		464
Minor in Statistics		471
SECTION VIII
Students taking double Majors, Major-Minor or double Minors with overlapping course requirements

Double Counting of Courses in Double Majors, Major-Minor or Double Minors

SECTION IX
Course Descriptions

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Sciences</td>
<td>480</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>490</td>
</tr>
<tr>
<td>English</td>
<td>577</td>
</tr>
<tr>
<td>Chemistry</td>
<td>579</td>
</tr>
<tr>
<td>Chinese</td>
<td>617</td>
</tr>
<tr>
<td>Earth Sciences</td>
<td>618</td>
</tr>
<tr>
<td>Mathematics</td>
<td>654</td>
</tr>
<tr>
<td>Physics</td>
<td>695</td>
</tr>
<tr>
<td>Science Faculty</td>
<td>739</td>
</tr>
<tr>
<td>Statistics & Actuarial Science</td>
<td>746</td>
</tr>
</tbody>
</table>

SECTION X
Degree Regulations

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulations for the Degree of Bachelor of Science</td>
<td>797</td>
</tr>
<tr>
<td>Regulations for First Degree Curricula</td>
<td>813</td>
</tr>
</tbody>
</table>

SECTION XI
Teaching Weeks

<table>
<thead>
<tr>
<th>Week</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>837</td>
</tr>
</tbody>
</table>
BSc Degree Curriculum and Graduation Requirements
1. A BSc Degree Curriculum

The Faculty of Science offers a number of Science majors leading to the award of a BSc degree.

All students admitted to the first year of the 6901 BSc programme the academic year of 2018-19 and thereafter are required to complete at least one Science major out of the 14 regular or 4 intensive Science majors as the primary major for the award of the BSc degree. In addition to the primary Science major, students may take a second major or a minor in a Science or non-Science discipline. Students should note that some non-Science majors and minors may require students to have achieved a minimum academic result before they are allowed to enroll in them.

(a) A typical BSc curriculum for students admitted under the 4-year ‘2012 curriculum’ in 2012-13 and thereafter

To complete the BSc degree curriculum, you have to pass at least 240 credits, equivalent to 40 6-credit courses, normally spread over 4-years of full-time study. A BSc curriculum typically comprises:

(i) UGS:
- 2 English courses and 1 Chinese course for university language requirements (18 credits)
- 6 common core courses in 4 Areas of Inquiry (36 credits)

(ii) For regular Science major:
- 16 courses for the regular Science major including 2 Science Foundation courses, Disciplinary courses and capstone course (96 credits)
- A choice of 15 courses as elective courses, or to fulfill the requirements of a minor or a second major (90 credits)

OR

For intensive Science major (applicable to 2018-19 intake and thereafter):
- 24 - 25 courses for the intensive Science major including 2 Science Foundation courses, Disciplinary courses and capstone course(s) (144 - 150 credits)
- A choice of 6 - 7 courses as elective courses, or to fulfill the requirements of a minor (36 - 42 credits)

Curriculum requirements (240 credits)

<table>
<thead>
<tr>
<th>Option A</th>
<th>Option B</th>
<th>Option C</th>
<th>Option D</th>
<th>Option E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students taking one regular Science major</td>
<td>Students taking one regular Science major and one minor</td>
<td>Students taking double majors (one regular Science major and a 2nd major)</td>
<td>Students taking an intensive Science major</td>
<td>Students taking an intensive Science major and a minor</td>
</tr>
</tbody>
</table>

Primary regular Science Major: 96 credits
- 2 Science Foundation courses (SCNC1111 & SCNC1112, taken in Year 1),
- 13 Disciplinary courses
- and 1 Capstone course

Primary intensive Science Major*: 144 - 150 credits
- 2 Science Foundation courses (SCNC1111 & SCNC1112, taken in Year 1),
- 21 - 22 Disciplinary courses and 1 Capstone course

Common Core Courses: 36 credits *
- 6 courses in 4 Areas of Inquiry
 (at least 1 and not more than 2 courses from each AoI)

Language Courses: 18 credits
- English: 12 credits (6 credits in Core University English (CAES1000*), taken in Year 1) and
 6 credits in English in the Discipline (CAESS20, taken in Year 2)
- Chinese: 6 credits (CSCI9001*), taken in Year 3

Electives: 90 credits
To make up the 240 total credits

Minor*: 36 - 48 credits

2nd Major **: 72 - 96 credits
To make up the 240 total credits

Electives: 36 - 42 credits
To make up the 240 total credits

Minor*: 36 - 48 credits

Notes:
Student must select at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits.
Common Core courses should be completed normally within the first three years of study.
(b) Common Core Curriculum

The Common Core Curriculum is designed to provide key common learning experience for all HKU students and to broaden their horizons beyond their chosen disciplinary fields of study. It focuses on issues that have been, and continue to be, of deeply profound significance to mankind, the core intellectual skills that all HKU undergraduates should acquire and the core values that they should uphold. The Common Core Curriculum is divided into four Areas of Inquiry (AoIs): (1) Scientific and Technological Literacy; (2) Humanities; (3) Global Issues; (4) China: Culture, State and Society. Students have to pass 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits. Common Core courses should be completed normally within the first three years of the BSc study and cannot be extra taken as free electives.

To satisfy the Chinese language enhancement requirement, students are required to successfully complete the 6-credit Faculty-specific Chinese language enhancement course, except for:

(a) Putonghua-speaking students who should take CUND9002 (Practical Chinese and Hong Kong Society) or CUND9003 (Cantonese for Non-Cantonese Speaking Students). They may take the course in Year 1 or 2 if they so wish; and
(b) students who have not studied Chinese language during their secondary education or who have not attained the requisite level of competence in the Chinese language to take the Chinese language enhancement course should write to the Board of the Faculty to apply to be exempted from the Chinese language requirement, and
(i) take a 6-credit Cantonese or Putonghua language course offered by the School of Chinese especially for international and exchange students; OR
(ii) take an elective course in lieu.

Credit requirement for different majors or minors may vary.

* Students having a second major in Science are allowed to double-count the two Science Foundation Courses. The 12 credits can be made up by selecting any courses.
2. BSc Graduation Requirements and Honours Classification

(a) Award of a BSc degree

For students admitted to the first year in 2014-15 or before, and students admitted directly in the third year in 2016-17 or before:

To be eligible for the award of the degree of Bachelor of Science, students must fulfill the following requirements:

(i) Satisfied the requirements in UG5 of the Regulations for First Degree Curricula;
(ii) Passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the major programme of the BSc degree curriculum.

UG5 specifies that students have to successfully complete:

(a) 12 credits in English language enhancement, including 6 credits in Core University English (i.e. CAES1000) and 6 credits in an English in the Discipline course (i.e. CAES9820 Academic English for Science Students);
(b) 6 credits in Chinese language enhancement (i.e. CSCI9001 Practical Chinese for Science Students);
(c) 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits; and
(d) a capstone experience as specified in the syllabuses of the degree curriculum.

For students admitted to the first year in 2015-16 and thereafter, and students admitted directly in the second/third year in 2017-18 and thereafter:

To be eligible for the award of the degree of Bachelor of Science, students must fulfill the following requirements:

(i) Satisfied the requirements in UG5 of the Regulations for First Degree Curricula;
(ii) Passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the regular major programme, or 144 credits (or a higher credit requirement by the accredited bodies) of the prescribed course in the intensive major programme, of the BSc degree curriculum.

UG5 specifies that students have to successfully complete:

(a) 12 credits in English language enhancement, including 6 credits in Core University English (i.e. CAES1000) and 6 credits in an English in the Discipline course (i.e. CAES9820 Academic English for Science Students);
(b) 6 credits in Chinese language enhancement (i.e. CSCI9001 Practical Chinese for Science Students);
(c) 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits; and
(d) a capstone experience as specified in the syllabuses of the degree curriculum.

(b) Honours Classification

For students admitted to the first year in 2016-17 or before, students admitted directly to the second year in 2017-18, and students admitted directly to the third year in 2018-19 or before:

Classification of honours are calculated using the cumulative grade point average CGPA as below:

<table>
<thead>
<tr>
<th>CGPA range</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class Honours</td>
<td>3.60 – 4.30</td>
</tr>
<tr>
<td>Second Class Honours Division I</td>
<td>3.00 – 3.59</td>
</tr>
<tr>
<td>Second Class Honours Division II</td>
<td>2.40 – 2.99</td>
</tr>
<tr>
<td>Third Class Honours</td>
<td>1.70 – 2.39</td>
</tr>
<tr>
<td>Pass</td>
<td>1.00 – 1.69</td>
</tr>
</tbody>
</table>
For students admitted to the first year in 2017-18 and thereafter, students admitted directly to the second year in 2018-19 and thereafter:

Classification of honours are calculated using the graduation grade point average GGPA* as below:

<table>
<thead>
<tr>
<th>CGPA range</th>
<th>Classification of Honours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.60 – 4.30</td>
<td>First Class Honours</td>
</tr>
<tr>
<td>3.00 – 3.59</td>
<td>Second Class Honours Division I</td>
</tr>
<tr>
<td>2.40 – 2.99</td>
<td>Second Class Honours Division II</td>
</tr>
<tr>
<td>1.70 – 2.39</td>
<td>Third Class Honours</td>
</tr>
<tr>
<td>1.00 – 1.69</td>
<td>Pass</td>
</tr>
</tbody>
</table>

* For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core courses with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.

Credits granted for advanced standing in recognition of studies completed successfully elsewhere before admission to the University and credits transfer in recognition of studies completed on exchange during candidature at HKU are not included in the calculation of GPA.

1 Candidates who have been admitted to Year 1 in 2018-19 (and thereafter) and have achieved any one of the following qualifications are exempted from this requirement, and Core University English is optional. Those who do not take this course should take a 6-credit elective course in lieu, see Regulation UG6:

- Level 5 or above in English Language in the HKDSE
- holder of a Bachelor's degree from an English-medium university
- achieved Grade A or above in English Language GCE Advanced Level (AL) / Advanced Subsidiary Level (ASL)
- achieved an overall IELTS score of no less than 7 AND with all sub-scores no less than 6.5 on the Reading, Speaking, Listening and Writing Tests
- achieved an overall TOEFL Internet-based test score of no less than 94 AND no less than a 24 on the writing, a 20 on the speaking, a 20 on the listening, AND a 19 on the reading sections
- achieved in International Baccalaureate (IB) Grade 4 or above in English A1/ English Language A/ English A: Literature/ English A: Language and Literature (HL); or Grade 5 or above in English B/ English Language B (HL); or Grade 5 or above in English A1/ English Language A/ English A: Literature/ English A: Language and Literature (SL)
- achieved Grade 4 or above on the Advanced Placement (AP) English Language/ English Language and Composition/ English Literature and Composition Test
- achieved a NEW Scholastic Aptitude Test (SAT) score of 35 or above on both the Writing & Language Test and Reading Test (from 2016)
- achieved Grade B or above in H1 General Paper at the Singapore GCE A-level
- achieved Grade A or better in English language at Malaysia SPM examination
- achieved Grade A2 or better in Malaysia UEC-Senior English Language
- attained merit (3 points) or above in each set of credits in New Zealand NCEA Literacy (10 credits made up of 5 credits in reading and 5 credits in writing)
- achieved a score of 95% or better in English at All India Senior School Certificate Examination / Higher School Certificate
- achieved a final score of 90% or better in English at Grade 12 Canadian high school curriculum
- achieved Grade B or better in English Language at Sri Lanka Ordinary examination
- achieved a score of 90 or better in English in the Russian Unified State Exam (Единый государственный экзамен, ЕГЭ, Yediniy gosudarstvenniy ekzamen, EGE)
- Academic Speaking and Writing test conducted by CAES for students who have not taken any of the above tests
 - When applying to take the Academic Speaking and Writing Test, students should provide evidence to the home Faculty and the CAES1000 Course Coordinator that they were admitted to HKU using qualifications other than those included in the above list.
 - Applicants are required to show the evidence of those other qualifications to the assessor on the day of the Academic Speaking and Writing Test.
 - If any applicants failed to provide any evidence that they were admitted to HKU using qualifications other than those included in the above list provided by CAES, the CAES assessor has the rights not to allow the applicant to take the test.
(a) To satisfy the English in the Discipline (ED) requirement, candidates who have passed the ED course for a Major but subsequently change that Major are required to pass the ED course for the new Major, or either of the double Majors finally declared upon graduation irrespective of whether the second Major is offered within or outside of the candidates’ home Faculty.

(b) Candidates declaring double Majors can, if they fail in the ED course for one of the Majors, either (i) re-take and successfully complete that failed ED course, or (ii) successfully complete the ED course for the other Major, irrespective of whether the Major is offered within or outside of the candidates’ home Faculty.

(c) Candidates who undertake studies in double Majors or double degrees are not required to take a second ED course but may be advised by the Faculty to do so.

3 Candidates who have not studied Chinese language during their secondary education may be exempted from this requirement and should take a 6-credit elective course in lieu, see Regulation UG6.

4 Candidates registered for double degree studies are required to successfully complete 24 credits of courses in the Common Core Curriculum, selecting one course from each Area of Inquiry, with the curriculum of the first degree, as appropriate.
SECCTION II Capstone Requirement for Science Students

Capstone experience is an integral part of the major programme which focuses on integration and application of knowledge and skills gained in the early years of study. The capstone course carries a minimum of 6 credits and students must complete this for fulfillment of the graduation requirements. Capstone course is normally taken in the senior years (year 3 or 4) of study. The earliest that a student is allowed to take a capstone course is their year 3 study. The capstone courses in each Science major may be different but a range of courses (e.g. research project, seminar, field work, internship and capstone project) is offered to suit individual student’s needs and interests. The following courses are currently recognized as capstone courses in the different majors:

<table>
<thead>
<tr>
<th>BSc - Major</th>
<th>Recognized Capstone Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Biochemistry</td>
<td>1. BIOC3999 Directed studies in biochemistry (6)</td>
</tr>
<tr>
<td></td>
<td>2. BIOC4966 Biochemistry internship (6)</td>
</tr>
<tr>
<td></td>
<td>3. BIOC4999 Biochemistry project (12)</td>
</tr>
<tr>
<td>2. Biological Sciences</td>
<td>1. BIOL3994 Directed studies in biological sciences (6)</td>
</tr>
<tr>
<td></td>
<td>2. BIOL4964 Biological sciences internship (6)</td>
</tr>
<tr>
<td></td>
<td>3. BIOL4994 Biological sciences project (12)</td>
</tr>
<tr>
<td>3. Chemistry</td>
<td>1. CHEM3999 Directed studies in chemistry (6)</td>
</tr>
<tr>
<td></td>
<td>2. CHEM4910 Chemistry literacy and research (6)</td>
</tr>
<tr>
<td></td>
<td>3. CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia (6)</td>
</tr>
<tr>
<td></td>
<td>4. CHEM4966 Chemistry internship (6)</td>
</tr>
<tr>
<td></td>
<td>5. CHEM4999 Chemistry project (12)</td>
</tr>
<tr>
<td>4. Earth System Science</td>
<td>1. EASC4911 Earth system: contemporary issues (6)</td>
</tr>
<tr>
<td>5. Ecology & Biodiversity</td>
<td>1. BIOL3991 Directed studies in ecology & biodiversity (6)</td>
</tr>
<tr>
<td></td>
<td>2. BIOL4911 Conservation science in practice (6)</td>
</tr>
<tr>
<td></td>
<td>3. BIOL4991 Ecology & biodiversity project (12)</td>
</tr>
<tr>
<td>6. Environmental Science</td>
<td>1. ENVS3999 Directed studies in environmental science (6)</td>
</tr>
<tr>
<td></td>
<td>2. ENVS4966 Environmental science internship (6)</td>
</tr>
<tr>
<td></td>
<td>3. ENVS4999 Environmental science project (12)</td>
</tr>
<tr>
<td>7. Food & Nutritional Science</td>
<td>1. BIOL3992 Directed studies in food & nutritional science (6)</td>
</tr>
<tr>
<td></td>
<td>2. BIOL4913 Advanced practicum of food and nutrient analysis (6)</td>
</tr>
<tr>
<td></td>
<td>3. BIOL4922 Food product development and evaluation (6)</td>
</tr>
<tr>
<td></td>
<td>4. BIOL4962 Food & nutritional science internship (6)</td>
</tr>
<tr>
<td></td>
<td>5. BIOL4992 Food & nutritional science project (12)</td>
</tr>
<tr>
<td>8. Geology</td>
<td>1. EASC4955 Integrated field studies (6)</td>
</tr>
<tr>
<td>9. Mathematics</td>
<td>1. MATH3999 Directed studies in mathematics (6)</td>
</tr>
<tr>
<td></td>
<td>2. MATH4910 Senior mathematics seminar (6)</td>
</tr>
<tr>
<td></td>
<td>3. MATH4911 Mathematics capstone project (6)</td>
</tr>
<tr>
<td></td>
<td>4. MATH4966 Mathematics internship (6)</td>
</tr>
<tr>
<td></td>
<td>5. MATH4999 Mathematics project (12)</td>
</tr>
<tr>
<td>10. Mathematics / Physics</td>
<td>1. MATH3999 Directed studies in mathematics (6)</td>
</tr>
<tr>
<td></td>
<td>2. MATH4910 Senior mathematics seminar (6)</td>
</tr>
<tr>
<td></td>
<td>3. MATH4911 Mathematics capstone project (6)</td>
</tr>
<tr>
<td></td>
<td>4. MATH4966 Mathematics internship (6)</td>
</tr>
<tr>
<td></td>
<td>5. MATH4999 Mathematics project (12)</td>
</tr>
<tr>
<td></td>
<td>6. PHYS3999 Directed studies in physics (6)</td>
</tr>
<tr>
<td></td>
<td>7. PHYS4966 Physics internship (6)</td>
</tr>
<tr>
<td></td>
<td>8. PHYS4999 Physics project (12)</td>
</tr>
<tr>
<td>11. Molecular Biology & Biotechnology</td>
<td>1. BIOL3993 Directed studies in molecular biology & biotechnology (6)</td>
</tr>
<tr>
<td></td>
<td>2. BIOL4963 Molecular biology & biotechnology internship (6)</td>
</tr>
<tr>
<td></td>
<td>3. BIOL4993 Molecular biology & biotechnology project (12)</td>
</tr>
<tr>
<td>12. Astronomy</td>
<td>1. PHYS3999 Directed studies in physics (6)</td>
</tr>
<tr>
<td>13. Physics</td>
<td>2. PHYS4966 Physics internship (6)</td>
</tr>
<tr>
<td></td>
<td>3. PHYS4999 Physics project (12)</td>
</tr>
<tr>
<td>14. Decision Analytics</td>
<td>1. STAT3999 Directed studies in statistics (6)</td>
</tr>
<tr>
<td>15. Risk Management</td>
<td>2. STAT4710 Capstone experience for statistics undergraduates (6)</td>
</tr>
<tr>
<td></td>
<td>4. STAT4799 Statistics project (12)</td>
</tr>
</tbody>
</table>
Credit Unit Statement of BSc Degree Curriculum

SCIENCE
SECTION III Credit Unit Statement of the BSc Degree Curriculum (4-year)

1. General guideline for contact hours requirement in the BSc Degree Curriculum

(a) A 6-credit course has around 120-180 total study hours, including contact hours, study time, assignment and assessment.
(b) About 30% of the total study hours are actual contact hours in the form of a class, e.g. lecture hours.
(c) A 6-credit course has around 36 to 45 lecture hours.
(d) For lecture-based courses, normally there will be tutorial/discussion sessions.
(e) For courses employing a non-lecture or lab-based approach, e.g. field camp, IT-based or project-based courses, students are expected to devote about 120-180 hours for a 6-credit course and 240-360 hours for a 12-credit course.

2. Credit Unit Statement of the BSc Degree Curriculum

The BSc degree curriculum consists of six major types of courses based on the learning activities. The majority of courses in the programmes are 6 credits. Examples of the contact hours requirements for the six categories of courses are described as follows.

(a) Lecture-based courses (6 credits)
Contact hours for 6-credit course: 36 hours of lectures and 12 hours of tutorial/discussion.
These courses are taught predominantly by lectures and tutorials. Assessment is by a combination of examination (0-80%) and continuous assessment (20-100%). Continuous assessment tasks include written assignments (totaling no more than 8,000 words) such as essays and project reports, and oral presentations. Details of the assessment tasks can be found in the description of individual courses.

(b) Lecture with laboratory component courses (6 credits)
Contact hours for 6-credit course: 24 hours of lectures, 24 hours of laboratory and 6 hours of tutorial.
These courses are taught by a combination of lectures and laboratory/practical sessions. Assessment is by a combination of examination (0-70%) and continuous assessment (30-100%). Continuous assessment tasks include written assignments (totaling no more than 8,000 words) such as essays, laboratory reports, and project reports, and oral presentations. Details of the assessment tasks can be found in the description of individual courses.

(c) Laboratory and Workshop courses (6 credits)
Contact hours: 48 hours of laboratory or workshop and 12 hours of tutorial.
These courses aim at enriching the student’s research skills and encourage group work through hands-on activities in which science research is introduced. Students are expected to spend an additional 100 hours on self-study, preparation work for the laboratory, and writing reports. Continuous assessment tasks (100%) include written assignments (totaling no more than 8,000 words) such as laboratory report for each experiment (normally no more than 10 experiments) and essays. Details of the assessment tasks can be found in the description of individual courses.

(d) Project-based courses (6 and 12 credits)
These courses aim at providing students with an opportunity to pursue their own research interest under the supervision of a teacher. The teacher normally meets with the student weekly to discuss project progress. Assessment task is normally through research reports or a dissertation (totaling no more than 10,000 words for a 6-credit course and 20,000 words for a 12-credit course). Oral presentation will form part of the assessment. Details of the assessment tasks can be found in the description of individual courses.
(e) **Field camps (6 credits)**

Contact hours: at least 72 hours in the field

These courses aim at giving practical experience in a variety of contexts. Fieldwork may be conducted locally or overseas during reading week or summer. Fieldwork courses have a small number of lecture hours but are predominately practical in nature. Assessment tasks (100%) normally include the following outputs (totaling no more than 8,000 words): field assignments and reports (normally no more than 10 field assignments). Details of the assessment tasks can be found in the description of individual courses.

(f) **Internship (6 credits)**

Students have to undertake at least 160 hours of internship work

Internships aim to offer students the opportunity to gain work experience related to their major of study. The teacher meets with the student regularly to discuss work progress. Students have to undertake at least 160 hours of internship work arranged formally. Assessment tasks (100%) normally include the following outputs: a written report of no more than 2000 words and feedback from the internship supervisor and an oral presentation on students’ internship experience. Details of the assessment tasks can be found in the description of individual courses.

3. The types of courses in the 14 Science Majors and 17 Science Minors are as follows:

<table>
<thead>
<tr>
<th>Majors/Minors</th>
<th>Lecture-based</th>
<th>Lecture with laboratory component</th>
<th>Laboratory & Workshop</th>
<th>Project-based</th>
<th>Field camps</th>
<th>Internship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuarial Studies (Minor)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Astronomy (Minor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry (Major & Minor)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological Sciences (Major)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry (Intensive Major, Major & Minor)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational & Financial Mathematics (Minor)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision Analytics (Major)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth Sciences (Minor)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth System Science (Major)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecology & Biodiversity (Intensive Major, Major & Minor)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Science (Major & Minor)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food & Nutritional Science (Major & Minor)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology (Intensive Major & Major)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Biology (Minor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics (Major & Minor)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Biology & Biotechnology (Intensive Major, Major & Minor)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations Research & Mathematical Programming (Minor)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics (Major & Minor)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Science (Minor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Management (Major & Minor)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics (Major & Minor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The above different categories of courses follow the unified Credit Unit Statement of the BSc curriculum.
List of BSc Courses and English and Chinese language courses on offer in 2018-19 and 2019-20
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credit</th>
<th>Pre-requisite</th>
<th>Available in</th>
<th>Semester offered in 2018 - 2019</th>
<th>Exam. held in 2018 - 2019</th>
<th>Quota</th>
<th>Course Coordinator</th>
<th>Major / Minor (The Major/Minor that this course appears as.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC3999</td>
<td>Directed studies in biochemistry</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level (level 3 or A) disciplinary core/elective courses in Biochemistry Major including BIOC2600 and BIOL3401. This capstone course is for Biochemistry Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y Y 1, 2, S No exam 36</td>
<td>1, 2, S No exam 36</td>
<td>Prof J D Huang, Biomedical Sciences</td>
<td>Major in Biochemistry (2018, 2017, 2016, 2015, 2014, 2013, 2012)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^ Availability of courses in 2019-2020 is subject to change.
List of BSc Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Grade</th>
<th>Exam</th>
<th>Date</th>
<th>Credit</th>
<th>Instructor</th>
<th>Major in Biochemistry</th>
<th>Minor in Biochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL111</td>
<td>Introductory microbiology</td>
<td>NIL</td>
<td>N</td>
<td>---</td>
<td>80</td>
<td>---</td>
<td>Major in Biological Sciences</td>
<td>---</td>
</tr>
<tr>
<td>BIOL1201</td>
<td>Introduction to food and nutrition</td>
<td>NIL</td>
<td>Y</td>
<td>Dec</td>
<td>190</td>
<td>Dr J M F Wan, Biological Sciences</td>
<td>Major in Food & Nutritional Science</td>
<td>Major in Food & Nutritional Science</td>
</tr>
</tbody>
</table>

School of Biological Sciences

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Grade</th>
<th>Exam</th>
<th>Date</th>
<th>Credit</th>
<th>Instructor</th>
<th>Major in Biochemistry</th>
<th>Minor in Biochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL111</td>
<td>Introductory microbiology</td>
<td>NIL</td>
<td>N</td>
<td>---</td>
<td>80</td>
<td>---</td>
<td>Major in Biological Sciences</td>
<td>---</td>
</tr>
<tr>
<td>BIOL1201</td>
<td>Introduction to food and nutrition</td>
<td>NIL</td>
<td>Y</td>
<td>Dec</td>
<td>190</td>
<td>Dr J M F Wan, Biological Sciences</td>
<td>Major in Food & Nutritional Science</td>
<td>Major in Food & Nutritional Science</td>
</tr>
</tbody>
</table>

Notes:
- Students who wish to take this course are expected to have taken HKDSE Biology and/or Chemistry or equivalent. For students without HKDSE Chemistry, they are encouraged to take CHEM1041 concurrently or before.
- This capstone course is only open to students who are in year 3 or above in the Biochemistry Major program.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Co-requisites</th>
<th>Lecturer</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1309</td>
<td>Evolutionary diversity</td>
<td>6</td>
<td>Y Y 2 May 250 Prof R M K Saunders, Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1501</td>
<td>Bioethics</td>
<td>6</td>
<td>N N --- --- 40 ---, Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1502</td>
<td>The gene</td>
<td>6</td>
<td>N N --- --- 50 ---, Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2101</td>
<td>Principles of food chemistry</td>
<td>6</td>
<td>Pass in BIOL1201; and NOT for students who have passed in BIOL3201. The course is only for students admitted in 2017-2018 or thereafter.</td>
<td>Y Y 1 Dec 30 Dr J C Y Lee, Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>BIOL2102</td>
<td>Biostatistics</td>
<td>6</td>
<td>Pass in BIOL1201 or BIOL1110 or BIOL2306 or ENVS1301 or ENVS2002</td>
<td>Y Y 2 May 211 Prof. K M Y Leung, Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>BIOL2103</td>
<td>Biological sciences laboratory course</td>
<td>6</td>
<td>Pass in BIOL1110</td>
<td>Y Y 1, 2 Dec, May 204 Dr W Y Lui, Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Enrolment Period</td>
<td>Lecturer</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>--</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>BIOL2220</td>
<td>Principles of biochemistry</td>
<td>6</td>
<td>Pass in BIOL1110; and Not for students who have passed in BIOC2600, or have already enrolled in this course.</td>
<td>Y Y 1 Dec 100</td>
<td>Dr C S C Lo, Biological Sciences</td>
</tr>
<tr>
<td>BIOL2306</td>
<td>Ecology and evolution</td>
<td>6</td>
<td>Pass in BIOL1110 or BIOL1309 or ENVS1301 or ENVS1401</td>
<td>Y Y 1 Dec 80</td>
<td>Prof D Dudgeon, Biological Sciences</td>
</tr>
<tr>
<td>BIOL2408</td>
<td>Green earth-plants and mankind</td>
<td>6</td>
<td>Pass in BIOL1110</td>
<td>N Y --- --- 40</td>
<td>Dr J S H Tsang, Biological Sciences</td>
</tr>
<tr>
<td>BIOL2409</td>
<td>Biotechnology industry and entrepreneurship</td>
<td>6</td>
<td>Pass in 1110 NOT for students who have passed in BIOL3409. This course is only for students admitted from 2018-2019 or thereafter.</td>
<td>N Y --- --- 40</td>
<td>Dr W B L Lim, Biological Sciences</td>
</tr>
<tr>
<td>BIOL3101</td>
<td>Animal behaviour</td>
<td>6</td>
<td>Pass in BIOL2306</td>
<td>Y Y 1 Dec 30</td>
<td>Dr S Sin, Biological Sciences</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Prerequisites</td>
<td>Credits</td>
<td>Compulsory</td>
<td>Optional</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------</td>
<td>--</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>BIOL3108</td>
<td>Microbial physiology</td>
<td>Pass in BIOC2600 or BIOL2103 or BIOC3804</td>
<td>6</td>
<td>N N</td>
<td>---</td>
</tr>
<tr>
<td>BIOL3201</td>
<td>Food chemistry</td>
<td>Pass in BIOC2600 or BIOL2103 or BIOL2220 or MEDE2301; and NOT for students who have passed in BIOL2103. This course is only for students admitted in 2016-2017 or before.</td>
<td>6</td>
<td>Y Y</td>
<td>1</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Lecture Period</td>
<td>Tutorials Period</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------</td>
<td>---------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>BIOL3205</td>
<td>Human physiology</td>
<td>6</td>
<td>Pass in BIOC2600 or BIOL2103 or BIOL2220 or MEDE2301</td>
<td>Y Y</td>
<td>1 Dec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List of BSc Courses
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Instructor</th>
<th>Course Description</th>
</tr>
</thead>
</table>

List of BSc Courses
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------------</td>
<td>--</td>
<td>--------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Corequisites</td>
<td>Examinations</td>
<td>Lecturer</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>BIOL3409</td>
<td>Business aspects of biotechnology</td>
<td>6</td>
<td>Pass in any level 3 BIOL or BIOC or BBMS course; NOT for students who have passed in BIOL2409. This course is only for students</td>
<td>Y Y 2 No exam 40 Dr W B L Lim, Biological Sciences</td>
<td>Major in Biological Sciences (2015,2014,2013,2012)</td>
<td>Major in Molecular</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Prerequisites</td>
<td>Credits</td>
<td>Exam</td>
<td>Instructor</td>
<td>Major(s)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>------</td>
<td>--------------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>BIOL3501</td>
<td>Evolution</td>
<td>Pass in BIOL2306</td>
<td>6</td>
<td></td>
<td>Dr M Sun, Biological Sciences</td>
<td>Major in Biological Sciences (2018,2017,2016)</td>
<td></td>
</tr>
<tr>
<td>BIOL3502</td>
<td>Conservation genetics</td>
<td>Pass in BIOL2306 or BIOL3303 or BIOL3408</td>
<td>6</td>
<td></td>
<td>Dr M Sun, Biological Sciences</td>
<td>Major in Biological Sciences (2018,2017,2016)</td>
<td></td>
</tr>
<tr>
<td>BIOL3503</td>
<td>Endocrinology: human physiology II</td>
<td>Pass in BIOL2103</td>
<td>6</td>
<td></td>
<td>Dr C B Chan, Biological Sciences</td>
<td>Major in Biological Sciences (2018,2017,2016)</td>
<td></td>
</tr>
<tr>
<td>BIOL3505</td>
<td>Oyster aquaculture and restoration</td>
<td>Pass in BIOL2103 or BIOL2306 or BIOL3301 or BIOL3303</td>
<td>6</td>
<td></td>
<td>Dr T Vengatesen, Biological Sciences</td>
<td>Major in Ecology & Biodiversity (2016,2015,2014,2013,2012)</td>
<td></td>
</tr>
<tr>
<td>BIOL3508</td>
<td>Microbial physiology and biotechnology</td>
<td>Pass in BIOL2103 or BIOL2220 or BIOL2800 or BIOL2804; Not for students who have passed in BIOL3108; and Not for students who have passed in BIOL4402.</td>
<td>6</td>
<td></td>
<td>Dr A Yan, Biological Sciences</td>
<td>Major in Molecular Biology & Biotechnology (2017,2016,2015,2014,2013,2012)</td>
<td></td>
</tr>
<tr>
<td>BIOL3951</td>
<td>Ecology & biodiversity field course</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Ecology & Biodiversity Major. This capstone course is for Ecology & Biodiversity Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>6</td>
<td></td>
<td>Dr L Karczmarski, Biological Sciences</td>
<td>Major in Ecology & Biodiversity (2015,2014,2013,2012)</td>
<td></td>
</tr>
<tr>
<td>BIOL3991</td>
<td>Directed studies in ecology & biodiversity</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Ecology & Biodiversity Major. This capstone course is for Ecology & Biodiversity Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>6</td>
<td></td>
<td>Prof G A Williams, Biological Sciences</td>
<td>Major in Ecology & Biodiversity (2018,2017,2016,2015,2014,2013,2012); Major in Ecology & Biodiversity (Intensive) (2018)</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Y</td>
<td>Y</td>
<td>Study</td>
<td>Exam</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>BIOL3992</td>
<td>Directed studies in food & nutritional science</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Food & Nutritional Science Major. This capstone course is for Food & Nutritional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y</td>
<td>Y</td>
<td>1, 2</td>
<td>No exam</td>
</tr>
<tr>
<td>BIOL3993</td>
<td>Directed studies in Molecular biology & biotechnology</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Molecular Biology & Biotechnology Major. This capstone course is for Molecular Biology & Biotechnology Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y</td>
<td>Y</td>
<td>1, 2</td>
<td>No exam</td>
</tr>
<tr>
<td>BIOL3994</td>
<td>Directed studies in biological sciences</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Biological Sciences Major. This capstone course is for Biological Sciences Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y</td>
<td>Y</td>
<td>1, 2</td>
<td>No exam</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Prerequisite(s)</td>
<td>Credits</td>
<td>Exam Date</td>
<td>Instructor(s)</td>
<td>Major(s)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>BIOL4303</td>
<td>Animal behaviour</td>
<td>Pass in BIOL2306; and Pass in one of the following courses: BIOL3301, BIOL3313, BIOL3319,</td>
<td>6</td>
<td>---</td>
<td>Dr L Karczmarski, Biological Sciences</td>
<td>Major in Ecology & Biodiversity (2015,2014,2013,2012)</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Grading</td>
<td>Instructor</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>---------------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>BIOL3304</td>
<td>Ecosystem functioning and services</td>
<td>6</td>
<td>Pass in one of the following courses: BIOL3301 or BIOL3303 or BIOL3313 or BIOL3319 or ENVS3019 or ENVS3034 or ENVS3020</td>
<td>N Y</td>
<td>---</td>
<td>Dr B D Russell, Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>BIOL4401</td>
<td>Medical microbiology and applied immunology</td>
<td>6</td>
<td>Pass in BIOL3401 or BIOL3403</td>
<td>N Y</td>
<td>---</td>
<td>Dr W Y Lui, Biological Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOL4401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Major in Biological Sciences</td>
</tr>
<tr>
<td></td>
<td>BIOL4402</td>
<td>Microbial biotechnology</td>
<td>6</td>
<td>Pass in BIOL3401</td>
<td>N N</td>
<td>---</td>
<td>---, Biological Sciences</td>
</tr>
<tr>
<td></td>
<td>BIOL4409</td>
<td>General virology</td>
<td>6</td>
<td>Pass in BIOL3401 or BIOL3403</td>
<td>Y N</td>
<td>1 Dec</td>
<td>Dr W B L Lim, Biological Sciences</td>
</tr>
<tr>
<td></td>
<td>BIOL4411</td>
<td>Plant and food biotechnology</td>
<td>6</td>
<td>Pass in BIOL3211 or BIOL3401</td>
<td>Y Y</td>
<td>1 Dec</td>
<td>Dr J S H Tsang, Biological Sciences</td>
</tr>
<tr>
<td></td>
<td>BIOL4415</td>
<td>Healthcare biotechnology</td>
<td>6</td>
<td>Pass in BIOL3401</td>
<td>Y Y</td>
<td>2 May</td>
<td>Prof A S T Wong, Biological Sciences</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Units</td>
<td>Prerequisites</td>
<td>Coordinators</td>
<td>Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL4451</td>
<td>Cetacean behaviour, ecology and conservation: field research experience</td>
<td>6</td>
<td>Pass in at least one of the following courses: BIOL3101, BIOL3301, BIOL3313 or BIOL3320</td>
<td>N N --- --- 12 Biological Sciences</td>
<td>Major in Ecology & Biodiversity (2016,2015,2014,2013,2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL4505</td>
<td>Oyster aquaculture</td>
<td>6</td>
<td>Pass in BIOL3109 or BIOL3203 or BIOL3301 or BIOL3303 or ENV3304 or ENV3331 or ENV3333 or ENV3334</td>
<td>Y N 2 No exam 20 Dr V Thiyagarajan, Biological Sciences</td>
<td>Major in Ecology & Biodiversity (2018,2017,2016,2015, 2014,2013,2012); Major in Ecology & Biodiversity (Intensive) (2018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Level</td>
<td>Pre-Requisites</td>
<td>Teaching Methods</td>
<td>Duration</td>
<td>Examination</td>
<td>Instructors</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-------</td>
<td>---</td>
<td>------------------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>BIOL4912</td>
<td>Sensory evaluation of food</td>
<td>6</td>
<td>Pass in BIOL3201; and Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Food & Nutritional Science Major. This capstone course is for Food & Nutritional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>N N --- ---</td>
<td>15</td>
<td>---</td>
<td>Dr J C Y Lee, Biological Sciences</td>
</tr>
<tr>
<td>BIOL4913</td>
<td>Advanced practicum on food and nutrient analysis</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) included BIOL3207 and / or BIOL3209 in the Food & Nutritional Science Major. This capstone course is for Food & Nutritional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>N Y --- ---</td>
<td>8</td>
<td>---</td>
<td>Dr J C Y Lee, Biological Sciences</td>
</tr>
<tr>
<td>BIOL4921</td>
<td>Animal behaviour and behavioural ecology: field course</td>
<td>6</td>
<td>Pass in BIOL3101; and Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Ecology & Biodiversity Major. This capstone course is for Ecology & Biodiversity Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>N N --- ---</td>
<td>15</td>
<td>---</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>BIOL4922</td>
<td>Food product development and evaluation</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) included BIOL3203 and / or BIOL4205 in the Food & Nutritional Science Major. This capstone course is for Food & Nutritional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study. Not for students who have passed in BIOL4210 Food product development.</td>
<td>Y Y 1 Dec 20</td>
<td>20</td>
<td>---</td>
<td>Dr M F Wang, Biological Sciences</td>
</tr>
<tr>
<td>BIOL4962</td>
<td>Food & nutritional science internship</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Food & Nutritional Science Major. This capstone course is for Food & Nutritional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y Y 1, 2, S No exam ---</td>
<td>---</td>
<td>Dr J C Y Lee, Biological Sciences</td>
<td>Major in Food & Nutritional Science (2018,2017,2016,2015,2014,2013,2012)</td>
</tr>
<tr>
<td>BIOL4963</td>
<td>Molecular biology & biotechnology internship</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core / elective courses in the Molecular Biology & Biotechnology Major. This capstone course is for Molecular Biology & Biotechnology Major students. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y Y 1, 2, S No exam ---</td>
<td>---</td>
<td>Dr W K Yip, Biological Sciences</td>
<td>Major in Molecular Biology & Biotechnology (2018,2017,2016,2015,2014,2013,2012)</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
<td>Requirements</td>
<td>Exams</td>
<td>Project</td>
<td>Exam Dates</td>
<td>Duration</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------</td>
<td>--</td>
<td>-------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>BIOL4964</td>
<td>Biological sciences internship</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Biological Sciences Major. This capstone course is for Biological Sciences Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y Y 1, 2, S</td>
<td>No exam</td>
<td>---</td>
<td>Dr S Cannicci, Biological Sciences</td>
</tr>
<tr>
<td>BIOL4991</td>
<td>Ecology & biodiversity project</td>
<td>12</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Ecology & Biodiversity Major; and This capstone course is for Ecology & Biodiversity Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y Y 0</td>
<td>No exam</td>
<td>---</td>
<td>Prof G A Williams, Biological Sciences</td>
</tr>
<tr>
<td>BIOL4992</td>
<td>Food & nutritional science project</td>
<td>12</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Food & Nutritional Science Major; and Cumulative GPA of 3.0 or above. This capstone course is for Food & Nutritional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y Y 0</td>
<td>No exam</td>
<td>---</td>
<td>Dr J C Y Louie, Biological Sciences</td>
</tr>
<tr>
<td>BIOL4993</td>
<td>Molecular biology & biotechnology project</td>
<td>12</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Molecular Biology & Biotechnology Major; and Cumulative GPA of 3.0 or above. This capstone course is for Molecular Biology & Biotechnology Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y Y 0</td>
<td>No exam</td>
<td>---</td>
<td>Dr W K Yip, Biological Sciences</td>
</tr>
<tr>
<td>BIOL4994</td>
<td>Biological sciences project</td>
<td>12</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Biological Sciences Major; and Cumulative GPA of 3.0 or above. This capstone course is for Biological Sciences Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y Y 0</td>
<td>No exam</td>
<td>---</td>
<td>Dr S Cannicci, Biological Sciences</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credit Hours</td>
<td>Prerequisites</td>
<td>Y</td>
<td>N</td>
<td>Exam</td>
<td>Professor</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>ENV3028</td>
<td>Coastal Sustainability</td>
<td>6</td>
<td>Pass in BIOL2306 or BIOL3301 or BIOL3305 or BIOL3318 or ENVS2001 or ENVS2002 or EASC3020</td>
<td>Y</td>
<td>Y</td>
<td>S No exam</td>
<td>Dr V Thiyagarajan, Biological Sciences</td>
</tr>
</tbody>
</table>

List of BSc Courses
26
<table>
<thead>
<tr>
<th>Centre for Applied English Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAES1000 Core University English</td>
</tr>
<tr>
<td>CAES9820 Academic English for science students</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1041 Foundations of chemistry</td>
</tr>
<tr>
<td>CHEM1042 General chemistry I</td>
</tr>
<tr>
<td>CHEM1043 General chemistry II</td>
</tr>
<tr>
<td>CHEM1044 Mathematics in chemistry</td>
</tr>
<tr>
<td>CHEM2041 Principles of chemistry</td>
</tr>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>CHEM2241</td>
</tr>
<tr>
<td>CHEM2341</td>
</tr>
<tr>
<td>CHEM2441</td>
</tr>
<tr>
<td>CHEM2442</td>
</tr>
<tr>
<td>CHEM2443</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CHEM2541</td>
</tr>
<tr>
<td>CHEM3141</td>
</tr>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>CHEM3146</td>
</tr>
<tr>
<td>CHEM3243</td>
</tr>
<tr>
<td>CHEM3244</td>
</tr>
</tbody>
</table>

List of BSc Courses
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Coreqs</th>
<th>Instructor</th>
<th>Course Type</th>
<th>Requirements</th>
<th>Year(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3442</td>
<td>Organic chemistry of biomolecules</td>
<td>6</td>
<td>Pass in CHEM2442 or CHEM3441</td>
<td>Y Y</td>
<td>1 Dec</td>
<td>50</td>
<td>Dr P H Toy, Chemistry</td>
<td>(Intensive) 2018</td>
</tr>
<tr>
<td>CHEM3443</td>
<td>Organic chemistry laboratory</td>
<td>6</td>
<td>Pass in CHEM2441; and pass in CHEM3441, or already enrolled in this course; NOT for students who have passed CHEM3441A in semester 1, 2015-16, or CHEM3441 in or before 2014-15 (for students admitted in 2014-15 or before) Pass in CHEM2441 or CHEM3442 or CHEM3443; and Pass in CHEM3441 or CHEM3442, or already enrolled in any of these two courses (for students admitted in 2015-16 or thereafter)</td>
<td>Y Y</td>
<td>1, 2 Dec, May</td>
<td>80</td>
<td>Dr A M Y Yuan, Chemistry</td>
<td>(Intensive) 2018</td>
</tr>
<tr>
<td>CHEM3445</td>
<td>Integrated laboratory</td>
<td>6</td>
<td>Pass in CHEM3443 or already enrolled in this course</td>
<td>Y Y</td>
<td>S No exam</td>
<td>20</td>
<td>Dr A M Y Yuan, Chemistry</td>
<td>(Intensive) 2018</td>
</tr>
<tr>
<td>CHEM3541</td>
<td>Physical chemistry: Introduction to quantum chemistry</td>
<td>6</td>
<td>Pass in CHEM2541</td>
<td>Y Y</td>
<td>1 Dec</td>
<td>100</td>
<td>Prof G H Chen, Chemistry</td>
<td>(Intensive) 2018</td>
</tr>
<tr>
<td>CHEM3542</td>
<td>Physical chemistry: statistical thermodynamics and kinetics theory</td>
<td>6</td>
<td>Pass in CHEM2541</td>
<td>Y Y</td>
<td>2 May</td>
<td>50</td>
<td>Dr. J Yang, Chemistry</td>
<td>(Intensive) 2018</td>
</tr>
<tr>
<td>CHEM3599</td>
<td>Directed studies in chemistry</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major including a pass in CHEM2341 or CHEM2441 or CHEM2442 or CHEM2541 or CHEM346 This capstone course is for Chemistry Major students only. This course is designed for third year students who would like to take an early experience on research. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y Y</td>
<td>1, 2 No exam</td>
<td>---</td>
<td>Prof D L Phillips, Chemistry</td>
<td>(Intensive) 2018</td>
</tr>
<tr>
<td>CHEM4142</td>
<td>Symmetry, group theory and applications</td>
<td>6</td>
<td>Pass in CHEM3341</td>
<td>Y Y</td>
<td>1 Dec</td>
<td>60</td>
<td>Prof V W W Yam, Chemistry</td>
<td>(Intensive) 2018</td>
</tr>
<tr>
<td>CHEM4143</td>
<td>Interfacial science and technology</td>
<td>6</td>
<td>Pass in CHEM3541</td>
<td>Y N</td>
<td>2 May</td>
<td>50</td>
<td>Prof G K Y Chan, Chemistry</td>
<td>(Intensive) 2018</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Instructor</td>
<td>Co-requisites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------</td>
<td>---</td>
<td>---------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chemistry (Intensive) (2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>---</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>CHEM4444</td>
<td>Chemical biology</td>
<td>6</td>
<td>Pass in BIOC3601 or CHEM3441</td>
<td>Y</td>
<td>Y</td>
<td>2</td>
<td>May</td>
<td>Prof X C Li, Chemistry</td>
</tr>
<tr>
<td>CHEM4541</td>
<td>Physical chemistry III: statistical thermodynamics and kinetics theory</td>
<td>6</td>
<td>Pass in CHEM3541</td>
<td>N</td>
<td>N</td>
<td>---</td>
<td>---</td>
<td>---, Chemistry</td>
</tr>
<tr>
<td>CHEM4542</td>
<td>Computational chemistry</td>
<td>6</td>
<td>Pass in CHEM3541 or PHYS3351</td>
<td>Y</td>
<td>N</td>
<td>2</td>
<td>May</td>
<td>Prof G H Chen, Chemistry</td>
</tr>
<tr>
<td>CHEM4543</td>
<td>Advanced physical chemistry</td>
<td>6</td>
<td>Pass in CHEM3541</td>
<td>Y</td>
<td>Y</td>
<td>2</td>
<td>May</td>
<td>Prof G H Chen, Chemistry</td>
</tr>
<tr>
<td>CHEM4544</td>
<td>Electrochemical science and technology</td>
<td>6</td>
<td>Pass in CHEM3542</td>
<td>N</td>
<td>Y</td>
<td>---</td>
<td>---</td>
<td>---, Chemistry</td>
</tr>
<tr>
<td>CHEM4910</td>
<td>Chemistry literacy and research</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major including CHEM3241, and CHEM3341, and CHEM3441, and CHEM3451. This capstone course is for Chemistry Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y</td>
<td>Y</td>
<td>2</td>
<td>No exam</td>
<td>---, Chemistry</td>
</tr>
<tr>
<td>CHEM4911</td>
<td>Capstone experience for chemistry undergraduates: HKUtopia</td>
<td>6</td>
<td>Students are expected to have satisfactorily completed all introductory chemistry disciplinary core courses and at least 24 credits of advanced level disciplinary core/elective chemistry courses in the Chemistry Major. Students who are interested in taking the course should contact the course coordinator for application in April.</td>
<td>Y</td>
<td>Y</td>
<td>S</td>
<td>No exam</td>
<td>---, Chemistry</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credits</td>
<td>Y</td>
<td>Y</td>
<td>No exam</td>
<td>Instructor</td>
<td>School of/Department</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>-------------</td>
<td>----------------------</td>
<td></td>
</tr>
</tbody>
</table>

School of Chinese

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Y</th>
<th>Y</th>
<th>No exam</th>
<th>Instructor</th>
<th>School of/Department</th>
</tr>
</thead>
</table>

Department of Earth Sciences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Y</th>
<th>Y</th>
<th>No exam</th>
<th>Instructor</th>
<th>School of/Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC1404</td>
<td>Early life on earth</td>
<td>6</td>
<td>N</td>
<td>N</td>
<td>---</td>
<td>TBC, Earth Sciences</td>
<td>Major in Earth Sciences</td>
</tr>
<tr>
<td>EASC1405</td>
<td>Peaceful use of nuclear technologies</td>
<td>6</td>
<td>Y</td>
<td>1</td>
<td>---</td>
<td>Dr S H Li, Earth Sciences</td>
<td>Major in Earth Sciences</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Attempts</td>
<td>Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------</td>
<td>---------</td>
<td>--</td>
<td>---------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Time</td>
<td>Teacher</td>
<td>Major in Geology</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>---</td>
<td>------</td>
<td>------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>EASC3412</td>
<td>Earth resources</td>
<td>6</td>
<td>Pass in EASC2402 or EASC3402</td>
<td>Y Y</td>
<td>1 Dec</td>
<td>40 Prof M F Zhou, Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>EASC3413</td>
<td>Engineering geology</td>
<td>6</td>
<td>Pass in EASC3410 and EASC3414, or already enrolled in these courses for final year students.</td>
<td>Y Y</td>
<td>2 May</td>
<td>35 Dr L Y Wong, Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>EASC3414</td>
<td>Soil and rock mechanics</td>
<td>6</td>
<td>Pass in EASC3410, or already enrolled in this course</td>
<td>Y Y</td>
<td>2 May</td>
<td>40 Prof J J Jiao, Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>EASC3415</td>
<td>Meteorology</td>
<td>6</td>
<td>Pass in EASC2404</td>
<td>Y Y</td>
<td>1 Dec</td>
<td>--- Dr Z H Liu, Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>EASC3416</td>
<td>Advanced geochemistry and geochronology</td>
<td>6</td>
<td>Pass in EASC2401 or EASC2406 or EASC2407</td>
<td>N N</td>
<td>---</td>
<td>50 Prof M F Zhou, Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>EASC3417</td>
<td>Earth through time</td>
<td>6</td>
<td>Pass in EASC3403</td>
<td>Y Y</td>
<td>1 Dec</td>
<td>--- Dr S C Chang, Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>EASC3418</td>
<td>Earth surface processes</td>
<td>6</td>
<td>Pass in EASC2401 and EASC2402</td>
<td>N N</td>
<td>---</td>
<td>--- TBC, Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Exam</td>
<td>Instructor</td>
<td>Year Offered</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>---</td>
<td>------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>EASC3999</td>
<td>Directed studies in earth sciences</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in the Geology or Earth System Science Majors; and Cumulative GPA of 2.5 or above. This course is not a capstone course and students cannot use this course to fulfill the capstone requirement of the Earth System Science and Geology Majors. The earliest that a student is allowed to take this course is their year 3 study.</td>
<td>No</td>
<td>---</td>
<td>(2018,2017)</td>
<td></td>
</tr>
<tr>
<td>EASC4911</td>
<td>Earth system: contemporary issues</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in the Earth System Science Major including at least two of the following courses: EASC3410, EASC3415 or ENVS3313. This capstone course is for Earth System Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y</td>
<td>---</td>
<td>(2018,2017,2016,2015,2014,2013,2012)</td>
<td></td>
</tr>
<tr>
<td>EASC4955</td>
<td>Integrated field studies</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in the Geology Major. This must include either a PASS in, or student must be already enrolled in EASC3403, EASC3404 or EASC3409. This capstone course is for Geology</td>
<td>Y</td>
<td>---</td>
<td>(2018,2017,2016,2015,2014,2013,2012)</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
<td>Prerequisites</td>
<td>Format</td>
<td>Lecturer</td>
<td>Major(s)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------</td>
<td>--------------</td>
<td>---</td>
<td>----------</td>
<td>------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>EASC4966</td>
<td>Earth sciences internship</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in the Geology or Earth System Science Majors. This course is not a capstone course and students cannot use this course to fulfill the capstone requirement of the Earth System Science and Geology Majors. The earliest that a student is allowed to take this course is their year 3 study.</td>
<td>Y, Y, 1, 2, S</td>
<td>No exam</td>
<td>Dr M Pittman, Earth Sciences Major in Geology (Intensive) (2018); Minor in Earth Sciences (2018, 2017, 2016, 2015, 2014, 2013, 2012)</td>
<td></td>
</tr>
<tr>
<td>EASC4999</td>
<td>Earth sciences project</td>
<td>12</td>
<td>Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in the Geology or Earth System Science Majors; and Cumulative GPA of 2.7 or above. This course is not a capstone course and students cannot use this course to fulfill the capstone requirement of the Earth System Science and Geology Majors. The earliest that a student is allowed to take this course is their year 3 study.</td>
<td>Y, Y, 0</td>
<td>No exam</td>
<td>Prof M Sun, Earth Sciences Major in Geology (Intensive) (2018); Major in Earth System Science (2018, 2017, 2016, 2015, 2014, 2013, 2012); Major in Geology (2018, 2017, 2016, 2015, 2014, 2013, 2012); Minor in Earth Sciences (2018, 2017, 2016, 2015, 2014, 2013, 2012)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Semesters</td>
<td>Exams</td>
<td>Exam Dates</td>
<td>Instructor</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>ENVS3999</td>
<td>Directed studies in environmental science</td>
<td>6</td>
<td>2014,2013,2012</td>
<td>Y Y</td>
<td>1, 2</td>
<td>Dr C Dingle, Biological Sciences</td>
<td>Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Environmental Science Major; Cumulative GPA of 2.5 or above in Environmental Science Major; This capstone course is for Environmental Science Major students only; The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
</tr>
<tr>
<td>ENVS4555</td>
<td>Environmental science in practice</td>
<td>6</td>
<td>2014,2013,2012</td>
<td>N N</td>
<td>---</td>
<td>Dr M Yasuhara, Biological Sciences</td>
<td>Pass in at least 12 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Environmental Science Major.</td>
</tr>
<tr>
<td>ENVS4955</td>
<td>Environmental science in practice</td>
<td>6</td>
<td>2014,2013,2012</td>
<td>Y Y</td>
<td>1, 2, S</td>
<td>Dr C Dingle, Biological Sciences</td>
<td>Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Environmental Science Major; This capstone course is for Environmental Science Major students only; The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
</tr>
<tr>
<td>ENVS4999</td>
<td>Environmental science project</td>
<td>12</td>
<td>2014,2013,2012</td>
<td>Y Y</td>
<td>0</td>
<td>Dr C Dingle, Biological Sciences</td>
<td>Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Environmental Science Major; Students must have a cumulative GPA of 3.0 or above in Environmental Science Major; This capstone course is for Environmental Science Major students only; The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
</tr>
</tbody>
</table>

Department of Mathematics

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Semesters</th>
<th>Exams</th>
<th>Exam Dates</th>
<th>Instructor</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1009</td>
<td>Basic mathematics for business and economics</td>
<td>6</td>
<td>2014,2013,2012</td>
<td>Y Y</td>
<td>Dec, May</td>
<td>Dr Y M Chan (1st sem); Dr K H Law (2nd sem), Mathematics</td>
<td>NIL; The course has no pre-requisite, but students are expected to have already achieved Level 2 or above in HKDSE Mathematics or equivalent. Not for students who have passed MATH1011 or MATH1013, or have already enrolled in these courses. This course is exclusively for non-Science and non-Engineering students (i.e. not for students from the Faculty of Science or Engineering).</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
<td>Pre-requisites</td>
<td>Offered Days</td>
<td>Grading System</td>
<td>Coordinator(s)</td>
<td>Major(s)</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>MATH1011</td>
<td>University mathematics I</td>
<td>6</td>
<td>Level 2 or above in HKDSE Mathematics or equivalent before enrolling the course; and Not for students with Level 2 or above in Module 1 or Module 2 of HKDSE Mathematics or equivalent.</td>
<td>Y Y 1, 2 Dec, May</td>
<td>---</td>
<td>Dr H Y Zhang, Mathematics</td>
<td>Major in Chemistry (Intensive) (2018); Major in Molecular Biology & Biotechnology (Intensive) (2018)</td>
</tr>
<tr>
<td>MATH1013</td>
<td>University mathematics II</td>
<td>6</td>
<td>Level 2 or above in Module 1, or Module 2 of HKDSE Mathematics or equivalent, or Pass in MATH1009 or MATH1011; and Not for students who have passed MATH1821, or MATH1851 and MATH1853, or have already enrolled in this course.</td>
<td>Y Y 1, 2 Dec, May</td>
<td>500</td>
<td>Dr C W Wong, Mathematics</td>
<td>Major in Chemistry (Intensive) (2018); Major in Molecular Biology & Biotechnology (Intensive) (2018); Minor in Actuarial Studies (2018,2017,2016,2015, 2014,2013,2012)</td>
</tr>
<tr>
<td>MATH1641</td>
<td>Mathematical laboratory and modeling</td>
<td>6</td>
<td>NIL</td>
<td>N N --- ---</td>
<td>30</td>
<td>TBC, Mathematics</td>
<td></td>
</tr>
<tr>
<td>MATH1821</td>
<td>Mathematical methods for actuarial science I</td>
<td>6</td>
<td>Level 4 or above in HKDSE Mathematics plus Module 1, or Level 4 or above in HKDSE Mathematics plus Module 2, or equivalent; and Not for students who have passed MATH1013 or MATH1851 and MATH1853, or have already enrolled in these courses. For BSc(ActuarialSc) students only.</td>
<td>Y Y 1 Dec</td>
<td>---</td>
<td>Dr J T Chan, Mathematics</td>
<td>BSc in Actuarial Science (2018,2017,2016,2015, 2014,2013,2012)</td>
</tr>
<tr>
<td>MATH1851</td>
<td>Calculus and ordinary differential equations</td>
<td>6</td>
<td>Level 2 or above in Module 1, or Module 2 of HKDSE Mathematics or equivalent, or Pass in MATH1011. (This course is exclusively for Engineering students.)</td>
<td>Y Y 1, 2 Dec, May</td>
<td>700</td>
<td>Prof K M Tsang (1st sem); Dr Y K Lau (2nd sem), Mathematics</td>
<td></td>
</tr>
<tr>
<td>MATH1853</td>
<td>Linear algebra, probability and statistics</td>
<td>6</td>
<td>Level 2 or above in Module 1, or Module 2 of HKDSE Mathematics or equivalent, or Pass in MATH1011. (This course is exclusively for Engineering students.)</td>
<td>Y Y 1, 2 Dec, May</td>
<td>700</td>
<td>Dr G Han, Mathematics</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Prerequisites</td>
<td>Approval Periods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y Y 1, 2 Dec, May</td>
<td>Dr H Y Zhang, Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2101</td>
<td>Linear algebra I</td>
<td>Pass in MATH1013 or MATH1821 or (MATH1851 and MATH1853)</td>
<td>Dr K H Law, Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2102</td>
<td>Linear algebra II</td>
<td>Pass in MATH2101 or (MATH1851 and MATH1853)</td>
<td>Dr T W Ching, Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2211</td>
<td>Multivariable calculus</td>
<td>Pass in MATH1013 or MATH1821 or (MATH1851 and MATH1853)</td>
<td>Dr Z Hua (1st sem); Prof W S Cheung (2nd sem), Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2241</td>
<td>Introduction to mathematical analysis</td>
<td>Pass in MATH1013 or (MATH1851 and MATH1853)</td>
<td>Dr Y M Chan, Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2822</td>
<td>Mathematical methods for actuarial science II</td>
<td>Pass in MATH1821. For BSc(ActuarSc) students only.</td>
<td>Dr J T Chan, Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3001</td>
<td>Development of mathematical ideas</td>
<td>Pass in MATH2101, MATH2102, MATH2211 and MATH2241</td>
<td>TBC, Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Instructor</td>
<td>Department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3002</td>
<td>Mathematics seminar</td>
<td>6</td>
<td>Pass in MATH2012, MATH2101, MATH2211 and MATH2241</td>
<td>Prof K M Tsang, Mathematics</td>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subject to approval by the Department.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3301</td>
<td>Algebra I</td>
<td>6</td>
<td>Pass in MATH2101</td>
<td>Dr Y K Lau, Mathematics</td>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3303</td>
<td>Matrix theory and its applications</td>
<td>6</td>
<td>Pass in MATH2101 and MATH2102</td>
<td>TBC, Mathematics</td>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3304</td>
<td>Introduction to number theory</td>
<td>6</td>
<td>Pass in MATH2101 and MATH2211</td>
<td>Dr B Kane, Mathematics</td>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3401</td>
<td>Analysis I</td>
<td>6</td>
<td>Pass in MATH2211</td>
<td>Prof W S Cheung, Mathematics</td>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3403</td>
<td>Functions of a complex variable</td>
<td>6</td>
<td>Pass in MATH2211 and MATH2241</td>
<td>Prof N Mok, Mathematics</td>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3405</td>
<td>Differential equations</td>
<td>6</td>
<td>Pass in MATH2101 and MATH2211 or MATH2014 or (MATH1821 and MATH2822)</td>
<td>Dr T K Wong, Mathematics</td>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Prerequisites</td>
<td>Credits</td>
<td>Examination</td>
<td>Co-requisites</td>
<td>Instructor(s)</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>---------</td>
<td>-------------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

List of BSc Courses
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Offered</th>
<th>Instructor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Prerequisites</td>
<td>Offered</td>
<td>Exam</td>
<td>Year(s)</td>
<td>Instructor</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>MATH3911</td>
<td>Game theory and strategy</td>
<td>Pass in (MATH2101 and MATH2211) or (MATH1021 and MATH2022)</td>
<td>Y</td>
<td>Y</td>
<td>2 May</td>
<td>Dr K H Law, Mathematics</td>
</tr>
<tr>
<td>MATH3943</td>
<td>Network models in operations research</td>
<td>Pass in (MATH2101 and MATH2211) or MATH2014; and Pass in MATH3001, or already enrolled in this course.</td>
<td>Y</td>
<td>N</td>
<td>2 May</td>
<td>Prof W Zang, Mathematics</td>
</tr>
<tr>
<td>MATH3999</td>
<td>Directed studies in mathematics</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATHXXX, MATHXXX or MATHXXX) in the Mathematics, and Mathematics/Physics Majors, in addition to a pass in MATH2101, MATH2102, MATH2211 and MATH2241. Subject to approval by the Department. This capstone course is for Mathematics, and Mathematics/Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y</td>
<td>Y</td>
<td>1, 2 No exam</td>
<td>Prof T W Ng, Mathematics</td>
</tr>
<tr>
<td>MATH4302</td>
<td>Algebra II</td>
<td>Pass in MATH2102 and MATH3301</td>
<td>Y</td>
<td>Y</td>
<td>2 May</td>
<td>Prof J H Lu, Mathematics</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Semester</td>
<td>Instructor</td>
<td>Major in</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>---</td>
<td>----------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>MATH4511</td>
<td>Introduction to differentiable manifolds</td>
<td>6</td>
<td>Pass in MATH3401 (having taken MATH4501 would be helpful; the course can also be taken concurrently with MATH4402).</td>
<td>---</td>
<td>---</td>
<td>Major in Mathematics (2018, 2017, 2016, 2015, 2014, 2013, 2012)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Pass Credits</td>
<td>Requirements</td>
<td>Exam</td>
<td>Instructor</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td>--</td>
<td>------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subject to approval by the Department. This capstone course is for</td>
<td></td>
<td></td>
<td>2013,2012); Minor in Mathematics (2018,2017,2016,2015,2014,2013,2012);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Majors students only. The earliest that a student is allowed to take this</td>
<td></td>
<td></td>
<td>2014,2013,2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>capstone course is their year 3 study.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics,</td>
<td></td>
<td></td>
<td>Mathematics/Physics (2017,2016,2015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subject to approval by the Department. This capstone course is for</td>
<td></td>
<td></td>
<td>2013,2012); Minor in Mathematics (2018,2017,2016,2015,2014,2013,2012);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Majors students only. The earliest that a student is allowed to take this</td>
<td></td>
<td></td>
<td>2014,2013,2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>capstone course is their year 3 study.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics,</td>
<td></td>
<td></td>
<td>Mathematics/Physics (2017,2016,2015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Majors students only. The earliest that a student is allowed to take this</td>
<td></td>
<td></td>
<td>2014,2013,2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>capstone course is their year 3 study.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit</td>
<td>Pre-requisites</td>
<td>Exam Requirement</td>
<td>Instructor</td>
<td>Programme Requirements</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>---</td>
<td>------------------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>MATH4999</td>
<td>Mathematics project</td>
<td>12</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics, and Mathematics/Physics Majors, Subject to approval by the Department. This capstone course is for Mathematics, and Mathematics/Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y</td>
<td>Prof T W Ng, Mathematics</td>
<td>Minor in Mathematics (2018,2017,2016,2015, 2014,2013,2012)</td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry</td>
<td>6</td>
<td>Pass in (MATH4402 or MATH4501) and (MATH4511 or the approval of the course coordinator)</td>
<td>N</td>
<td>---</td>
<td>TBC, Mathematics</td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds</td>
<td>6</td>
<td>Pass in a first course in Complex Analysis such as MATH3403, a first course in Differential Geometry such as MATH4501, and approval by the course coordinator.</td>
<td>N</td>
<td>---</td>
<td>TBC, Mathematics</td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis</td>
<td>6</td>
<td>Pass in MATH3401 and MATH4404, or approval of the course coordinator.</td>
<td>N</td>
<td>---</td>
<td>TBC, Mathematics</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Co-Term</td>
<td>Exam</td>
<td>Course Coordinator</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory</td>
<td>6</td>
<td>N Y</td>
<td>---</td>
<td>Dr J Song, Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pass in MATH3603 and MATH4402, and approval of the course coordinator.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra</td>
<td>6</td>
<td>N Y</td>
<td>---</td>
<td>Prof T W Ng, Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pass in MATH4302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics</td>
<td>6</td>
<td>N N</td>
<td>---</td>
<td>Prof W Zang, Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pass in (MATH3301 or MATH3600), and approval of the course coordinator.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization</td>
<td>6</td>
<td>Y N</td>
<td>2</td>
<td>Prof X Yuan, Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pass in MATH3301, MATH3304 and (MATH4802 or the approval of the course coordinator)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology</td>
<td>6</td>
<td>N N</td>
<td>---</td>
<td>TBC, Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pass in MATH3301 and MATH3401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis</td>
<td>6</td>
<td>Y Y</td>
<td>2</td>
<td>Prof K M Tsang,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pass in MATH3401 and approval by the</td>
<td></td>
<td></td>
<td></td>
<td>Major in Mathematics</td>
<td></td>
</tr>
</tbody>
</table>

List of BSc Courses

49
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Level</th>
<th>Year</th>
<th>Grade Requirement</th>
<th>Instructor</th>
<th>Notes</th>
</tr>
</thead>
</table>
| PHYS1050 | Physics for engineering students | 6 | | Y | Level 3 or above in HKDSE Physics or Combined Science with Physics components or equivalent, and
| | | | | N | (Level 2 or above in Module 1, or Module 2 of HKDSE Mathematics or equivalent, or Pass in MATH1011)
| | | | | N | (This course is exclusive for Engineering students.) | Dr M K Yip, Physics | |
| PHYS1055 | How things work | 6 | | Y | NIL | Dr M K Yip, Physics | |
| PHYS1056 | Weather, climate and climate change | 6 | | Y | NIL | Dr K M Lee, Physics | |
| PHYS1057 | Kitchen science | 6 | | N | NIL | Prof A B Djurisic, Physics | |
| PHYS1150 | Problem solving in physics | 6 | | Y | Level 3 or above in HKDSE Physics or equivalent, or Pass in PHYS1240 | Dr M K Yip, Physics | |
| PHYS1240 | Physics by inquiry | 6 | | N | NIL, Not for students with level 3 or above in HKDSE Physics; and
| | | | | N | Not for students who have passed in PHYS1050 or PHYS1150 or PHYS1250, or already enrolled in these courses; and
| | | | | N | Not for students who have passed in any level 2 PHYS course or above. | Dr F K Chow, Physics | |
| PHYS1250 | Fundamental physics | 6 | | Y | Level 3 or above in HKDSE Physics or equivalent, or Pass in PHYS1240; and
| | | | | Y | Not for students who have passed in PHYS1050, or already enrolled in this course; and
<p>| | | | | Y | Not for students who have passed in any level 2 PHYS course or above. | Prof K S Cheng, Physics | |
| PHYS1650 | Nature of the universe | 6 | | Y | NIL | Dr K M Lee, Physics | |
| PHYS2055 | Introduction to relativity | 6 | | Y | Pass in PHYS1050 or PHYS1150 or PHYS1250 | Dr K M Lee, Physics | |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS2150</td>
<td>Methods in physics I</td>
<td>6</td>
<td>Pass in MATH1011 or MATH1013 or MATH1851 or PHYS1150</td>
</tr>
<tr>
<td>PHYS2155</td>
<td>Methods in physics II</td>
<td>6</td>
<td>Pass in MATH1011 or MATH1013 or MATH1851 or PHYS1150</td>
</tr>
<tr>
<td>PHYS2250</td>
<td>Introductory mechanics</td>
<td>6</td>
<td>Pass in PHYS1050 or PHYS1150 or PHYS1250</td>
</tr>
<tr>
<td>PHYS2255</td>
<td>Introductory electricity and magnetism</td>
<td>6</td>
<td>Pass in PHYS1050 or PHYS1150 or PHYS1250</td>
</tr>
<tr>
<td>PHYS2260</td>
<td>Heat and waves</td>
<td>6</td>
<td>Pass in PHYS1050 or PHYS1150</td>
</tr>
<tr>
<td>PHYS2261</td>
<td>Introductory heat and thermodynamics</td>
<td>6</td>
<td>Pass in PHYS1050 or PHYS1150 or PHYS1250</td>
</tr>
<tr>
<td>PHYS2265</td>
<td>Modern physics</td>
<td>6</td>
<td>Pass in PHYS1050 or PHYS1250</td>
</tr>
<tr>
<td>PHYS2650</td>
<td>Modern astronomy</td>
<td>6</td>
<td>Pass in PHYS1650</td>
</tr>
<tr>
<td>Code</td>
<td>Course</td>
<td>Credits</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>PHYS2850</td>
<td>Atomic and nuclear physics</td>
<td>6</td>
<td>Pass in PHYS2265</td>
</tr>
<tr>
<td>PHYS3150</td>
<td>Theoretical physics</td>
<td>6</td>
<td>Pass in (PHYS2250 or PHYS2255 or PHYS2265) and (MATH2211 or PHYS2150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3151</td>
<td>Machine learning in physics</td>
<td>6</td>
<td>Pass in MATH2014 or MATH2101 or MATH211 or PHYS2155. Working knowledge of Python is needed (please talk to the course instructor in case of doubt).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3350</td>
<td>Classical mechanics</td>
<td>6</td>
<td>Pass in PHYS2250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3351</td>
<td>Quantum mechanics</td>
<td>6</td>
<td>Pass in PHYS2265</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3450</td>
<td>Electromagnetism</td>
<td>6</td>
<td>Pass in PHYS2255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3550</td>
<td>Statistical mechanics & thermodynamics</td>
<td>6</td>
<td>Pass in PHYS2260</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3551</td>
<td>Introductory solid state physics</td>
<td>6</td>
<td>Pass in PHYS2260 and PHYS2265</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3650</td>
<td>Observational astronomy</td>
<td>6</td>
<td>Pass in PHYS2265 and (PHYS2250 or PHYS2265)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit</td>
<td>Offered</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>PHYS3651</td>
<td>The physical universe</td>
<td>6</td>
<td>Dec</td>
</tr>
<tr>
<td>PHYS3652</td>
<td>Principles of astronomy</td>
<td>6</td>
<td>May</td>
</tr>
<tr>
<td>PHYS3653</td>
<td>Astrophysics</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PHYS3660</td>
<td>Astronomy laboratory</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PHYS3750</td>
<td>Laser and spectroscopy</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PHYS3751</td>
<td>Physics of nanomaterials</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credit</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>PHYS3999</td>
<td>Directed studies in physics</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level (3XXX level or above) disciplinary core/elective courses of the Physics Major, Mathematics/Physics Major or Astronomy Major curriculum. This capstone course is for Astronomy, Mathematics/Physics, and Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credits</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>PHYS4351</td>
<td>Advanced quantum mechanics</td>
<td>6</td>
<td>Pass in PHYS3351</td>
</tr>
<tr>
<td>PHYS4450</td>
<td>Advanced electromagnetism</td>
<td>6</td>
<td>Pass in PHYS3450</td>
</tr>
<tr>
<td>PHYS4550</td>
<td>Advanced statistical mechanics</td>
<td>6</td>
<td>Pass in PHYS3550</td>
</tr>
<tr>
<td>PHYS4551</td>
<td>Solid state physics</td>
<td>6</td>
<td>(PHYS2255 or PHYS2260) and PHYS3351</td>
</tr>
<tr>
<td>PHYS4650</td>
<td>Stellar physics</td>
<td>6</td>
<td>Pass in PHYS3351 and PHYS3651</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credit Hours</td>
<td>Exam</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>Code</td>
<td>Course Name</td>
<td>Credit</td>
<td>Y/N</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>PHYS7750</td>
<td>Nanophysics</td>
<td>6</td>
<td>Pass in PHYS3551 and PHYS4351</td>
</tr>
<tr>
<td>ENVS3006</td>
<td>Environmental radiation</td>
<td>6</td>
<td>Pass in CHEM2041 or ENVS2001 or ENVS2002 or PHYS2265</td>
</tr>
</tbody>
</table>

Faculty of Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>TAs</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111</td>
<td>Scientific method and reasoning</td>
<td>6</td>
<td>NIL (This course is compulsory for all students taking a Science major offered by the Faculty of Science. Students should take this course in their first year.)</td>
<td>Dr K F Lam, Statistics & Actuarial Science</td>
<td>2017,2016,2015,2014,2013,2012</td>
</tr>
</tbody>
</table>

For a complete list, please refer to the Faculty of Science webpage.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Y/Y</th>
<th>Period</th>
<th>Lecturer</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Level</td>
<td>Exam</td>
<td>Prerequisites</td>
<td>Faculty</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>---</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>SCNC1113</td>
<td>The big history of our planet: a scientific perspective on everything that has ever happened</td>
<td>6</td>
<td>N Y</td>
<td>Level 3 or above in at least one science subject at the pre-university level (HKDSE Physics, Chemistry, Biology, Combined/Integrated Science or equivalent); This course is not offered to students in the 6901 BSc or 6119 BE&BSc programmes.</td>
<td>Dr W M Y Cheung, Faculty</td>
<td></td>
</tr>
<tr>
<td>SCNC2121</td>
<td>Sustainable food production</td>
<td>6</td>
<td>N Y</td>
<td>Students are expected to have passed at least 30 credits of level 1 and/or level 2 science courses. Students will also need to pass an interview in order to be enrolled in the course.</td>
<td>Dr H S El-Nezami, Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>SCNC2122</td>
<td>Marine life science: a North East Pacific perspective</td>
<td>6</td>
<td>N Y</td>
<td>Students are expected to have passed at least 30 credits of level 1 and/or level 2 science courses. Students will also need to pass an interview in order to be enrolled in the course.</td>
<td>Dr T Vengatesen, Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>SCNC3111</td>
<td>Frontiers of science honours seminar course</td>
<td>6</td>
<td>Y Y</td>
<td>Pass in SCNC1111, SCNC1112 and a level 2 science course. Students who participated or will participate in ORF/SRF must take this course.</td>
<td>Dr R K W Lui, Faculty</td>
<td></td>
</tr>
</tbody>
</table>

Department of Statistics & Actuarial Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Level</th>
<th>Exam</th>
<th>Prerequisites</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT1600</td>
<td>Statistics: ideas and concepts</td>
<td>6</td>
<td>Y Y</td>
<td>Not for students who have passed in any of the following courses: STAT1602, STAT1603, STAT3902.</td>
<td>Prof W K Li, Statistics & Actuarial Science</td>
</tr>
<tr>
<td>STAT1601</td>
<td>Elementary statistical methods</td>
<td>6</td>
<td>N N</td>
<td>Level 2 or above in HKDSE Mathematics or equivalent; and Not for students with Level 2 or above in HKDSE Mathematics Extended Module 1 or 2; and Not for students who have passed or already enrolled in any of the following courses: STAT2801, STAT1602, STAT2601, STAT1603, ECON1280</td>
<td>TBC, Statistics & Actuarial Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Instructor</th>
<th>List of BSc Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT2601</td>
<td>Probability and statistics I</td>
<td>6</td>
<td>Pass or already enrolled in MATH2014, or (MATH2011 and MATH2211), for students admitted in 2014 or thereafter; or Pass in MATH1013, or already enrolled in this course, for students admitted in 2013 or before; or Pass in MATH1014 and MATH1015, for students admitted in 2013 or before; and Not for students who have passed in STAT1603, or already enrolled in this course; Not for students who have passed in STAT2901, or already enrolled in this course; and Not for BSc(ActuarSc) students.</td>
<td>Dr K P Wat, Statistics & Actuarial Science</td>
<td>Minor in Actuarial Studies (2018,2017,2016,2015, 2014,2013,2012); Minor in Risk Management (2018,2017,2016,2015, 2014,2013,2012); Minor in Statistics (2018,2017,2016,2015, 2014,2013,2012)</td>
</tr>
<tr>
<td>STAT2901</td>
<td>Probability and statistics: foundations of actuarial science</td>
<td>6</td>
<td>Pass in MATH1821 (for BSc(ActuarSc) students) or already enrolled in this course, or Pass in MATH1013 or already enrolled in this course [for students outside the</td>
<td>Prof S M S Lee, Statistics & Actuarial Science</td>
<td>Minor in Actuarial Studies (2018,2017,2016,2015, 2014,2013,2012)</td>
</tr>
</tbody>
</table>

List of BSc Courses
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Prerequisites</th>
<th>Offered</th>
<th>Instructor</th>
<th>Major/Minor Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3605</td>
<td>Quality control and management</td>
<td>Pass in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or STAT2602 or (STAT1603 and any University level 2 course) or STAT2901; and Not for students who have passed MATH3901, or have already enrolled in this course.</td>
<td>N</td>
<td>TBC, Statistics & Actuarial Science</td>
<td>Major in Statistics (2018,2017,2016,2015,2014,2013,2012); Minor in Statistics (2018,2017,2016,2015,2014,2013,2012)</td>
</tr>
<tr>
<td>STAT3606</td>
<td>Business logistics</td>
<td>Pass in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or (STAT1603 and any University level 2 course) or STAT2901; and Not for students who have passed MATH3901, or have already enrolled in this course.</td>
<td>Y</td>
<td>O K Choi, Statistics & Actuarial Science</td>
<td>Major in Statistics (2018,2017,2016,2015,2014,2013,2012); Minor in Statistics (2018,2017,2016,2015,2014,2013,2012)</td>
</tr>
</tbody>
</table>
List of BSc Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Year(s)</th>
<th>Major(s)</th>
<th>Minor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3609</td>
<td>The statistics of investment risk</td>
<td>Pass in STAT2602, or already enrolled in this course, or Pass in (STAT1603 and any University level 2 course) or STAT3611 or STAT3614; and Not for students who have passed in FINA2320, or have already enrolled in this course; and Not for BSc(Actuarial Science) students</td>
<td>Y Y 1 Dec</td>
<td>Dr K P Wat, Statistics & Actuarial Science</td>
<td>Major in Risk Management (2018,2017,2016,2015,2014,2013,2012); Minor in Risk Management (2018,2017,2016,2015,2014,2013,2012)</td>
</tr>
<tr>
<td>STAT3610</td>
<td>Risk management and insurance</td>
<td>Pass in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or STAT2601 or (STAT1603 and any University level 2 course) or STAT2901; (Not available to Actuarial Science students)</td>
<td>Y Y 2 May</td>
<td>Dr R W L Wong, Statistics & Actuarial Science</td>
<td>Major in Risk Management (2018,2017,2016,2015,2014,2013,2012); Minor in Risk Management (2018,2017,2016,2015,2014,2013,2012)</td>
</tr>
<tr>
<td>STAT3614</td>
<td>Business forecasting</td>
<td>Pass in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or (STAT1603 and any University level 2 course); and Not for students who have passed or already enrolled in any of these</td>
<td>N N --- --- ---</td>
<td>Dr R W L Wong, Statistics & Actuarial Science</td>
<td>Minor in Risk Management (2018,2017,2016,2015,2014,2013,2012); Minor in Statistics (2018,2017,2016,2015,2014,2013,2012)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Prerequisites</td>
<td>Credits</td>
<td>Exam Type</td>
<td>Instructor</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>---------</td>
<td>-----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>STAT3617</td>
<td>Sample survey methods</td>
<td>6 Pass or already enrolled in BIOL2102, or (ECON1280 and any University level 2 course), or (STAT1601 and any University level 2 course), or (STAT1602 and any University level 2 course), or STAT2601, or (STAT1603 and any University level 2 course), or STAT2901.</td>
<td>6</td>
<td>Y Y 2 May</td>
<td>Ms O T K Choi, Statistics & Actuarial Science Major in Statistics (2018,2017,2016,2015, 2014,2013,2012); Minor in Statistics (2018,2017,2016,2015, 2014,2013,2012)</td>
</tr>
<tr>
<td>STAT3618</td>
<td>Derivatives and risk management</td>
<td>6 Pass in STAT3615; and Not for students who have passed in STAT3615; or have already enrolled in this course; and Not for students who have passed in STAT3905, or have already enrolled in this course; and Not for students who have passed in FINA2322, or have already enrolled in this course; and Not for BSc(Actuarial Science) students.</td>
<td>6</td>
<td>Y Y 1 Dec</td>
<td>Dr R W L Wong, Statistics & Actuarial Science Major in Risk Management (2018,2017,2016,2015, 2014,2013,2012); Minor in Risk Management (2018,2017,2016,2015, 2014,2013,2012)</td>
</tr>
<tr>
<td>STAT3622</td>
<td>Data visualization</td>
<td>6 Pass in STAT2602 or STAT3902 (Students are strongly recommended to take STAT2603 prior to taking this course.)</td>
<td>6</td>
<td>Y Y 1 No exam</td>
<td>Dr A J Zhang, Statistics & Actuarial Science Major in Decision Analytics (2018,2017,2016,2015, 2014,2013,2012)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Examination</td>
<td>Grade Options</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------</td>
<td>---</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>STAT3907</td>
<td>Linear models and forecasting</td>
<td>6</td>
<td>Pass in STAT2902 or STAT3902, or already enrolled in this course; and Not for students who have passed in STAT3600, or have already enrolled in this course; and Not for students who have passed in STAT4601, or have already enrolled in this course; and Not for students who have passed in ECON2280, or have already enrolled in this course; and For BSc(Actuarial Science) students only.</td>
<td>Y</td>
<td>Y, 2, May</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Prerequisites</td>
<td>Pass in</td>
<td>Exam</td>
<td>Dec, May</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>STAT3910</td>
<td>Financial economics I</td>
<td>6 Pass in STAT2602 or STAT3902; and Not for students who have passed in STAT3618, or have already enrolled in this course; and Not for students who have passed in FINA232, or have already enrolled in this course.</td>
<td>Y</td>
<td>Y</td>
<td>1</td>
</tr>
<tr>
<td>STAT3952</td>
<td>Investment and asset management</td>
<td>6 Pass in STAT3901; and Not for students who have passed in FINA232, or have already enrolled in this course; and For BSc(Actuarial Science) students only.</td>
<td>N</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>STAT3954</td>
<td>Current topics in actuarial science</td>
<td>6 Pass in STAT3901, or already enrolled in this course; or Pass in STAT3909, or already enrolled in this course; and For BSc(Actuarial Science) students only.</td>
<td>N</td>
<td>N</td>
<td>---</td>
</tr>
<tr>
<td>STAT4601</td>
<td>Time-series analysis</td>
<td>6 Pass in STAT3000; and Not for students who have passed in STAT3914, or have already enrolled in this course; and Not for students who have passed in STAT3907, or have already enrolled in</td>
<td>Y</td>
<td>Y</td>
<td>1</td>
</tr>
</tbody>
</table>

67
<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Exam</th>
<th>Term</th>
<th>Instructor</th>
<th>Major in</th>
<th>Minor in</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Description</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Availability</td>
<td>Examination</td>
<td>Lecturer</td>
<td>Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>---</td>
<td>--------------</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT4711</td>
<td>Capstone experience for actuarial science undergraduates</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective courses in BSc(Actuarial Science) programme including (Pass in STAT3901, or already enrolled in this course; or Pass in STAT3909, or already enrolled in this course); and This capstone course is only for BSc (Actuarial Science) students, and is mutually exclusive with STAT4767 and STAT4798. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y Y 1, 2</td>
<td>No exam</td>
<td>Prof G Yin, Statistics & Actuarial Science</td>
<td>BSc in Actuarial Science (2018,2017,2016,2015, 2014,2013,2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT4767</td>
<td>Actuarial science internship</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective courses in BSc(Actuarial Science) programme including STAT3901; and This capstone course is only for BSc (Actuarial Science) students; and is mutually exclusive with STAT4711. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y Y 1, 2</td>
<td>No exam</td>
<td>Dr A G Benchimol, Statistics & Actuarial Science</td>
<td>BSc in Actuarial Science (2018,2017,2016,2015, 2014,2013,2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT4798</td>
<td>Statistics and actuarial science project</td>
<td>6</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective courses in BSc(Actuarial Science) programme including STAT3902 and STAT3907; and Pass or already enrolled in at least one of the following courses: STAT3816, STAT3911, STAT4402; and This capstone course is only for BSc (Actuarial Science) students; and subject to the consent of course coordinator. This course is mutually exclusive with STAT4711. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
<td>Y Y 1, 2</td>
<td>No exam</td>
<td>Prof S M S Lee, Statistics & Actuarial Science</td>
<td>BSc in Actuarial Science (2018,2017,2016,2015, 2014,2013,2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
<td>Instructor</td>
<td>Notes</td>
<td>Faculty</td>
<td>Semester(s) of Offerings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT7609</td>
<td>Research methods in statistics</td>
<td>6</td>
<td>Pass in STAT3600 or STAT3907</td>
<td>Y Y 1 Dec</td>
<td>--- Prof J J F Yao, Statistics & Actuarial Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT7610</td>
<td>Advanced probability</td>
<td>6</td>
<td>Pass in STAT3603 or STAT3903</td>
<td>Y Y 1 Dec</td>
<td>--- Prof H L Yang, Statistics & Actuarial Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT7611</td>
<td>Computational statistics</td>
<td>6</td>
<td>Pass in STAT3600 or STAT3907</td>
<td>Y Y 1 Dec</td>
<td>--- Prof G Yin, Statistics & Actuarial Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT7614</td>
<td>Advanced statistical modelling</td>
<td>6</td>
<td>Pass in STAT3600 or STAT3907</td>
<td>Y Y 1, 2 Dec, May</td>
<td>--- Dr Y K Chung, Statistics & Actuarial Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT7615</td>
<td>Advanced quantitative risk management and finance</td>
<td>6</td>
<td>Pass in STAT4608</td>
<td>Y Y 2 May</td>
<td>--- Dr Z Zhang, Statistics & Actuarial Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Common Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Instructor</th>
<th>Notes</th>
<th>Faculty</th>
<th>Semester(s) of Offerings</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCCH9020</td>
<td>Science and Technology: Lessons from China</td>
<td>6</td>
<td>NIL</td>
<td>Y Y 1 Dec</td>
<td>--- Dr W M Y Cheung, Faculty</td>
<td>Faculty</td>
<td></td>
</tr>
<tr>
<td>CCCH9052</td>
<td>Arts: Science and Artifacts in Chinese Cultural Heritage</td>
<td>6</td>
<td>NIL</td>
<td>Y Y 1 No exam</td>
<td>--- Prof G A Parker, Physics</td>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>CCGL9016</td>
<td>Feeding the World</td>
<td>6</td>
<td>NIL</td>
<td>Y Y 1 No exam</td>
<td>--- Dr G V Akom, Faculty</td>
<td>Faculty</td>
<td></td>
</tr>
<tr>
<td>CCGL9017</td>
<td>Food: Technology, Trade and Culture</td>
<td>6</td>
<td>NIL</td>
<td>Y Y 1 Dec</td>
<td>--- Dr T Sobko, Biological Sciences</td>
<td>Faculty</td>
<td></td>
</tr>
<tr>
<td>CCGL9033</td>
<td>Weapons of Mass Destruction: Science, Proliferation and Terrorism</td>
<td>6</td>
<td>NIL</td>
<td>Y Y 2 No exam</td>
<td>--- Dr K H Lemke, Earth Sciences</td>
<td>Sciences</td>
<td></td>
</tr>
<tr>
<td>CCST9012</td>
<td>Our Place in the Universe</td>
<td>6</td>
<td>NIL</td>
<td>Y Y 2 May</td>
<td>--- Dr T D Wotherspoon, Faculty</td>
<td>Faculty</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit</td>
<td>Language</td>
<td>English</td>
<td>Exam Status</td>
<td>Course Coordinator/Instructor</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>CCST9013</td>
<td>Our Living Environment</td>
<td>6</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>120 Dr S C Chang, Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>CCST9014</td>
<td>Science and Music</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 No exam 120 Prof H F Chau, Physics</td>
<td></td>
</tr>
<tr>
<td>CCST9017</td>
<td>Hidden Order in Daily Life: A Mathematical Perspective</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>1 No exam 120 Prof T W Ng, Mathematics</td>
<td></td>
</tr>
<tr>
<td>CCST9018</td>
<td>Origin and Evolution of Life</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 No exam 120 Dr K H Lemke, Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>CCST9019</td>
<td>Understanding Climate Change</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 No exam 120 Dr Z H Liu, Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>CCST9021</td>
<td>Hong Kong: Our Marine Heritage</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 No exam 120 Prof K M Y Leung, Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>CCST9022</td>
<td>How the Mass Media Depicts Science, Technology and the Natural World</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>1 No exam 120 Prof H F Chau, Physics</td>
<td></td>
</tr>
<tr>
<td>CCST9023</td>
<td>The Oceans: Science and Society</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>1 No exam 120 Dr J A King, Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>CCST9026</td>
<td>Scientific Revolutions: Their Continuing Impact on Our World and Society</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>1 No exam 120 Prof Q A Parker, Physics</td>
<td></td>
</tr>
<tr>
<td>CCST9030</td>
<td>Forensic Science: Unmasking Evidence, Mysteries and Crimes</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>1 No exam 120 Prof D L Phillips, Chemistry</td>
<td></td>
</tr>
<tr>
<td>CCST9036</td>
<td>Material World: Past, Present, and Future</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 No exam 120 Prof D L Phillips, Chemistry</td>
<td></td>
</tr>
<tr>
<td>CCST9037</td>
<td>Mathematics: A Cultural Heritage</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 No exam 120 Dr B R Kane, Mathematics</td>
<td></td>
</tr>
<tr>
<td>CCST9038</td>
<td>Science and Science Fiction</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>1 No exam 120 Prof A B Djurisic, Physics</td>
<td></td>
</tr>
<tr>
<td>CCST9039</td>
<td>Statistics and our Society</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 May 120 Prof W K Li, Statistics & Actuarial Science</td>
<td></td>
</tr>
<tr>
<td>CCST9043</td>
<td>Time’s Arrow</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 May 120 Dr Y L Li, Earth Sciences</td>
<td></td>
</tr>
<tr>
<td>CCST9045</td>
<td>The Science and Lore of Culinary Culture</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 No exam 120 Dr A M Y Yuen, Chemistry</td>
<td></td>
</tr>
<tr>
<td>CCST9046</td>
<td>The Science of Mind-body-health relationship</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>1 Dec 120 Dr G W Porter, Faculty</td>
<td></td>
</tr>
<tr>
<td>CCST9048</td>
<td>Simplifying Complexity</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>1 No exam 120 Dr T D Wotherspoon, Faculty</td>
<td></td>
</tr>
<tr>
<td>CCST9051</td>
<td>What are We Made of - the Fundamental Nature of Matter</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 No exam 120 Prof S Xu, Physics</td>
<td></td>
</tr>
<tr>
<td>CCST9052</td>
<td>Coffee, Cigarettes, and Alcohol</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 No exam 120 Dr G W Porter, Faculty</td>
<td></td>
</tr>
<tr>
<td>CCST9054</td>
<td>War, Peace, and the Natural World</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 No exam 120 Dr D M Baker, Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>CCST9056</td>
<td>The Force is with You: How Things Work</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 No exam 120 Dr F C C Ling, Physics</td>
<td></td>
</tr>
<tr>
<td>CCST9067</td>
<td>Leaving Earth: Our Future in Space</td>
<td>6</td>
<td>NIL</td>
<td>Y</td>
<td>Y</td>
<td>2 May 120 Dr J R Michalaki, Earth Sciences</td>
<td></td>
</tr>
</tbody>
</table>
Equivalency of HKDSE and other qualifications
SECTION V Equivalency of HKDSE and other qualifications

Table of Equivalence between HKDSE and Other Qualifications

<table>
<thead>
<tr>
<th>HKDSE</th>
<th>Grade</th>
<th>Equivalent Qualification to HKDSE</th>
<th>IB</th>
<th>GCE</th>
<th>SATII</th>
<th>AP</th>
<th>Gao Kao (高考)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>3 or above</td>
<td>Biology (SL/HL)</td>
<td>Biology (AL)</td>
<td>Biology</td>
<td>Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>3 or above</td>
<td>Chemistry (SL/HL)</td>
<td>Chemistry (AL)</td>
<td>Chemistry</td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>3 or above</td>
<td>Physics (SL/HL)</td>
<td>Physics (AL)</td>
<td>Physics</td>
<td>Physics B or C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>2 or above</td>
<td>Mathematics (SL)/Mathematical Studies (SL)</td>
<td>Mathematics (AL)</td>
<td>Mathematics Level 1 or 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics + (M1 or M2)</td>
<td>2 or above</td>
<td>Mathematics (HL)/Mathematical Studies (HL)</td>
<td>Pure Mathematics (AL)</td>
<td>Further Mathematics (AL)</td>
<td>Calculus AB or BC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equivalent to fulfillment of all HKDSE requirements

Remarks:

For science students admitted through non-JUPAS scheme, the equivalent subject qualification(s) to HKDSE, if possessed, can be identified by the SIS for on-line course selection.

For other non-science students admitted through non-JUPAS scheme, they are still required to obtain the written approval from the Course Selection Adviser of the course offering department/school even they have possessed the equivalent HKDSE subject qualification(s) to meet the course prerequisite requirement. Once approval is given, they need to forward it to their home faculties to add the course on-line.

Note:
HL: Higher Level
SL: Standard Level
AL: Advanced Level
Science Majors in 2018-19
SECTION VI Science Majors on offer in 2018/19

Majors offered by Science Faculty

Majors

Astronomy *(only for 2017 cohort or before)*
Biochemistry
Biological Sciences
Chemistry
Chemistry (Intensive) *(for 2018 cohort and thereafter)*
Decision Analytics
Earth System Science
Ecology & Biodiversity
Ecology & Biodiversity (Intensive) *(for 2018 cohort and thereafter)*
Environmental Science
Food & Nutritional Science
Geology
Geology (Intensive) *(for 2018 cohort and thereafter)*
Mathematics
Mathematics/Physics *(only for 2017 cohort or before)*
Molecular Biology & Biotechnology
Molecular Biology & Biotechnology (Intensive) *(for 2018 cohort and thereafter)*
Physics
Risk Management
Statistics
Major Title: Major in Astronomy
Offered to students admitted to Year 1 in 2017

Objectives:
The 21st century is the golden age for astronomy as space-based telescopes are being used to explore the Universe in all parts of the electromagnetic spectrum, including X-ray, ultraviolet, and infrared. The Major in Astronomy is intended for the students who would like to acquire a solid foundation on the subject. A large selection of elective courses is provided for students to pursue their interested specialization in the subject, including observational astronomy, planetary science, stellar physics, and interstellar medium. Students will attain professional knowledge in astronomy, research experience and the training of analytical thinking and quantitative reasoning during their studies. In addition to preparing students for postgraduate studies as professional astronomers, astronomy training can lead to local careers in museums, weather services, and the education sectors. Beyond Hong Kong, astronomy graduates have challenging careers in aerospace, communications, energy, and computer industries, as well as in astronomical observatories and space research centers.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe astrophysical phenomena with their professional knowledge (by means of coursework and tutorial classes in the curriculum)

PLO 2: have developed their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and frequent opportunities in field activities in the curriculum)

PLO 3: analyze astrophysical problems qualitatively and quantitatively, and recognize moral and ethical issues related to the discipline (by means of coursework, tutorial classes and research-based projects in the curriculum)

PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Minor in Astronomy

<table>
<thead>
<tr>
<th>Required courses (96 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introductory level courses (48 credits)</td>
</tr>
<tr>
<td>Disciplinary Core Courses: Science Foundation Courses (12 credits)</td>
</tr>
<tr>
<td>SCNC1111</td>
</tr>
<tr>
<td>SCNC1112</td>
</tr>
<tr>
<td>Disciplinary Core Courses (30 credits)</td>
</tr>
<tr>
<td>PHYS1250</td>
</tr>
<tr>
<td>PHYS1650</td>
</tr>
<tr>
<td>EASC2408</td>
</tr>
<tr>
<td>PHYS2250</td>
</tr>
<tr>
<td>PHYS2265</td>
</tr>
<tr>
<td>Disciplinary Electives (6 Credits)</td>
</tr>
<tr>
<td>At least 6 credits selected from the following courses:</td>
</tr>
<tr>
<td>PHYS1150</td>
</tr>
<tr>
<td>PHYS2055</td>
</tr>
<tr>
<td>PHYS2150</td>
</tr>
<tr>
<td>PHYS2155</td>
</tr>
<tr>
<td>PHYS2255</td>
</tr>
<tr>
<td>PHYS2260</td>
</tr>
<tr>
<td>2. Advanced level courses (42 credits)</td>
</tr>
<tr>
<td>Disciplinary Core Courses (18 credits)</td>
</tr>
<tr>
<td>PHYS3650</td>
</tr>
<tr>
<td>PHYS3651</td>
</tr>
<tr>
<td>PHYS3652</td>
</tr>
<tr>
<td>Disciplinary Electives (24 credits)</td>
</tr>
<tr>
<td>At least 12 credits selected from courses in List A:</td>
</tr>
<tr>
<td>List A</td>
</tr>
<tr>
<td>PHYS4650</td>
</tr>
<tr>
<td>PHYS4651</td>
</tr>
<tr>
<td>PHYS4652</td>
</tr>
<tr>
<td>PHYS4653</td>
</tr>
<tr>
<td>PHYS4655</td>
</tr>
<tr>
<td>PHYS4655</td>
</tr>
<tr>
<td>Plus at least 12 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements.</td>
</tr>
<tr>
<td>The current course list includes courses in List B and those courses not selected to fulfill the requirements in List A and the capstone requirement.</td>
</tr>
<tr>
<td>List B</td>
</tr>
<tr>
<td>PHYS3150</td>
</tr>
<tr>
<td>PHYS3350</td>
</tr>
<tr>
<td>PHYS3351</td>
</tr>
<tr>
<td>PHYS3450</td>
</tr>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>PHYS3550</td>
</tr>
<tr>
<td>PHYS3551</td>
</tr>
<tr>
<td>PHYS3750</td>
</tr>
<tr>
<td>PHYS3751</td>
</tr>
<tr>
<td>PHYS3850</td>
</tr>
<tr>
<td>PHYS3851</td>
</tr>
<tr>
<td>PHYS4150</td>
</tr>
<tr>
<td>PHYS4151</td>
</tr>
<tr>
<td>PHYS4350</td>
</tr>
<tr>
<td>PHYS4351</td>
</tr>
<tr>
<td>PHYS4450</td>
</tr>
<tr>
<td>PHYS4550</td>
</tr>
<tr>
<td>PHYS4551</td>
</tr>
<tr>
<td>PHYS4654</td>
</tr>
<tr>
<td>PHYS4750</td>
</tr>
<tr>
<td>PHYS4850</td>
</tr>
<tr>
<td>PHYS7350</td>
</tr>
<tr>
<td>PHYS7351</td>
</tr>
<tr>
<td>PHYS7450</td>
</tr>
<tr>
<td>PHYS7550</td>
</tr>
<tr>
<td>PHYS7551</td>
</tr>
<tr>
<td>PHYS7750</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- PHYS3999 Directed studies in physics (6)
- PHYS4966 Physics internship (6)
- PHYS4999 Physics project (12)

Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

5. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Astronomy
Offered to students admitted to Year 1 in 2016

Objectives:
The 21st century is the golden age for astronomy as space-based telescopes are being used to explore the Universe in all parts of the electromagnetic spectrum, including X-ray, ultraviolet, and infrared. The Major in Astronomy is intended for the students who would like to acquire a solid foundation on the subject. A large selection of elective courses is provided for students to pursue their interested specialization in the subject, including observational astronomy, planetary science, stellar physics, and interstellar medium. Students will attain professional knowledge in astronomy, research experience and the training of analytical thinking and quantitative reasoning during their studies. In addition to preparing students for postgraduate studies as professional astronomers, astronomy training can lead to local careers in museums, weather services, and the education sectors. Beyond Hong Kong, astronomy graduates have challenging careers in aerospace, communications, energy, and computer industries, as well as in astronomical observatories and space research centers.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1 : identify and describe astrophysical phenomena with their professional knowledge (by means of coursework and tutorial classes in the curriculum)

PLO 2 : have developed their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and frequent opportunities in field activities in the curriculum)

PLO 3 : analyze astrophysical problems qualitatively and quantitatively, and recognize moral and ethical issues related to the discipline (by means of coursework, tutorial classes and research-based projects in the curriculum)

PLO 4 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

PLO 5 : apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Minor in Astronomy

Required courses (96 credits)

1. Introductory level courses (48 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111</td>
<td>Scientific method and reasoning</td>
<td>6</td>
</tr>
<tr>
<td>SCNC1112</td>
<td>Fundamentals of modern science</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Core Courses (30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1250</td>
<td>Fundamental physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS1650</td>
<td>Nature of the universe</td>
<td>6</td>
</tr>
<tr>
<td>EASC2408</td>
<td>Planetary geology</td>
<td>6</td>
</tr>
<tr>
<td>PHYS2250</td>
<td>Introductory mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS2265</td>
<td>Modern physics</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Elective (6 credits)
At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1150</td>
<td>Problem solving in physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS2055</td>
<td>Introduction to relativity</td>
<td>6</td>
</tr>
<tr>
<td>PHYS2150</td>
<td>Methods in physics I</td>
<td>6</td>
</tr>
<tr>
<td>PHYS2155</td>
<td>Methods in physics II</td>
<td>6</td>
</tr>
<tr>
<td>PHYS2255</td>
<td>Introductory electricity and magnetism</td>
<td>6</td>
</tr>
<tr>
<td>PHYS2260</td>
<td>Heat and waves</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Advanced level courses (42 credits)

Disciplinary Core Courses (18 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3650</td>
<td>Observational astronomy</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3651</td>
<td>The physical universe</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3652</td>
<td>Principles of astronomy</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Electives (24 credits)
At least 12 credits selected from courses in List A:

List A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS4650</td>
<td>Stellar physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4651</td>
<td>Selected topics in astrophysics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4652</td>
<td>Planetary science</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4653</td>
<td>Cosmology</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4655</td>
<td>Interstellar medium</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4656</td>
<td>Stellar atmospheres</td>
<td>6</td>
</tr>
</tbody>
</table>

Plus at least 12 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List B and those courses not selected to fulfill the requirements in List A and the capstone requirement.

List B

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3150</td>
<td>Theoretical physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3350</td>
<td>Classical mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3351</td>
<td>Quantum mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3450</td>
<td>Electromagnetism</td>
<td>6</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>PHYS3550</td>
<td>Statistical mechanics & thermodynamics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3551</td>
<td>Introductory solid state physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3750</td>
<td>Laser and spectroscopy</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3751</td>
<td>Physics of nanomaterials</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3850</td>
<td>Waves and optics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3851</td>
<td>Atomic and nuclear physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4150</td>
<td>Computational physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4151</td>
<td>Data analysis and modeling in physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4350</td>
<td>Advanced classical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4351</td>
<td>Advanced quantum mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4450</td>
<td>Advanced electromagnetism</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4550</td>
<td>Advanced statistical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4551</td>
<td>Solid state physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4654</td>
<td>General relativity</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4750</td>
<td>Experimental physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4850</td>
<td>Particle physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7350</td>
<td>Graduate classical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7351</td>
<td>Graduate quantum mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7450</td>
<td>Graduate electromagnetism</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7550</td>
<td>Graduate statistical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7551</td>
<td>Graduate solid state physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7750</td>
<td>Nanophysics</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3999</td>
<td>Directed studies in physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4966</td>
<td>Physics internship</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4999</td>
<td>Physics project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:
1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Astronomy
Offered to students admitted to Year 1 in 2015

Objectives:
The 21st century is the golden age for astronomy as space-based telescopes are being used to explore the Universe in all parts of the electromagnetic spectrum, including X-ray, ultraviolet, and infrared. The Major in Astronomy is intended for the students who would like to acquire a solid foundation on the subject. A large selection of elective courses is provided for students to pursue their interested specialization in the subject, including observational astronomy, planetary science, stellar physics, and interstellar medium. Students will attain professional knowledge in astronomy, research experience and the training of analytical thinking and quantitative reasoning during their studies. In addition to preparing students for postgraduate studies as professional astronomers, astronomy training can lead to local careers in museums, weather services, and the education sectors. Beyond Hong Kong, astronomy graduates have challenging careers in aerospace, communications, energy, and computer industries, as well as in astronomical observatories and space research centers.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** identify and describe astrophysical phenomena with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
- **PLO 2:** have developed their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and frequent opportunities in field activities in the curriculum)
- **PLO 3:** analyze astrophysical problems qualitatively and quantitatively, and recognize moral and ethical issues related to the discipline (by means of coursework, tutorial classes and research-based projects in the curriculum)
- **PLO 4:** communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorials and presentation opportunities in the curriculum)
- **PLO 5:** apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Minor in Astronomy

Required courses (96 credits)

1. **Introductory level courses (48 credits)**
 - **Disciplinary Core Courses: Science Foundation Courses (12 credits)**
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 - **Disciplinary Core Courses (30 credits)**
 - PHYS1250 Fundamental physics (6)
 - PHYS1650 Nature of the universe (6)
 - EASC2408 Planetary geology (6)
 - PHYS2250 Introductory mechanics (6)
 - PHYS2265 Modern physics (6)
 - **Disciplinary Electives (6 credits)**
 - At least 6 credits selected from the following courses:
 - PHYS1150 Problem solving in physics (6)
 - PHYS2055 Introduction to relativity (6)
 - PHYS2150 Methods in physics I (6)
 - PHYS2155 Methods in physics II (6)
 - PHYS2255 Introductory electricity and magnetism (6)
 - PHYS2260 Heat and waves (6)

2. **Advanced level courses (42 credits)**
 - **Disciplinary Core Courses (18 credits)**
 - PHYS3650 Observational astronomy (6)
 - PHYS3651 The physical universe (6)
 - PHYS3652 Principles of astronomy (6)
 - **Disciplinary Electives (24 credits)**
 - At least 12 credits selected from courses in List A:
 - **List A**
 - PHYS4650 Stellar physics (6)
 - PHYS4651 Selected topics in astrophysics (6)
 - PHYS4652 Planetary science (6)
 - PHYS4653 Cosmology (6)
 - PHYS4655 Interstellar medium (6)
 - PHYS4656 Stellar atmospheres (6)
 - Plus at least 12 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List B and those courses not selected to fulfill the requirements in List A and the capstone requirement.
 - **List B**
 - PHYS3150 Theoretical physics (6)
 - PHYS3350 Classical mechanics (6)
 - PHYS3351 Quantum mechanics (6)
 - PHYS3450 Electromagnetism (6)
3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3999</td>
<td>Directed studies in physics (6)</td>
</tr>
<tr>
<td>PHYS4966</td>
<td>Physics internship (6)</td>
</tr>
<tr>
<td>PHYS4999</td>
<td>Physics project (12)</td>
</tr>
</tbody>
</table>

Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240.

Remarks:

Important: Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The 21st century is the golden age for astronomy as space-based telescopes are being used to explore the Universe in all parts of the electromagnetic spectrum, including X-ray, ultraviolet, and infrared. The Major in Astronomy is intended for the students who would like to acquire a solid foundation on the subject. A large selection of elective courses is provided for students to pursue their interested specialization in the subject, including observational astronomy, planetary science, stellar physics, and interstellar medium. Students will attain professional knowledge in astronomy, research experience and the training of analytical thinking and quantitative reasoning during their studies. In addition to preparing students for postgraduate studies as professional astronomers, astronomy training can lead to local careers in museums, weather services, and the education sectors. Beyond Hong Kong, astronomy graduates have challenging careers in aerospace, communications, energy, and computer industries, as well as in astronomical observatories and space research centers.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe astrophysical phenomena with their professional knowledge (by means of coursework and tutorial classes in the curriculum)

PLO 2: have developed their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and frequent opportunities in field activities in the curriculum)

PLO 3: analyze astrophysical problems qualitatively and quantitatively, and recognize moral and ethical issues related to the discipline (by means of coursework, tutorial classes and research-based projects in the curriculum)

PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Minor in Astronomy

Required courses (96 credits)

1. Introductory level courses (48 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)
- SCNC1111 Scientific method and reasoning (6)
- SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (36 credits)
- PHYS1250 Fundamental physics (6)
- PHYS1650 Nature of the universe (6)
- EASC2408 Planetary geology (6)
- PHYS2250 Introductory mechanics (6)
- PHYS2255 Introductory electricity and magnetism (6)
- PHYS2265 Modern physics (6)

2. Advanced level courses (42 credits)
Disciplinary Core Courses (18 credits)
- PHYS3650 Observational astronomy (6)
- PHYS3651 The physical universe (6)
- PHYS3652 Principles of astronomy (6)

Disciplinary Electives (24 credits)
At least 12 credits selected from courses in List A:

List A
- PHYS4650 Stellar physics (6)
- PHYS4651 Selected topics in astrophysics (6)
- PHYS4652 Planetary science (6)
- PHYS4653 Cosmology (6)
- PHYS4655 Interstellar medium (6)
- PHYS7650 Stellar atmospheres (6)

Plus at least 12 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List B and those courses not selected to fulfill the requirements in List A and the capstone requirement.

List B
- PHYS3150 Theoretical physics (6)
- PHYS3350 Classical mechanics (6)
- PHYS3351 Quantum mechanics (6)
- PHYS3450 Electromagnetism (6)
- PHYS3550 Statistical mechanics & thermodynamics (6)
- PHYS3551 Introductory solid state physics (6)
- PHYS3750 Laser and spectroscopy (6)
- PHYS3751 Physics of nanomaterials (6)
- PHYS3850 Waves and optics (6)
- PHYS3851 Atomic and nuclear physics (6)
- PHYS4150 Computational physics (6)
3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3999</td>
<td>Directed studies in physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4966</td>
<td>Physics internship</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4999</td>
<td>Physics project</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required (‘disciplinary core’) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses (‘disciplinary core’) in the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title | Major in Astronomy
Offered to students admitted to Year 1 in 2013

Objectives:
The 21st century is the golden age for astronomy as space-based telescopes are being used to explore the Universe in all parts of the electromagnetic spectrum, including X-ray, ultraviolet, and infrared. The Major in Astronomy is intended for the students who would like to acquire a solid foundation on the subject. A large selection of elective courses is provided for students to pursue their interested specialization in the subject, including observational astronomy, planetary science, stellar physics, and interstellar medium. Students will attain professional knowledge in astronomy, research experience and the training of analytical thinking and quantitative reasoning during their studies. In addition to preparing students for postgraduate studies as professional astronomers, astronomy training can lead to local careers in museums, weather services, and the education sectors. Beyond Hong Kong, astronomy graduates have challenging careers in aerospace, communications, energy, and computer industries, as well as in astronomical observatories and space research centers.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe astrophysical phenomena with their professional knowledge (by means of coursework and tutorial classes in the curriculum)

PLO 2: have developed their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and frequent opportunities in field activities in the curriculum)

PLO 3: analyze astrophysical problems qualitatively and quantitatively, and recognize moral and ethical issues related to the discipline (by means of coursework, tutorial classes and research-based projects in the curriculum)

PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Minor in Astronomy

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111: Scientific method and reasoning (6)
 - SCNC1112: Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 - PHYS1250: Fundamental physics (6)
 - PHYS1650: Nature of the universe (6)
 - EASC2408: Planetary geology (6)
 - PHYS2250: Introductory mechanics (6)
 - PHYS2255: Introductory electricity and magnetism (6)
 - PHYS2265: Modern physics (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (18 credits)
 - PHYS3650: Observational astronomy (6)
 - PHYS3651: The physical universe (6)
 - PHYS3652: Principles of astronomy (6)

 Disciplinary Electives (24 credits)
 At least 12 credits selected from courses in List A:
 - PHYS4650: Stellar physics (6)
 - PHYS4651: Selected topics in astrophysics (6)
 - PHYS4652: Planetary science (6)
 - PHYS4653: Cosmology (6)
 - PHYS4655: Interstellar medium (6)
 - PHYS4656: Stellar atmospheres (6)

 Plus at least 12 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS5XXX level), subject to prerequisite requirements. The current course list includes courses in List B and those courses not selected to fulfill the requirements in List A and the capstone requirement.

List B
 - PHYS3150: Theoretical physics (6)
 - PHYS3350: Classical mechanics (6)
 - PHYS3351: Quantum mechanics (6)
 - PHYS3450: Electromagnetism (6)
 - PHYS3550: Statistical mechanics & thermodynamics (6)
 - PHYS3551: Introductory solid state physics (6)
 - PHYS3750: Laser and spectroscopy (6)
 - PHYS3751: Physics of nanomaterials (6)
 - PHYS3850: Waves and optics (6)
 - PHYS3851: Atomic and nuclear physics (6)
 - PHYS4150: Computational physics (6)
3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3999</td>
<td>Directed studies in physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4966</td>
<td>Physics internship</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4999</td>
<td>Physics project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Astronomy
Offered to students admitted to Year 1 in 2012

Objectives:
The 21st century is the golden age for astronomy as space-based telescopes are being used to explore the Universe in all parts of the electromagnetic spectrum, including X-ray, ultraviolet, and infrared. The Major in Astronomy is intended for the students who would like to acquire a solid foundation on the subject. A large selection of elective courses is provided for students to pursue their interested specialization in the subject, including observational astronomy, planetary science, stellar physics, and interstellar medium. Students will attain professional knowledge in astronomy, research experience and the training of analytical thinking and quantitative reasoning during their studies. In addition to preparing students for postgraduate studies as professional astronomers, astronomy training can lead to local careers in museums, weather services, and the education sectors. Beyond Hong Kong, astronomy graduates have challenging careers in aerospace, communications, energy, and computer industries, as well as in astronomical observatories and space research centers.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe astrophysical phenomena with their professional knowledge (by means of coursework and tutorial classes in the curriculum)

PLO 2: have developed their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and frequent opportunities in field activities in the curriculum)

PLO 3: analyze astrophysical problems qualitatively and quantitatively, and recognize moral and ethical issues related to the discipline (by means of coursework, tutorial classes and research-based projects in the curriculum)

PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Minor in Astronomy

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 PHYS1250 Fundamental physics (6)
 PHYS1650 Nature of the universe (6)
 EASC2408 Planetary geology (6)
 PHYS2250 Introductory mechanics (6)
 PHYS2255 Introductory electricity and magnetism (6)
 PHYS2265 Modern physics (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (18 credits)
 PHYS3650 Observational astronomy (6)
 PHYS3651 The physical universe (6)
 PHYS3652 Principles of astronomy (6)

 Disciplinary Electives (24 credits)
 At least 12 credits selected from courses in List A:
 List A
 PHYS4650 Stellar physics (6)
 PHYS4651 Selected topics in astrophysics (6)
 PHYS4652 Planetary science (6)
 PHYS4653 Cosmology (6)
 PHYS4655 Interstellar medium (6)
 PHYS7650 Stellar atmospheres (6)

 Plus at least 12 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List B and those courses not selected to fulfill the requirements in List A and the capstone requirement.
 List B
 PHYS3150 Theoretical physics (6)
 PHYS3350 Classical mechanics (6)
 PHYS3351 Quantum mechanics (6)
 PHYS3450 Electromagnetism (6)
 PHYS3550 Statistical mechanics & thermodynamics (6)
 PHYS3551 Introductory solid state physics (6)
 PHYS3750 Laser and spectroscopy (6)
 PHYS3751 Physics of nanomaterials (6)
 PHYS3850 Waves and optics (6)
 PHYS3851 Atomic and nuclear physics (6)
 PHYS4150 Computational physics (6)
Science Majors

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS4151</td>
<td>Data analysis and modeling in physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4350</td>
<td>Advanced classical mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4351</td>
<td>Advanced quantum mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4450</td>
<td>Advanced electromagnetism</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4550</td>
<td>Advanced statistical mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4551</td>
<td>Solid state physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4654</td>
<td>General relativity</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4750</td>
<td>Experimental physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4850</td>
<td>Particle physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7350</td>
<td>Graduate classical mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7351</td>
<td>Graduate quantum mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7450</td>
<td>Graduate electromagnetism</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7550</td>
<td>Graduate statistical mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7551</td>
<td>Graduate solid state physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7750</td>
<td>Nanophysics</td>
<td>6</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:
- PHYS3999: Directed studies in physics (6)
- PHYS4966: Physics internship (6)
- PHYS4999: Physics project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students’ ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)
- **PLO 2:** apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratory-based and research project-based learning)
- **PLO 3:** interpret and communicate scientific data and literature using appropriate scientific language (by means of literature-based coursework and debate)
- **PLO 4:** work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)
- **PLO 5:** recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

Impermissible Combinations:
Minor in Biochemistry

<table>
<thead>
<tr>
<th>Required courses (96 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introductory level courses (42 credits)</td>
</tr>
<tr>
<td>Disciplinary Core Courses: Science Foundation Courses (12 credits)</td>
</tr>
<tr>
<td>SCNC1111</td>
</tr>
<tr>
<td>SCNC1112</td>
</tr>
<tr>
<td>Disciplinary Core Courses (24 credits)</td>
</tr>
<tr>
<td>CHEM1042</td>
</tr>
<tr>
<td>CHEM1043</td>
</tr>
<tr>
<td>BIOC2600</td>
</tr>
<tr>
<td>BIOL2220</td>
</tr>
<tr>
<td>CHEM2441</td>
</tr>
<tr>
<td>Disciplinary Electives (6 credits)</td>
</tr>
<tr>
<td>BIOC1600</td>
</tr>
<tr>
<td>BIOL1110</td>
</tr>
<tr>
<td>2. Advanced level courses (48 credits)</td>
</tr>
<tr>
<td>Disciplinary Core Courses (30 credits)</td>
</tr>
<tr>
<td>BIOC3601</td>
</tr>
<tr>
<td>BIOC3604</td>
</tr>
<tr>
<td>BIOL3401</td>
</tr>
<tr>
<td>BIOC4610</td>
</tr>
<tr>
<td>BIOC4613</td>
</tr>
<tr>
<td>Disciplinary Electives (18 credits)</td>
</tr>
<tr>
<td>At least 18 credits selected from the following courses:</td>
</tr>
<tr>
<td>BIOC3605</td>
</tr>
<tr>
<td>BIOC3606</td>
</tr>
<tr>
<td>BIOL3202</td>
</tr>
<tr>
<td>BIOL3402</td>
</tr>
<tr>
<td>BIOL3403</td>
</tr>
<tr>
<td>BIOL3404</td>
</tr>
<tr>
<td>BIOL3408</td>
</tr>
<tr>
<td>CHEM3441</td>
</tr>
<tr>
<td>BIOC4612</td>
</tr>
</tbody>
</table>

Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

Take either BIOC2600 or BIOL2220 to fulfill this 24 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both.

Take either BIOC1600 or BIOL1110 to fulfill this 6 credits requirement, but not both.
Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Biochemistry
Offered to students admitted to Year 1 in: 2017

Objectives:
The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students’ ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)
- **PLO 2**: apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratory-based and research project-based learning)
- **PLO 3**: interpret and communicate scientific data and literature using appropriate scientific language (by means of literature-based coursework and debate)
- **PLO 4**: work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)
- **PLO 5**: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

Impermissible Combinations:
- Minor in Biochemistry

Required courses (96 credits)

1. **Introductory level courses (42 credits)**
 - **Disciplinary Core Courses: Science Foundation Courses (12 credits)**
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 - **Disciplinary Core Courses (24 credits)**
 - CHEM1042 General chemistry I (6)
 - CHEM1043 General chemistry II (6)
 - BIOC2600 Basic biochemistry (6)
 - BIOL2220 Principles of biochemistry (6)
 - CHEM2441 Organic chemistry I (6)
 - **Disciplinary Electives (6 credits)**
 - BIOC1600 Perspectives in biochemistry (6)
 - BIOL1110 From molecules to cells (6)

2. **Advanced level courses (48 credits)**
 - **Disciplinary Core Courses (30 credits)**
 - BIOC3601 Basic metabolism (6)
 - BIOC3604 Essential techniques in biochemistry and molecular biology (6)
 - BIOL3401 Molecular biology (6)
 - BIOC4610 Advanced biochemistry (6)
 - BIOC4613 Advanced techniques in biochemistry & molecular biology (6)
 - **Disciplinary Electives (18 credits)**
 - At least 18 credits selected from the following courses:
 - BIOC3605 Sequence bioinformatics (6)
 - BIOC3606 Molecular medicine (6)
 - BIOL3202 Nutritional biochemistry (6)
 - BIOL3402 Cell biology and cell technology (6)
 - BIOL3403 Immunology (6)
 - BIOC4604 Protein structure and function (6)
 - BIOC4608 Genetics (6)
 - CHEM3441 Organic chemistry II (6)
 - BIOC4612 Molecular biology of the gene (6)
BIOL4417 'Omics' and systems biology (6)
CHEM4145 Medicinal chemistry (6)
CHEM4444 Chemical biology (6)

3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 BIOC3999 Directed studies in biochemistry (6)
 BIOC4966 Biochemistry internship (6)
 BIOC4999 Biochemistry project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Biochemistry
Offered to students admitted to Year 1 in 2016

Objectives:
The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students’ ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)

PLO 2: apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratory-based and research project-based learning)

PLO 3: interpret and communicate scientific data and literature using appropriate scientific language (by means of literature-based coursework and debate)

PLO 4: work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)

PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

Impermissible Combinations:
Minor in Biochemistry

Required courses (96 credits)

1. Introductory level courses (42 credits)
 - Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 - Disciplinary Core Courses (24 credits)
 - CHEM1042 General chemistry I (6)
 - CHEM1043 General chemistry II (6)
 - BIOC2600 Basic biochemistry (6)
 - BIOL2220 Principles of biochemistry (6)

2. Advanced level courses (48 credits)
 - Disciplinary Core Courses (30 credits)
 - BIOC1600 Perspectives in biochemistry (6)
 - BIOL1110 From molecules to cells (6)
 - Disciplinary Electives (6 credits)
 - BIOC3605 Sequence bioinformatics (6)
 - BIOL3202 Nutritional biochemistry (6)
 - BIOL3402 Cell biology and cell technology (6)
 - BIOL3403 Immunology (6)
 - BIOL3404 Protein structure and function (6)
 - BIOL3408 Genetics (6)
 - CHEM3441 Organic chemistry II (6)
 - BIOC4612 Molecular biology of the gene (6)
BIOL4417 'Omics' and systems biology (6)
CHEM4145 Medicinal chemistry (6)
CHEM4444 Chemical biology (6)

3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
BIOC3999 Directed studies in biochemistry (6)
BIOC4966 Biochemistry internship (6)
BIOC4999 Biochemistry project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For courses with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Biochemistry
Offered to students admitted to Year 1 in 2015

Objectives:
The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry and molecular biology with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students’ ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)

- **PLO 2:** apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratory-based and research project-based learning)

- **PLO 3:** interpret and communicate scientific data and literature using appropriate scientific language (by means of literature-based coursework and debate)

- **PLO 4:** work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)

- **PLO 5:** recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

Impermissible Combinations:
Minor in Biochemistry

Required courses (96 credits)

1. **Introductory level courses (42 credits)**
 - **Disciplinary Core Courses: Science Foundation Courses (12 credits)**
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 - **Disciplinary Core Courses (24 credits)**
 - CHEM1042 General chemistry I (6)
 - CHEM1043 General chemistry II (6)
 - BIOC2600 Basic biochemistry (6)
 - BIOL2220 Principles of biochemistry (6)
 - **Disciplinary Electives (6 credits)**
 - BIOC1600 Perspectives in biochemistry (6)
 - BIOL1110 From molecules to cells (6)

2. **Advanced level courses (48 credits)**
 - **Disciplinary Core Courses (30 credits)**
 - BIOC3601 Basic metabolism (6)
 - BIOC3604 Essential techniques in biochemistry and molecular biology (6)
 - BIOL3401 Molecular biology (6)
 - BIOC4610 Advanced biochemistry (6)
 - BIOC4613 Advanced techniques in biochemistry & molecular biology (6)
 - **Disciplinary Electives (18 credits)**
 - At least 18 credits selected from the following courses:
 - BIOC3605 Sequence bioinformatics (6)
 - BIOC3606 Molecular medicine (6)
 - BIOL3202 Nutritional biochemistry (6)
 - BIOL3402 Cell biology and cell technology (6)
 - BIOC3403 Immunology (6)
 - BIOC3404 Protein structure and function (6)
 - BIOL3408 Genetics (6)
 - CHEM3441 Organic chemistry II (6)
 - BIOC4612 Molecular biology of the gene (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL4417</td>
<td>'Omics' and systems biology</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4145</td>
<td>Medicinal chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4444</td>
<td>Chemical biology</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC3999</td>
<td>Directed studies in biochemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOC4966</td>
<td>Biochemistry internship</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOC4999</td>
<td>Biochemistry project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required (‘disciplinary core’) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. Details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Biochemistry
Offered to students admitted to Year 1 in 2014

Objectives:
The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students' ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)

PLO 2: apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratory-based and research project-based learning)

PLO 3: interpret and communicate scientific data and literature using appropriate scientific language (by means of literature-based coursework and debate)

PLO 4: work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)

PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

Impermissible Combinations:
Minor in Biochemistry

Required courses (96 credits)
1. Introductory level courses (48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
- SCNC1111 Scientific method and reasoning (6)
- SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (30 credits)
- BIOC1600 Perspectives in biochemistry (6)
- BIOL1110 From molecules to cells (6)
- CHEM1042 General chemistry I (6)
- BIOC2600 Basic biochemistry (6)
- CHEM2441 Organic chemistry I (6)

Disciplinary Electives (6 credits)
- CHEM1043 General chemistry II (6)
- CHEM2541 Introductory physical chemistry (6)

Take either CHEM1043 or CHEM2541 to fulfill this 6 credits requirement, but not both.

2. Advanced level courses (42 credits)

Disciplinary Core Courses (30 credits)
- BIOC3601 Basic metabolism (6)
- BIOC3604 Essential techniques in biochemistry and molecular biology (6)
- BIOC3601 Molecular biology (6)
- BIOC4610 Advanced biochemistry (6)
- BIOC4613 Advanced techniques in biochemistry & molecular biology (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
- BIOC3605 Sequence bioinformatics (6)
- BIOC3606 Molecular medicine (6)
- BIOL3202 Nutritional biochemistry (6)
- BIOL3402 Cell biology and cell technology (6)
- BIOL3403 Immunology (6)
- BIOL3404 Protein structure and function (6)
- BIOL3408 Genetics (6)
- CHEM3441 Organic chemistry II (6)
- BIOC4612 Molecular biology of the gene (6)
- BIOC4617 ‘Omics’ and systems biology (6)
- CHEM4145 Medicinal chemistry (6)
- CHEM4444 Chemical biology (6)

Take either CHEM1043 or CHEM2541 to fulfill this 6 credits requirement, but not both.

3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required (‘disciplinary core’) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses (“disciplinary core”) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students’ ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)

PLO 2: apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratory-based and research project-based learning)

PLO 3: interpret and communicate scientific data and literature using appropriate scientific language (by means of literature-based coursework and debate)

PLO 4: work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)

PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

Impermissible Combinations:

Minor in Biochemistry

Required courses (96 credits)

1. **Introductory level courses (48 credits)**
 - **Disciplinary Core Courses:** Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 - **Disciplinary Core Courses (30 credits)**
 - BIOC1600 Perspectives in biochemistry (6)
 - BIOL1110 From molecules to cells (6)
 - CHEM1042 General chemistry I (6)
 - BIOC2600 Basic biochemistry (6)
 - CHEM2441 Organic chemistry I (6)
 - **Disciplinary Electives (6 credits)**
 - CHEM1043 General chemistry II (6)
 - CHEM2541 Introductory physical chemistry (6)

2. **Advanced level courses (42 credits)**
 - **Disciplinary Core Courses (30 credits)**
 - BIOC3601 Basic metabolism (6)
 - BIOC3604 Essential techniques in biochemistry and molecular biology (6)
 - BIOL3401 Molecular biology (6)
 - BIOC4610 Advanced biochemistry (6)
 - BIOC4613 Advanced techniques in biochemistry & molecular biology (6)
 - **Disciplinary Electives (12 credits)**
 - At least 12 credits selected from the following courses:
 - BIOC3605 Sequence bioinformatics (6)
 - BIOC3606 Molecular medicine (6)
 - BIOL3202 Nutritional biochemistry (6)
 - BIOL3402 Cell biology and cell technology (6)
 - BIOL3403 Immunology (6)
 - BIOL3404 Protein structure and function (6)
 - BIOL3408 Genetics (6)
 - CHEM3441 Organic chemistry II (6)
 - BIOC4612 Molecular biology of the gene (6)
 - BIOL4417 ‘Omic’s and systems biology (6)
 - CHEM4145 Medicinal chemistry (6)
 - CHEM4444 Chemical biology (6)

3. **Capstone requirement (6 credits)**
 - At least 6 credits selected from the following courses:
Science Majors

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI0C3999</td>
<td>Directed studies in biochemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>BI0C4966</td>
<td>Biochemistry internship</td>
<td>(6)</td>
</tr>
<tr>
<td>BI0C4999</td>
<td>Biochemistry project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ('disciplinary core') in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Biochemistry
Offered to students admitted to Year 1 in 2012

Objectives:
The Major in Biochemistry aims to provide students with both basic and advanced knowledge in contemporary biochemistry and molecular biology. Core courses in the curriculum emphasize equipping students with a general understanding of the fundamental ideas, principles and theories of biochemistry with particular focus on the relevance of biochemistry, molecular biology and genomics to biology, human health and disease. Elective courses extend this core knowledge to provide students with specialized insight into both basic and applied scientific endeavour in biochemistry, bioinformatics, molecular biology and molecular genetics. Throughout the curriculum there is an emphasis on experiential learning through laboratory practicals, problem-solving exercises, group-based learning, industrial experience, overseas exchange and research-based projects. These experiences are designed to develop students' ability to read and interpret scientific data, to integrate knowledge with wider scientific theory, and to improve logical thinking and communication skills. The ultimate goal is to provide a comprehensive degree-level biochemistry education that equips students with the critical thinking, communication and analytical skills essential for them to play a leading role in society in the future.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe the principles of biomolecular structure, metabolism, molecular interactions, molecular processes and their regulation, genetics and systems biology critical to contemporary biochemistry and molecular biology (by means of coursework and experiential learning)

PLO 2: apply biochemical, bioinformatics and molecular genetics technologies for new observations, measurements and analyses; and to design experiments that bring discovery and insight into the unknown (by means of laboratory-based and research project-based learning)

PLO 3: interpret and communicate scientific data and literature using appropriate scientific language (by means of literature-based coursework and debate)

PLO 4: work effectively as a team and synergize with their colleagues in a supportive manner (by means of group-based learning and by group-based problem solving)

PLO 5: recognize the interconnections of biochemistry with other disciplines in science, medicine and engineering, humanities and ethics, which are relevant for diverse working environment in the society (by means of multidisciplinary-based research projects, internship and debate)

Impermissible Combinations:
Minor in Biochemistry

Required courses (96 credits)

1. Introductory level courses (48 credits)
 - Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111: Scientific method and reasoning (6)
 - SCNC1112: Fundamentals of modern science (6)
 - Disciplinary Core Courses (30 credits)
 - BIOC1600: Perspectives in biochemistry (6)
 - BIOL1110: From molecules to cells (6)
 - CHEM1042: General chemistry I (6)
 - BIOC2600: Basic biochemistry (6)
 - CHEM2441: Organic chemistry I (6)
 - Disciplinary Electives (6 credits)
 - CHEM1043: General chemistry II (6)
 - CHEM2541: Introductory physical chemistry (6)

2. Advanced level courses (42 credits)
 - Disciplinary Core Courses (30 credits)
 - BIOC3601: Basic metabolism (6)
 - BIOC3604: Essential techniques in biochemistry and molecular biology (6)
 - BIOL3401: Molecular biology (6)
 - BIOC4610: Advanced biochemistry (6)
 - BIOC4613: Advanced techniques in biochemistry & molecular biology (6)

 - Disciplinary Electives (12 credits)
 - At least 12 credits selected from the following courses:
 - BIOC3605: Sequence bioinformatics (6)
 - BIOC3606: Molecular medicine (6)
 - BIOL3202: Nutritional biochemistry (6)
 - BIOL3402: Cell biology and cell technology (6)
 - BIOL3403: Immunology (6)
 - BIOL3404: Protein structure and function (6)
 - BIOL3408: Genetics (6)
 - CHEM3441: Organic chemistry II (6)
 - BIOC4612: Molecular biology of the gene (6)
 - CHEM4145: Medicinal chemistry (6)
 - CHEM4444: Chemical biology (6)

3. Capstone requirement (6 credits)
 - At least 6 credits selected from the following courses:
Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Biological Sciences
Offered to students admitted to Year 1 in 2018

Objectives:
This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular & cell biology; ecology, systematics and evolution; physiology and organismic biology) and will undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand concepts underpinning advances in genetics, molecular & cell biology; ecology, systematics and evolution; physiology and organismic biology (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)

PLO 6: be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity (Intensive)
Major in Molecular Biology & Biotechnology (Intensive)

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1110 From molecules to cells (6)
 BIOL1309 Evolutionary diversity (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2220 Principles of biochemistry (6)
 Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
 BIOL2306 Ecology and evolution (6)
 BIOC2600 Basic biochemistry (6)
 Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

2. Advanced level courses (at least 42 credits)
 Disciplinary Electives (42 credits)
 (A) Genetics, molecular and cell biology (at least 12 credits selected from area A)
 BIOL3401 Molecular biology (6)
 BIOL3402 Cell biology and cell technology (6)
 BIOL3404 Protein structure and function (6)
 BIOL3408 Genetics (6)

 (B) Ecology, systematics and evolution (at least 12 credits selected from area B)
 BIOL3301 Marine biology (6)
 BIOL3302 Systematics and phylogenetics (6)
 BIOL3303 Conservation biology (6)
 BIOL3419 Insect ecology: the little things that run the world (6)
 BIOL3501 Evolution (6)

 (C) Physiology and organismic biology (at least 18 credits with 6 credits from each of List I, II & III)
 List I
 BIOL3105 Animal physiology and environmental adaptation (6)
 BIOL3205 Human physiology (6)
 BIOL3403 Immunology (6)
 BIOL3406 Reproduction and reproductive biotechnology (6)
 BIOL3503 Endocrinology: human physiology II (6)
 List II
3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- BIOL3994 Directed studies in biological sciences (6)
- BIOL4964 Biological sciences internship (6)
- BIOL4994 Biological sciences project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Biological Sciences
Offered to students admitted to Year 1 in 2017

Objectives:
This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular & cell biology; ecology, systematics and evolution; physiology and organismic biology) and will undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand concepts underpinning advances in genetics, molecular & cell biology; ecology, systematics and evolution; physiology and organismic biology (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)

PLO 6: be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity (Intensive)
Major in Molecular Biology & Biotechnology (Intensive)

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1110 From molecules to cells (6)
 BIOL1309 Evolutionary diversity (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2220 Principles of biochemistry (6) Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
 BIOL2306 Ecology and evolution (6)
 BIOC2600 Basic biochemistry (6) Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

2. Advanced level courses (at least 42 credits)
 Disciplinary Electives (42 credits)
 (A) Genetics, molecular and cell biology (at least 12 credits selected from area A)
 BIOL3401 Molecular biology (6)
 BIOL3402 Cell biology and cell technology (6)
 BIOL3404 Protein structure and function (6)
 BIOL3408 Genetics (6)

 (B) Ecology, systematics and evolution (at least 12 credits selected from area B)
 BIOL3301 Marine biology (6)
 BIOL3302 Systematics and phylogenetics (6)
 BIOL3303 Conservation biology (6)
 BIOL3419 Insect ecology: the little things that run the world (6)
 BIOL3501 Evolution (6)

 (C) Physiology and organismic biology (at least 18 credits with 6 credits from each of List I, II & III)
 List I
 BIOL3105 Animal physiology and environmental adaptation (6)
 BIOL3205 Human physiology (6)
 BIOL3403 Immunology (6)
 BIOL3406 Reproduction and reproductive biotechnology (6)
 BIOL3503 Endocrinology: human physiology II (6)
 List II

102
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3107</td>
<td>Plant physiology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3314</td>
<td>Plant structure and evolution</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4411</td>
<td>Plant and food biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>List III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3109</td>
<td>Environmental microbiology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3203</td>
<td>Food microbiology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3508</td>
<td>Microbial physiology and biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4401</td>
<td>Medical microbiology and applied immunology</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3994</td>
<td>Directed studies in biological sciences</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4964</td>
<td>Biological sciences internship</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4994</td>
<td>Biological sciences project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Biological Sciences
Offered to students admitted to Year 1 in 2016

Objectives:
This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further exposed to three fundamental areas of biological sciences (genetics, molecular & cell biology; ecology, systematics and evolution; physiology and organismic biology) and will undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand concepts underpinning advances in genetics, molecular & cell biology; ecology, systematics and evolution; physiology and organismic biology (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)

PLO 6: be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity (Intensive)
Major in Molecular Biology & Biotechnology (Intensive)

Required courses (96 credits)
1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1110 From molecules to cells (6)
 BIOL1309 Evolutionary diversity (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2220 Principles of biochemistry (6)
 BIOL2306 Ecology and evolution (6)
 BIOC2600 Basic biochemistry (6)

2. Advanced level courses (at least 42 credits)
 Disciplinary Electives (42 credits)
 (A) Genetics, molecular and cell biology (at least 12 credits selected from area A)
 BIOL3401 Molecular biology (6)
 BIOL3402 Cell biology and cell technology (6)
 BIOL3404 Protein structure and function (6)
 BIOL3408 Genetics (6)

 (B) Ecology, systematics and evolution (at least 12 credits selected from area B)
 BIOL3301 Marine biology (6)
 BIOL3302 Systematics and phylogenetics (6)
 BIOL3303 Conservation biology (6)
 BIOL3419 Insect ecology: the little things that run the world (6)
 BIOL3501 Evolution (6)

 (C) Physiology and organismic biology (at least 18 credits with 6 credits from each of List I, II & III)
 List I
 BIOL3105 Animal physiology and environmental adaptation (6)
 BIOL3205 Human physiology (6)
 BIOL3403 Immunology (6)
 BIOL3406 Reproduction and reproductive biotechnology (6)
 BIOL3503 Endocrinology: human physiology II (6)

 List II

Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3107</td>
<td>Plant physiology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3314</td>
<td>Plant structure and evolution</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4411</td>
<td>Plant and food biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3109</td>
<td>Environmental microbiology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3203</td>
<td>Food microbiology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3508</td>
<td>Microbial physiology and biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4401</td>
<td>Medical microbiology and applied immunology</td>
<td>(6)</td>
</tr>
</tbody>
</table>

List III

- BIOL3994 Directed studies in biological sciences (6)
- BIOL4964 Biological sciences internship (6)
- BIOL4994 Biological sciences project (12)

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- BIOL3994 Directed studies in biological sciences (6)
- BIOL4964 Biological sciences internship (6)
- BIOL4994 Biological sciences project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Biological Sciences
Offered to students admitted to Year 1 in 2015

Objectives:
This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further allowed to specialize in areas such as microbiology, genetics & cytology, physiology & homeostasis, or diversity of life & environmental biology and undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand concepts underpinning advances in cell biology and genetics, physiology and systems biology, diversity of life and environmental biology, and applied biology (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)

PLO 6: be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

Impermissible Combinations:
- Major in Ecology & Biodiversity (Intensive)
- Major in Molecular Biology & Biotechnology (Intensive)

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)

2. Advanced level courses (at least 42 credits)
 Disciplinary Core Courses (36 credits)
 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2102 Biostatistics (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry (6)
 - BIOL3105 Animal physiology and environmental adaptation (6)
 - BIOL3107 Plant physiology (6)
 - BIOL3108 Microbial physiology (6)
 - BIOL3205 Human physiology (6)
 - BIOL3508 Microbial physiology and biotechnology (6)
 - BIOL3401 Molecular biology (6)
 - BIOL3402 Cell biology and cell technology (6)
 - BIOL3403 Immunology (6)
 - BIOL3408 Genetics (6)
 - BIOL3109 Environmental microbiology (6)
 - BIOL3508 Microbial physiology and biotechnology (6)
 - Take either BIOL2220 or BIOL2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOL2600 are mutually exclusive.
 - Take either BIOL2220 and BIOL2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOL2600 are mutually exclusive.
 - Take either BIOL3108 or BIOL3508 to fulfill this 42 credits requirement, but not both. BIOL3108 and BIOL3508 are mutually exclusive.
 - Take either BIOL3108 or BIOL3508 to fulfill this 42 credits requirement, but not both. BIOL3108 and BIOL3508 are mutually exclusive.

Impermissible Combinations:
- Major in Ecology & Biodiversity (Intensive)
- Major in Molecular Biology & Biotechnology (Intensive)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3110</td>
<td>Environmental toxicology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3301</td>
<td>Marine biology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3302</td>
<td>Systematics and phylogenetics</td>
<td>(6)</td>
</tr>
<tr>
<td>(D) Applied biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3303</td>
<td>Conservation biology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3409</td>
<td>Business aspects of biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4301</td>
<td>Fish and fisheries</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4401</td>
<td>Medical microbiology and applied immunology</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3994</td>
<td>Directed studies in biological sciences</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4964</td>
<td>Biological sciences internship</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4994</td>
<td>Biological sciences project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ('disciplinary core') in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Biological Sciences
Offered to students admitted to Year 1 in 2014

Objectives:
This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further allowed to specialize in areas such as microbiology, genetics & cytology, physiology & homeostasis, or diversity of life & environmental biology and undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand concepts underpinning advances in cell biology and genetics, physiology and systems biology, diversity of life and environmental biology, and applied biology (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)

PLO 6: be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity (Intensive)
Major in Molecular Biology & Biotechnology (Intensive)

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1110 From molecules to cells (6)
 BIOL1111 Introductory microbiology (6)
 BIOL1309 Evolutionary diversity (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2306 Ecology and evolution (6)

2. Advanced level courses (at least 42 credits)
 Disciplinary Electives (42 credits)
 Students must select at least 6 credits from each of the following area A, B, C & D:
 (A) Genetics and cell biology
 BIOL3401 Molecular biology (6)
 BIOL3402 Cell biology and cell technology (6)
 BIOL3403 Immunology (6)
 BIOL3408 Genetics (6)
 (B) Physiology and systems biology
 BIOL3105 Animal physiology and environmental adaptation (6)
 BIOL3107 Plant physiology (6)
 BIOL3108 Microbial physiology (6)
 BIOL3205 Human physiology (6)
 BIOL3508 Microbial physiology and biotechnology (6)

 (C) Diversity of life and environmental biology
 BIOL3109 Environmental microbiology (6)
 BIOL3110 Environmental toxicology (6)
 BIOL3301 Marine biology (6)
 BIOL3302 Systematics and phylogenetics (6)

 (D) Applied biology
 BIOL3303 Conservation biology (6)
 BIOL3409 Business aspects of biotechnology (6)
3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3994</td>
<td>Directed studies in biological sciences</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4964</td>
<td>Biological sciences internship</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4994</td>
<td>Biological sciences project</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:

1. BIOL1111 Introductory Microbiology is not offered from 2015-16. Students should take either BIOL2220 Principles of biochemistry or BIOC2600 Basic biochemistry as a replacement, both BIOL2220 and BIOC2600 are mutually exclusive.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Biological Sciences
Offered to students admitted to Year 1 in 2013

Objectives:
This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further allowed to specialize in areas such as microbiology, genetics & cytology, physiology & homeostasis, or diversity of life & environmental biology and undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand concepts underpinning advances in cell biology and genetics, physiology and systems biology, diversity of life and environmental biology, and applied biology (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)

PLO 6: be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity (Intensive)
Major in Molecular Biology & Biotechnology (Intensive)

Required courses (96 credits)

1. Introductory level courses (48 credits)

 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1110 From molecules to cells (6)
 BIOL1111 Introductory microbiology (6)
 BIOL1309 Evolutionary diversity (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2306 Ecology and evolution (6)

2. Advanced level courses (at least 42 credits)

 Disciplinary Electives (42 credits)
 Students must select at least 6 credits from each of the following area A, B, C & D:

 (A) Genetics and cell biology
 BIOL3401 Molecular biology (6)
 BIOL3402 Cell biology and cell technology (6)
 BIOL3403 Immunology (6)
 BIOL3408 Genetics (6)

 (B) Physiology and systems biology
 BIOL3105 Animal physiology and environmental adaptation (6)
 BIOL3107 Plant physiology (6)
 BIOL3108 Microbial physiology (6)
 BIOL3205 Human physiology (6)
 BIOL3508 Microbial physiology and biotechnology (6)

 Take either BIOL3108 or BIOL3508 to fulfill this 42 credits requirement, but not both.
 BIOL3108 and BIOL3508 are mutually exclusive.

 (C) Diversity of life and environmental biology
 BIOL3109 Environmental microbiology (6)
 BIOL3110 Environmental toxicology (6)
 BIOL3301 Marine biology (6)
 BIOL3302 Systematics and phylogenetics (6)

 Take either BIOL3108 or BIOL3508 to fulfill this 42 credits requirement, but not both.
 BIOL3108 and BIOL3508 are mutually exclusive.

 (D) Applied biology
 BIOL3303 Conservation biology (6)
 BIOL3409 Business aspects of biotechnology (6)

 Science Majors
3. **Capstone requirement (6 credits)**

At least 6 credits selected from the following courses:

- BIOL3994 Directed studies in biological sciences (6)
- BIOL4964 Biological sciences internship (6)
- BIOL4994 Biological sciences project (12)

Notes:

1. BIOL1111 Introductory Microbiology is not offered from 2015-16. Students should take either BIOL2220 Principles of biochemistry or BIOC2600 Basic biochemistry as a replacement, both BIOL2220 and BIOC2600 are mutually exclusive.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Biological Sciences
Offered to students admitted to Year 1 in 2012

Objectives:
This Major is designed for students seeking a broad-based training in modern biology. Students are guided in an inquiry-driven learning environment to appreciate the major biological systems at different levels of biological organization. Teaching emphasizes both core concepts and applied aspects in biological sciences. The programme is highly flexible as students can select courses according to their own interests from a wide spectrum of elective courses. At the advanced level, students are further allowed to specialize in areas such as microbiology, genetics & cytology, physiology & homeostasis, or diversity of life & environmental biology and undertake experiential learning activities. The diverse learning experience exposes students to problem-based learning, and an exciting array of laboratory and field techniques. Students will also be able to acquire valuable transferable skills in analysis, organization and communication. The Biological Sciences Major applies modern scientific inquiry to prepare graduates for employment as professionals in a variety of careers or for postgraduate study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand concepts underpinning advances in cell biology and genetics, physiology and systems biology, diversity of life and environmental biology, and applied biology (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: evaluate diverse threads of enquiry in science, and identify the value of datasets and written output (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: interpret scientific data from a range of sources and explain trends observed (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: demonstrate independent and critical thinking and appreciate moral and ethical issues related to biological sciences (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: communicate in a professional capacity with educators, business, media and the scientific community (by means of coursework, tutorial classes, project-based and presentation opportunities in the curriculum)

PLO 6: be prepared to enter employment as professional scientists, educators and managers (by means of coursework, tutorial classes, laboratory-based, project-based and capstone learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity (Intensive)
Major in Molecular Biology & Biotechnology (Intensive)

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1110 From molecules to cells (6)
 BIOL1111 Introductory microbiology (6)
 BIOL1309 Evolutionary diversity (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2306 Ecology and evolution (6)

2. Advanced level courses (at least 42 credits)
 Disciplinary Electives (42 credits)
 Students must select at least 6 credits from each of the following area A, B, C & D:

 (A) Genetics and cell biology
 BIOL3401 Molecular biology (6)
 BIOL3402 Cell biology and cell technology (6)
 BIOL3403 Immunology (6)
 BIOL3408 Genetics (6)

 (B) Physiology and systems biology
 BIOL3105 Animal physiology and environmental adaptation (6)
 BIOL3107 Plant physiology (6)
 BIOL3108 Microbial physiology (6)
 BIOL3205 Human physiology (6)
 BIOL3508 Microbial physiology and biotechnology (6)

 (C) Diversity of life and environmental biology
 BIOL3109 Environmental microbiology (6)
 BIOL3110 Environmental toxicology (6)
 BIOL3301 Marine biology (6)
 BIOL3302 Systematics and phylogenetics (6)

 (D) Applied biology
 BIOL3303 Conservation biology (6)
 BIOL3409 Business aspects of biotechnology (6)
3. **Capstone requirement (6 credits)**

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3994</td>
<td>Directed studies in biological sciences</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4964</td>
<td>Biological sciences internship</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4994</td>
<td>Biological sciences project</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:

1. BIOL1111 Introductory Microbiology is not offered from 2015-16. Students should take either BIOL2220 Principles of biochemistry or BIOC2600 Basic biochemistry as a replacement, both BIOL2220 and BIOC2600 are mutually exclusive.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

Objectives:

The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

Learning Outcomes:

By the end of this programme, students should be able to:

- **PLO 1:** demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic & physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
- **PLO 2:** demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical & practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
- **PLO 3:** have developed an awareness & understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
- **PLO 4:** have substantially developed advanced experimental skills including chemical synthesis, analysis & operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information & infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
- **PLO 5:** demonstrate problem-solving skills, critical thinking, creativity & effective written & oral communication skills, and to co-operate with other people & participate as an effective team member (by means of coursework, laboratory-based learning, group project & presentation opportunities in the curriculum)
- **PLO 6:** gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills & project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

Impermissible Combinations:

- Major in Chemistry (Intensive)
- Minor in Chemistry

Required courses (96 credits)

1. **Introductory level courses (48 credits)**
 - SCNC1111: Scientific method and reasoning (6)
 - SCNC1112: Fundamentals of modern science (6)

2. **Disciplinary Core Courses (36 credits)**
 - CHEM1042: General chemistry I (6)
 - CHEM1043: General chemistry II (6)
 - CHEM2241: Analytical chemistry I (6)
 - CHEM2341: Inorganic chemistry I (6)
 - CHEM2441: Organic chemistry I (6)
 - CHEM2541: Introductory physical chemistry (6)
 - CHEM3241: Analytical chemistry II: chemical instrumentation (6)
 - CHEM3341: Inorganic chemistry II (6)
 - CHEM3441: Organic chemistry II (6)
 - CHEM3443: Integrated organic synthesis (6)

3. **Disciplinary Electives (12 credits)**
 - CHEM4142: Symmetry, group theory and applications (6)
 - CHEM4143: Interfacial science and technology (6)
 - CHEM4144: Advanced materials (6)
 - CHEM4145: Medicinal chemistry (6)
 - CHEM4147: Supramolecular chemistry (6)
 - CHEM4241: Modern chemical instrumentation and applications (6)
 - CHEM4242: Analytical chemistry (6)
 - CHEM4341: Advanced inorganic chemistry (6)
 - CHEM4342: Organometallic chemistry (6)
 - CHEM4441: Advanced organic chemistry (6)
 - CHEM4443: Integrated organic synthesis (6)
CHEM4444 Chemical biology (6)
CHEM4542 Computational chemistry (6)
CHEM4543 Advanced physical chemistry (6)
CHEM4544 Electrochemical science and technology (6)

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3999</td>
<td>Directed studies in chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4910</td>
<td>Chemistry literacy and research</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4911</td>
<td>Capstone experience for chemistry undergraduates: HKUtopia</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4966</td>
<td>Chemistry internship</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4999</td>
<td>Chemistry project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Chemistry
Offered to students admitted to Year 1 in 2017

Objectives:
The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic & physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 2: demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical & practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 3: have developed an awareness & understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 4: have substantially developed advanced experimental skills including chemical synthesis, analysis & operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information & infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)

PLO 5: demonstrate problem-solving skills, critical thinking, creativity & effective written & oral communication skills, and to co-operate with other people & participate as an effective team member (by means of coursework, laboratory-based learning, group project & presentation opportunities in the curriculum)

PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills & project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

Impermissible Combinations:
Major in Chemistry (Intensive)
Minor in Chemistry

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (36 credits)
 CHEM1042 General chemistry I (6)
 CHEM1043 General chemistry II (6)
 CHEM2241 Analytical chemistry I (6)
 CHEM2341 Inorganic chemistry I (6)
 CHEM2441 Organic chemistry I (6)
 CHEM2541 Introductory physical chemistry (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Course (30 credits)
 CHEM3241 Analytical chemistry II: chemical instrumentation (6)
 CHEM3341 Inorganic chemistry II (6)
 CHEM3441 Organic chemistry II (6)
 CHEM3443 Organic chemistry laboratory (6)
 CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)

 Disciplinary Electives (12 credits)
 At least 12 credits of any level 4 Chemistry (CHEM4XXX) courses. The current list include courses in List A.
 List A
 CHEM4142 Symmetry, group theory and applications (6)
 CHEM4143 Interfacial science and technology (6)
 CHEM4144 Advanced materials (6)
 CHEM4145 Medicinal chemistry (6)
 CHEM4147 Supramolecular chemistry (6)
 CHEM4241 Modern chemical instrumentation and applications (6)
 CHEM4242 Analytical chemistry (6)
 CHEM4341 Advanced inorganic chemistry (6)
 CHEM4342 Organometallic chemistry (6)
 CHEM4441 Advanced organic chemistry (6)
 CHEM4443 Integrated organic synthesis (6)
CHEM4444 Chemical biology (6)
CHEM4542 Computational chemistry (6)
CHEM4543 Advanced physical chemistry (6)
CHEM4544 Electrochemical science and technology (6)

3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 CHEM3999 Directed studies in chemistry (6)
 CHEM4910 Chemistry literacy and research (6)
 CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia (6)
 CHEM4966 Chemistry internship (6)
 CHEM4999 Chemistry project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Chemistry
Offered to students admitted to Year 1 in 2016

Objectives:
The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic & physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 2: demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical & practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 3: have developed an awareness & understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 4: have substantially developed advanced experimental skills including chemical synthesis, analysis & operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information & infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)

PLO 5: demonstrate problem-solving skills, critical thinking, creativity & effective written & oral communication skills, and to co-operate with other people & participate as an effective team member (by means of coursework, laboratory-based learning, group project & presentation opportunities in the curriculum)

PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills & project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

Impermissible Combinations:
Major in Chemistry (Intensive)
Minor in Chemistry

Required courses (96 credits)

1. Introductory level courses (48 credits)
 - SCNC1111: Scientific method and reasoning (6)
 - SCNC1112: Fundamentals of modern science (6)

Disciplinary Core Courses (36 credits)
 - CHEM1042: General chemistry I (6)
 - CHEM1043: General chemistry II (6)
 - CHEM2241: Analytical chemistry I (6)
 - CHEM2341: Inorganic chemistry I (6)
 - CHEM2441: Organic chemistry I (6)
 - CHEM2541: Introductory physical chemistry (6)

Disciplinary Electives (12 credits)
 - At least 12 credits of any level 4 Chemistry (CHEM4XXX) courses. The current list include courses in List A.
 - List A
 - CHEM4142: Symmetry, group theory and applications (6)
 - CHEM4143: Interfacial science and technology (6)
 - CHEM4144: Advanced materials (6)
 - CHEM4145: Medicinal chemistry (6)
 - CHEM4147: Supramolecular chemistry (6)
 - CHEM4241: Modern chemical instrumentation and applications (6)
 - CHEM4242: Analytical chemistry (6)
 - CHEM4341: Advanced inorganic chemistry (6)
 - CHEM4342: Organometallic chemistry (6)
 - CHEM4441: Advanced organic chemistry (6)
 - CHEM4443: Integrated organic synthesis (6)
CHEM4444 Chemical biology (6)
CHEM4542 Computational chemistry (6)
CHEM4543 Advanced physical chemistry (6)
CHEM4544 Electrochemical science and technology (6)

3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 CHEM3999 Directed studies in chemistry (6)
 CHEM4910 Chemistry literacy and research (6)
 CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia (6)
 CHEM4966 Chemistry internship (6)
 CHEM4999 Chemistry project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Chemistry
Offered to students admitted to Year 1 in 2015

Objectives:
The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic & physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 2: demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical & practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 3: have developed an awareness & understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 4: have substantially developed advanced experimental skills including chemical synthesis, analysis & operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information & infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)

PLO 5: demonstrate problem-solving skills, critical thinking, creativity & effective written & oral communication skills, and to co-operate with other people & participate as an effective team member (by means of coursework, laboratory-based learning, group project & presentation opportunities in the curriculum)

PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills & project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

Impermissible Combinations:
Major in Chemistry (Intensive)
Minor in Chemistry

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 CHEM1042 General chemistry I (6)
 CHEM1043 General chemistry II (6)
 CHEM2241 Analytical chemistry I (6)
 CHEM2341 Inorganic chemistry I (6)
 CHEM2441 Organic chemistry I (6)
 CHEM2541 Introductory physical chemistry (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Course (30 credits)
 CHEM3241 Analytical chemistry II: chemical instrumentation (6)
 CHEM3341 Inorganic chemistry II (6)
 CHEM3441 Organic chemistry II (6)
 CHEM3443 Organic chemistry laboratory (6)
 CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)

 Disciplinary Electives (12 credits)
 At least 12 credits of any level 4 Chemistry (CHEM4XXX) courses. The current list include courses in List A.
 List A
 CHEM4142 Symmetry, group theory and applications (6)
 CHEM4143 Interfacial science and technology (6)
 CHEM4144 Advanced materials (6)
 CHEM4145 Medicinal chemistry (6)
 CHEM4147 Supramolecular chemistry (6)
 CHEM4241 Modern chemical instrumentation and applications (6)
 CHEM4242 Analytical chemistry (6)
 CHEM4341 Advanced inorganic chemistry (6)
 CHEM4342 Organometallic chemistry (6)
 CHEM4441 Advanced organic chemistry (6)
 CHEM4443 Integrated organic synthesis (6)
3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 CHEM3999 Directed studies in chemistry (6)
 CHEM4910 Chemistry literacy and research (6)
 CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia (6)
 CHEM4966 Chemistry internship (6)
 CHEM4999 Chemistry project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required (disciplinary core) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses (disciplinary core) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic & physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

- **PLO 2**: demonstrate an in-depth understanding of fundamental physiochemical principles with the ability to apply that knowledge to the solution of theoretical & practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

- **PLO 3**: have developed an awareness & understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

- **PLO 4**: have substantially developed advanced experimental skills including chemical synthesis, analysis & operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information & infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)

- **PLO 5**: demonstrate problem-solving skills, critical thinking, creativity & effective written & oral communication skills, and to co-operate with other people & participate as an effective team member (by means of coursework, laboratory-based learning, group project & presentation opportunities in the curriculum)

- **PLO 6**: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills & project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

Impermissible Combinations:
- Major in Chemistry (Intensive)
- Minor in Chemistry

Required courses (96 credits)

1. Introductory level courses (42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111</td>
<td>Scientific method and reasoning</td>
<td>6</td>
</tr>
<tr>
<td>SCNC1112</td>
<td>Fundamentals of modern science</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Core Courses (30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1042</td>
<td>General chemistry I</td>
<td>6</td>
</tr>
<tr>
<td>CHEM2241</td>
<td>Analytical chemistry I</td>
<td>6</td>
</tr>
<tr>
<td>CHEM2341</td>
<td>Inorganic chemistry I</td>
<td>6</td>
</tr>
<tr>
<td>CHEM2441</td>
<td>Organic chemistry I</td>
<td>6</td>
</tr>
<tr>
<td>CHEM2541</td>
<td>Introductory physical chemistry</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Advanced level courses (48 credits)

Disciplinary Core Course (30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3146</td>
<td>Principles and applications of spectroscopic and analytical techniques</td>
<td>6</td>
</tr>
<tr>
<td>CHEM3241</td>
<td>Analytical chemistry II: chemical instrumentation</td>
<td>6</td>
</tr>
<tr>
<td>CHEM3341</td>
<td>Inorganic chemistry II</td>
<td>6</td>
</tr>
<tr>
<td>CHEM3441</td>
<td>Organic chemistry II</td>
<td>6</td>
</tr>
<tr>
<td>CHEM3541</td>
<td>Physical chemistry: Introduction to quantum chemistry</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Electives (12 credits)

List A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3542</td>
<td>Physical chemistry: statistical thermodynamics and kinetics</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4341</td>
<td>Advanced inorganic chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4441</td>
<td>Advanced organic chemistry</td>
<td>6</td>
</tr>
</tbody>
</table>

Take either CHEM4443 or CHEM4441 to fulfill this 12 credits requirement, but not both.

Disciplinary Electives (6 credits)

- CHEM4443: Integrated organic synthesis (6)

Take either CHEM4443 or CHEM4441 to fulfill this 12 credits requirement, but not both.
At least 6 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level, excluding CHEM3999
Directed studies in chemistry, CHEM4910 Chemistry literacy and research, CHEM4911 Capstone experience for
chemistry undergraduates: HKUtopia, CHEM4966 Chemistry internship and CHEM4999 Chemistry project), subject to
pre-requisite requirements. The current list include courses in List B and those course not selected to fulfill the
requirements in List A.

List B

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3141</td>
<td>Environmental chemistry (6)</td>
</tr>
<tr>
<td>CHEM3142</td>
<td>Chemical process industries and analysis (6)</td>
</tr>
<tr>
<td>CHEM3143</td>
<td>Introduction to materials chemistry (6)</td>
</tr>
<tr>
<td>CHEM3242</td>
<td>Food and water analysis (6)</td>
</tr>
<tr>
<td>CHEM3342</td>
<td>Bioinorganic chemistry (6)</td>
</tr>
<tr>
<td>CHEM3442</td>
<td>Organic chemistry of biomolecules (6)</td>
</tr>
<tr>
<td>CHEM3443</td>
<td>Organic chemistry laboratory (6)</td>
</tr>
<tr>
<td>CHEM3445</td>
<td>Integrated laboratory (6)</td>
</tr>
<tr>
<td>CHEM4142</td>
<td>Symmetry, group theory and applications (6)</td>
</tr>
<tr>
<td>CHEM4143</td>
<td>Interfacial science and technology (6)</td>
</tr>
<tr>
<td>CHEM4144</td>
<td>Advanced materials (6)</td>
</tr>
<tr>
<td>CHEM4145</td>
<td>Medicinal chemistry (6)</td>
</tr>
<tr>
<td>CHEM4147</td>
<td>Supramolecular chemistry (6)</td>
</tr>
<tr>
<td>CHEM4241</td>
<td>Modern chemical instrumentation and applications (6)</td>
</tr>
<tr>
<td>CHEM4342</td>
<td>Organometallic chemistry (6)</td>
</tr>
<tr>
<td>CHEM4444</td>
<td>Chemical biology (6)</td>
</tr>
<tr>
<td>CHEM4542</td>
<td>Computational chemistry (6)</td>
</tr>
<tr>
<td>CHEM4543</td>
<td>Advanced physical chemistry (6)</td>
</tr>
<tr>
<td>CHEM4544</td>
<td>Electrochemical science and technology (6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3999</td>
<td>Directed studies in chemistry (6)</td>
</tr>
<tr>
<td>CHEM4910</td>
<td>Chemistry literacy and research (6)</td>
</tr>
<tr>
<td>CHEM4911</td>
<td>Capstone experience for chemistry undergraduates: HKUtopia (6)</td>
</tr>
<tr>
<td>CHEM4966</td>
<td>Chemistry internship (6)</td>
</tr>
<tr>
<td>CHEM4999</td>
<td>Chemistry project (12)</td>
</tr>
</tbody>
</table>

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

6. CHEM3146 Principles and applications of spectroscopic and analytical techniques is not offered from 2016-17. Students should consult the course selection advisers for course replacement.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Chemistry
Offered to students admitted to Year 1 in: 2013

Objectives:
The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

Learning Outcomes:
By the end of this programme, students should be able to:

1. **PLO 1**: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic & physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
2. **PLO 2**: demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical & practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
3. **PLO 3**: have developed an awareness & understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
4. **PLO 4**: have substantially developed advanced experimental skills including chemical synthesis, analysis & operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information & infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
5. **PLO 5**: demonstrate problem-solving skills, critical thinking, creativity & effective written & oral communication skills, and to co-operate with other people & participate as an effective team member (by means of coursework, laboratory-based learning, group project & presentation opportunities in the curriculum)
6. **PLO 6**: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills & project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

Impermissible Combinations:
Major in Chemistry (Intensive)
Minor in Chemistry

Required courses (96 credits)

<table>
<thead>
<tr>
<th>Disciplinary Core Courses: Science Foundation Courses (12 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111 Scientific method and reasoning (6)</td>
</tr>
<tr>
<td>SCNC1112 Fundamentals of modern science (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Courses (30 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1042 General chemistry I (6)</td>
</tr>
<tr>
<td>CHEM2141 Analytical chemistry I (6)</td>
</tr>
<tr>
<td>CHEM2241 Inorganic chemistry I (6)</td>
</tr>
<tr>
<td>CHEM2341 Organic chemistry I (6)</td>
</tr>
<tr>
<td>CHEM2541 Introductory physical chemistry (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Courses (30 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3146 Principles and applications of spectroscopic and analytical techniques (6)</td>
</tr>
<tr>
<td>CHEM3241 Analytical chemistry II: chemical instrumentation (6)</td>
</tr>
<tr>
<td>CHEM3341 Inorganic chemistry II (6)</td>
</tr>
<tr>
<td>CHEM3441 Organic chemistry II (6)</td>
</tr>
<tr>
<td>CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Electives (12 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 12 credits selected from the following 18 credits of courses in two different areas in List A:</td>
</tr>
<tr>
<td>CHEM3542 Physical chemistry: statistical thermodynamics and kinetics theory (6)</td>
</tr>
<tr>
<td>CHEM4341 Advanced inorganic chemistry (6)</td>
</tr>
<tr>
<td>CHEM4441 Advanced organic chemistry (6)</td>
</tr>
<tr>
<td>CHEM4443 Integrated organic synthesis (6)</td>
</tr>
<tr>
<td>CHEM4541 Physical chemistry III: statistical thermodynamics and kinetics theory (6)</td>
</tr>
</tbody>
</table>

Disciplinary Electives (6 credits)

1. Take either CHEM3542 or CHEM4541 to fulfill this 12 credits requirement, but not both.
2. Take either CHEM4443 or CHEM4441 to fulfill this 12 credits requirement, but not both.
3. Take either CHEM4443 or CHEM4441 to fulfill this 12 credits requirement, but not both.
4. Take either CHEM3542 or CHEM4541 to fulfill this 12 credits requirement, but not both.
At least 6 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level, excluding CHEM3999 Directed studies in chemistry, CHEM4910 Chemistry literacy and research, CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia, CHEM4966 Chemistry internship and CHEM4999 Chemistry project), subject to pre-requisite requirements. The current list include courses in List B and those courses not selected to fulfill the requirements in List A.

List B

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3141</td>
<td>Environmental chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM3142</td>
<td>Chemical process industries and analysis</td>
<td>6</td>
</tr>
<tr>
<td>CHEM3143</td>
<td>Introduction to materials chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM3242</td>
<td>Food and water analysis</td>
<td>6</td>
</tr>
<tr>
<td>CHEM3342</td>
<td>Bioinorganic chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM3343</td>
<td>Organic chemistry of biomolecules</td>
<td>6</td>
</tr>
<tr>
<td>CHEM3445</td>
<td>Integrated laboratory</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4142</td>
<td>Symmetry, group theory and applications</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4143</td>
<td>Interfacial science and technology</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4144</td>
<td>Advanced materials</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4145</td>
<td>Medicinal chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4147</td>
<td>Supramolecular chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4241</td>
<td>Modern chemical instrumentation and applications</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4342</td>
<td>Organometallic chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4444</td>
<td>Chemical biology</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4542</td>
<td>Computational chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4543</td>
<td>Advanced physical chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4544</td>
<td>Electrochemical science and technology</td>
<td>6</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3999</td>
<td>Directed studies in chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4910</td>
<td>Chemistry literacy and research</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4911</td>
<td>Capstone experience for chemistry undergraduates: HKUtopia</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4966</td>
<td>Chemistry internship</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4999</td>
<td>Chemistry project</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

6. CHEM3146 Principles and applications of spectroscopic and analytical techniques is not offered from 2016-17. Students should consult the course selection advisers for course replacement.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Science Majors

Major in Chemistry

Offered to students: 2012

Admitted to Year 1 in:

Objectives:
The Major in Chemistry aims to provide students with a solid training in major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. A wide selection of elective courses in chemical biology, chemical analysis, computational chemistry, environmental chemistry, industrial chemistry, interfacial science, material, and medicinal chemistry, is also available to provide students with knowledge and training to help them meet the dynamic and ever-changing challenges in science and technology. Graduates of the Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences that are crucial for their future careers in a knowledge-based economy. It is expected that our graduates will be able to meet local and regional requirements in the industrial, commercial, government or education sectors and will become future leaders of these sectors.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic & physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
- **PLO 2**: demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical & practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
- **PLO 3**: have developed an awareness & understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
- **PLO 4**: have substantially developed advanced experimental skills including chemical synthesis, analysis & operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information & infer appropriate conclusions (by requiring of no less than 100 hours of laboratory classes in the curriculum)
- **PLO 5**: demonstrate problem-solving skills, critical thinking, creativity & effective written & oral communication skills, and to co-operate with other people & participate as an effective team member (by means of coursework, laboratory-based learning, group project & presentation opportunities in the curriculum)
- **PLO 6**: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills & project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

Impermissible Combinations:
- Major in Chemistry (Intensive)
- Minor in Chemistry

Required courses (96 credits)

1. Introductory level courses (42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)

- SCNC1111 Scientific method and reasoning (6)
- SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (30 credits)

- CHEM1042 General chemistry I (6) [previous title: General chemistry (6)]
- CHEM2241 Analytical chemistry I (6)
- CHEM2341 Inorganic chemistry I (6)
- CHEM2441 Organic chemistry I (6)
- CHEM2541 Introductory physical chemistry (6) [previous title: Physical chemistry I (6)]

2. Advanced level courses (48 credits)

Disciplinary Core Courses (30 credits)

- CHEM3146 Principles and applications of spectroscopic and analytical techniques (6)
- CHEM3241 Analytical chemistry II: chemical instrumentation (6)
- CHEM3341 Inorganic chemistry II (6)
- CHEM3441 Organic chemistry II (6)
- CHEM3541 Physical chemistry: Introduction to quantum chemistry (6) [previous title: Physical chemistry II: Introduction to quantum chemistry (6)]

Disciplinary Electives (12 credits)

- CHEM3542 Physical chemistry: statistical thermodynamics and kinetics theory (6)
- CHEM4341 Advanced inorganic chemistry (6)
- CHEM4441 Advanced organic chemistry (6)
- CHEM4443 Integrated organic synthesis (6)
- CHEM4541 Physical chemistry III: statistical thermodynamics and kinetics theory (6)

At least 12 credits selected from the following 18 credits of courses in two different areas in List A:

List A

- Take either CHEM3542 or CHEM4541 to fulfill this 12 credits requirement, but not both.
- Take either CHEM4443 or CHEM4441 to fulfill this 12 credits requirement, but not both.
- Take either CHEM3542 or CHEM4541 to fulfill this 12 credits requirement, but not both.
At least 6 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level, excluding CHEM3999 Direct studies in chemistry, CHEM4910 Chemistry literacy and research, CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia, CHEM4966 Chemistry internship and CHEM4999 Chemistry project), subject to pre-requisite requirements. The current list include courses in List B and those courses not selected to fulfill the requirements in List A.

List B
- CHEM3141 Environmental chemistry (6)
- CHEM3142 Chemical process industries and analysis (6)
- CHEM3143 Introduction to materials chemistry (6)
- CHEM3242 Food and water analysis (6)
- CHEM3442 Bioinorganic chemistry (6)
- CHEM3443 Organic chemistry laboratory (6)
- CHEM3445 Integrated laboratory (6)
- CHEM4142 Symmetry, group theory and applications (6)
- CHEM4143 Interfacial science and technology (6)
- CHEM4144 Advanced materials (6)
- CHEM4145 Medicinal chemistry (6)
- CHEM4147 Supramolecular chemistry (6)
- CHEM4241 Modern chemical instrumentation and applications (6)
- CHEM4242 Analytical chemistry (6)
- CHEM4342 Organometallic chemistry (6)
- CHEM4444 Chemical biology (6)
- CHEM4542 Computational chemistry (6)
- CHEM4543 Advanced physical chemistry (6)
- CHEM4544 Electrochemical science and technology (6)

3. **Capstone requirement (6 credits)**
 At least 6 credits selected from the following courses:
 - CHEM3999 Directed studies in chemistry (6)
 - CHEM4910 Chemistry literacy and research (6)
 - CHEM4911 Capstone experience for chemistry undergraduates: HKUtopia (6)
 - CHEM4966 Chemistry internship (6)
 - CHEM4999 Chemistry project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

6. CHEM3146 Principles and applications of spectroscopic and analytical techniques is not offered from 2016-17. Students should consult the course selection advisers for course replacement.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Chemistry (Intensive)
Offered to students admitted to Year 1 in
2018

Objectives:
The Intensive Major in Chemistry aims to provide students with a strong foundation on major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. The curriculum emphasizes comprehensive coverage in theoretical knowledge, laboratory skills, and research experience. A wide selection of elective courses is also available for student preparation to pursue learning in specializations such as chemical biology, computation chemistry, and materials. Graduates of the Intensive Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences. Graduates are expected to be well-prepared for further studies in chemistry and related disciplines and to pursue professional careers in scientific and technical fields.

This intensive major has been accredited by the Royal Society of Chemistry (RSC), UK.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic & physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum).

- **PLO 2:** demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical & practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum).

- **PLO 3:** have developed an awareness & understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratory-based and/or research-based learning in the curriculum).

- **PLO 4:** have substantially developed advanced experimental skills including chemical synthesis, analysis & operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information & infer appropriate conclusions (by requiring of no less than 300 hours of laboratory classes in the curriculum).

- **PLO 5:** demonstrate problem-solving skills, critical thinking, creativity & effective written & oral communication skills, and to co-operate with other people & participate as an effective team member (by means of coursework, laboratory-based learning, group project & presentation opportunities in the curriculum).

- **PLO 6:** gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills & project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories).

Impermissible Combinations:
Major in Chemistry
Minor in Chemistry

Required courses (144 credits)

1. **Introductory level courses (54 credits)**
 - **Disciplinary Core Courses: Science Foundation Courses (12 credits)**
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)

2. **Disciplinary Core Courses (36 credits)**
 - CHEM1042 General chemistry I (6)
 - CHEM1043 General chemistry II (6)
 - CHEM2241 Analytical chemistry I (6)
 - CHEM2341 Inorganic chemistry I (6)
 - CHEM2441 Organic chemistry I (6)
 - CHEM2541 Introductory physical chemistry (6)
 - CHEM3143 Introduction to materials chemistry (6)
 - CHEM3241 Analytical chemistry II: chemical instrumentation (6)
 - CHEM3341 Inorganic chemistry II (6)
 - CHEM3441 Organic chemistry II (6)
 - CHEM3443 Organic chemistry laboratory (6)
 - CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
 - CHEM3542 Physical chemistry: statistical thermodynamics and kinetics theory (6)

3. **Advanced level courses (78 credits)**
 - **Disciplinary Core Course (66 credits)**
 - CHEM1044 Mathematics in chemistry (6)
 - COMP1117 Computer programming (6)
 - MATH1011 University mathematics I (6)
 - MATH1013 University mathematics II (6)
 - STAT1601 Elementary statistical methods (6)
 - STAT1603 Introductory statistics (6)

(Students are encouraged to meet with a Chemistry Course Selection Advisor in the course selection period to discuss which of the following courses they should take based on their previous background in Mathematics.)

Science Majors

128
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM4142</td>
<td>Symmetry, group theory and applications</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4144</td>
<td>Advanced materials</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4241</td>
<td>Modern chemical instrumentation and applications</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:

(Note that one of the two elective courses selected must contain a laboratory component. Courses marked with (lab) have a laboratory component. The list of electives given below may be subject to change.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM4143</td>
<td>Interfacial science and technology</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4145</td>
<td>Medicinal chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4147</td>
<td>Supramolecular chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4242</td>
<td>Analytical chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4341</td>
<td>Advanced inorganic chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4342</td>
<td>Organometallic chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4441</td>
<td>Advanced organic chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4443</td>
<td>Integrated organic synthesis</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4444</td>
<td>Chemical biology</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4542</td>
<td>Computational chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4543</td>
<td>Advanced physical chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4544</td>
<td>Electrochemical science and technology</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (12 credits)

At least 12 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3999</td>
<td>Directed studies in chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4966</td>
<td>Chemistry internship</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4999</td>
<td>Chemistry project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:
1. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

2. These are core courses in the regular Chemistry Major (96 credits) curriculum.

3. As this curriculum is accredited by the Royal Society of Chemistry (RSC), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme. For students who have credit transfer from exchange studies, for example a student took CHEM3A and CHEM3B in a host university during his/her exchange studies and these two courses have been approved by the Faculty of Science to be considered equivalent as CHEM3241 and CHEM3341, they will be considered taking those HKU-version courses and in the example shown here, the student is deemed to have taken CHEM3241 and CHEM3341 to fulfil the accredited curriculum.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Chemistry (Intensive)
Offered to students admitted to Year 1 in 2017

Objectives:
The Intensive Major in Chemistry aims to provide students with a strong foundation on major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. The curriculum emphasizes comprehensive coverage in theoretical knowledge, laboratory skills, and research experience. A wide selection of elective courses is also available for student preparation to pursue learning in specializations such as chemical biology, computation chemistry, and materials. Graduates of the Intensive Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences. Graduates are expected to be well-prepared for further studies in chemistry and related disciplines and to pursue professional careers in scientific and technical fields.

This intensive major has been accredited by the Royal Society of Chemistry (RSC), UK.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic & physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 2: demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical & practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 3: have developed an awareness & understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 4: have substantially developed advanced experimental skills including chemical synthesis, analysis & operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information & infer appropriate conclusions (by requiring of no less than 300 hours of laboratory classes in the curriculum)

PLO 5: demonstrate problem-solving skills, critical thinking, creativity & effective written & oral communication skills, and to co-operate with other people & participate as an effective team member (by means of coursework, laboratory-based learning, group project & presentation opportunities in the curriculum)

PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills & project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

Impermissible Combinations:
Major in Chemistry
Minor in Chemistry

Required courses (144 credits)

1. Introductory level courses (54 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6) (Note 2)
 SCNC1112 Fundamentals of modern science (6) (Note 2)

 Disciplinary Core Courses (36 credits)
 CHEM1042 General chemistry I (6) (Note 2)
 CHEM1043 General chemistry II (6) (Note 2)
 CHEM2241 Analytical chemistry I (6) (Note 2)
 CHEM2341 Inorganic chemistry I (6) (Note 2)
 CHEM2441 Organic chemistry I (6) (Note 2)
 CHEM2541 Introductory physical chemistry (6) (Note 2)

 Disciplinary Electives (6 credits)
 (Students are encouraged to meet with a Chemistry Course Selection Advisor in the course selection period to discuss which of the following courses they should take based on their previous background in Mathematics.)
 CHEM1044 Mathematics in chemistry (6)
 COMP1117 Computer programming (6)
 MATH1011 University mathematics I (6)
 MATH1013 University mathematics II (6)
 STAT1601 Elementary statistical methods (6)
 STAT1603 Introductory statistics (6)

2. Advanced level courses (78 credits)
 Disciplinary Core Course (66 credits)
 CHEM3143 Introduction to materials chemistry (6)
 CHEM3241 Analytical chemistry II: chemical instrumentation (6) (Note 2)
 CHEM3341 Inorganic chemistry II (6) (Note 2)
 CHEM3441 Organic chemistry II (6) (Note 2)
 CHEM3443 Organic chemistry laboratory (6) (Note 2)
 CHEM3445 Integrated laboratory (6)
 CHEM3541 Physical chemistry: Introduction to quantum chemistry (6) (Note 2)
 CHEM3542 Physical chemistry: statistical thermodynamics and kinetics theory (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM4142</td>
<td>Symmetry, group theory and applications</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4144</td>
<td>Advanced materials</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4241</td>
<td>Modern chemical instrumentation and applications</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
(Note that one of the two elective courses selected must contain a laboratory component. Courses marked with (lab) have a laboratory component. The list of electives given below may be subject to change.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM4143</td>
<td>Interfacial science and technology</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4145</td>
<td>Medicinal chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4147</td>
<td>Supramolecular chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4148</td>
<td>Analytical chemistry</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4341</td>
<td>Advanced inorganic chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4342</td>
<td>Organometallic chemistry</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4441</td>
<td>Advanced organic chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4443</td>
<td>Integrated organic synthesis</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4444</td>
<td>Chemical biology</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4542</td>
<td>Computational chemistry</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4543</td>
<td>Advanced physical chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4544</td>
<td>Electrochemical science and technology</td>
<td>(lab)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (12 credits)
At least 12 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3999</td>
<td>Directed studies in chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4966</td>
<td>Chemistry internship</td>
<td>6</td>
</tr>
<tr>
<td>CHEM4999</td>
<td>Chemistry project</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:
1. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

2. These are core courses in the regular Chemistry Major (96 credits) curriculum.

3. As this curriculum is accredited by the Royal Society of Chemistry (RSC), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme. For students who have credit transfer from exchange studies, for example) a student took CHEM3A and CHEM3B in a host university during his/her exchange studies and these two courses have been approved by the Faculty of Science to be considered equivalent as CHEM3241 and CHEM3341, they will be considered taking those HKU-version courses and in the example shown here, the student is deemed to have taken CHEM3241 and CHEM3341 to fulfil the accredited curriculum.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Chemistry (Intensive)

Offered to students admitted to Year 1 in 2016

Objectives:
The Intensive Major in Chemistry aims to provide students with a strong foundation on major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. The curriculum emphasizes comprehensive coverage in theoretical knowledge, laboratory skills, and research experience. A wide selection of elective courses is also available for student preparation to pursue learning in specializations such as chemical biology, computation chemistry, and materials. Graduates of the Intensive Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences. Graduates are expected to be well-prepared for further studies in chemistry and related disciplines and to pursue professional careers in scientific and technical fields.

This intensive major has been accredited by the Royal Society of Chemistry (RSC), UK.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic & physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 2: demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical & practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 3: have developed an awareness & understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratory-based and/or research-based learning in the curriculum)

PLO 4: have substantially developed advanced experimental skills including chemical synthesis, analysis & operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information & infer appropriate conclusions (by requiring of no less than 300 hours of laboratory classes in the curriculum)

PLO 5: demonstrate problem-solving skills, critical thinking, creativity & effective written & oral communication skills, and to co-operate with other people & participate as an effective team member (by means of coursework, laboratory-based learning, group project & presentation opportunities in the curriculum)

PLO 6: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills & project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

Impermissible Combinations:
Major in Chemistry
Minor in Chemistry

Required courses (144 credits)

1. Introductory level courses (54 credits)

<table>
<thead>
<tr>
<th>Disciplinary Core Courses: Science Foundation Courses (12 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111</td>
</tr>
<tr>
<td>SCNC1112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Courses (36 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1042</td>
</tr>
<tr>
<td>CHEM1043</td>
</tr>
<tr>
<td>CHEM2241</td>
</tr>
<tr>
<td>CHEM2341</td>
</tr>
<tr>
<td>CHEM2441</td>
</tr>
<tr>
<td>CHEM2541</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Electives (6 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1044</td>
</tr>
<tr>
<td>COMP1117</td>
</tr>
<tr>
<td>MATH1011</td>
</tr>
<tr>
<td>MATH1013</td>
</tr>
<tr>
<td>STAT1601</td>
</tr>
<tr>
<td>STAT1603</td>
</tr>
</tbody>
</table>

2. Advanced level courses (78 credits)

<table>
<thead>
<tr>
<th>Disciplinary Core Course (66 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3143</td>
</tr>
<tr>
<td>CHEM3241</td>
</tr>
<tr>
<td>CHEM3341</td>
</tr>
<tr>
<td>CHEM3441</td>
</tr>
<tr>
<td>CHEM3443</td>
</tr>
<tr>
<td>CHEM3445</td>
</tr>
<tr>
<td>CHEM3541</td>
</tr>
<tr>
<td>CHEM3542</td>
</tr>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>CHEM4142</td>
</tr>
<tr>
<td>CHEM4144</td>
</tr>
<tr>
<td>CHEM4241</td>
</tr>
</tbody>
</table>

Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:

(Note that one of the two elective courses selected must contain a laboratory component. Courses marked with (lab) have a laboratory component. The list of electives given below may be subject to change.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM4143</td>
<td>Interfacial science and technology</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4145</td>
<td>Medicinal chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4147</td>
<td>Supramolecular chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4148</td>
<td>Analytical chemistry</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4341</td>
<td>Advanced inorganic chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4342</td>
<td>Organometallic chemistry</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4441</td>
<td>Advanced organic chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4443</td>
<td>Integrated organic synthesis</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4444</td>
<td>Chemical biology</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4542</td>
<td>Computational chemistry</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4543</td>
<td>Advanced physical chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4544</td>
<td>Electrochemical science and technology</td>
<td>(lab)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (12 credits)

At least 12 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3999</td>
<td>Directed studies in chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4966</td>
<td>Chemistry internship</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4999</td>
<td>Chemistry project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

2. These are core courses in the regular Chemistry Major (96 credits) curriculum.

3. As this curriculum is accredited by the Royal Society of Chemistry (RSC), students must follow the curriculum in full (i.e. no replacement courses are possible) in order to graduate with this accredited programme. For students who have credit transfer from exchange studies, for example, a student took CHEM3A and CHEM3B in a host university during his/her exchange studies and these two courses have been approved by the Faculty of Science to be considered equivalent as CHEM3241 and CHEM3341, they will be considered taking those HKU-version courses and in the example shown here, the student is deemed to have taken CHEM3241 and CHEM3341 to fulfil the accredited curriculum.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Chemistry (Intensive)
Offered to students admitted to Year 1 in 2015

Objectives:
The Intensive Major in Chemistry aims to provide students with a strong foundation on major areas of chemistry. The curriculum includes core courses covering topics in physical, inorganic, organic, and analytical chemistry. The curriculum emphasizes comprehensive coverage in theoretical knowledge, laboratory skills, and research experience. A wide selection of elective courses is also available for student preparation to pursue learning in specializations such as chemical biology, computation chemistry, and materials. Graduates of the Intensive Chemistry Major programme will be proficient in the principles and experimental skills of chemistry. The programme will also equip students with transferable skills in both theoretical and experimental investigations in sciences. Graduates are expected to be well-prepared for further studies in chemistry and related disciplines and to pursue professional careers in scientific and technical fields.

This intensive major has been accredited by the Royal Society of Chemistry (RSC), UK.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: demonstrate an understanding across a wide range of topics in chemistry, from basic areas such as analytical, inorganic, organic & physical chemistry, to advanced topics related to current research in chemistry (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
- **PLO 2**: demonstrate an in-depth understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical & practical problems (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
- **PLO 3**: have developed an awareness & understanding of scientific and ethical issues where chemistry relates to other disciplines, and an appreciation of the impact of chemistry in the modern world (by means of coursework, laboratory-based and/or research-based learning in the curriculum)
- **PLO 4**: have substantially developed advanced experimental skills including chemical synthesis, analysis & operation of modern instrumentation, and data analysis skills with the ability to interpret experimental information & infer appropriate conclusions (by requiring of no less than 300 hours of laboratory classes in the curriculum)
- **PLO 5**: demonstrate problem-solving skills, critical thinking, creativity & effective written & oral communication skills, and to co-operate with other people & participate as an effective team member (by means of coursework, laboratory-based learning, group project & presentation opportunities in the curriculum)
- **PLO 6**: gain experience in working in the real-life industrial or research environment, and enhance their initiative, interpersonal skills, time management skills & project organization skills (by arrangement for student internship opportunities or directed studies of no less than three weeks with chemistry-related companies or research laboratories)

Impermissible Combinations:
Major in Chemistry
Minor in Chemistry

<table>
<thead>
<tr>
<th>Required courses (144 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introductory level courses (54 credits)</td>
<td></td>
</tr>
<tr>
<td>Disciplinary Core Courses: Science Foundation Courses (12 credits)</td>
<td></td>
</tr>
<tr>
<td>SCNC1111</td>
<td>Scientific method and reasoning (6) (Note 2)</td>
</tr>
<tr>
<td>SCNC1112</td>
<td>Fundamentals of modern science (6) (Note 2)</td>
</tr>
<tr>
<td>Disciplinary Core Courses (36 credits)</td>
<td></td>
</tr>
<tr>
<td>CHEM1042</td>
<td>General chemistry I (6) (Note 2)</td>
</tr>
<tr>
<td>CHEM1043</td>
<td>General chemistry II (6) (Note 2)</td>
</tr>
<tr>
<td>CHEM2241</td>
<td>Analytical chemistry I (6) (Note 2)</td>
</tr>
<tr>
<td>CHEM2341</td>
<td>Inorganic chemistry I (6) (Note 2)</td>
</tr>
<tr>
<td>CHEM2441</td>
<td>Organic chemistry I (6) (Note 2)</td>
</tr>
<tr>
<td>CHEM2541</td>
<td>Introductory physical chemistry (6) (Note 2)</td>
</tr>
<tr>
<td>Disciplinary Electives (6 credits)</td>
<td></td>
</tr>
<tr>
<td>(Students are encouraged to meet with a Chemistry Course Selection Advisor in the course selection period to discuss which of the following courses they should take based on their previous background in Mathematics.)</td>
<td></td>
</tr>
<tr>
<td>CHEM1044</td>
<td>Mathematics in chemistry (6)</td>
</tr>
<tr>
<td>COMP1117</td>
<td>Computer programming (6)</td>
</tr>
<tr>
<td>MATH1011</td>
<td>University mathematics I (6)</td>
</tr>
<tr>
<td>MATH1013</td>
<td>University mathematics II (6)</td>
</tr>
<tr>
<td>STAT1601</td>
<td>Elementary statistical methods (6)</td>
</tr>
<tr>
<td>STAT1603</td>
<td>Introductory statistics (6)</td>
</tr>
<tr>
<td>2. Advanced level courses (78 credits)</td>
<td></td>
</tr>
<tr>
<td>Disciplinary Core Course (66 credits)</td>
<td></td>
</tr>
<tr>
<td>CHEM3143</td>
<td>Introduction to materials chemistry (6)</td>
</tr>
<tr>
<td>CHEM3241</td>
<td>Analytical chemistry II: chemical instrumentation (6) (Note 2)</td>
</tr>
<tr>
<td>CHEM3341</td>
<td>Inorganic chemistry II (6) (Note 2)</td>
</tr>
<tr>
<td>CHEM3441</td>
<td>Organic chemistry II (6) (Note 2)</td>
</tr>
<tr>
<td>CHEM3443</td>
<td>Organic chemistry laboratory (6) (Note 2)</td>
</tr>
<tr>
<td>CHEM3445</td>
<td>Integrated laboratory (6)</td>
</tr>
<tr>
<td>CHEM3541</td>
<td>Physical chemistry: Introduction to quantum chemistry (6) (Note 2)</td>
</tr>
<tr>
<td>CHEM3542</td>
<td>Physical chemistry: statistical thermodynamics and kinetics theory (6)</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>CHEM4142</td>
<td>Symmetry, group theory and applications</td>
</tr>
<tr>
<td>CHEM4144</td>
<td>Advanced materials</td>
</tr>
<tr>
<td>CHEM4241</td>
<td>Modern chemical instrumentation and applications</td>
</tr>
</tbody>
</table>

Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:

(Note that one of the two elective courses selected must contain a laboratory component. Courses marked with (lab) have a laboratory component. The list of electives given below may be subject to change.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM4143</td>
<td>Interfacial science and technology</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4145</td>
<td>Medicinal chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4147</td>
<td>Supramolecular chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM4242</td>
<td>Analytical chemistry</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4341</td>
<td>Advanced inorganic chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4342</td>
<td>Organometallic chemistry</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4441</td>
<td>Advanced organic chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4443</td>
<td>Integrated organic synthesis</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4444</td>
<td>Chemical biology</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4542</td>
<td>Computational chemistry</td>
<td>(lab)</td>
</tr>
<tr>
<td>CHEM4543</td>
<td>Advanced physical chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4544</td>
<td>Electrochemical science and technology</td>
<td>(lab)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (12 credits)

At least 12 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3999</td>
<td>Directed studies in chemistry</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4966</td>
<td>Chemistry internship</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4999</td>
<td>Chemistry project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

2. These are core courses in the regular Chemistry Major (96 credits) curriculum.

3. As this curriculum is accredited by the Royal Society of Chemistry (RSC), students must follow the curriculum in full (i.e., no replacement courses are possible) in order to graduate with this accredited programme. For students who have credit transfer from exchange studies, for example, a student took CHEM3A and CHEM3B in a host university during his/her exchange studies and these two courses have been approved by the Faculty of Science to be considered equivalent as CHEM3241 and CHEM3341, they will be considered taking those HKU-version courses and in the example shown here, the student is deemed to have taken CHEM3241 and CHEM3341 to fulfil the accredited curriculum.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Decision Analytics
Offered to students admitted to Year 1 in 2018

Objectives:
Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

Required courses (96 credits)
1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (36 credits)
 COMP1117 Computer programming (6)
 COMP2119 Introduction to data structures and algorithms (6)
 MATH1013 University mathematics II (6)
 MATH2014 Multivariable calculus and linear algebra (6)
 STAT2601 Probability and statistics I (6)
 STAT2602 Probability and statistics II (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (30 credits)
 COMP3278 Introduction to database management systems (6)
 MATH3904 Introduction to optimization (6)
 STAT3600 Linear statistical analysis (6)
 STAT3612 Data mining (6)
 STAT4609 Big data analytics (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 COMP3250 Design and analysis of algorithms (6)
 COMP3270 Artificial intelligence (6)
 COMP3323 Advanced database systems (6)
 COMP3407 Scientific computing (6)
 MATH3408 Computational methods and differential equations with applications (6)
 MATH3600 Discrete mathematics (6)
 MATH3601 Numerical analysis (6)
 MATH3901 Operations research I (6)
 STAT3620 Modern nonparametric statistics (6)
Capstone Requirement (6 Credits)

At least 6 credits selected from the following courses:
- **STAT3799**: Directed studies in statistics (6)
- **STAT4710**: Capstone experience for statistics undergraduates (6)
- **STAT4766**: Statistics internship (6)
- **STAT4799**: Statistics project (12)

Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
 - **Biomedical Analytics**
 - BIOL4417 'Omic's and systems biology
 - STAT3607 Statistics in clinical medicine and bio-medical research
 - STAT3608 Statistical genetics
 - STAT3620 Modern nonparametric statistics
 - STAT3621 Statistical data analysis
 - STAT4602 Multivariate data analysis
 - **Financial and Risk Analytics**
 - STAT3621 Statistical data analysis
 - STAT4601 Time series analysis
 - Plus advanced level courses listed for the Major in Risk Management
 - **Operational Analytics**
 - COMP3250 Design and analysis of algorithms
 - MATH3600 Discrete mathematics
 - MATH3901 Operations research I
 - MATH3943 Network models in operations research
 - MATH4902 Operations research II
 - STAT3606 Business logistics

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Decision Analytics
Offered to students: admitted to Year 1 in 2017

Objectives:
Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
- BEng in Computer Science
- Major in Computing and Data Analytics
- Major in Computer Science
- Minor in Computer Science
- Major in Risk Management
- Major in Statistics
- Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (36 credits)
 - COMP1117 Computer programming (6)
 - COMP2119 Introduction to data structures and algorithms (6)
 - MATH1013 University mathematics II (6)
 - MATH2014 Multivariable calculus and linear algebra (6)
 - STAT2601 Probability and statistics I (6)
 - STAT2602 Probability and statistics II (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (30 credits)
 - COMP3278 Introduction to database management systems (6)
 - MATH3904 Introduction to optimization (6)
 - STAT3600 Linear statistical analysis (6)
 - STAT3612 Data mining (6)
 - STAT4609 Big data analytics (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - COMP3250 Design and analysis of algorithms (6)
 - COMP3270 Artificial intelligence (6)
 - COMP3323 Advanced database systems (6)
 - COMP3407 Scientific computing (6)
 - MATH3408 Computational methods and differential equations with applications (6)
 - MATH3600 Discrete mathematics (6)
 - MATH3601 Numerical analysis (6)
 - MATH3901 Operations research I (6)
 - STAT3616 Advanced SAS programming (6)
3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3799</td>
<td>Directed studies in statistics</td>
<td>6</td>
</tr>
<tr>
<td>STAT4710</td>
<td>Capstone experience for statistics undergraduates</td>
<td>6</td>
</tr>
<tr>
<td>STAT4766</td>
<td>Statistics internship</td>
<td>6</td>
</tr>
<tr>
<td>STAT4799</td>
<td>Statistics project</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:
1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
 a. Biomedical Analytics
 BIOL4417 'Omics' and systems biology
 STAT3607 Statistics in clinical medicine and bio-medical research
 STAT3608 Statistical genetics
 STAT3620 Modern nonparametric statistics
 STAT3621 Statistical data analysis
 STAT4602 Multivariate data analysis
 b. Financial and Risk Analytics
 STAT3616 Advanced SAS programming
 STAT3621 Statistical data analysis
 STAT4601 Time series analysis
 Plus advanced level courses listed for the Major in Risk Management
 c. Operational Analytics
 COMP3250 Design and analysis of algorithms
 MATH3600 Discrete mathematics
 MATH3901 Operations research I
 MATH3943 Network models in operations research
 MATH4902 Operations research II
 STAT3606 Business logistics

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Decision Analytics
Offered to students admitted to Year 1 in 2016

Objectives:
Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
- SCNC1111 Scientific method and reasoning (6)
- SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (36 credits)
- COMP1117 Computer programming (6)
- COMP2119 Introduction to data structures and algorithms (6)
- MATH1013 University mathematics II (6)
- MATH2014 Multivariable calculus and linear algebra (6)
- STAT2601 Probability and statistics I (6)
- STAT2602 Probability and statistics II (6)

2. Advanced level courses (42 credits)

Disciplinary Core Courses (30 credits)
- COMP3278 Introduction to database management systems (6)
- MATH3904 Introduction to optimization (6)
- STAT3600 Linear statistical analysis (6)
- STAT3612 Data mining (6)
- STAT4609 Big data analytics (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
- COMP3250 Design and analysis of algorithms (6)
- COMP3270 Artificial intelligence (6)
- COMP3323 Advanced database systems (6)
- COMP3407 Scientific computing (6)
- MATH3408 Computational methods and differential equations with applications (6)
- MATH3600 Discrete mathematics (6)
- MATH3601 Numerical analysis (6)
- MATH3901 Operations research I (6)
- STAT3616 Advanced SAS programming (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3620</td>
<td>Modern nonparametric statistics</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT3621</td>
<td>Statistical data analysis</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT3622</td>
<td>Data visualization</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4601</td>
<td>Time-series analysis</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4602</td>
<td>Multivariate data analysis</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone Requirement (6 Credits)

At least 6 credits selected from the following courses:

- STAT3799 Directed studies in statistics (6)
- STAT4710 Capstone experience for statistics undergraduates (6)
- STAT4766 Statistics internship (6)
- STAT4799 Statistics project (12)

Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
 - **a. Biomedical Analytics**
 - BIOL4417 'Omics' and systems biology
 - STAT3607 Statistics in clinical medicine and bio-medical research
 - STAT3608 Statistical genetics
 - STAT3620 Modern nonparametric statistics
 - STAT3621 Statistical data analysis
 - STAT4602 Multivariate data analysis
 - **b. Financial and Risk Analytics**
 - STAT3616 Advanced SAS programming
 - STAT3621 Statistical data analysis
 - STAT4601 Time series analysis
 - Plus advanced level courses listed for the Major in Risk Management
 - **c. Operational Analytics**
 - COMP3250 Design and analysis of algorithms
 - MATH3600 Discrete mathematics
 - MATH3901 Operations research I
 - MATH3943 Network models in operations research
 - MATH4902 Operations research II
 - STAT3606 Business logistics

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Decision Analytics
Offered to students admitted to Year 1 in 2015

Objectives:
Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modeling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (36 credits)
 COMP1117 Computer programming (6)
 COMP2119 Introduction to data structures and algorithms (6)
 MATH1013 University mathematics II (6)
 MATH2014 Multivariable calculus and linear algebra (6)
 STAT2601 Probability and statistics I (6)
 STAT2602 Probability and statistics II (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (30 credits)
 COMP3278 Introduction to database management systems (6)
 MATH3904 Introduction to optimization (6)
 STAT3600 Linear statistical analysis (6)
 STAT3612 Data mining (6)
 STAT4609 Big data analytics (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 COMP3250 Design and analysis of algorithms (6)
 COMP3270 Artificial intelligence (6)
 COMP3323 Advanced database systems (6)
 COMP3407 Scientific computing (6)
 MATH3408 Computational methods and differential equations with applications (6)
 MATH3600 Discrete mathematics (6)
 MATH3601 Numerical analysis (6)
 MATH3901 Operations research I (6)
 STAT3616 Advanced SAS programming (6)
Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:

 a. Biomedical Analytics
 BIOL4417 'Omics' and systems biology
 STAT3607 Statistics in clinical medicine and bio-medical research
 STAT3608 Statistical genetics
 STAT3620 Modern nonparametric statistics
 STAT3621 Statistical data analysis
 STAT4602 Multivariate data analysis

 b. Financial and Risk Analytics
 STAT3616 Advanced SAS programming
 STAT3621 Statistical data analysis
 STAT4601 Time series analysis
 Plus advanced level courses listed for the Major in Risk Management

 c. Operational Analytics
 COMP3250 Design and analysis of algorithms
 MATH3600 Discrete mathematics
 MATH3901 Operations research I
 MATH3943 Network models in operations research
 MATH4902 Operations research II
 STAT3606 Business logistics

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Decision Analytics
Offered to students admitted to Year 1 in 2014

Objectives:
Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes and/or capstone learning in the curriculum)

PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

Required courses (96 credits)
1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 COMP1117 Computer programming (6)
 COMP2119 Introduction to data structures and algorithms (6)
 MATH1013 University mathematics II (6)
 MATH2014 Multivariable calculus and linear algebra (6)
 STAT2601 Probability and statistics I (6)
 STAT2602 Probability and statistics II (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (30 credits)
 COMP3278 Introduction to database management systems (6)
 MATH3904 Introduction to optimization (6)
 STAT3600 Linear statistical analysis (6)
 STAT3612 Data mining (6)
 STAT4609 Big data analytics (6)

 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 COMP3250 Design and analysis of algorithms (6)
 COMP3270 Artificial intelligence (6)
 COMP3323 Advanced database systems (6)
 COMP3407 Scientific computing (6)
 MATH3408 Computational methods and differential equations with applications (6)
 MATH3600 Discrete mathematics (6)
 MATH3601 Numerical analysis (6)
 MATH3901 Operations research I (6)
 STAT3616 Advanced SAS programming (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
STAT3622 Data visualization (6)
STAT4601 Time-series analysis (6)
STAT4602 Multivariate data analysis (6)

3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

Notes:
1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
 a. Biomedical Analytics
 BIOL4417 'Omics' and systems biology
 STAT3607 Statistics in clinical medicine and bio-medical research
 STAT3608 Statistical genetics
 STAT3620 Modern nonparametric statistics
 STAT3621 Statistical data analysis
 STAT4602 Multivariate data analysis
 b. Financial and Risk Analytics
 STAT3616 Advanced SAS programming
 STAT3621 Statistical data analysis
 STAT4601 Time series analysis
 Plus advanced level courses listed for the Major in Risk Management
 c. Operational Analytics
 COMP3250 Design and analysis of algorithms
 MATH3600 Discrete mathematics
 MATH3901 Operations research I
 MATH3943 Network models in operations research
 MATH4902 Operations research II
 STAT3606 Business logistics

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Decision Analytics
Offered to students admitted to Year 1 in 2013

Objectives:
Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
- BEng in Computer Science
- Major in Computing and Data Analytics
- Major in Computer Science
- Minor in Computer Science
- Major in Risk Management
- Major in Statistics
- Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (36 credits)
 - COMP1117 Computer programming (6)
 - COMP2119 Introduction to data structures and algorithms (6)
 - MATH1013 University mathematics II (6)
 - MATH2014 Multivariable calculus and linear algebra (6)
 - STAT2601 Probability and statistics I (6)
 - STAT2602 Probability and statistics II (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (30 credits)
 - COMP3278 Introduction to database management systems (6)
 - MATH3904 Introduction to optimization (6)
 - STAT3600 Linear statistical analysis (6)
 - STAT3612 Data mining (6)
 - STAT4609 Big data analytics (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - COMP3250 Design and analysis of algorithms (6)
 - COMP3270 Artificial intelligence (6)
 - COMP3323 Advanced database systems (6)
 - COMP3407 Scientific computing (6)
 - MATH3408 Computational methods and differential equations with applications (6)
 - MATH3600 Discrete mathematics (6)
 - MATH3601 Numerical analysis (6)
 - MATH3901 Operations research I (6)
 - STAT3616 Advanced SAS programming (6)
Science Majors

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3620</td>
<td>Modern nonparametric statistics</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT3621</td>
<td>Statistical data analysis</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT3622</td>
<td>Data visualization</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4601</td>
<td>Time-series analysis</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4602</td>
<td>Multivariate data analysis</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- STAT3799 Directed studies in statistics (6)
- STAT4710 Capstone experience for statistics undergraduates (6)
- STAT4766 Statistics internship (6)
- STAT4799 Statistics project (12)

Notes:

1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:

 a. Biomedical Analytics
 - BIOL4417 'Omics' and systems biology
 - STAT3607 Statistics in clinical medicine and bio-medical research
 - STAT3608 Statistical genetics
 - STAT3620 Modern nonparametric statistics
 - STAT3621 Statistical data analysis
 - STAT4602 Multivariate data analysis

 b. Financial and Risk Analytics
 - STAT3616 Advanced SAS programming
 - STAT3621 Statistical data analysis
 - STAT4601 Time series analysis
 - Plus advanced level courses listed for the Major in Risk Management

 c. Operational Analytics
 - COMP3250 Design and analysis of algorithms
 - MATH3600 Discrete mathematics
 - MATH3901 Operations research I
 - MATH3943 Network models in operations research
 - MATH4902 Operations research II
 - STAT3606 Business logistics

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Decision Analytics
Offered to students admitted to Year 1 in 2012

Objectives:

Amidst an upsurge of digital data produced worldwide nowadays, the Major in Decision Analytics aims to equip students with the skills and expertise in leveraging and managing big data in real time, and provide them with solid training in making digitized information a strategic part of critical decision-making and resource allocation with greater clarity and accuracy. Core courses in the curriculum emphasize the fundamental concepts and methodologies of decision analytics which include but not limited to statistical analysis, data mining and data visualization, programming, data structuring, mathematical and statistical modelling and implementation of database systems. Elective courses focus on diverse and applied techniques of decision analytics in multidisciplinary fields.

Learning Outcomes:

By the end of this programme, students should be able to:

1. **PLO 1:** apprehend the concepts of decision analytics and its underlying theory in relation to a broad range of related disciplinary academic or professional areas (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
2. **PLO 2:** identify and adopt appropriate analytical techniques and tools to extract and classify critical information from structured or unstructured data (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
3. **PLO 3:** be proficient with the design and implementation of advanced modelling techniques and database management, and offer effective recommendations for analytic initiatives and solutions (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
4. **PLO 4:** evaluate the quality of information from different sources in support of critical decision making, process streamlining and the optimization of resources, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
5. **PLO 5:** communicate to people effectively and efficiently with professionalism and accuracy using interactive and dynamic tools to translate technical information and present collaborative and strategic ideas (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
6. **PLO 6:** gain insights into current advances in decision analytics and confidence to solve real-life problems through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
BEng in Computer Science
Major in Computing and Data Analytics
Major in Computer Science
Minor in Computer Science
Major in Risk Management
Major in Statistics
Minor in Statistics

Required courses (96 credits)

1. **1. Introductory level courses (48 credits)**
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (36 credits)
 - COMP1117 Computer programming (6)
 - COMP2119 Introduction to data structures and algorithms (6)
 - MATH1013 University mathematics II (6)
 - MATH2014 Multivariable calculus and linear algebra (6)
 - STAT2601 Probability and statistics I (6)
 - STAT2602 Probability and statistics II (6)
2. **2. Advanced level courses (42 credits)**
 Disciplinary Core Courses (30 credits)
 - COMP3278 Introduction to database management systems (6)
 - MATH3904 Introduction to optimization (6)
 - STAT3600 Linear statistical analysis (6)
 - STAT3612 Data mining (6)
 - STAT4609 Big data analytics (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - COMP3250 Design and analysis of algorithms (6)
 - COMP3270 Artificial intelligence (6)
 - COMP3323 Advanced database systems (6)
 - COMP3407 Scientific computing (6)
 - MATH3408 Computational methods and differential equations with applications (6)
 - MATH3600 Discrete mathematics (6)
 - MATH3601 Numerical analysis (6)
 - MATH3901 Operations research I (6)
 - STAT3616 Advanced SAS programming (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
STAT3622 Data visualization (6)
STAT4601 Time-series analysis (6)
STAT4602 Multivariate data analysis (6)

3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
STAT3799 Directed studies in statistics (6)
STAT4710 Capstone experience for statistics undergraduates (6)
STAT4766 Statistics internship (6)
STAT4799 Statistics project (12)

Notes:
1. Students may consider taking the following courses if they wish to pursue a more focused study in the following areas:
 a. Biomedical Analytics
 BIOL4417 'Omics' and systems biology
 STAT3607 Statistics in clinical medicine and bio-medical research
 STAT3608 Statistical genetics
 STAT3620 Modern nonparametric statistics
 STAT3621 Statistical data analysis
 STAT4602 Multivariate data analysis
 b. Financial and Risk Analytics
 STAT3616 Advanced SAS programming
 STAT3621 Statistical data analysis
 STAT4601 Time series analysis
 Plus advanced level courses listed for the Major in Risk Management
 c. Operational Analytics
 COMP3250 Design and analysis of algorithms
 MATH3600 Discrete mathematics
 MATH3901 Operations research I
 MATH3943 Network models in operations research
 MATH4902 Operations research II
 STAT3606 Business logistics
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Earth System Science

Offered to students admitted to Year 1 in 2018

Objectives:
Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, soil and water conservation and teaching.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: identify real life problems pertaining to the physical environment and find solutions to those problems (by means of capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)

PLO 6: work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

Impermissible Combinations:
Minor in Earth Sciences

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (36 credits)
 EASC1401 Blue Planet (6)
 EASC1406 Introduction to the earth-life system (6)
 EASC2401 Fluid/solid interactions in earth processes (6)
 EASC2402 Field and laboratory methods (6)
 EASC2404 Introduction to atmosphere and hydrosphere (6)
 EASC2410 Data analysis and modeling in earth sciences (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (6 credits)
 EASC4403 Biogeochemical cycles (6)
 Disciplinary Electives (36 credits)
 At least 36 credits selected from Lists A and B, among which at least 18 credits from List A:
 List A
 EASC3410 Hydrogeology (6)
 EASC3415 Meteorology (6)
 EASC3418 Earth surface processes (6)
 ENV3313 Environmental oceanography (6)
 List B
 EASC3020 Global change: anthropogenic impacts (6)
 EASC3403 Sedimentary environments (6)
 EASC3405 Environmental remote sensing (6)
 EASC3406 Reconstruction of past climate (6)
 EASC3412 Earth resources (6)
 EASC3417 Earth through time (6)
 EASC3999 Directed studies in earth sciences (6)
 ENV3007 Natural hazards and mitigation (6)
 EASC4408 Special topics in earth sciences (6)
 EASC4999 Earth sciences project (12)

3. Capstone requirement (6 credits)
 EASC4911 Earth system: contemporary issues (6)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112
Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.

6. Students are recommended to take PHYS1240 Physics by Inquiry and CHEM1041 Foundations of Chemistry if they do not have level 3 or above in HKDSE Physics and Chemistry, respectively, or equivalent.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Earth System Science
Offered to students admitted to Year 1 in 2017

Objectives:
Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, soil and water conservation and teaching.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: identify real life problems pertaining to the physical environment and find solutions to those problems (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 6: work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

Impermissible Combinations:

Minor in Earth Sciences

Required courses (96 credits)

1. Introductory level courses (48 credits)
 - Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 - Disciplinary Core Courses (36 credits)
 - EASC1401 Blue Planet (6)
 - EASC1406 Introduction to the earth-life system (6)
 - EASC2401 Fluid/solid interactions in earth processes (6)
 - EASC2402 Field and laboratory methods (6)
 - EASC2404 Introduction to atmosphere and hydrosphere (6)
 - EASC2410 Data analysis and modeling in earth sciences (6)

2. Advanced level courses (42 credits)
 - Disciplinary Core Courses (6 credits)
 - EASC4403 Biogeochemical cycles (6)
 - Disciplinary Electives (36 credits)
 - At least 36 credits selected from Lists A and B, among which at least 18 credits from List A:
 - List A
 - EASC3410 Hydrogeology (6)
 - EASC3415 Meteorology (6)
 - EASC3418 Earth surface processes (6)
 - ENV3313 Environmental oceanography (6)
 - List B
 - EASC3020 Global change: anthropogenic impacts (6)
 - EASC3403 Sedimentary environments (6)
 - EASC3405 Environmental remote sensing (6)
 - EASC3406 Reconstruction of past climate (6)
 - EASC3412 Earth resources (6)
 - EASC3417 Earth through time (6)
 - EASC3999 Directed studies in earth sciences (6)
 - ENV3307 Natural hazards and mitigation (6)
 - EASC4408 Special topics in earth sciences (6)
 - EASC4999 Earth sciences project (12)

3. Capstone requirement (6 credits)
 - EASC4911 Earth system: contemporary issues (6)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112
Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.

6. Students are recommended to take PHYS1240 Physics by Inquiry and CHEM1041 Foundations of Chemistry if they do not have level 3 or above in HKDSE Physics and Chemistry, respectively, or equivalent.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Earth System Science
Offered to students admitted to Year 1 in 2016

Objectives:
Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth’s interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, soil and water conservation and teaching.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 2:** have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 3:** provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 4:** equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 5:** identify real life problems pertaining to the physical environment and find solutions to those problems (by means capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)
- **PLO 6:** work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

Impermissible Combinations:
Minor in Earth Sciences

Required courses (96 credits)

1. **Introductory level courses (48 credits)**
 - **Disciplinary Core Courses: Science Foundation Courses (12 credits)**
 - **SCNC1111** Scientific method and reasoning (6)
 - **SCNC1112** Fundamentals of modern science (6)
 - **Disciplinary Core Courses (30 credits)**
 - **EASC1401** Blue Planet (6)
 - **EASC1402** Principles of geology (6)
 - **EASC2401** Fluid/solid interactions in earth processes (6)
 - **EASC2402** Field and laboratory methods (6)
 - **EASC2404** Introduction to atmosphere and hydrosphere (6)
 - **Disciplinary Electives (6 credits)**
 - **BIOL1309** Evolutionary diversity (6)
 - **EASC1406** Introduction to the earth-life system (6)

2. **Advanced level courses (42 credits)**
 - **Disciplinary Core Courses (6 credits)**
 - **EASC4403** Biogeochemical cycles (6)
 - **Disciplinary Electives (36 credits)**
 - At least 36 credits selected from Lists A and B, among which at least 12 credits from List A:
 - **List A**
 - **EASC3410** Hydrogeology (6)
 - **EASC3415** Meteorology (6)
 - **ENV5313** Environmental oceanography (6)
 - **List B**
 - **EASC3403** Sedimentary environments (6)
 - **EASC3405** Environmental remote sensing (6)
 - **EASC3406** Reconstruction of past climate (6)
 - **EASC3408** Geophysics (6)
 - **EASC3412** Earth resources (6)
 - **EASC3416** Advanced geochemistry and geochronology (6)
 - **EASC3417** Earth through time (6)
 - **EASC3999** Directed studies in earth sciences (6)
 - **ENV5307** Natural hazards and mitigation (6)
 - **EASC4408** Special topics in earth sciences (6)
 - **EASC4999** Earth sciences project (12)
 - **3. Capstone requirement (6 credits)**
 - **EASC4911** Earth system: contemporary issues (6)

Notes:

154
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Earth System Science
Offered to students admitted to Year 1 in 2015

Objectives:
Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students’ ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, soil and water conservation and teaching.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 2**: have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 3**: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 4**: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 5**: identify real life problems pertaining to the physical environment and find solutions to those problems (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 6**: work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

Impermissible Combinations:
Minor in Earth Sciences

Required courses (96 credits)

1. **Introductory level courses (48 credits)**
 - **Disciplinary Core Courses: Science Foundation Courses (12 credits)**
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 - **Disciplinary Core Courses (30 credits)**
 - EASC1401 Blue Planet (6)
 - EASC1402 Principles of geology (6)
 - EASC2401 Fluid/solid interactions in earth processes (6)
 - EASC2402 Field and laboratory methods (6)
 - EASC2404 Introduction to atmosphere and hydrosphere (6)
 - **Disciplinary Electives (6 credits)**
 - BIOL1309 Evolutionary diversity (6)
 - EASC1406 Introduction to the earth-life system (6)

2. **Advanced level courses (42 credits)**
 - **Disciplinary Core Courses (6 credits)**
 - EASC4403 Biogeochemical cycles (6)
 - **Disciplinary Electives (36 credits)**
 - At least 36 credits selected from Lists A and B, among which at least 12 credits from List A:
 - **List A**
 - EASC3410 Hydrogeology (6)
 - EASC3415 Meteorology (6)
 - ENVIS3313 Environmental oceanography (6)
 - **List B**
 - EASC3403 Sedimentary environments (6)
 - EASC3405 Environmental remote sensing (6)
 - EASC3406 Reconstruction of past climate (6)
 - EASC3408 Geophysics (6)
 - EASC3412 Earth resources (6)
 - EASC3416 Advanced geochemistry and geochronology (6)
 - EASC3417 Earth through time (6)
 - EASC3999 Directed studies in earth sciences (6)
 - ENVIS3007 Natural hazards and mitigation (6)
 - EASC4408 Special topics in earth sciences (6)
 - EASC4999 Earth sciences project (12)
 - **3. Capstone requirement (6 credits)**
 - EASC4911 Earth system: contemporary issues (6)

Notes:

156
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Earth System Science
Offered to students admitted to Year 1 in 2014

Objectives:
Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth’s interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students’ ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, soil and water conservation and teaching.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: identify real life problems pertaining to the physical environment and find solutions to those problems (by means of capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)

PLO 6: work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

Impermissible Combinations:
Minor in Earth Sciences

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1309 Evolutionary diversity (6)
 EASC1401 Blue Planet (6)
 EASC1402 Principles of geology (6)
 EASC2401 Fluid/solid interactions in earth processes (6)
 EASC2402 Field and laboratory methods (6)
 EASC2404 Introduction to atmosphere and hydrosphere (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (6 credits)
 EASC4403 Biogeochemical cycles (6)

 Disciplinary Electives (36 credits)
 At least 36 credits from Lists A and B, among which at least 12 credits from List A:

 List A
 EASC3410 Hydrogeology (6)
 EASC3415 Meteorology (6)
 ENV3313 Environmental oceanography (6)

 List B
 EASC3403 Sedimentary environments (6)
 EASC3405 Environmental remote sensing (6)
 EASC3406 Reconstruction of past climate (6)
 EASC3408 Geophysics (6)
 EASC3412 Earth resources (6)
 EASC3416 Advanced geochemistry and geochronology (6)
 EASC3417 Earth through time (6)
 EASC3999 Directed studies in earth sciences (6)
 ENV3307 Natural hazards and mitigation (6)
 EASC4408 Special topics in earth sciences (6)
 EASC4999 Earth sciences project (12)

3. Capstone requirement (6 credits)
 EASC4911 Earth system: contemporary issues (6)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112...
Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Earth System Science

Offered to students admitted to Year 1 in 2013

Objectives:
Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research-based classes, designed to enhance students' ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, soil and water conservation and teaching.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: identify real life problems pertaining to the physical environment and find solutions to those problems (by means of capstone learning experience in the form of internship, field learning, and project-based learning in the curriculum)

PLO 6: work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

Impermissible Combinations:
Minor in Earth Sciences

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1309 Evolutionary diversity (6)
 EASC1401 Blue Planet (6)
 EASC1402 Principles of geology (6)
 EASC2401 Fluid/solid interactions in earth processes (6)
 EASC2402 Field and laboratory methods (6)
 EASC2404 Introduction to atmosphere and hydrosphere (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (6 credits)
 EASC4403 Biogeochemical cycles (6)

 Disciplinary Electives (36 credits)
 At least 36 credits from Lists A and B, among which at least 12 credits from List A:
 List A
 EASC3410 Hydrogeology (6)
 EASC3415 Meteorology (6)
 ENV3313 Environmental oceanography (6)

 List B
 EASC3403 Sedimentary environments (6)
 EASC3405 Environmental remote sensing (6)
 EASC3406 Reconstruction of past climate (6)
 EASC3408 Geophysics (6)
 EASC3412 Earth resources (6)
 EASC3416 Advanced geochemistry and geochronology (6)
 EASC3417 Earth through time (6)
 EASC3999 Directed studies in earth sciences (6)
 ENV3307 Natural hazards and mitigation (6)
 EASC4408 Special topics in earth sciences (6)
 EASC4999 Earth sciences project (12)

3. Capstone requirement (6 credits)
 EASC4911 Earth system: contemporary issues (6)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112
Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Earth System Science
Offered to students admitted to Year 1 in 2012

Objectives:
Earth System Science seeks to understand the Earth as an integrated system, including its past, present and future behaviour, from the environments where life evolves on the surface to the interactions between the crust and its fluid envelopes (atmosphere and hydrosphere), with interests extending to the Earth's interior. Core courses in the major focus on understanding the composition, structure and processes of the solid earth, the hydrosphere and the atmosphere, and their interactions. Students will be equipped with knowledge to help manage geological resources and natural hazards. Throughout the curriculum there is consistent emphasis on transferable skills, learning through fieldwork, laboratory studies and research based classes, designed to enhance students’ ability to think critically, to communicate effectively and to develop solutions to complex problems. Graduates from the major can pursue further studies in the Earth Sciences and careers in a wide variety of geoscience-related areas including resource management, hazard mitigation, soil and water conservation and teaching.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe the key concepts of the Earth System components and processes (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: have acquired the ability to observe, describe, measure and analyze principal phenomena of earth processes and the interactions between different earth components (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: provide expertise to maintain geological environments and prevent severe perturbations due to resource exploitation and water disposal (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: equip with the knowledge and skills to better predict and deal with geological and related hazards such as earthquakes, landslides, tsunamis, floods and volcanic eruptions, and recognize and appraise the related ethical issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: identify real life problems pertaining to the physical environment and find solutions to those problems (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 6: work with other students and possess an adequate level of communication skills (by means of group project learning and presentation opportunities in the curriculum)

Impermissible Combinations:
Minor in Earth Sciences

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (36 credits)
 BIOL1309 Evolutionary diversity (6)
 EASC1401 Blue Planet (6)
 EASC1402 Principles of geology (6)
 EASC2401 Fluid/solid interactions in earth processes (6)
 EASC2402 Field and laboratory methods (6)
 EASC2404 Introduction to atmosphere and hydrosphere (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (6 credits)
 EASC4403 Biogeochemical cycles (6)
 Disciplinary Electives (36 credits)
 At least 36 credits from Lists A and B, among which at least 12 credits from List A:
 List A:
 EASC3410 Hydrogeology (6)
 EASC3415 Meteorology (6)
 ENVS3313 Environmental oceanography (6)
 List B:
 EASC3403 Sedimentary environments (6)
 EASC3405 Environmental remote sensing (6)
 EASC3406 Reconstruction of past climate (6)
 EASC3408 Geophysics (6)
 EASC3412 Earth resources (6)
 EASC3416 Advanced geochemistry and geochronology (6)
 EASC3417 Earth through time (6)
 EASC3999 Directed studies in earth sciences (6)
 ENVS3007 Natural hazards and mitigation (6)
 EASC4408 Special topics in earth sciences (6)
 EASC4999 Earth sciences project (12)

3. Capstone requirement (6 credits)
 EASC4911 Earth system: contemporary issues (6)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112.
Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (discipline electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students are recommended to take additional chemistry and/or physics courses above the introductory level if they are interested in postgraduate research in Earth System Science.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Science Majors

Major Title
Major in Ecology & Biodiversity

Offered to students admitted to Year 1 in
2018

Objectives:
This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 2:** understand and appreciate the variety of life in Hong Kong’s and Southeast Asia’s natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 3:** have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 4:** use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 5:** demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)

- **PLO 6:** have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)

- **PLO 7:** be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

Impermissible Combinations:

- Major in Ecology & Biodiversity (Intensive)
- Minor in Ecology & Biodiversity

Required courses (96 credits)

1. Introductory level courses (48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)

- SCNC1111 Scientific method and reasoning (6)
- SCNC1112 Fundamentals of modern science (6)

Core Courses

- BIOL1110 From molecules to cells (6)
- BIOL1309 Evolutionary diversity (6)
- BIOL2102 Biostatistics (6)
- BIOL2103 Biological sciences laboratory course (6)
- BIOL2306 Ecology and evolution (6)
- ENV52002 Environmental data analysis (6)

2. Advanced level courses (42 credits)

Disciplinary Core Courses (18 credits)

- BIOL3301 Marine biology (6)
- BIOL3302 Systematics and phylogenetics (6)
- BIOL3319 Tropical terrestrial ecology (6)

Disciplinary Electives (24 credits)

At least 24 credits selected from the following courses:

- BIOL3101 Animal behaviour (6)
- BIOL3303 Conservation biology (6)
- BIOL3305 Tropical and temperate marine ecology field course (6)
- BIOL3313 Freshwater ecology (6)
- BIOL3314 Plant structure and evolution (6)
- BIOL3316 Experimental intertidal ecology (6)
- BIOL3322 Marine invertebrate zoology (6)
Science Majors

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3328</td>
<td>Nearshore marine and estuarine ecology (6)</td>
</tr>
<tr>
<td>BIOL3419</td>
<td>Insect ecology: the little things that run the world (6)</td>
</tr>
<tr>
<td>BIOL4301</td>
<td>Fish and fisheries (6)</td>
</tr>
<tr>
<td>BIOL4302</td>
<td>Environmental impact assessment (6)</td>
</tr>
<tr>
<td>BIOL4304</td>
<td>Ecosystem functioning and services (6)</td>
</tr>
<tr>
<td>BIOL4505</td>
<td>Oyster aquaculture (6)</td>
</tr>
<tr>
<td>BIOL4861</td>
<td>Ecology & biodiversity internship (6)</td>
</tr>
<tr>
<td>ENVS3019</td>
<td>Urban ecology (6)</td>
</tr>
<tr>
<td>ENVS3020</td>
<td>Global change ecology (6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- BIOL3991 Directed studies in ecology & biodiversity (6)
- BIOL4911 Conservation science in practice (6)
- BIOL4991 Ecology & biodiversity project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
<table>
<thead>
<tr>
<th>Major Title</th>
<th>Major in Ecology & Biodiversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offered to students</td>
<td>2017</td>
</tr>
<tr>
<td>admitted to Year 1 in</td>
<td></td>
</tr>
</tbody>
</table>

Objectives:
This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
- **PLO 2**: understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
- **PLO 3**: have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
- **PLO 4**: use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)
- **PLO 5**: demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)
- **PLO 6**: have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)
- **PLO 7**: be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity (Intensive)
Minor in Ecology & Biodiversity

Required courses (96 credits)

1. **Introductory level courses (48 credits)**

 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2102 Biostatistics (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2306 Ecology and evolution (6)
 - ENV2002 Environmental data analysis (6)

2. **Advanced level courses (42 credits)**

 Disciplinary Core Courses (18 credits)
 - BIOL3301 Marine biology (6)
 - BIOL3302 Systematics and phylogenetics (6)
 - BIOL3319 Tropical terrestrial ecology (6)

 Disciplinary Electives (24 credits)

 At least 24 credits selected from the following courses:
 - BIOL3101 Animal behaviour (6)
 - BIOL3303 Conservation biology (6)
 - BIOL3305 Tropical and temperate marine ecology field course (6)
 - BIOL3313 Freshwater ecology (6)
 - BIOL3314 Plant structure and evolution (6)
 - BIOL3318 Experimental intertidal ecology (6)
 - BIOL3322 Marine invertebrate zoology (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3328</td>
<td>Nearshore marine and estuarine ecology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3419</td>
<td>Insect ecology: the little things that run the world</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4301</td>
<td>Fish and fisheries</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4302</td>
<td>Environmental impact assessment</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4304</td>
<td>Ecosystem functioning and services</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4505</td>
<td>Oyster aquaculture</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4861</td>
<td>Ecology & biodiversity internship</td>
<td>(6)</td>
</tr>
<tr>
<td>ENVS3019</td>
<td>Urban ecology</td>
<td>(6)</td>
</tr>
<tr>
<td>ENVS3020</td>
<td>Global change ecology</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. **Capstone requirement (6 credits)**

 At least 6 credits selected from the following courses:

 - BIOL3991 Directed studies in ecology & biodiversity (6)
 - BIOL4911 Conservation science in practice (6)
 - BIOL4991 Ecology & biodiversity project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
Major Title: Major in Ecology & Biodiversity

Offered to students: 2016

Admitted to Year 1 in:

Objectives:
This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 2: understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats; become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 3: have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 4: use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 5: demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)

PLO 6: have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)

PLO 7: be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

Impermissible Combinations:

- Major in Ecology & Biodiversity (Intensive)
- Minor in Ecology & Biodiversity

Required courses (96 credits)

1. **Introductory level courses (48 credits)**
 - **Disciplinary Core Courses**:
 - Science Foundation Courses (12 credits):
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 - Science Foundation Courses (36 credits):
 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2102 Biostatistics (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2306 Ecology and evolution (6)
 - ENV52002 Environmental data analysis (6)

2. **Advanced level courses (42 credits)**
 - **Disciplinary Core Courses** (12 credits):
 - Systematics and phylogenetics (6)
 - Conservation biology (6)
 - Previous title: Conservation ecology (6)
 - **Disciplinary Electives** (30 credits)
 - At least 30 credits selected from the following courses:
 - BIOL3101 Animal behaviour (6)
 - BIOL3109 Environmental microbiology (6)
 - BIOL3301 Marine biology (6)
 - BIOL3305 Tropical and temperate marine ecology field course (6)
 - BIOL3313 Freshwater ecology (6)
 - BIOL3314 Plant structure and evolution (6)
 - BIOL3318 Experimental intertidal ecology (6)
 - BIOL3319 Tropical terrestrial ecology (6)
 - Previous title: Terrestrial ecology (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3320</td>
<td>The biology of marine mammals</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3322</td>
<td>Marine invertebrate zoology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3328</td>
<td>Nearshore marine and estuarine ecology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3419</td>
<td>Insect ecology: the little things that run the world</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3505</td>
<td>Oyster aquaculture and restoration</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4031</td>
<td>Fish and fisheries</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4032</td>
<td>Environmental impact assessment</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4034</td>
<td>Ecosystem functioning and services</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4451</td>
<td>Cetacean behaviour, ecology and conservation: field research experience</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4505</td>
<td>Oyster aquaculture</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4861</td>
<td>Ecology & biodiversity internship</td>
<td>6</td>
</tr>
<tr>
<td>ENVS3019</td>
<td>Urban ecology</td>
<td>6</td>
</tr>
<tr>
<td>ENVS3020</td>
<td>Global change ecology</td>
<td>6</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3991</td>
<td>Directed studies in ecology & biodiversity</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4921</td>
<td>Animal behaviour and behavioural ecology: field course</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4991</td>
<td>Ecology & biodiversity project</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Science Majors

Major Title
Major in Ecology & Biodiversity

Offered to students admitted to Year 1 in
2015

Objectives:

This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

Learning Outcomes:

By the end of this programme, students should be able to:

- **PLO 1:** understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 2:** understand and appreciate the variety of life in Hong Kong’s and Southeast Asia’s natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 3:** have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 4:** use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 5:** demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)

- **PLO 6:** have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)

- **PLO 7:** be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

Impermissible Combinations:

- Major in Ecology & Biodiversity (Intensive)
- Minor in Ecology & Biodiversity

Required courses (96 credits)

1. **Introductory level courses (48 credits)**
 - **Disciplinary Core Courses**: Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 - **Disciplinary Core Courses (36 credits)**
 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2102 Biostatistics (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2306 Ecology and evolution (6)
 - ENVS2002 Environmental data analysis (6)

2. **Advanced level courses (42 credits)**
 - **Disciplinary Core Courses (12 credits)**
 - BIOL3101 Animal behaviour (6)
 - BIOL3302 Systematics and phylogenetics (6)
 - BIOL3303 Conservation biology (6)
 - **Disciplinary Electives (30 credits)**
 - At least 30 credits selected from the following courses:
 - BIOL3101 Animal behaviour (6)
 - BIOL3109 Environmental microbiology (6)
 - BIOL3301 Marine biology (6)
 - BIOL3305 Tropical and temperate marine ecology field course (6)
 - BIOL3313 Freshwater ecology (6)

 Take either BIOL3101 or BIOL4303 to fulfill this 30 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3314</td>
<td>Plant structure and evolution (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3318</td>
<td>Experimental intertidal ecology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3319</td>
<td>Tropical terrestrial ecology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3320</td>
<td>The biology of marine mammals (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3322</td>
<td>Marine invertebrate zoology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3326</td>
<td>Nearshore marine and estuarine ecology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3419</td>
<td>Insect ecology: the little things that run the world (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3505</td>
<td>Oyster aquaculture and restoration (6)</td>
<td>Take either BIOL3505 or BIOL4505 to fulfill this 30 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4301</td>
<td>Fish and fisheries (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4302</td>
<td>Environmental impact assessment (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4303</td>
<td>Animal behaviour (6)</td>
<td>Take either BIOL3101 or BIOL4303 to fulfill this 30 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4304</td>
<td>Ecosystem functioning and services (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4451</td>
<td>Cetacean behaviour, ecology and conservation: field research experience (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4505</td>
<td>Oyster aquaculture (6)</td>
<td>Take either BIOL3505 or BIOL4505 to fulfill this 30 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4861</td>
<td>Ecology & biodiversity internship (6)</td>
<td></td>
</tr>
<tr>
<td>ENVS3019</td>
<td>Urban ecology (6)</td>
<td></td>
</tr>
<tr>
<td>ENVS3020</td>
<td>Global change ecology (6)</td>
<td></td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3951</td>
<td>Ecology & biodiversity field course (6)</td>
<td>Take either BIOL3951 (subclass B) or BIOL4921 to fulfill this 6 credits requirement, but not both. BIOL3951 (subclass B) and BIOL4921 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL3991</td>
<td>Directed studies in ecology & biodiversity (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4911</td>
<td>Conservation science in practice (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4921</td>
<td>Animal behaviour and behavioural ecology: field course (6)</td>
<td>Take either BIOL3951 (subclass B) or BIOL4921 to fulfill this 6 credits requirement, but not both. BIOL3951 (subclass B) and BIOL4921 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4991</td>
<td>Ecology & biodiversity project (12)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Ecology & Biodiversity

Offered to students: 2014

Admitted to Year 1 in

Objectives:
This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: Understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 2: Understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 3: Have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 4: Use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 5: Demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)

PLO 6: Have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)

PLO 7: Be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

Impermissible Combinations:

Major in Ecology & Biodiversity (Intensive)
Minor in Ecology & Biodiversity

Required courses (96 credits)

1. Introductory level courses (48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (36 credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2306 Ecology and evolution (6)
ENVLS2002 Environmental data analysis (6)

2. Advanced level courses (42 credits)

Disciplinary Core Courses (12 credits)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6)

Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:

BIOL3101 Animal behaviour (6)
BIOL3109 Environmental microbiology (6)
BIOL3301 Marine biology (6)
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)

Take either BIOL3101 or BIOL4303 to fulfill this 30 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3314</td>
<td>Plant structure and evolution</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3318</td>
<td>Experimental intertidal ecology</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3319</td>
<td>Tropical terrestrial ecology</td>
<td>(6)</td>
<td>[previous title: Terrestrial ecology (6)]</td>
</tr>
<tr>
<td>BIOL3320</td>
<td>The biology of marine mammals</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3322</td>
<td>Marine invertebrate zoology</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3326</td>
<td>Nearshore marine and estuarine ecology</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3419</td>
<td>Insect ecology: the little things that run the world</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3505</td>
<td>Oyster aquaculture and restoration</td>
<td>(6)</td>
<td>Take either BIOL3505 or BIOL4505 to fulfill this 30 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4301</td>
<td>Fish and fisheries</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4302</td>
<td>Environmental impact assessment</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4303</td>
<td>Animal behaviour</td>
<td>(6)</td>
<td>Take either BIOL3101 or BIOL4303 to fulfill this 30 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4304</td>
<td>Ecosystem functioning and services</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4451</td>
<td>Cetacean behaviour, ecology and conservation: field research experience</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4505</td>
<td>Oyster aquaculture</td>
<td>(6)</td>
<td>Take either BIOL3505 or BIOL4505 to fulfill this 30 credits requirement, but not both. BIOL3505 and BIOL4505 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4861</td>
<td>Ecology & biodiversity internship</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>ENV3019</td>
<td>Urban ecology</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>ENV3020</td>
<td>Global change ecology</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3951</td>
<td>Ecology & biodiversity field course</td>
<td>(6)</td>
<td>Take either BIOL3951 (subclass B) or BIOL4921 to fulfill this 6 credits requirement, but not both. BIOL3951 (subclass B) and BIOL4921 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL3991</td>
<td>Directed studies in ecology & biodiversity</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4911</td>
<td>Conservation science in practice</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4921</td>
<td>Animal behaviour and behavioural ecology: field course</td>
<td>(6)</td>
<td>Take either BIOL3951 (subclass B) or BIOL4921 to fulfill this 6 credits requirement, but not both. BIOL3951 (subclass B) and BIOL4921 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4991</td>
<td>Ecology & biodiversity project</td>
<td>(12)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Science Majors

<table>
<thead>
<tr>
<th>Major Title</th>
<th>Major in Ecology & Biodiversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offered to students</td>
<td>2013</td>
</tr>
<tr>
<td>admitted to Year 1 in</td>
<td></td>
</tr>
</tbody>
</table>

Objectives:
This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work, introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 2:** understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 3:** have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 4:** use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 5:** demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)

- **PLO 6:** have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)

- **PLO 7:** be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

Impermissible Combinations:
- Major in Ecology & Biodiversity (Intensive)
- Minor in Ecology & Biodiversity

Required courses (96 credits)

<table>
<thead>
<tr>
<th>1. Introductory level courses (48 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disciplinary Core Courses: Science Foundation Courses (12 credits)</td>
</tr>
<tr>
<td>SCNC1111 Scientific method and reasoning (6)</td>
</tr>
<tr>
<td>SCNC1112 Fundamentals of modern science (6)</td>
</tr>
<tr>
<td>Disciplinary Core Courses (36 credits)</td>
</tr>
<tr>
<td>BIOL1110 From molecules to cells (6)</td>
</tr>
<tr>
<td>BIOL1309 Evolutionary diversity (6)</td>
</tr>
<tr>
<td>BIOL2102 Biostatistics (6)</td>
</tr>
<tr>
<td>BIOL2103 Biological sciences laboratory course (6)</td>
</tr>
<tr>
<td>BIOL2306 Ecology and evolution (6)</td>
</tr>
<tr>
<td>ENV2002 Environmental data analysis (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Advanced level courses (42 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disciplinary Core Courses (12 credits)</td>
</tr>
<tr>
<td>BIOL3302 Systematics and phylogenetics (6)</td>
</tr>
<tr>
<td>BIOL3303 Conservation biology (6)</td>
</tr>
<tr>
<td>Disciplinary Electives (30 credits)</td>
</tr>
<tr>
<td>At least 30 credits selected from the following courses:</td>
</tr>
<tr>
<td>BIOL3101 Animal behaviour (6)</td>
</tr>
<tr>
<td>BIOL3109 Environmental microbiology (6)</td>
</tr>
<tr>
<td>BIOL3301 Marine biology (6)</td>
</tr>
<tr>
<td>BIOL3305 Tropical and temperate marine ecology field course (6)</td>
</tr>
<tr>
<td>BIOL3313 Freshwater ecology (6)</td>
</tr>
</tbody>
</table>

Note: Take either BIOL3101 or BIOL4303 to fulfill this 30 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3314</td>
<td>Plant structure and evolution</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3318</td>
<td>Experimental intertidal ecology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3319</td>
<td>Tropical terrestrial ecology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3320</td>
<td>The biology of marine mammals</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3322</td>
<td>Marine invertebrate zoology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3328</td>
<td>Nearshore marine and estuarine ecology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3419</td>
<td>Insect ecology; the little things that run the world</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3505</td>
<td>Oyster aquaculture and restoration</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4301</td>
<td>Fish and fisheries</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4302</td>
<td>Environmental impact assessment</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4303</td>
<td>Animal behaviour</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4304</td>
<td>Ecosystem functioning and services</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4451</td>
<td>Cetacean behaviour, ecology and conservation: field research experience</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4505</td>
<td>Oyster aquaculture</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4861</td>
<td>Ecology & biodiversity internship</td>
<td>6</td>
</tr>
<tr>
<td>ENVS3019</td>
<td>Urban ecology</td>
<td>6</td>
</tr>
<tr>
<td>ENVS3020</td>
<td>Global change ecology</td>
<td>6</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3951</td>
<td>Ecology & biodiversity field course</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3991</td>
<td>Directed studies in ecology & biodiversity</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4911</td>
<td>Conservation science in practice</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4921</td>
<td>Animal behaviour and behavioural ecology; field course</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4991</td>
<td>Ecology & biodiversity project</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Science Majors

Major Title: Major in Ecology & Biodiversity

Offered to students: 2012

admitted to Year 1 in

Objectives:
This major is directed at teaching students: (1) how organisms interact with each other and their environments, (2) how species are distributed throughout the world, and (3) key threats and approaches to conserving biodiversity. Special reference is made to Hong Kong and Asia; the ways in which humans have impacted upon natural environments; and, the approaches used to manage or ameliorate those impacts. This major is based around an introductory core, which emphasizes plant and animal biology and includes a compulsory week-long residential field trip. Advanced courses in the major teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial and freshwater environments) with an emphasis on field work. Introduces the use of statistical and molecular techniques in ecology, and focuses on certain applied topics such as environmental impact assessment, ecotoxicology, fisheries and mariculture, and biodiversity conservation. Students have an opportunity to conduct independent research in ecology and biodiversity as a final year project or a dissertation under the close supervision of an individual staff member. Apart from the fundamental knowledge and skills in understanding and managing biodiversity offered in the core courses of this major, strong emphasis is placed upon experiential learning such as overseas field expedition and work placement in the environmental sector. Biodiversity conservation requires scientific input as well as passion. Through the range of formal field-based courses as well as extra-curricular activities offered, students taking this major will have opportunities to participate in research, field conservation and education projects both locally and internationally. Assistance will be provided so that students can develop expertise in one or a few groups of plants or animals, as familiarity with species identification is an essential prerequisite for biodiversity scientists or conservation biologists.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and appreciate the major living and non-living components of the regional and global environment, and how they interact; identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 2: understand and appreciate the variety of life in Hong Kong’s and Southeast Asia’s natural habitats, become equipped to understand, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 3: have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 4: use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 5: demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)

PLO 6: have the skill and knowledge to pursue postgraduate ecological research or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)

PLO 7: be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity (Intensive)
Minor in Ecology & Biodiversity

Required courses (96 credits)

1. Introductory level courses (42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (30 credits)
BIOL1110 From molecules to cells (6)
BIOL1309 Evolutionary diversity (6)
BIOL2102 Biostatistics (6)
BIOL2103 Biological sciences laboratory course (6)
BIOL2306 Ecology and evolution (6)

2. Advanced level courses (48 credits)

Disciplinary Core Courses (12 credits)
BIOL3302 Systematics and phylogenetics (6)
BIOL3303 Conservation biology (6) [previous title: Conservation ecology (6)]

Disciplinary Electives (36 credits)
At least 36 credits selected from the following courses:
BIOL3101 Animal behaviour (6)
BIOL3109 Environmental microbiology (6)
BIOL3301 Marine biology (6)
BIOL3305 Tropical and temperate marine ecology field course (6)
BIOL3313 Freshwater ecology (6)
BIOL3314 Plant structure and evolution (6)

Take either BIOL3101 or BIOL4303 to fulfill this 36 credits requirement, but not both.
BIOL3101 and BIOL4303 are mutually exclusive.
Science Majors

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3318</td>
<td>Experimental intertidal ecology (6)</td>
</tr>
<tr>
<td>BIOL3319</td>
<td>Tropical terrestrial ecology (6)</td>
</tr>
<tr>
<td>BIOL3320</td>
<td>The biology of marine mammals (6)</td>
</tr>
<tr>
<td>BIOL3322</td>
<td>Marine invertebrate zoology (6)</td>
</tr>
<tr>
<td>BIOL3328</td>
<td>Nearshore marine and estuarine ecology (6)</td>
</tr>
<tr>
<td>BIOL3419</td>
<td>Insect ecology: the little things that run the world (6)</td>
</tr>
<tr>
<td>BIOL3505</td>
<td>Oyster aquaculture and restoration (6)</td>
</tr>
<tr>
<td>BIOL4301</td>
<td>Fish and fisheries (6)</td>
</tr>
<tr>
<td>BIOL4302</td>
<td>Environmental impact assessment (6)</td>
</tr>
<tr>
<td>BIOL4303</td>
<td>Animal behaviour (6)</td>
</tr>
<tr>
<td>BIOL4304</td>
<td>Ecosystem functioning and services (6)</td>
</tr>
<tr>
<td>BIOL4451</td>
<td>Cetacean behaviour, ecology and conservation: field research experience (6)</td>
</tr>
<tr>
<td>BIOL4505</td>
<td>Oyster aquaculture (6)</td>
</tr>
<tr>
<td>BIOL4861</td>
<td>Ecology & biodiversity internship (6)</td>
</tr>
<tr>
<td>ENVS3019</td>
<td>Urban ecology (6)</td>
</tr>
<tr>
<td>ENVS3020</td>
<td>Global change ecology (6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- BIOL3951 Ecology & biodiversity field course (6)
- BIOL3991 Directed studies in ecology & biodiversity (6)
- BIOL4911 Conservation science in practice (6)
- BIOL4921 Animal behaviour and behavioural ecology: field course (6)
- BIOL4991 Ecology & biodiversity project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title
Major in Ecology & Biodiversity (Intensive)

Offered to students
admitted to Year 1 in 2018

Objectives:
This intensive major is directed at teaching students the ‘rules of existence’ for organisms in natural and human-modified environments, including major threats to biodiversity and the approaches adopted to conserve species and habitats. Special reference is made to the plants, animals and habitats of Hong Kong and Asia, the ways in which humans have altered the region’s ecosystems, and the management or mitigation of those impacts. The range and scope of courses offered will provide students with a firm foundation in ecology, biodiversity and related disciplines, and equip them with the skills required for postgraduate research or employment with government and non-government organizations concerned with biodiversity conservation, nature preservation or habitat assessment and management.

The intensive major is based around an introductory core that emphasizes biology, ecology and evolution of plants and animals; it includes a compulsory residential field trip (as part of the Ecology and Evolution course), as well as instruction in data analysis and biostatistics. Many of the advanced courses in the major have a strong emphasis on field-work and on small projects performed by students. They teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial, freshwater and urban) and taxa (e.g. flowering plants, insects, fishes, marine mammals). Other courses focus on more applied topics, such as environmental impact assessment, conservation, and provide an opportunity for students to become familiar with specialised topics ranging from systematics to animal behaviour.

During their final year, students have an opportunity to conduct independent research in the form of an ecology and biodiversity research project or a directed-studies dissertation under the close supervision of an individual staff member. Students are able to make use of the facilities of the Swire Institute of Marine Science for such work. Strong emphasis is also placed upon experiential learning during overseas field trips that can be taken as part of the capstone requirement of this intensive major.

Ecology and biodiversity research requires extensive scientific knowledge as well as passion, and students are encouraged to take more than the requisite 12-credit minimum of capstone courses. Through these courses, and the range of formal field-based options as well as various extra-curricular activities offered, students will be expected to develop expertise in one or a few groups of plants or animals; this is an important skill since an ability to identify species and major taxa is an essential prerequisite for biodiversity scientists or conservation biologists.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

Learning Outcomes:
By the end of this programme, students should be able to:

<table>
<thead>
<tr>
<th>PLO</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLO 1</td>
<td>understand and appreciate the major living and non-living components of the local, regional and global environment, and how they interact; evaluate their role in ecosystem functioning and identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)</td>
</tr>
<tr>
<td>PLO 2</td>
<td>assess, understand and appreciate the variety of life in Hong Kong's and Southeast Asia's natural habitats, become equipped to assess, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)</td>
</tr>
<tr>
<td>PLO 3</td>
<td>have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)</td>
</tr>
<tr>
<td>PLO 4</td>
<td>use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)</td>
</tr>
<tr>
<td>PLO 5</td>
<td>demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)</td>
</tr>
<tr>
<td>PLO 6</td>
<td>have the skill and knowledge to pursue postgraduate ecological research in top-level Universities around the world or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)</td>
</tr>
<tr>
<td>PLO 7</td>
<td>be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems in a changing world. (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)</td>
</tr>
</tbody>
</table>

Impermissible Combinations:
- Major in Biological Sciences
- Major in Ecology & Biodiversity
- Minor in Ecology & Biodiversity

Required courses (144 credits)

1. Introductory level courses (60 credits)
- **Disciplinary Core Courses: Science Foundation Courses (12 credits)**
 - SCNC1111 Scientific method and reasoning (6) (Note 1)
 - SCNC1112 Fundamentals of modern science (6) (Note 1)

2. Core courses (42 credits)
- **Disciplinary Core Courses**
 - BIOL1110 From molecules to cells (6) (Note 1)
 - BIOL1309 Evolutionary diversity (6) (Note 1)
 - BIOL2102 Biostatistics (6) (Note 1)
 - BIOL2103 Biological sciences laboratory course (6) (Note 1)
 - BIOL2306 Ecology and evolution (6) (Note 1)
Disciplinary Electives (6 credits)

Plus at least 6 credits selected from the following courses:

- **CHEM1041** Foundations of chemistry (6)
- **CHEM1042** General chemistry I (6)

Take either CHEM1041 or CHEM1042 to fulfill this 6 credits requirement, but not both.

2. Advanced level courses (66 to 72 credits) (Note 2)

Disciplinary Core Courses (30 credits)

- **BIOL3101** Animal behaviour (6)
- **BIOL3301** Marine biology (6)
- **BIOL3302** Systematics and phylogenetics (6)
- **BIOL3303** Conservation biology (6)
- **BIOL3319** Tropical terrestrial ecology (6)

Plus at least 36 or 42 credits selected from the following courses:

- **BIOL3305** Tropical and temperate marine ecology field course (6)
- **BIOL3313** Freshwater ecology (6)
- **BIOL3314** Plant structure and evolution (6)
- **BIOL3318** Experimental intertidal ecology (6)
- **BIOL3322** Marine invertebrate zoology (6)
- **BIOL3328** Nearshore marine and estuarine ecology (6)
- **BIOL3419** Insect ecology: the little things that run the world (6)
- **BIOL4301** Fish and fisheries (6)
- **BIOL4302** Environmental impact assessment (6)
- **BIOL4304** Ecosystem functioning and services (6)
- **BIOL4505** Oyster aquaculture (6)
- **ENVS3019** Urban ecology (6)
- **ENVS3020** Global change ecology (6)

Disciplinary Electives (36 to 42 credits) (Note 2)

Plus at least 36 or 42 credits selected from the following courses:

- **BIOL3991** Directed studies in ecology & biodiversity (6)
- **BIOL4991** Conservation science in practice (6)

3. Capstone requirement (12 to 18 credits) (Note 2)

Disciplinary Core Courses (12 credits)

- **BIOL4991** Ecology & biodiversity project (12)

Disciplinary Electives (6 credits)

- **BIOL3991** Directed studies in ecology & biodiversity (6)
- **BIOL4911** Conservation science in practice (6)

Notes:

1. These are core courses in the regular Ecology & Biodiversity Major (96 credits) curriculum.

2. Within the E&B accredited curriculum, students have to pass a total of 60 credits within the Introductory Level Courses spread across two Science Foundation Courses (Level 1; 12 credits), seven Disciplinary Core Courses (Levels 1 & 2; 42 credits) and one chemistry (Level 1; 6 credits). For the chemistry course, students will have the choice between CHEM1041 and CHEM1042 in function of their prior chemistry background acquired during their upper secondary education. Students with no chemistry background should follow CHEM1041, while students with previous chemistry background should take CHEM1042.

Advanced Level Courses cover a total of 66 to 72 credits. Those are divided between five Disciplinary Core Courses (Level 3; 30 credits) and 6 to 7 Disciplinary Elective Courses (Level 3 & 4; 36 to 42 credits) among a choice of thirteen different courses. As eight of the Disciplinary Elective courses are being taught every other year, students must pay attention to the year during which these courses are taught and ensure that they have fulfilled the necessary requirements. There is a student mentorship programme in place that can assist them in this.

During their final year, students should complete a minimum of 12 credits as Capstone Courses (maximum of 18). The Ecology & Biodiversity Project (12 credits) is mandatory and students can choose to complete one of the other two Elective Capstone Courses (6 credits). If students choose to complete 18 credits of Capstone Courses, then they are required to complete only 36 credits of Disciplinary Elective Courses within the Advanced Level Courses (instead of 42 credits)

Finally, students who participate in student exchange programme are expected to enquire, prior to their departure from HKU, about potential equivalences with the courses taken during exchange programmes to ensure that they match requirements for obtaining the RSB accredited programme.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major in Ecology & Biodiversity (Intensive)

Offered to students admitted to Year 1 in: 2017

Objectives:

This intensive major is directed at teaching students the ‘rules of existence’ for organisms in natural and human-modified environments, including major threats to biodiversity and the approaches adopted to conserve species and habitats. Special reference is made to the plants, animals and habitats of Hong Kong and Asia, the ways in which humans have altered the region’s ecosystems, and the management or mitigation of those impacts. The range and scope of courses offered will provide students with a firm foundation in ecology, biodiversity and related disciplines, and equip them with the skills required for postgraduate research or employment with government and non-government organizations concerned with biodiversity conservation, nature preservation or habitat assessment and management.

The intensive major is based around an introductory core that emphasizes biology, ecology and evolution of plants and animals; it includes a compulsory residential field trip (as part of the Ecology and Evolution course), as well as instruction in data analysis and biostatistics. Many of the advanced courses in the major have a strong emphasis on field-work and on small projects performed by students. They teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial, freshwater and urban) and taxa (e.g. flowering plants, insects, fishes, marine mammals). Other courses focus on more applied topics, such as environmental impact assessment, conservation, and provide an opportunity for students to become familiar with specialised topics ranging from systematics to animal behaviour.

During their final year, students have an opportunity to conduct independent research in the form of an ecology and biodiversity research project or a directed-studies dissertation under the close supervision of an individual staff member. Students are able to make use of the facilities of the Swire Institute of Marine Science for such work. Strong emphasis is also placed upon experiential learning during overseas field trips that can be taken as part of the capstone requirement of this intensive major.

Ecology and biodiversity research requires extensive scientific knowledge as well as passion, and students are encouraged to take more than the requisite 12-credit minimum of capstone courses. Through these courses, and the range of formal field-based options as well as various extra-curricular activities offered, students will be expected to develop expertise in one or a few groups of plants or animals; this is an important skill since an ability to identify species and major taxa is an essential prerequisite for biodiversity scientists or conservation biologists.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

Learning Outcomes:

By the end of this programme, students should be able to:

- **PLO 1:** understand and appreciate the major living and non-living components of the local, regional and global environment, and how they interact; evaluate their role in ecosystem functioning and identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 2:** assess, understand and appreciate the variety of life in Hong Kong’s and Southeast Asia’s natural habitats, become equipped to assess, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 3:** have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 4:** use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

- **PLO 5:** demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)

- **PLO 6:** have the skill and knowledge to pursue postgraduate ecological research in top-level Universities around the world or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)

- **PLO 7:** be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems in a changing world. (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

Impermissible Combinations:

- Major in Biological Sciences
- Major in Ecology & Biodiversity
- Minor in Ecology & Biodiversity

Required courses (144 credits)

1. Introductory level courses (60 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111</td>
<td>Scientific method and reasoning (6)</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>SCNC1112</td>
<td>Fundamentals of modern science (6)</td>
<td>(Note 1)</td>
</tr>
</tbody>
</table>

Disciplinary Core Courses (42 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110</td>
<td>From molecules to cells (6)</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>BIOL1309</td>
<td>Evolutionary diversity (6)</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>BIOL2102</td>
<td>Biostatistics (6)</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>BIOL2103</td>
<td>Biological sciences laboratory course (6)</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>BIOL2306</td>
<td>Ecology and evolution (6)</td>
<td>(Note 1)</td>
</tr>
</tbody>
</table>

(Note 1)
Disciplinary Electives (6 credits)

Plus at least 6 credits selected from the following courses:

- CHEM1041 Foundations of chemistry (6)
- CHEM1042 General chemistry I (6)

Take either CHEM1041 or CHEM1042 to fulfill this 6 credits requirement, but not both.

Disciplinary Core Courses (30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3101</td>
<td>Animal behaviour</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3301</td>
<td>Marine biology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3302</td>
<td>Systematics and phylogenetics</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3303</td>
<td>Conservation biology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3319</td>
<td>Tropical terrestrial ecology</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Disciplinary Electives (36 to 42 credits) (Note 2)

Plus at least 36 or 42 credits selected from the following courses:

- BIOL3305 Tropical and temperate marine ecology field course (6)
- BIOL3313 Freshwater ecology (6)
- BIOL3314 Plant structure and evolution (6)
- BIOL3318 Experimental intertidal ecology (6)
- BIOL3322 Marine invertebrate zoology (6)
- BIOL3328 Nearshore marine and estuarine ecology (6)
- BIOL3419 Insect ecology: the little things that run the world (6)
- BIOL3506
- BIOL4301 Fish and fisheries (6)
- BIOL4302 Environmental impact assessment (6)
- BIOL4304 Ecosystem functioning and services (6)
- BIOL4505 Oyster aquaculture (6)
- ENVS3019 Urban ecology (6)
- ENVS3020 Global change ecology (6)

Disciplinary Core Courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL4991</td>
<td>Ecology & biodiversity project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Disciplinary Electives (6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3991</td>
<td>Directed studies in ecology & biodiversity</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4911</td>
<td>Conservation science in practice</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Notes:

1. These are core courses in the regular Ecology & Biodiversity Major (96 credits) curriculum.

2. Within the E&B accredited curriculum, students have to pass a total of 60 credits within the Introductory Level Courses spread across two Science Foundation Courses (Level 1: 12 credits), seven Disciplinary Core Courses (Levels 1 & 2; 42 credits) and one chemistry (Level 1: 6 credits). For the chemistry course, students will have the choice between CHEM1041 and CHEM1042 in function of their prior chemistry background acquired during their upper secondary education. Students with no chemistry background should follow CHEM1041, while students with previous chemistry background should take CHEM1042.

Advanced Level Courses cover a total of 66 to 72 credits. Those are divided between five Disciplinary Core Courses (Level 3; 30 credits) and 6 to 7 Disciplinary Elective Courses (Level 3 & 4; 36 to 42 credits) among a choice of fourteen different courses. As eight of the Disciplinary Elective courses are being taught every other year, students must pay attention to the year during which these courses are taught and ensure that they have fulfilled the necessary requirements. There is a student mentorship programme in place that can assist them in this.

During their final year, students should complete a minimum of 12 credits as Capstone Courses (maximum of 18). The Ecology & Biodiversity Project (12 credits) is mandatory and students can choose to complete one of the other two Elective Capstone Courses (6 credits). If students choose to complete 18 credits of Capstone Courses, then they are required to complete only 36 credits of Disciplinary Elective Courses within the Advanced Level Courses (instead of 42 credits).

Finally, students who participate in student exchange programme are expected to enquire, prior to their departure from HKU, about potential equivalences with the courses taken during exchange programmes to ensure that they match requirements for obtaining the RSB accredited programme.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title | Major in Ecology & Biodiversity (Intensive)
Offered to students | 2016
admitted to Year 1 in

Objectives:
This intensive major is directed at teaching students the ‘rules of existence’ for organisms in natural and human-modified environments, including major threats to biodiversity and the approaches adopted to conserve species and habitats. Special reference is made to the plants, animals and habitats of Hong Kong and Asia, the ways in which humans have altered the region’s ecosystems, and the management or mitigation of those impacts. The range and scope of courses offered will provide students with a firm foundation in ecology, biodiversity and related disciplines, and equip them with the skills required for postgraduate research or employment with government and non-government organizations concerned with biodiversity conservation, nature preservation or habitat assessment and management.

The intensive major is based around an introductory core that emphasizes biology, ecology and evolution of plants and animals; it includes a compulsory residential field trip (as part of the Ecology and Evolution course), as well as instruction in data analysis and biostatistics. Many of the advanced courses in the major have a strong emphasis on field-work and on small projects performed by students. They teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial, freshwater and urban) and taxa (e.g. flowering plants, insects, fishes, marine mammals). Other courses focus on more applied topics, such as environmental impact assessment, conservation, and provide an opportunity for students to become familiar with specialised topics ranging from systematics to animal behaviour.

During their final year, students have an opportunity to conduct independent research in the form of an ecology and biodiversity research project or a directed-studies dissertation under the close supervision of an individual staff member. Students are able to make use of the facilities of the Swire Institute of Marine Science for such work. Strong emphasis is also placed upon experiential learning during overseas field trips that can be taken as part of the capstone requirement of this intensive major.

Ecology and biodiversity research requires extensive scientific knowledge as well as passion, and students are encouraged to take more than the requisite 12-credit minimum of capstone courses. Through these courses, and the range of formal field-based options as well as various extra-curricular activities offered, students will be expected to develop expertise in one or a few groups of plants or animals; this is an important skill since an ability to identify species and major taxa is an essential prerequisite for biodiversity scientists or conservation biologists.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and appreciate the major living and non-living components of the local, regional and global environment, and how they interact; evaluate their role in ecosystem functioning and identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 2: assess, understand and appreciate the variety of life in Hong Kong’s and Southeast Asia’s natural habitats, become equipped to assess, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 3: have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 4: use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 5: demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)

PLO 6: have the skill and knowledge to pursue postgraduate ecological research in top-level Universities around the world or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)

PLO 7: be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems in a changing world. (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

Impermissible Combinations:
Major in Biological Sciences
Major in Ecology & Biodiversity
Minor in Ecology & Biodiversity

Required courses (144 credits)

1. Introductory level courses (60 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111</td>
<td>Scientific method and reasoning</td>
<td>6</td>
</tr>
<tr>
<td>SCNC1112</td>
<td>Fundamentals of modern science</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Core Courses (42 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110</td>
<td>From molecules to cells</td>
<td>6</td>
</tr>
<tr>
<td>BIOL1309</td>
<td>Evolutionary diversity</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2102</td>
<td>Biostatistics</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2103</td>
<td>Biological sciences laboratory course</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2306</td>
<td>Ecology and evolution</td>
<td>6</td>
</tr>
</tbody>
</table>
Disciplinary Electives (6 credits)

Plus at least 6 credits selected from the following courses:

- **CHEM1041** Foundations of chemistry (6)
- **CHEM1042** General chemistry I (6)

Take either CHEM1041 or CHEM1042 to fulfill this 6 credits requirement, but not both.

Disciplinary Core Courses (30 credits)

- **BIOL3101** Animal behaviour (6)
- **BIOL3301** Marine biology (6)
- **BIOL3302** Systematics and phylogenetics (6)
- **BIOL3303** Conservation biology (6)
- **BIOL3319** Tropical terrestrial ecology (6)

Take either CHEM1041 or CHEM1042 to fulfill this 6 credits requirement, but not both.

Disciplinary Electives (36 to 42 credits) (Note 2)

Plus at least 36 or 42 credits selected from the following courses:

- **BIOL3305** Tropical and temperate marine ecology field course (6)
- **BIOL3313** Freshwater ecology (6)
- **BIOL3314** Plant structure and evolution (6)
- **BIOL3318** Experimental intertidal ecology (6)
- **BIOL3322** Marine invertebrate zoology (6)
- **BIOL3328** Nearshore marine and estuarine ecology (6)
- **BIOL3419** Insect ecology: the little things that run the world (6)
- **BIOL3506**
- **BIOL4301** Fish and fisheries (6)
- **BIOL4302** Environmental impact assessment (6)
- **BIOL4304** Ecosystem functioning and services (6)
- **BIOL4505** Oyster aquaculture (6)
- **ENVS3019** Urban ecology (6)
- **ENVS3020** Global change ecology (6)

3. Capstone requirement (12 to 18 credits) (Note 2)

Disciplinary Core Courses (12 credits)

- **BIOL4991** Ecology & biodiversity project (12)

Disciplinary Electives (6 credits)

- **BIOL3991** Directed studies in ecology & biodiversity (6)
- **BIOL4911** Conservation science in practice (6)

Notes:

1. These are core courses in the regular Ecology & Biodiversity Major (96 credits) curriculum.

2. Within the E&B accredited curriculum, students have to pass a total of 60 credits within the Introductory Level Courses spread across two Science Foundation Courses (Level 1; 12 credits), seven Disciplinary Core Courses (Levels 1 & 2; 42 credits) and one chemistry (Level 1; 6 credits). For the chemistry course, students will have the choice between CHEM1041 and CHEM1042 in function of their prior chemistry background acquired during their upper secondary education. Students with no chemistry background should follow CHEM1041, while students with previous chemistry background should take CHEM1042.

Advanced Level Courses cover a total of 66 to 72 credits. Those are divided between five Disciplinary Core Courses (Level 3; 30 credits) and 6 to 7 Disciplinary Elective Courses (Level 3 & 4; 36 to 42 credits) among a choice of fourteen different courses. As eight of the Disciplinary Elective courses are being taught every other year, students must pay attention to the year during which these courses are taught and ensure that they have fulfilled the necessary requirements. There is a student mentorship programme in place that can assist them in this.

During their final year, students should complete a minimum of 12 credits as Capstone Courses (maximum of 18). The Ecology & Biodiversity Project (12 credits) is mandatory and students can choose to complete one of the other two Elective Capstone Courses (6 credits). If students choose to complete 18 credits of Capstone Courses, then they are required to complete only 36 credits of Disciplinary Elective Courses within the Advanced Level Courses (instead of 42 credits)

Finally, students who participate in student exchange programme are expected to enquire, prior to their departure from HKU, about potential equivalences with the courses taken during exchange programmes to ensure that they match requirements for obtaining the RSB accredited programme.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Ecology & Biodiversity (Intensive)

Offered to students admitted to Year 1 in 2015

Objectives:
This intensive major is directed at teaching students the ‘rules of existence’ for organisms in natural and human-modified environments, including major threats to biodiversity and the approaches adopted to conserve species and habitats. Special reference is made to the plants, animals and habitats of Hong Kong and Asia, the ways in which humans have altered the region’s ecosystems, and the management or mitigation of those impacts. The range and scope of courses offered will provide students with a firm foundation in ecology, biodiversity and related disciplines, and equip them with the skills required for postgraduate research or employment with government and non-government organizations concerned with biodiversity conservation, nature preservation or habitat assessment and management.

The intensive major is based around an introductory core that emphasizes biology, ecology and evolution of plants and animals; it includes a compulsory residential field trip (as part of the Ecology and Evolution course), as well as instruction in data analysis and biostatistics. Many of the advanced courses in the major have a strong emphasis on field-work and on small projects performed by students. They teach students about the ecology and biodiversity of different ecosystems (e.g. marine, terrestrial, freshwater and urban) and taxa (e.g. flowering plants, insects, fishes, marine mammals). Other courses focus on more applied topics, such as environmental impact assessment, conservation, and provide an opportunity for students to become familiar with specialised topics ranging from systematics to animal behaviour.

During their final year, students have an opportunity to conduct independent research in the form of an ecology and biodiversity research project or a directed-studies dissertation under the close supervision of an individual staff member. Students are able to make use of the facilities of the Swire Institute of Marine Science for such work. Strong emphasis is also placed upon experiential learning during overseas field trips that can be taken as part of the capstone requirement of this intensive major.

Ecology and biodiversity research requires extensive scientific knowledge as well as passion, and students are encouraged to take more than the requisite 12-credit minimum of capstone courses. Through these courses, and the range of formal field-based options as well as various extra-curricular activities offered, students will be expected to develop expertise in one or a few groups of plants or animals; this is an important skill since an ability to identify species and major taxa is an essential prerequisite for biodiversity scientists or conservation biologists.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and appreciate the major living and non-living components of the local, regional and global environment, and how they interact; evaluate their role in ecosystem functioning and identify threats to them; and know how these threats can be mitigated (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 2: assess, understand and appreciate the variety of life in Hong Kong’s and Southeast Asia’s natural habitats, become equipped to assess, study, manage and protect that diversity, and appraise the related moral and ethical issues (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 3: have sufficient experience of the basic techniques of modern ecological science and prepare to learn new ones for specific tasks (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 4: use IT tools appropriately, and access and evaluate materials from libraries, archives and the Internet (by means of coursework, laboratory-based, tutorial classes and/or project-based learning in the curriculum)

PLO 5: demonstrate original, independent and critical thinking, with mastery of a range of communication skills (by means of coursework, project-based and presentation opportunities in the curriculum)

PLO 6: have the skill and knowledge to pursue postgraduate ecological research in top-level Universities around the world or to develop a career in nature conservation and environmental education, especially in Hong Kong and southern China (by means of coursework, tutorial classes, project-based and research-based learning in the curriculum)

PLO 7: be motivated and sufficiently equipped to apply the knowledge solve local, regional and global environmental problems in a changing world. (by means of coursework, laboratory-based, tutorial classes, capstone learning and/or project-based learning in the curriculum)

Impermissible Combinations:
Major in Biological Sciences
Major in Ecology & Biodiversity
Minor in Ecology & Biodiversity

Required courses (144 credits)

1. Introductory level courses (60 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111</td>
<td>Scientific method and reasoning</td>
<td>6</td>
</tr>
<tr>
<td>SCNC1112</td>
<td>Fundamentals of modern science</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Core Courses (42 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110</td>
<td>From molecules to cells</td>
<td>6</td>
</tr>
<tr>
<td>BIOL1309</td>
<td>Evolutionary diversity</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2102</td>
<td>Biostatistics</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2103</td>
<td>Biological sciences laboratory</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2306</td>
<td>Ecology and evolution</td>
<td>6</td>
</tr>
</tbody>
</table>

(Note 1)
Disciplinary Electives (6 credits)

Plus at least 6 credits selected from the following courses:
- **CHEM1041** Foundations of chemistry (6)
- **CHEM1042** General chemistry I (6)

Take either CHEM1041 or CHEM1042 to fulfill this 6 credits requirement, but not both.

Advanced level courses (66 to 72 credits) (Note 2)

Disciplinary Core Courses (30 credits)

- **BIOL3101** Animal behaviour (6)
- **BIOL3301** Marine biology (6)
- **BIOL3302** Systematics and phylogenetics (6)
- **BIOL3303** Conservation biology (6)
- **BIOL3319** Tropical terrestrial ecology (6)

Disciplinary Electives (36 to 42 credits) (Note 2)

Plus at least 36 or 42 credits selected from the following courses:
- **BIOL3305** Tropical and temperate marine ecology field course (6)
- **BIOL3313** Freshwater ecology (6)
- **BIOL3314** Plant structure and evolution (6)
- **BIOL3318** Experimental intertidal ecology (6)
- **BIOL3322** Marine invertebrate zoology (6)
- **BIOL3328** Nearshore marine and estuarine ecology (6)
- **BIOL3419** Insect ecology: the little things that run the world (6)
- **BIOL3506**
- **BIOL4301** Fish and fisheries (6)
- **BIOL4302** Environmental impact assessment (6)
- **BIOL4304** Ecosystem functioning and services (6)
- **BIOL4505** Oyster aquaculture (6)
- **ENVS3019** Urban ecology (6)
- **ENVS3020** Global change ecology (6)

Capstone requirement (12 to 18 credits) (Note 2)

Disciplinary Core Courses (12 credits)
- **BIOL4991** Ecology & biodiversity project (12)

Disciplinary Electives (6 credits)

- **BIOL3991** Directed studies in ecology & biodiversity (6)
- **BIOL4911** Conservation science in practice (6)

Notes:

1. These are core courses in the regular Ecology & Biodiversity Major (96 credits) curriculum.

2. Within the E&B accredited curriculum, students have to pass a total of 60 credits within the Introductory Level Courses spread across two Science Foundation Courses (Level 1; 12 credits), seven Disciplinary Core Courses (Levels 1 & 2; 42 credits) and one chemistry (Level 1; 6 credits). For the chemistry course, students will have the choice between CHEM1041 and CHEM1042 in function of their prior chemistry background acquired during their upper secondary education. Students with no chemistry background should follow CHEM1041, while students with previous chemistry background should take CHEM1042.

Advanced Level Courses cover a total of 66 to 72 credits. Those are divided between five Disciplinary Core Courses (Level 3; 30 credits) and 6 to 7 Disciplinary Elective Courses (Level 3 & 4; 36 to 42 credits) among a choice of fourteen different courses. As eight of the Disciplinary Elective courses are being taught every other year, students must pay attention to the year during which these courses are taught and ensure that they have fulfilled the necessary requirements. There is a student mentorship programme in place that can assist them in this.

During their final year, students should complete a minimum of 12 credits as Capstone Courses (maximum of 18). The Ecology & Biodiversity Project (12 credits) is mandatory and students can choose to complete one of the other two Elective Capstone Courses (6 credits). If students choose to complete 18 credits of Capstone Courses, then they are required to complete only 36 credits of Disciplinary Elective Courses within the Advanced Level Courses (instead of 42 credits).

Finally, students who participate in student exchange programme are expected to enquire, prior to their departure from HKU, about potential equivalences with the courses taken during exchange programmes to ensure that they match requirements for obtaining the RSB accredited programme.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Environmental Science
Offered to students admitted to Year 1 in 2018

Objectives:
The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 4: gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:
Minor in Environmental Science

Required courses (96 credits)
1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (24 credits)
 CHEM104 General chemistry I (6)
 ENVS1401 Introduction to environmental science (6)
 ENVS2001 Methods in environmental science (6)
 ENVS2002 Environmental data analysis (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses (Level 1 & 2):
 EASC1020 Introduction to climate science (6)
 EASC1401 Blue Planet (6)
 ENVS1301 Environmental life science (6)
 BIOL2102 Biostatistics (6)
 BIOL2306 Ecology and evolution (6)
 CHEM2241 Analytical chemistry I (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (6 credits)
 ENVS3004 Environment, society and economics (6)
 Disciplinary Electives (36 credits)
 At least 36 credits selected from the following courses:
 BIOL3110 Environmental toxicology (6)
 BIOL3303 Conservation biology (6)
 CHEM3141 Environmental chemistry (6)
 CHEM3241 Analytical chemistry II: chemical instrumentation (6)
 EASC3020 Global change: anthropogenic impacts (6)
 EASC3405 Environmental remote sensing (6)
 ENV5307 Natural hazards and mitigation (6)
 ENV5301 Sustainable energy and environment (6)
 ENV53019 Urban ecology (6)
 ENV53020 Global change ecology (6)
 ENV53022 Environmental science field course (6)
 ENV53042 Pollution (6)
 ENV53313 Environmental oceanography (6)
 BIOL4302 Environmental impact assessment (6)
 ENV54110 Environmental remediation (6)

3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:

- ENVS3999 Directed studies in environmental science (6)
- ENVS4966 Environmental science internship (6)
- ENVS4999 Environmental science project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Environmental Science
Offered to students admitted to Year 1 in 2017

Objectives:
The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)

PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)

PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)

PLO 4: gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/laboratory/team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:
Minor in Environmental Science

Required courses (96 credits)
1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (18 credits)
 ENVS1401 Introduction to environmental science (6)
 ENVS2001 Methods in environmental science (6)
 ENVS2002 Environmental data analysis (6)

 Disciplinary Electives (18 credits)
 At least 18 credits selected from the following courses (Level 1 & 2):
 CHEM1042 General chemistry I (6)
 EASC1020 Introduction to climate science (6)
 EASC1401 Blue Planet (6)
 ENVS1301 Environmental life science (6)
 STAT1601 Elementary statistical methods (6)
 STAT1603 Introductory statistics (6)
 BIOL2102 Biostatistics (6)
 BIOL2306 Ecology and evolution (6)
 CHEM2041 Principles of chemistry (6)
 CHEM2241 Analytical chemistry I (6)
 CHEM2442 Fundamentals of organic chemistry (6)

 May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both.

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (6 credits)
 ENVS3004 Environment, society and economics (6)

 Disciplinary Electives (36 credits)
 At least 36 credits selected from the following courses:
 BIOL3110 Environmental toxicology (6)
 BIOL3303 Conservation biology (6)
 CHEM3141 Environmental chemistry (6)
 CHEM3241 Analytical chemistry II: chemical instrumentation (6)
 CHEM3242 Food and water analysis (6)
 EASC3020 Global change: anthropogenic impacts (6)
 EASC3405 Environmental remote sensing (6)
 ENVSS307 Natural hazards and mitigation (6)
 ENVSS310 Sustainable energy and environment (6)
 ENVSS319 Urban ecology (6)
 ENVSS320 Global change ecology (6)
 ENVSS322 Environmental science field course (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVS3042</td>
<td>Pollution (6)</td>
<td></td>
</tr>
<tr>
<td>ENVS3313</td>
<td>Environmental oceanography (6)</td>
<td></td>
</tr>
<tr>
<td>MATH3408</td>
<td>Computational methods and differential equations</td>
<td></td>
</tr>
<tr>
<td>STAT3611</td>
<td>Computer-aided data analysis (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4302</td>
<td>Environmental impact assessment (6)</td>
<td></td>
</tr>
<tr>
<td>ENVS4110</td>
<td>Environmental remediation (6)</td>
<td></td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- ENVS3999 Directed studies in environmental science (6)
- ENVS4966 Environmental science internship (6)
- ENVS4999 Environmental science project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses (“disciplinary core”) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)
- **PLO 2:** observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)
- **PLO 3:** appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)
- **PLO 4:** gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/laboratory/team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:
Minor in Environmental Science

Required courses (96 credits)

1. **Introductory level courses (48 credits)**
 - **Disciplinary Core Courses:** Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 - **Disciplinary Core Courses (18 credits)**
 - ENVS1401 Introduction to environmental science (6)
 - ENVS2001 Methods in environmental science (6)
 - ENVS2002 Environmental data analysis (6)
 - **Disciplinary Electives (18 credits)**
 - At least 18 credits selected from the following courses (Level 1 & 2):
 - CHEM1042 General chemistry I (6)
 - EASC1020 Introduction to climate science (6)
 - EASC1401 Blue Planet (6)
 - ENVS1301 Environmental life science (6)
 - STAT1601 Elementary statistical methods (6)
 - STAT1603 Introductory statistics (6)
 - BIOL2102 Biostatistics (6)
 - BIOL2306 Ecology and evolution (6)
 - CHEM2041 Principles of chemistry (6)
 - CHEM2241 Analytical chemistry I (6)
 - CHEM2442 Fundamentals of organic chemistry (6)
 - **Disciplinary Core Courses (6 credits)**
 - ENVS3004 Environment, society and economics (6)

2. **Advanced level courses (42 credits)**
 - **Disciplinary Core Courses (6 credits)**
 - ENVS3304 Environment, society and economics (6)
 - **Disciplinary Electives (36 credits)**
 - At least 36 credits selected from the following courses:
 - BIOL3110 Environmental toxicology (6)
 - BIOL3303 Conservation biology (6)
 - CHEM3141 Environmental chemistry (6)
 - CHEM3241 Analytical chemistry II: chemical instrumentation (6)
 - CHEM3242 Analytical chemistry II: food and water analysis (6)
 - EASC3001 Global change: anthropogenic impacts (6)
 - EASC3405 Environmental remote sensing (6)
 - ENV53007 Natural hazards and mitigation (6)
 - ENV53010 Sustainable energy and environment (6)
 - ENV53019 Urban ecology (6)
 - ENV53020 Global change ecology (6)
 - ENV53022 Environmental science field course (6)
3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- ENVS3999 Directed studies in environmental science (6)
- ENVS4966 Environmental science internship (6)
- ENVS4999 Environmental science project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required (‘disciplinary core’) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Environmental Science
Offered to students admitted to Year 1 in: 2015

Objectives:
The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
- **PLO 2**: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
- **PLO 3**: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)
- **PLO 4**: gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:
Minor in Environmental Science

<table>
<thead>
<tr>
<th>Required courses (96 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introductory level courses (48 credits)</td>
</tr>
<tr>
<td>SCNC1111 Scientific method and reasoning (6)</td>
</tr>
<tr>
<td>SCNC1112 Fundamentals of modern science (6)</td>
</tr>
<tr>
<td>Disciplinary Core Courses (18 credits)</td>
</tr>
<tr>
<td>ENVS1401 Introduction to environmental science (6)</td>
</tr>
<tr>
<td>ENVS2001 Methods in environmental science (6)</td>
</tr>
<tr>
<td>ENVS2002 Environmental data analysis (6)</td>
</tr>
<tr>
<td>Disciplinary Electives (18 credits)</td>
</tr>
<tr>
<td>At least 18 credits selected from the following courses (Level 1 & 2):</td>
</tr>
<tr>
<td>CHEM1042 General chemistry I (6)</td>
</tr>
<tr>
<td>EASC1020 Introduction to climate science (6)</td>
</tr>
<tr>
<td>EASC1401 Blue Planet (6)</td>
</tr>
<tr>
<td>ENVS1301 Environmental life science (6)</td>
</tr>
<tr>
<td>STAT1601 Elementary statistical methods (6)</td>
</tr>
<tr>
<td>STAT1603 Introductory statistics (6)</td>
</tr>
<tr>
<td>BIOL2102 Biostatistics (6)</td>
</tr>
<tr>
<td>BIOL2306 Ecology and evolution (6)</td>
</tr>
<tr>
<td>CHEM2041 Principles of chemistry (6)</td>
</tr>
<tr>
<td>CHEM2241 Analytical chemistry I (6)</td>
</tr>
<tr>
<td>CHEM2442 Fundamentals of organic chemistry (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Courses (6 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVS3004 Environment, society and economics (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Electives (36 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 36 credits selected from the following courses:</td>
</tr>
<tr>
<td>BIOL3110 Environmental toxicology (6)</td>
</tr>
<tr>
<td>BIOL3303 Conservation biology (6)</td>
</tr>
<tr>
<td>CHEM3141 Environmental chemistry (6)</td>
</tr>
<tr>
<td>CHEM3241 Analytical chemistry II: chemical instrumentation (6)</td>
</tr>
<tr>
<td>CHEM3242 Food and water analysis (6)</td>
</tr>
<tr>
<td>EASC3020 Global change: anthropogenic impacts (6)</td>
</tr>
<tr>
<td>EASC3405 Environmental remote sensing (6)</td>
</tr>
<tr>
<td>ENV3007 Natural hazards and mitigation (6)</td>
</tr>
<tr>
<td>ENV3010 Sustainable energy and environment (6)</td>
</tr>
<tr>
<td>ENV3019 Urban ecology (6)</td>
</tr>
<tr>
<td>ENV3020 Global change ecology (6)</td>
</tr>
<tr>
<td>ENV3022 Environmental science field course (6)</td>
</tr>
</tbody>
</table>

May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both.
Science Majors

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENV3042</td>
<td>Pollution</td>
<td>6</td>
</tr>
<tr>
<td>ENV3313</td>
<td>Environmental oceanography</td>
<td>6</td>
</tr>
<tr>
<td>MATH3408</td>
<td>Computational methods and differential equations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with applications</td>
<td></td>
</tr>
<tr>
<td>STAT3611</td>
<td>Computer-aided data analysis</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4302</td>
<td>Environmental impact assessment</td>
<td>6</td>
</tr>
<tr>
<td>ENVS4110</td>
<td>Environmental remediation</td>
<td>6</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- ENV3999 Directed studies in environmental science (6)
- ENVS4966 Environmental science internship (6)
- ENVS4999 Environmental science project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Environmental Science

Offered to students admitted to Year 1 in 2014

Objectives:
The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 4: gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:

Minor in Environmental Science

Required courses (96 credits)

1. Introductory level courses (48 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)

2. Advanced level courses (42 credits)
 - ENVS1401 Introduction to environmental science (6)
 - ENVS2001 Methods in environmental science (6)
 - ENVS2002 Environmental data analysis (6)

Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses (Level 1 & 2):

- CHEM1042 General chemistry I (6)
- EASC1020 Introduction to climate science (6)
- EASC1401 Blue Planet (6)
- ENVS1301 Environmental life science (6)
- STAT1601 Elementary statistical methods (6)
- STAT1603 Introductory statistics (6)
- BIOL2102 Biostatistics (6)
- BIOL2306 Ecology and evolution (6)
- CHEM2041 Principles of chemistry (6)
- CHEM2241 Analytical chemistry I (6)
- CHEM2442 Fundamentals of organic chemistry (6)

- May take either STAT1601 or STAT1603 to fulfill this 18 credits requirement, but not both.

2. Advanced level courses (42 credits)
 - ENVS3004 Environment, society and economics (6)

Disciplinary Electives (36 credits)
At least 36 credits selected from the following courses:

- BIOL3110 Environmental toxicology (6)
- BIOL3303 Conservation biology (6)
- CHEM3141 Environmental chemistry (6)
- CHEM3241 Analytical chemistry II: chemical instrumentation (6)
- CHEM3242 Food and water analysis (6)
- EASC3020 Global change: anthropogenic impacts (6)
- EASC3405 Environmental remote sensing (6)
- ENVS3006 Environmental radiation (6)
- ENVS3007 Natural hazards and mitigation (6)
- ENVS3010 Sustainable energy and environment (6)
- ENVS3019 Urban ecology (6)
- ENVS3020 Global change ecology (6)
ENVS3042 Pollution (6)
ENVS3313 Environmental oceanography (6)
MATH3408 Computational methods and differential equations with applications (6)
STAT3611 Computer-aided data analysis (6)
BIOL4302 Environmental impact assessment (6)
ENVS4110 Environmental remediation (6)

3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 - ENVS3999 Directed studies in environmental science (6)
 - ENVS4955 Environmental science in practice (6)
 - ENVS4966 Environmental science internship (6)
 - ENVS4999 Environmental science project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Environmental Science
Offered to students admitted to Year 1 in 2013

Objectives:
The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 4: gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:
Minor in Environmental Science

Required courses (96 credits)
1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (18 credits)
 ENVS1401 Introduction to environmental science (6)
 ENVS2001 Methods in environmental science (6)
 ENVS2002 Environmental data analysis (6)
 Disciplinary Electives (18 credits)
 At least 18 credits selected from the following courses (Level 1 & 2):
 CHEM1042 General chemistry I (6)
 EASC1020 Introduction to climate science (6)
 EASC1401 Blue Planet (6)
 ENVS1301 Environmental life science (6)
 STAT1601 Elementary statistical methods (6)
 STAT1603 Introductory statistics (6)
 BIOL2102 Biostatistics (6)
 BIOL2306 Ecology and evolution (6)
 CHEM2041 Principles of chemistry (6)
 CHEM2241 Analytical chemistry I (6)
 CHEM2442 Fundamentals of organic chemistry (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (6 credits)
 ENVS3004 Environment, society and economics (6)
 Disciplinary Electives (36 credits)
 At least 36 credits selected from the following courses:
 BIOL3110 Environmental toxicology (6)
 BIOL3303 Conservation biology (6)
 CHEM3141 Environmental chemistry (6)
 CHEM3241A Analytical chemistry II: chemical instrumentation (6)
 CHEM3242 Food and water analysis (6)
 EASC3020 Global change: anthropogenic impacts (6)
 EASC3405 Environmental remote sensing (6)
 ENV3006 Environmental radiation (6)
 ENV3007 Natural hazards and mitigation (6)
 ENV3010 Sustainable energy and environment (6)
 ENV3019 Urban ecology (6)
 ENV3020 Global change ecology (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVS3042</td>
<td>Pollution</td>
<td>(6)</td>
</tr>
<tr>
<td>ENVS3313</td>
<td>Environmental oceanography</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH3408</td>
<td>Computational methods and differential equations with applications</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT3611</td>
<td>Computer-aided data analysis</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4302</td>
<td>Environmental impact assessment</td>
<td>(6)</td>
</tr>
<tr>
<td>ENVS4110</td>
<td>Environmental remediation</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- ENVS3999 Directed studies in environmental science (6)
- ENVS4955 Environmental science in practice (6)
- ENVS4966 Environmental science internship (6)
- ENVS4999 Environmental science project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Major in Environmental Science aims to provide students with a strong scientific and technological background for understanding and addressing the environmental issues faced by humankind. This includes a flexible teaching and learning programme so that students can explore environmental issues from a range of aspects. Core courses in the curriculum emphasize fundamental knowledge in life and environment, physical and sustainable environment, pollution, monitoring and management. Throughout the curriculum, students are encouraged to undertake their own independent study from primary and secondary sources to incorporate critical thinking, field and laboratory work, documentary and archive scholarship, as integrated elements of relevant courses. By completing the curriculum, students are expected to have enhanced their knowledge in environmental science and have improved their problem-solving ability, communication and social skills. Students will be prepared to work in industries and government agencies, where they will help manage wisely the resources for which they are responsible.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 4: gain an advanced level of skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods and appreciation of the related ethical issues (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:
Minor in Environmental Science

Required courses (96 credits)

1. Introductory level courses (48 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (12 credits)
ENVS1401 Introduction to environmental science (6)
STAT1601 Elementary statistical methods (6)
STAT1603 Introductory statistics (6)

Disciplinary Electives (24 credits)
At least 12 credits selected from the following courses (Level 1) in List A:
List A
CHEM1041 General chemistry I (6)
EASC1020 Introduction to climate science (6)
EASC1401 Blue Planet (6)
ENVS1301 Environmental life science (6)

At least 12 credits selected from the following courses (Level 2) in List B:
List B
BIOL2102 Biostatistics (6)
BIOL2306 Ecology and evolution (6)
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
ENVS2001 Methods in environmental science (6)
ENVS2201 Environmental data analysis (6)

2. Advanced level courses (42 credits)
Disciplinary Core Courses (6 credits)
ENVS3004 Environmental, society and economics (6)
Disciplinary Electives (36 credits)
At least 36 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
CHEM3242 Food and water analysis (6)
EASC3020 Global change: anthropogenic impacts (6)
ENVS3006 Environmental remote sensing (6)
ENVS3006 Environmental radiation (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVS3007</td>
<td>Natural hazards and mitigation</td>
<td>6</td>
</tr>
<tr>
<td>ENVS3010</td>
<td>Sustainable energy and environment</td>
<td>6</td>
</tr>
<tr>
<td>ENVS3019</td>
<td>Urban ecology</td>
<td>6</td>
</tr>
<tr>
<td>ENVS3020</td>
<td>Global change ecology</td>
<td>6</td>
</tr>
<tr>
<td>ENVS3042</td>
<td>Pollution</td>
<td>6</td>
</tr>
<tr>
<td>ENVS3313</td>
<td>Environmental oceanography</td>
<td>6</td>
</tr>
<tr>
<td>MATH3408</td>
<td>Computational methods and differential equations</td>
<td>6</td>
</tr>
<tr>
<td>STAT3611</td>
<td>Computer-aided data analysis</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4302</td>
<td>Environmental impact assessment</td>
<td>6</td>
</tr>
<tr>
<td>ENVS4110</td>
<td>Environmental remediation</td>
<td>6</td>
</tr>
</tbody>
</table>

3. **Capstone requirement (6 credits)**

At least 6 credits selected from the following courses:

- ENVS3999 Directed studies in environmental science (6)
- ENVS4955 Environmental science in practice (6)
- ENVS4966 Environmental science internship (6)
- ENVS4999 Environmental science project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Food & Nutritional Science
Offered to students: admitted to Year 1 in 2018

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with:
(a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health;
(b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors;
(c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1	understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2	analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3	understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 4	apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 5	apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a food- and/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)
PLO 6	demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

Impermissible Combinations:
Minor in Food & Nutritional Science

Required courses (96 credits)
1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (36 credits)
 - BIOL1110 From molecules to cells (6)
 - BIOL1201 Introduction to food and nutrition (6)
 - BIOL2101 Principles of food chemistry (6)
 - BIOL2102 Biostatistics (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry laboratory course (6)
 - BIOL2220 Basic biochemistry (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (18 credits)
 - BIOL3202 Nutritional biochemistry (6)
 - BIOL3203 Food microbiology (6)
 - BIOL3209 Food and nutrient analysis (6)
 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 - BIOL3204 Nutrition and the life cycle (6)
 - BIOL3205 Human physiology (6)
 - BIOL3206 Clinical nutrition (6)
 - BIOL3207 Food and nutritional toxicology (6)
 - BIOL3211 Nutrigenomics (6)
 - BIOL3215 Principles of dietary assessment (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3218 Food hygiene and quality control (6)
BIOL4201 Public health nutrition (6)
BIOL4202 Nutrition and sports performance (6)
BIOL4205 Food processing and engineering (6)
BIOL4208 Meat, dairy and grain sciences (6)
BIOL4209 Functional foods (6)
BIOL4411 Plant and food biotechnology (6)

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:
- BIOL3992 Directed studies in food & nutritional science (6)
- BIOL4913 Advanced practicum on food and nutrient analysis (6)
- BIOL4922 Food product development and evaluation (6)
- BIOL4962 Food & nutritional science internship (6)
- BIOL4992 Food & nutritional science project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required (“disciplinary core”) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses (“disciplinary core”) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
 - (a) Food Science and Technology: BIOL3207; BIOL3209; BIOL3216; BIOL3218; BIOL4205; BIOL4208; BIOL4209; BIOL4411; BIOL4913; BIOL4922.
 - (b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3211; BIOL3215; BIOL3217; BIOL3218; BIOL4201; BIOL4202.

6. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Food & Nutritional Science
Offered to students: admitted to Year 1 in 2017

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with:
(a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a food- and/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)

PLO 6: demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

Impermissible Combinations:
Minor in Food & Nutritional Science

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1110 From molecules to cells (6)
 BIOL1201 Introduction to food and nutrition (6)
 BIOL2101 Principles of food chemistry (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2220 Principles of biochemistry laboratory course (6)
 BIOL2220 Nutritional biochemistry (6)
 BIOL2220 Food microbiology (6)
 BIOL2209 Food and nutrient analysis (6)

 BIOL2600 Basic biochemistry (6)

 Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both.
 BIOL2220 and BIOC2600 are mutually exclusive.

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (18 credits)
 BIOL3202 Nutritional biochemistry (6)
 BIOL3203 Food microbiology (6)
 BIOL3209 Food and nutrient analysis (6)

 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 BIOL3204 Nutrition and the life cycle (6)
 BIOL3205 Human physiology (6)
 BIOL3206 Clinical nutrition (6)
 BIOL3207 Food and nutritional toxicology (6)
 BIOL3211 Nutrigenomics (6)
 BIOL3215 Principles of dietary assessment (6)
Biomedical Science Majors

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3216</td>
<td>Food waste management</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3217</td>
<td>Food, environment and health</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3218</td>
<td>Food hygiene and quality control</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4201</td>
<td>Public health nutrition</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4202</td>
<td>Nutrition and sports performance</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4205</td>
<td>Food processing and engineering</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4208</td>
<td>Meat, dairy and grain sciences</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4209</td>
<td>Functional foods</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4411</td>
<td>Plant and food biotechnology</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone Requirement (6 Credits)

At least 6 credits selected from the following courses:

- BIOL3992 Directed studies in food & nutritional science (6)
- BIOL4913 Advanced practicum on food and nutrient analysis (6)
- BIOL4922 Food product development and evaluation (6)
- BIOL4962 Food & nutritional science internship (6)
- BIOL4992 Food & nutritional science project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
 (a) Food Science and Technology: BIOL3207; BIOL3209; BIOL3216; BIOL3218; BIOL4205; BIOL4208; BIOL4209; BIOL4411; BIOL4913; BIOL4922
 (b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3211; BIOL3215; BIOL3217; BIOL3218; BIOL4201; BIOL4202

6. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Food & Nutritional Science
Offered to students admitted to Year 1 in 2016

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with: (a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a food- and/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)

PLO 6: demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

Impermissible Combinations:

Minor in Food & Nutritional Science

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1110 From molecules to cells (6)
 BIOL1201 Introduction to food and nutrition (6)
 BIOL1309 Evolutionary diversity (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2220 Principles of biochemistry (6)
 BIOC2600 Basic biochemistry (6)

 Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both.
 BIOL2220 and BIOC2600 are mutually exclusive.

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (18 credits)
 BIOL3201 Food chemistry (6)
 BIOL3202 Nutritional biochemistry (6)
 BIOL3203 Food microbiology (6)

 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 BIOL3204 Nutrition and the life cycle (6)
 BIOL3205 Human physiology (6)
 BIOL3206 Clinical nutrition (6)
 BIOL3207 Food and nutritional toxicology (6)
 BIOL3208 Food safety and quality management (6)

 Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both.
 BIOL2220 and BIOC2600 are mutually exclusive.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3209</td>
<td>Food and nutrient analysis (6)</td>
<td>Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL3210</td>
<td>Grain production and utilization (6)</td>
<td>Take either BIOL3210 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL3211</td>
<td>Nutrigenomics (6)</td>
<td>Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL3215</td>
<td>Principles of dietary assessment (6)</td>
<td>Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL3216</td>
<td>Food waste management (6)</td>
<td>Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL3217</td>
<td>Food, environment and health (6)</td>
<td>Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL3218</td>
<td>Food hygiene and quality control (6)</td>
<td>Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4201</td>
<td>Public health nutrition (6)</td>
<td>Take either BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4202</td>
<td>Nutrition and sports performance (6)</td>
<td>Take either BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4204</td>
<td>Diet, brain function and behavior (6)</td>
<td>Take either BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4205</td>
<td>Food processing and engineering (6)</td>
<td>Take either BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4207</td>
<td>Meat and dairy sciences (6)</td>
<td>BIOL4201 or BIOL4208; BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4208</td>
<td>Meat, dairy and grain sciences (6)</td>
<td>BIOL4201 or BIOL4208; BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4209</td>
<td>Functional foods (6)</td>
<td>BIOL4201 or BIOL4208; BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4411</td>
<td>Plant and food biotechnology (6)</td>
<td>BIOL4201 or BIOL4208; BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3992</td>
<td>Directed studies in food & nutritional science (6)</td>
</tr>
<tr>
<td>BIOL4912</td>
<td>Sensory evaluation of food (6)</td>
</tr>
<tr>
<td>BIOL4913</td>
<td>Advanced practicum on food and nutrient analysis (6)</td>
</tr>
<tr>
<td>BIOL4922</td>
<td>Food product development and evaluation (6)</td>
</tr>
<tr>
<td>BIOL4962</td>
<td>Food & nutritional science internship (6)</td>
</tr>
<tr>
<td>BIOL4992</td>
<td>Food & nutritional science project (12)</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
 (a) Food Science and Technology: BIOL3207; BIOL3208 or BIOL3218; BIOL3209; BIOL3210 or BIOL4208; BIOL3216; BIOL4205; BIOL4207 or BIOL4208; BIOL4209; BIOL4411; BIOL4913; BIOL4922.
 (b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3208 or BIOL3218; BIOL3211; BIOL3215; BIOL3217; BIOL4201; BIOL4202.

6. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Food & Nutritional Science
Offered to students admitted to Year 1 in 2015

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with:
(a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students’ critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a food- and/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)

PLO 6: demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

Impermissible Combinations:
Minor in Food & Nutritional Science

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1110 From molecules to cells (6)
 BIOL1201 Introduction to food and nutrition (6)
 BIOL1309 Evolutionary diversity (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2220 Principles of biochemistry (6)

 BIOL2600 Basic biochemistry (6)

 Take either BIOL2220 or BIOC2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (18 credits)
 BIOL3201 Food chemistry (6)
 BIOL3202 Nutritional biochemistry (6)
 BIOL3203 Food microbiology (6)

 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 BIOL3204 Nutrition and the life cycle (6)
 BIOL3205 Human physiology (6)
 BIOL3206 Clinical nutrition (6)
 BIOL3207 Food and nutritional toxicology (6)
 BIOL3208 Food safety and quality management (6)
Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3208</td>
<td>Food hygiene and quality control</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3209</td>
<td>Food and nutrient analysis</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3210</td>
<td>Grain production and utilization</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3211</td>
<td>Nutrigenomics</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3212</td>
<td>Principles of dietary assessment</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3213</td>
<td>Food waste management</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3214</td>
<td>Food, environment and health</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3215</td>
<td>Public health nutrition</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3216</td>
<td>Nutrition and sports performance</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3217</td>
<td>Diet, brain function and behavior</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3218</td>
<td>Meat, dairy and grain sciences</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3219</td>
<td>Meat, dairy and grain sciences</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3220</td>
<td>Food product development</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3221</td>
<td>Plant and food biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3222</td>
<td>Food waste management</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3223</td>
<td>Food, environment and health</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3224</td>
<td>Public health nutrition</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3225</td>
<td>Nutrition and sports performance</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3226</td>
<td>Diet, brain function and behavior</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3227</td>
<td>Meat, dairy and grain sciences</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3228</td>
<td>Meat, dairy and grain sciences</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3992</td>
<td>Directed studies in food & nutritional science</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4912</td>
<td>Sensory evaluation of food</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4913</td>
<td>Advanced practicum on food and nutrient analysis</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4922</td>
<td>Food product development and evaluation</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4962</td>
<td>Food & nutritional science internship</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4992</td>
<td>Food & nutritional science project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. BIOL4210 and BIOL4922 are mutually exclusive.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabus.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

6. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
 (a) Food Science and Technology: BIOL3207; BIOL3208 or BIOL3218; BIOL3209; BIOL3210 or BIOL4208; BIOL3216; BIOL4205; BIOL4207 or BIOL4208; BIOL4209; BIOL4210 or BIOL4922; BIOL4411; BIOL4913.
 (b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3208 or BIOL3218; BIOL3211; BIOL3215; BIOL3217; BIOL4201; BIOL4202.

7. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Food & Nutritional Science
Offered to students admitted to Year 1 in 2014

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with:
(a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students' critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a food- and/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)

PLO 6: demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

Impermissible Combinations:
Minor in Food & Nutritional Science

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1110 From molecules to cells (6)
 BIOL1201 Introduction to food and nutrition (6)
 BIOL1309 Evolutionary diversity (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2220 Principles of biochemistry (6)

 BIOL2600 Basic biochemistry (6)

 Take either BIOL2220 or BIOL2600 to fulfill this 36 credits requirement, but not both. BIOL2220 and BIOL2600 are mutually exclusive.

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (18 credits)
 BIOL3201 Food chemistry (6)
 BIOL3202 Nutritional biochemistry (6)
 BIOL3203 Food microbiology (6)
 BIOL3204 Nutrition and the life cycle (6)
 BIOL3205 Human physiology (6)
 BIOL3206 Clinical nutrition (6)
 BIOL3207 Food and nutritional toxicology (6)
 BIOL3208 Food safety and quality management (6)

 Take either BIOL3220 or BIOL3260 to fulfill this 36 credits requirement, but not both. BIOL3220 and BIOL3260 are mutually exclusive.
Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

Take either BIOL3210 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

Take either BIOL3210 or BIOL4208; BIOL4207 or BIOL4208 to fulfill this 24 credits requirement; but not both, BIOL3210 and BIOL4208; BIOL4207 and BIOL4208 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

Take either BIOL3210 or BIOL4208; BIOL4207 or BIOL4208 to fulfill this 24 credits requirement; but not both, BIOL3210 and BIOL4208; BIOL4207 and BIOL4208 are mutually exclusive.

Take either BIOL3210 or BIOL4208; BIOL4207 or BIOL4208 to fulfill this 24 credits requirement; but not both, BIOL3210 and BIOL4208; BIOL4207 and BIOL4208 are mutually exclusive.

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

Take either BIOL3210 or BIOL4208; BIOL4207 or BIOL4208 to fulfill this 24 credits requirement; but not both, BIOL3210 and BIOL4208; BIOL4207 and BIOL4208 are mutually exclusive.

Take either BIOL3210 or BIOL4208; BIOL4207 or BIOL4208 to fulfill this 24 credits requirement; but not both, BIOL3210 and BIOL4208; BIOL4207 and BIOL4208 are mutually exclusive.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BE&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

6. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:

(a) Food Science and Technology: BIOL3207; BIOL3208 or BIOL3218; BIOL3209; BIOL3210 or BIOL4208; BIOL3216; BIOL4205; BIOL4207 or BIOL4208; BIOL4209; BIOL4210 or BIOL4922; BIOL4411; BIOL4913.

(b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3208 or BIOL3218; BIOL3211; BIOL3215; BIOL3217; BIOL4201; BIOL4202.

7. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

Notes:
1. BIOL4210 and BIOL4922 are mutually exclusive.
2. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
3. Capstone requirement for BE&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
4. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
5. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.
Major Title: Major in Food & Nutritional Science
Offered to students admitted to Year 1 in 2013

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with:
(a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health; (b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors; (c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students’ critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a food- and/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)

PLO 6: demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

Impermissible Combinations:
Minor in Food & Nutritional Science

Required courses (96 credits)
1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (30 credits)
 BIOL1110 From molecules to cells (6)
 BIOL1201 Introduction to food and nutrition (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2220 Principles of biochemistry (6)
 BIOL2600 Basic biochemistry (6)

 Take either BIOL2220 or BIOL2600 to fulfill this 30 credits requirement, but not both.
 BIOL2220 and BIOL2600 are mutually exclusive.

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (18 credits)
 BIOL3201 Food chemistry (6)
 BIOL3202 Nutritional biochemistry (6)
 BIOL3203 Food microbiology (6)
 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 BIOL3204 Nutrition and the life cycle (6)
 BIOL3205 Human physiology (6)
 BIOL2306 Ecology and evolution (6)

 Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.
 BIOL1309 and BIOL2306 are mutually exclusive.
BIOL3206 Food and nutritional toxicology (6)
BIOL3207 Food safety and quality management (6)
Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.
BIOL3209 Food and nutrient analysis (6)
BIOL3210 Grain production and utilization (6)
Take either BIOL3210 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 are mutually exclusive.
BIOL3211 Nutrigenomics (6)
BIOL3215 Principles of dietary assessment (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3218 Food hygiene and quality control (6)
Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.
BIOL4201 Public health nutrition (6)
BIOL4202 Nutrition and sports performance (6)
BIOL4204 Diet, brain function and behavior (6)
BIOL4205 Food processing and engineering (6)
BIOL4207 Meat and dairy sciences (6)
Take either BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.
BIOL4208 Meat, dairy and grain sciences (6)
BIOL4209 Functional foods (6)
BIOL4210 Food product development (6)
BIOL4411 Plant and food biotechnology (6)
3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
BIOL3992 Directed studies in food & nutritional science (6)
BIOL4912 Sensory evaluation of food (6)
BIOL4913 Advanced practicum on food and nutrient analysis (6)
BIOL4922 Food product development and evaluation (6)
BIOL4962 Food & nutritional science internship (6)
BIOL4992 Food & nutritional science project (12)
Notes:
1. BIOL4210 and BIOL4922 are mutually exclusive.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
(a) Food Science and Technology: BIOL3207; BIOL3208 or BIOL3218; BIOL3209; BIOL3210 or BIOL4208; BIOL3216; BIOL4205; BIOL4207 or BIOL4208; BIOL4209; BIOL4210 or BIOL4922; BIOL4411; BIOL4913.
(b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3208 or BIOL3218; BIOL3211; BIOL3215; BIOL3217; BIOL4201; BIOL4202.
7. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.
Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Food & Nutritional Science

Offered to students admitted to Year 1 in 2012

Objectives:
The Major in Food and Nutritional Science aims to offer an exciting, dynamic, and challenging environment to prepare the students for career opportunities in food and nutritional science. The goals of the programme are to provide the students with:
(a) critical knowledge and understanding of the theoretical and practical aspects of food science and technology, and nutrition and their relationship to human health;
(b) critical knowledge and understanding on the relationship between food and a wide range of social, legal, technological and environmental factors;
(c) a curriculum meeting the requirements for higher degree in MPhil and PhD and or the taught Master of Science degrees in the field of Food industry: Management and Marketing, Food Safety and Toxicology and the postgraduate diploma in dietetics.

The mission is to provide a progressive and effective programme that integrates theoretical and experiential learning to better prepare students for the challenges of the workplace. Throughout the curriculum, there is consistent emphasis on experiential learning through laboratory studies, internship training, research-based learning, debate and presentations, which are designed to enhance students’ critical thinking, communication and collaboration, tackling of ill-defined problems, development of individual learning objectives and self-evaluation of performance. Internship experiences can be gained in medical centers, schools, industries, government and community setting. Students graduated from this programme are prepared for diverse careers in the food industry, government or private-sector food and nutrition agencies, and scientific research laboratories, health-care and fitness facilities, hospitals, nutrition edition and communication enterprises.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand the science underpinning food and nutrition as applied to diet and health, and to commercial food production (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: analyze controversial food related issues such as GM foods, nutritional labeling and food security (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: understand ethical perspectives and practice in all areas of food product development, food safety and public health nutrition, and appreciate and identify the need for ethical standards and professional codes of conduct (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: apply and disseminate scientific knowledge obtained from food, nutrition and related biosciences for the understanding of the influences of nutrition in health and disease, using a range of formats and approaches (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 5: apply independent thinking and the principles of scientific enquiry to conduct a small research project to test a food- and/or nutrition-related hypothesis (by means of coursework, tutorial classes, laboratory-based and project-based learning in the curriculum)

PLO 6: demonstrate communication and teamwork skills necessary to working in a multi-disciplinary environment (by means of coursework and group-project learning in the curriculum)

Impermissible Combinations:

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 BIOL1110 From molecules to cells (6)
 BIOL1201 Introduction to food and nutrition (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2220 Principles of biochemistry (6)
 BIOL2306 Ecology and evolution (6)
 BIOC2600 Basic biochemistry (6)
 Take either BIOL2220 or BIOC2600 to fulfill this 36 credits, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (18 credits)
 BIOL3201 Food chemistry (6)
 BIOL3202 Nutritional biochemistry (6)
 BIOL3203 Food microbiology (6)

 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 BIOL3204 Nutrition and the life cycle (6)
 BIOL3205 Human physiology (6)
 BIOL3206 Clinical nutrition (6)
 BIOL3207 Food and nutritional toxicology (6)
 BIOL3208 Food safety and quality management (6)
 Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.
BIOL3209 Food and nutrient analysis (6)
BIOL3210 Grain production and utilization (6)
Take either BIOL3210 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 are mutually exclusive.

BIOL3211 Nutrigenomics (6)
BIOL3215 Principles of dietary assessment (6)
BIOL3216 Food waste management (6)
BIOL3217 Food, environment and health (6)
BIOL3218 Food hygiene and quality control (6)
Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

BIOL4201 Public health nutrition (6)
BIOL4202 Nutrition and sports performance (6)
BIOL4204 Diet, brain function and behavior (6)
BIOL4205 Food processing and engineering (6)
BIOL4207 Meat and dairy sciences (6)
Take either BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.

BIOL4208 Meat, dairy and grain sciences (6)
BIOL4209 Functional foods (6)
BIOL4210 Food product development (6)
BIOL4411 Plant and food biotechnology (6)

3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
BIOL3992 Directed studies in food & nutritional science (6)
BIOL4912 Sensory evaluation of food (6)
BIOL4913 Advanced practicum on food and nutrient analysis (6)
BIOL4922 Food product development and evaluation (6)
BIOL4962 Food & nutritional science internship (6)
BIOL4992 Food & nutritional science project (12)

Notes:
1. BIOL4210 and BIOL4922 are mutually exclusive.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required (‘disciplinary core’) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses (“disciplinary core”) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

6. Students who wish to specialize in a certain area may choose to emphasize selection of courses from the following lists:
(a) Food Science and Technology: BIOL3207; BIOL3208 or BIOL3218; BIOL3209; BIOL3210 or BIOL4208; BIOL4206; BIOL4205; BIOL4207 or BIOL4208; BIOL4209; BIOL4210 or BIOL4922; BIOL4411; BIOL4913.
(b) Nutrition and Health Science: BIOL3204; BIOL3205; BIOL3206; BIOL3207; BIOL3208 or BIOL3218; BIOL3211; BIOL3215; BIOL3217; BIOL4201; BIOL4202.

7. Students who may wish to pursue postgraduate study in dietetics are strongly advised to consult their academic and course selection advisors regarding additional courses in Physiology and Biochemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title
Major in Geology

Offered to students
admitted to Year 1 in
2018

Objectives:
Geology concerns with the scientific study of the Earth’s structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)

PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)

PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)

PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)

PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

Impermissible Combinations:
Major in Geology (Intensive)
Minor in Earth Sciences

Required courses (96 credits)

1. Introductory level courses (42 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (30 credits)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
EASC2402 Field and laboratory methods (6)
EASC2406 Geochemistry (6)
EASC2407 Mineralogy (6)

2. Advanced level courses (48 credits)
Disciplinary Core Courses (36 credits)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC4406 Earth dynamics & global tectonics (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
EASC3406 Reconstruction of past climate (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
EASC4403 Biogeochemical cycles (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4999 Earth sciences project (12)

3. Capstone requirement (6 credits)
EASC4955 Integrated field studies (6)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Geology

Offered to students admitted to Year 1 in 2017

Objectives:
Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochronology, and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)

PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)

PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)

PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)

PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

Impermissible Combinations:
Major in Geology (Intensive)
Minor in Earth Sciences

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (30 credits)
 EASC1402 Principles of geology (6)
 EASC2401 Fluid/solid interactions in earth processes (6)
 EASC2402 Field and laboratory methods (6)
 EASC2406 Geochemistry (6)
 EASC2407 Mineralogy (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (36 credits)
 EASC3402 Petrology (6)
 EASC3403 Sedimentary environments (6)
 EASC3404 Structural geology (6)
 EASC3408 Geophysics (6)
 EASC3409 Igneous and metamorphic petrogenesis (6)
 EASC4406 Earth dynamics & global tectonics (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 EASC3406 Reconstruction of past climate (6)
 EASC3410 Hydrogeology (6)
 EASC3412 Earth resources (6)
 EASC3413 Engineering geology (6)
 EASC3414 Soil and rock mechanics (6)
 EASC3416 Advanced geochemistry and geochronology (6)
 EASC3417 Earth through time (6)
 EASC3999 Directed studies in earth sciences (6)
 ENVS3007 Natural hazards and mitigation (6)
 EASC4403 Biogeochemical cycles (6)
 EASC4407 Regional geology (6)
 EASC4408 Special topics in earth sciences (6)
 EASC4999 Earth sciences project (12)

3. Capstone requirement (6 credits)
 EASC4955 Integrated field studies (6)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Geology
Offered to students admitted to Year 1 in 2016

Objectives:
Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)

PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)

PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)

PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)

PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

Impermissible Combinations:
Major in Geology (Intensive)
Minor in Earth Sciences

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (30 credits)
 EASC1402 Principles of geology (6)
 EASC2401 Fluid/solid interactions in earth processes (6)
 EASC2402 Field and laboratory methods (6)
 EASC2406 Geochemistry (6)
 EASC2407 Mineralogy (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (36 credits)
 EASC3402 Petrology (6)
 EASC3403 Sedimentary environments (6)
 EASC3404 Structural geology (6)
 EASC3408 Geophysics (6)
 EASC3409 Igneous and metamorphic petrogenesis (6)
 EASC4406 Earth dynamics & global tectonics (6)

 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 EASC3406 Reconstruction of past climate (6)
 EASC3410 Hydrogeology (6)
 EASC3412 Earth resources (6)
 EASC3413 Engineering geology (6)
 EASC3414 Soil and rock mechanics (6)
 EASC3416 Advanced geochemistry and geochronology (6)
 EASC3417 Earth through time (6)
 EASC3999 Directed studies in earth sciences (6)
 ENVS3007 Natural hazards and mitigation (6)
 EASC4403 Biogeochemical cycles (8)
 EASC4407 Regional geology (6)
 EASC4408 Special topics in earth sciences (6)
 EASC4999 Earth sciences project (12)

3. Capstone requirement (6 credits)
 EASC4955 Integrated field studies (6)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Geology
Offered to students admitted to Year 1 in 2015

Objectives:
Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)

PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)

PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)

PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)

PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

Impermissible Combinations:
Major in Geology (Intensive)
Minor in Earth Sciences

Required courses (96 credits)

1. Introductory level courses (42 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (30 credits)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)
EASC2402 Field and laboratory methods (6)
EASC2406 Geochemistry (6)
EASC2407 Mineralogy (6)

2. Advanced level courses (48 credits)
Disciplinary Core Courses (36 credits)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC4406 Earth dynamics & global tectonics (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
EASC3406 Reconstruction of past climate (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
ENVS3007 Natural hazards and mitigation (6)
EASC4403 Biogeochemical cycles (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4999 Earth sciences project (12)

3. Capstone requirement (6 credits)
EASC4955 Integrated field studies (6)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Geology
Offered to students admitted to Year 1 in 2014.

Objectives:
Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)

PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)

PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)

PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)

PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

Impermissible Combinations:
Major in Geology (Intensive)
Minor in Earth Sciences

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (30 credits)
 - EASC1402 Principles of geology (6)
 - EASC2401 Fluid/solid interactions in earth processes (6)
 - EASC2402 Field and laboratory methods (6)
 - EASC2406 Geochemistry (6)
 - EASC2407 Mineralogy (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (36 credits)
 - EASC3402 Petrology (6)
 - EASC3403 Sedimentary environments (6)
 - EASC3404 Structural geology (6)
 - EASC3408 Geophysics (6)
 - EASC3409 Igneous and metamorphic petrogenesis (6)
 - EASC4406 Earth dynamics & global tectonics (6)

 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - EASC3406 Reconstruction of past climate (6)
 - EASC3410 Hydrogeology (6)
 - EASC3412 Earth resources (6)
 - EASC3413 Engineering geology (6)
 - EASC3414 Soil and rock mechanics (6)
 - EASC3416 Advanced geochemistry and geochronology (6)
 - EASC3417 Earth through time (6)
 - EASC3999 Directed studies in earth sciences (6)
 - ENVS3007 Natural hazards and mitigation (6)
 - EASC4403 Biogeochemical cycles (6)
 - EASC4407 Regional geology (6)
 - EASC4408 Special topics in earth sciences (6)
 - EASC4999 Earth sciences project (12)

3. Capstone requirement (6 credits)
 - EASC4955 Integrated field studies (6)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required (‘disciplinary core’) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses (‘disciplinary core’) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Geology
Offered to students admitted to Year 1 in 2013

Objectives:
Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)

PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)

PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)

PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)

PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

Impermissible Combinations:
Major in Geology (Intensive)
Minor in Earth Sciences

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (30 credits)
 EASC1402 Principles of geology (6)
 EASC2401 Fluid/solid interactions in earth processes (6)
 EASC2402 Field and laboratory methods (6)
 EASC2406 Geochemistry (6)
 EASC2407 Mineralogy (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (36 credits)
 EASC3402 Petrology (6)
 EASC3403 Sedimentary environments (6)
 EASC3404 Structural geology (6)
 EASC3408 Geophysics (6)
 EASC3409 Igneous and metamorphic petrogenesis (6)
 EASC4406 Earth dynamics & global tectonics (6)

 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 EASC3406 Reconstruction of past climate (6)
 EASC3410 Hydrogeology (6)
 EASC3412 Earth resources (6)
 EASC3413 Engineering geology (6)
 EASC3414 Soil and rock mechanics (6)
 EASC3416 Advanced geochemistry and geochronology (6)
 EASC3417 Earth through time (6)
 EASC3999 Directed studies in earth sciences (6)
 ENV3007 Natural hazards and mitigation (6)
 EASC4403 Biogeochemical cycles (6)
 EASC4407 Regional geology (6)
 EASC4408 Special topics in earth sciences (6)
 EASC4999 Earth sciences project (12)

3. Capstone requirement (6 credits)
 EASC4955 Integrated field studies (6)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required (‘disciplinary core’) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses (“disciplinary core”) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
Geology concerns with the scientific study of the Earth's structure, processes, material and history. Geologists apply knowledge of chemistry, biology, physics and mathematics to solve Earth problems. The Geology Major aims to give students a sound foundation of the geological sciences and enable them to pursue postgraduate studies or careers in the geosciences. The curriculum emphasizes the development of knowledge and skills, and practical experience in the field. The core courses are designed to give students a well-rounded understanding of the geological disciplines including petrology, paleontology, geophysics, geochemistry, geochronology and the applications of geological knowledge to resource development, natural hazard management, and geotechnical and environmental engineering. Students who wish to become a professional geologist may take additional designated courses designed to meet the pathway for accreditation as a chartered geologist.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)

PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)

PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)

PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)

PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

Impermissible Combinations:
Major in Geology (Intensive)
Minor in Earth Sciences

Required courses (96 credits)
1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (30 credits)
 EASC1402 Principles of geology (6)
 EASC2401 Fluid/solid interactions in earth processes (6)
 EASC2402 Field and laboratory methods (6)
 EASC2406 Geochemistry (6)
 EASC2407 Mineralogy (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (36 credits)
 EASC3402 Petrology (6)
 EASC3403 Sedimentary environments (6)
 EASC3404 Structural geology (6)
 EASC3408 Geophysics (6)
 EASC3409 Igneous and metamorphic petrogenesis (6)
 EASC4406 Earth dynamics & global tectonics (6)

 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 EASC3406 Reconstruction of past climate (6)
 EASC3410 Hydrogeology (6)
 EASC3412 Earth resources (6)
 EASC3413 Engineering geology (6)
 EASC3414 Soil and rock mechanics (6)
 EASC3416 Advanced geochemistry and geochronology (6)
 EASC3417 Earth through time (6)
 EASC3999 Directed studies in earth sciences (6)
 ENVS3007 Natural hazards and mitigation (6)
 EASC4403 Biogeochemical cycles (6)
 EASC4407 Regional geology (6)
 EASC4408 Special topics in earth sciences (6)
 EASC4999 Earth sciences project (12)

3. Capstone requirement (6 credits)
 EASC4955 Integrated field studies (6)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second
major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ('disciplinary core') in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Geology (Intensive)
Offered to students admitted to Year 1 in 2018

Objectives:
To provide an education in Geology which meets the current minimum requirements of the Geological Society of London for accreditation.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)

PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)

PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)

PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)

PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

Impermissible Combinations:
Major in Geology
Minor in Earth Sciences

Required courses (150 credits)
1. Introductory level courses (54 to 66 credits) (Note 1)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6) (Note 2)
 SCNC1112 Fundamentals of modern science (6) (Note 2)
 Disciplinary Core Courses (42 credits)
 EASC1401 Blue Planet (6)
 EASC1402 Principles of geology (6) (Note 2)
 EASC2401 Fluid/solid interactions in earth processes (6) (Note 2)
 EASC2402 Field and laboratory methods (6) (Note 2)
 EASC2406 Geochemistry (6) (Note 2)
 EASC2407 Mineralogy (6) (Note 2)
 EASC2409 Regional field studies (6)

2. Advanced level courses (78 to 90 credits) (Note 1)
 Disciplinary Core Courses (60 credits)
 EASC3402 Petrology (6) (Note 2)
 EASC3403 Sedimentary environments (6) (Note 2)
 EASC3404 Structural geology (6) (Note 2)
 EASC3408 Geophysics (6) (Note 2)
 EASC3409 Igneous and metamorphic petrogenesis (6) (Note 2)
 EASC3417 Earth through time (6)
 EASC4406 Earth dynamics & global tectonics (6) (Note 2)
 EASC4407 Regional geology (6)
 EASC4999 Earth sciences project (12) (Note 3)

Disciplinary Electives (30 credits)
At least 30 credits selected from the following introductory and advanced level courses in List A and List B, among which at least 6 credits from List A:

List A
- EASC3405 Environmental remote sensing (6)
- EASC3413 Engineering geology (6)

List B
- EASC2404 Introduction to atmosphere and hydrosphere (6)
- EASC2408 Planetary geology (6)
- EASC3020 Global change: anthropogenic impacts (6)
- EASC3406 Reconstruction of past climate (6)
- EASC3410 Hydrogeology (6)
- EASC3412 Earth resources (6)
- EASC3414 Soil and rock mechanics (6)
- EASC3416 Advanced geochemistry and geochronology (6)
- EASC3999 Directed studies in earth sciences (6)
- ENV3007 Natural hazards and mitigation (6)
- ENV3313 Environmental oceanography (6)
- EASC4403 Biogeochemical cycles (6)
- EASC4408 Special topics in earth sciences (6)
- EASC4911 Earth system: contemporary issues (6)
Notes:

1. In the list of disciplinary elective courses, two of them are introductory level courses while the others are advanced level courses. If students take all advanced level courses in the list, the total number of introductory level courses is 54 credits while that of advanced level courses is 90 credits. If students take 2 introductory level courses in the list and 3 advanced level courses, the total number of introductory level courses is 66 credits and that of advanced level courses is 78 credits.

2. These are core courses in the regular Geology Major (96 credits) curriculum.

3. Requires approval to qualify for accredited pathway. EASC4999 Earth sciences project must have a significant 3D geological evolutionary component to meet Accredited Pathway requirements, as specified during our 2016 re-accreditation. Therefore, each EASC4999 project intended to qualify for the Accredited Pathway must be approved by the Geology major coordinator as satisfying this requirement. This policy is effective for all projects starting in 2017 and after.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Geology (Intensive)
Offered to students admitted to Year 1 in: 2017

Objectives:
To provide an education in Geology which meets the current minimum requirements of the Geological Society of London for accreditation.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)

PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)

PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)

PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)

PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

Impermissible Combinations:
Major in Geology
Minor in Earth Sciences

Required courses (150 credits)

1. **Introductory level courses (54 to 66 credits) (Note 1)**
 - **Disciplinary Core Courses: Science Foundation Courses (12 credits)**
 - SCNC1111: Scientific method and reasoning (6)
 - SCNC1112: Fundamentals of modern science (6)
 - **Disciplinary Core Courses (42 credits)**
 - EASC1401: Blue Planet (6)
 - EASC1402: Principles of geology (6)
 - EASC2401: Fluid/solid interactions in earth processes (6)
 - EASC2402: Field and laboratory methods (6)
 - EASC2406: Geochemistry (6)
 - EASC2407: Mineralogy (6)
 - EASC2409: Regional field studies (6)

2. **Advanced level courses (78 to 90 credits) (Note 1)**
 - **Disciplinary Core Courses (60 credits)**
 - EASC3402: Petrology (6)
 - EASC3403: Sedimentary environments (6)
 - EASC3404: Structural geology (6)
 - EASC3408: Geophysics (6)
 - EASC3409: Igneous and metamorphic petrogenesis (6)
 - EASC3417: Earth through time (6)
 - EASC4406: Earth dynamics & global tectonics (6)
 - EASC4407: Regional geology (6)
 - EASC4999: Earth sciences project (12)
 - **Disciplinary Electives (30 credits)**
 - At least 30 credits selected from the following introductory and advanced level courses in List A and List B, among which at least 6 credits from List A:

 - **List A**
 - EASC3405: Environmental remote sensing (6)
 - EASC3413: Engineering geology (6)

 - **List B**
 - EASC2404: Introduction to atmosphere and hydrosphere (6)
 - EASC2408: Planetary geology (6)
 - EASC3020: Global change: anthropogenic impacts (6)
 - EASC3406: Reconstruction of past climate (6)
 - EASC3410: Hydrogeology (6)
 - EASC3412: Earth resources (6)
 - EASC3414: Soil and rock mechanics (6)
 - EASC3416: Advanced geochemistry and geochronology (6)
 - EASC3999: Directed studies in earth sciences (6)
 - ENV3007: Natural hazards and mitigation (6)
 - ENV3313: Environmental oceanography (6)
 - EASC4403: Biogeochemical cycles (6)
 - EASC4408: Special topics in earth sciences (6)
 - EASC4911: Earth system: contemporary issues (6)
Science Majors

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC4966</td>
<td>Earth sciences internship (6)</td>
<td></td>
</tr>
<tr>
<td>EASC4955</td>
<td>Integrated field studies (6)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. In the list of disciplinary elective courses, two of them are introductory level courses while the others are advanced level courses. If students take all advanced level courses in the list, the total number of introductory level courses is 54 credits while that of advanced level courses is 90 credits. If students take 2 introductory level courses in the list and 3 advanced level courses, the total number of introductory level courses is 66 credits and that of advanced level courses is 78 credits.

2. These are core courses in the regular Geology Major (96 credits) curriculum.

3. Requires approval to qualify for accredited pathway. EASC4999 Earth sciences project must have a significant 3D geological evolutionary component to meet Accredited Pathway requirements, as specified during our 2016 re-accreditation. Therefore, each EASC4999 project intended to qualify for the Accredited Pathway must be approved by the Geology major coordinator as satisfying this requirement. This policy is effective for all projects starting in 2017 and after.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Geology (Intensive)
Offered to students admitted to Year 1 in 2016

Objectives:
To provide an education in Geology which meets the current minimum requirements of the Geological Society of London for accreditation.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)

- **PLO 2:** have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)

- **PLO 3:** communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)

- **PLO 4:** have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)

- **PLO 5:** work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

Impermissible Combinations:
Major in Geology
Minor in Earth Sciences

Required courses (150 credits)

1. **Introductory level courses (54 to 66 credits) (Note 1)**

 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (42 credits)
 - EASC1401 Blue Planet (6)
 - EASC1402 Principles of geology (6)
 - EASC2401 Fluid/solid interactions in earth processes (6)
 - EASC2402 Field and laboratory methods (6)
 - EASC2406 Geochemistry (6)
 - EASC2407 Mineralogy (6)
 - EASC2409 Regional field studies (6)

2. **Advanced level courses (78 to 90 credits) (Note 1)**

 Disciplinary Core Courses (60 credits)
 - EASC3402 Petrology (6)
 - EASC3403 Sedimentary environments (6)
 - EASC3404 Structural geology (6)
 - EASC3408 Geophysics (6)
 - EASC3409 Igneous and metamorphic petrogenesis (6)
 - EASC3417 Earth through time (6)
 - EASC4406 Earth dynamics & global tectonics (6)
 - EASC4407 Regional geology (6)
 - EASC4999 Earth sciences project (12)

 Disciplinary Electives (30 credits)
 At least 30 credits selected from the following introductory and advanced level courses in List A and List B, among which at least 6 credits from List A:

 List A
 - EASC3405 Environmental remote sensing (6)
 - EASC3413 Engineering geology (6)

 List B
 - EASC2404 Introduction to atmosphere and hydrosphere (6)
 - EASC3408 Planetary geology (6)
 - EASC3409 Global change: anthropogenic impacts (6)
 - EASC3406 Reconstruction of past climate (6)
 - EASC3410 Hydrogeology (6)
 - EASC3412 Earth resources (6)
 - EASC3414 Soil and rock mechanics (6)
 - EASC3416 Advanced geochemistry and geochronology (6)
 - EASC3999 Directed studies in earth sciences (6)
 - ENVS3007 Natural hazards and mitigation (6)
 - ENVS3313 Environmental oceanography (6)
 - EASC4403 Biogeochemical cycles (6)
 - EASC4408 Special topics in earth sciences (6)
 - EASC4911 Earth system: contemporary issues (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC4966</td>
<td>Earth sciences internship</td>
<td>6</td>
</tr>
<tr>
<td>EASC4955</td>
<td>Integrated field studies</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:

1. In the list of disciplinary elective courses, two of them are introductory level courses while the others are advanced level courses. If students take all advanced level courses in the list, the total number of introductory level courses is 54 credits while that of advanced level courses is 90 credits. If students take 2 introductory level courses in the list and 3 advanced level courses, the total number of introductory level courses is 66 credits and that of advanced level courses is 78 credits.

2. These are core courses in the regular Geology Major (96 credits) curriculum.

3. Requires approval to qualify for accredited pathway. EASC4999 Earth sciences project must have a significant 3D geological evolutionary component to meet Accredited Pathway requirements, as specified during our 2016 re-accreditation. Therefore, each EASC4999 project intended to qualify for the Accredited Pathway must be approved by the Geology major coordinator as satisfying this requirement. This policy is effective for all projects starting in 2017 and after.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Geology (Intensive)
Offered to students admitted to Year 1 in 2015

Objectives:
To provide an education in Geology which meets the current minimum requirements of the Geological Society of London for accreditation.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and apply key concepts in the conventional areas of the geosciences, covering the areas of physical geology, historical geology, mineralogy, petrology, geochemistry, geophysics, structural geology, tectonics and petrogenesis, and earth resources (by means of coursework, laboratory-based, tutorial classes and project-based learning in the curriculum)

PLO 2: have acquired the ability to make observation, description, measurement and analysis of common geological features in the field, conduct geological mapping as well as undertake independent geological study, and appraise the related ethical issues (by means of both local and overseas residential field learning experience)

PLO 3: communicate scientific concepts and critically discuss aspects of contemporary issues pertaining to earth sciences, environments and resources (by means of capstone, project-based learning and presentation opportunities in the curriculum)

PLO 4: have gained some insight to the real-life industrial environment and developed connections within the geosciences profession (by means of internship opportunities in the curriculum)

PLO 5: work with others in an effective manner and have learned to accept and appreciate different cultures (by means of group project learning, field learning experience in the curriculum)

Impermissible Combinations:
Major in Geology
Minor in Earth Sciences

Required courses (150 credits)
1. Introductory level courses (54 to 66 credits) (Note 1)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
- SCNC1111 Scientific method and reasoning (6) (Note 2)
- SCNC1112 Fundamentals of modern science (6) (Note 2)

Disciplinary Core Courses (42 credits)
- EASC1401 Blue Planet (6)
- EASC1402 Principles of geology (6) (Note 2)
- EASC2401 Fluid/solid interactions in earth processes (6) (Note 2)
- EASC2402 Field and laboratory methods (6) (Note 2)
- EASC2406 Geochemistry (6) (Note 2)
- EASC2407 Mineralogy (6) (Note 2)
- EASC2409 Regional field studies (6)

2. Advanced level courses (78 to 90 credits) (Note 1)

Disciplinary Core Courses (60 credits)
- EASC3402 Petrology (6) (Note 2)
- EASC3403 Sedimentary environments (6) (Note 2)
- EASC3404 Structural geology (6) (Note 2)
- EASC3408 Geophysics (6) (Note 2)
- EASC3409 Igneous and metamorphic petrogenesis (6) (Note 2)
- EASC3417 Earth through time (6)
- EASC4406 Earth dynamics & global tectonics (6) (Note 2)
- EASC4407 Regional geology (6)
- EASC4999 Earth sciences project (12) (Note 3)

Disciplinary Electives (30 credits)
At least 30 credits selected from the following introductory and advanced level courses in List A and List B, among which at least 6 credits from List A:

List A
- EASC3405 Environmental remote sensing (6)
- EASC3413 Engineering geology (6)

List B
- EASC2404 Introduction to atmosphere and hydrosphere (6)
- EASC2408 Planetary geology (6)
- EASC3020 Global change: anthropogenic impacts (6)
- EASC3406 Reconstruction of past climate (6)
- EASC3410 Hydrogeology (6)
- EASC3412 Earth resources (6)
- EASC3414 Soil and rock mechanics (6)
- EASC3416 Advanced geochemistry and geochronology (6)
- EASC3999 Directed studies in earth sciences (6)
- ENV3007 Natural hazards and mitigation (6)
- ENV3313 Environmental oceanography (6)
- EASC4403 Biogeochemical cycles (6)
- EASC4408 Special topics in earth sciences (6)
- EASC4911 Earth system: contemporary issues (6)
3. Capstone requirement (6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC4966</td>
<td>Earth sciences internship</td>
<td>(6)</td>
</tr>
<tr>
<td>EASC4955</td>
<td>Integrated field studies</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Notes:

1. In the list of disciplinary elective courses, two of them are introductory level courses while the others are advanced level courses. If students take all advanced level courses in the list, the total number of introductory level courses is 54 credits while that of advanced level courses is 90 credits. If students take 2 introductory level courses in the list and 3 advanced level courses, the total number of introductory level courses is 66 credits and that of advanced level courses is 78 credits.

2. These are core courses in the regular Geology Major (96 credits) curriculum.

3. Requires approval to qualify for accredited pathway. EASC4999 Earth sciences project must have a significant 3D geological evolutionary component to meet Accredited Pathway requirements, as specified during our 2016 re-accreditation. Therefore, each EASC4999 project intended to qualify for the Accredited Pathway must be approved by the Geology major coordinator as satisfying this requirement. This policy is effective for all projects starting in 2017 and after.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Mathematics
Offered to students admitted to Year 1 in 2018

Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and data science, logistics, management, research and further studies.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)

PLO 2: apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)

PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)

PLO 4: collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)

PLO 5: appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

Impermissible Combinations:
Minor in Computational & Financial Mathematics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (96 credits)

1. Introductory level courses (48 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (36 credits)
MATH1013 University mathematics II (6)
MATH2101 Linear algebra I (6)
MATH2102 Linear algebra II (6)
MATH2211 Multivariable calculus (6)
MATH2241 Introduction to mathematical analysis (6)

2. Advanced level courses (42 credits)
Disciplinary Core Course (6 credits)
MATH3401 Analysis I (6)

Disciplinary Electives (36 credits)
At least 36 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at least 12 credits are selected from List A and at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List A, List B and those courses not selected to fulfill the capstone requirements, but excluding MATH4966 Mathematics Internship.

List A
MATH3301 Algebra I (6)
MATH3303 Functions of a complex variable (6)
MATH3601 Numerical analysis (6)
MATH3603 Probability theory (6)
MATH3904 Introduction to optimization (6)

List B
MATH3301 Development of mathematical ideas (6)
MATH3302 Mathematics seminar (6)
MATH3303 Matrix theory and its applications (6)
MATH3304 Introduction to number theory (6)
MATH3405 Differential equations (6)
MATH3408 Computational methods and differential equations with applications (6)
MATH3541 Introduction to topology (6)
MATH3600 Discrete mathematics (6)
MATH3601 Operations research I (6)
MATH3905 Queueing theory and simulation (6)
MATH3906 Financial calculus (6)
MATH3911 Game theory and strategy (6)
MATH3943 Network models in operations research (6)
MATH4302 Algebra II (6)
MATH4402 Analysis II (6)
MATH4404 Functional analysis (6)
MATH4406 Introduction to partial differential equations (6)
Science Majors

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH4501</td>
<td>Geometry (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4511</td>
<td>Introduction to differentiable manifolds (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4602</td>
<td>Scientific computing (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4902</td>
<td>Operations research II (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4907</td>
<td>Numerical methods for financial calculus (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7101</td>
<td>Intermediate complex analysis (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7217</td>
<td>Topics in financial mathematics (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis (6)</td>
<td></td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:
- MATH3999: Directed studies in mathematics (6)
- MATH4910: Senior mathematics seminar (6)
- MATH4911: Mathematics capstone project (6)
- MATH4966: Mathematics internship (6)
- MATH4999: Mathematics project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Mathematics

Offered to students admitted to Year 1 in 2017

Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and data science, logistics, management, research and further studies.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)

PLO 2: apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)

PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)

PLO 4: collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)

PLO 5: appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

Impermissible Combinations:
Major in Mathematics/Physics
Minor in Computational & Financial Mathematics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)

 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)

 MATH1013 University mathematics II (6)
 MATH2012 Fundamental concepts of mathematics (6)
 MATH2101 Linear algebra I (6)
 MATH2102 Linear algebra II (6)
 MATH2211 Multivariable calculus (6)
 MATH2241 Introduction to mathematical analysis (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Course (6 credits)

 MATH3401 Analysis I (6)

 Disciplinary Electives (36 credits)

 At least 36 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at least 12 credits are selected from List A and at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List A, List B and those courses not selected to fulfill the capstone requirements, but excluding MATH4966 Mathematics Internship.

 List A
 MATH3301 Algebra I (6)
 MATH3403 Functions of a complex variable (6)
 MATH3601 Numerical analysis (6)
 MATH3603 Probability theory (6)
 MATH3904 Introduction to optimization (6)

 List B
 MATH3302 Development of mathematical ideas (6)
 MATH3302 Mathematics seminar (6)
 MATH3303 Matrix theory and its applications (6)
 MATH3304 Introduction to number theory (6)
 MATH3405 Differential equations (6)
 MATH3408 Computational methods and differential equations with applications (6)
 MATH3541 Introduction to topology (6)
 MATH3600 Discrete mathematics (6)
 MATH3901 Operations research I (6)
 MATH3905 Queueing theory and simulation (6)
 MATH3906 Financial calculus (6)
 MATH3911 Game theory and strategy (6)
 MATH3943 Network models in operations research (6)
 MATH4301 Algebra II (6)
 MATH4402 Analysis II (6)
 MATH4404 Functional analysis (6)
<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH4406</td>
<td>Introduction to partial differential equations</td>
<td>6</td>
</tr>
<tr>
<td>MATH4501</td>
<td>Geometry</td>
<td>6</td>
</tr>
<tr>
<td>MATH4511</td>
<td>Introduction to differentiable manifolds</td>
<td>6</td>
</tr>
<tr>
<td>MATH4602</td>
<td>Scientific computing</td>
<td>6</td>
</tr>
<tr>
<td>MATH4902</td>
<td>Operations research II</td>
<td>6</td>
</tr>
<tr>
<td>MATH4907</td>
<td>Numerical methods for financial calculus</td>
<td>6</td>
</tr>
<tr>
<td>MATH7101</td>
<td>Intermediate complex analysis</td>
<td>6</td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry</td>
<td>6</td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds</td>
<td>6</td>
</tr>
<tr>
<td>MATH7217</td>
<td>Topics in financial mathematics</td>
<td>6</td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis</td>
<td>6</td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory</td>
<td>6</td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra</td>
<td>6</td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics</td>
<td>6</td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization</td>
<td>6</td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology</td>
<td>6</td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis</td>
<td>6</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3999</td>
<td>Directed studies in mathematics</td>
<td>6</td>
</tr>
<tr>
<td>MATH4910</td>
<td>Senior mathematics seminar</td>
<td>6</td>
</tr>
<tr>
<td>MATH4911</td>
<td>Mathematics capstone project</td>
<td>6</td>
</tr>
<tr>
<td>MATH4966</td>
<td>Mathematics internship</td>
<td>6</td>
</tr>
<tr>
<td>MATH4999</td>
<td>Mathematics project</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title
Major in Mathematics

Offered to students
2016

Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and data science, logistics, management, research and further studies.

Learning Outcomes:
By the end of this programme, students should be able to:

<table>
<thead>
<tr>
<th>PLO</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLO 1</td>
<td>describe and present fundamental concepts in mathematics</td>
</tr>
<tr>
<td>PLO 2</td>
<td>apply mathematical theory and techniques to different areas of Sciences</td>
</tr>
<tr>
<td>PLO 3</td>
<td>communicate in mathematical language and present scientific arguments</td>
</tr>
<tr>
<td>PLO 4</td>
<td>collaborate and work with other students in an effective manner</td>
</tr>
<tr>
<td>PLO 5</td>
<td>appreciate the beauty and power of mathematics</td>
</tr>
</tbody>
</table>

Impermissible Combinations:
Major in Mathematics/Physics
Minor in Computational & Financial Mathematics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (96 credits)

<table>
<thead>
<tr>
<th>Level</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Disciplinary Core Courses: Science Foundation Courses (12 credits)</td>
</tr>
<tr>
<td></td>
<td>SCNC1111 Scientific method and reasoning (6)</td>
</tr>
<tr>
<td></td>
<td>SCNC1112 Fundamentals of modern science (6)</td>
</tr>
<tr>
<td></td>
<td>Disciplinary Core Courses (36 credits)</td>
</tr>
<tr>
<td></td>
<td>MATH1101 University mathematics I (6)</td>
</tr>
<tr>
<td></td>
<td>MATH2101 Linear algebra I (6)</td>
</tr>
<tr>
<td></td>
<td>MATH2102 Linear algebra II (6)</td>
</tr>
<tr>
<td></td>
<td>MATH2211 Multivariable calculus (6)</td>
</tr>
<tr>
<td></td>
<td>MATH2241 Introduction to mathematical analysis (6)</td>
</tr>
<tr>
<td></td>
<td>Disciplinary Electives (36 credits)</td>
</tr>
<tr>
<td></td>
<td>MATH3401 Analysis I (6)</td>
</tr>
</tbody>
</table>

Disciplinary Core Course (6 credits)

<table>
<thead>
<tr>
<th>Level</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Disciplinary Core Course (6 credits)</td>
</tr>
<tr>
<td></td>
<td>MATH3301 Algebra I (6)</td>
</tr>
<tr>
<td></td>
<td>MATH3403 Functions of a complex variable (6)</td>
</tr>
<tr>
<td></td>
<td>MATH3601 Numerical analysis (6)</td>
</tr>
<tr>
<td></td>
<td>MATH3603 Probability theory (6)</td>
</tr>
<tr>
<td></td>
<td>MATH3904 Introduction to optimization (6)</td>
</tr>
</tbody>
</table>

Disciplinary Electives (36 credits)

At least 36 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at least 12 credits are selected from List A and at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List A, List B and those courses not selected to fulfill the capstone requirements, but excluding MATH4966 Mathematics Internship.

List A

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3301 Algebra I (6)</td>
</tr>
<tr>
<td>MATH3403 Functions of a complex variable (6)</td>
</tr>
<tr>
<td>MATH3601 Numerical analysis (6)</td>
</tr>
<tr>
<td>MATH3603 Probability theory (6)</td>
</tr>
<tr>
<td>MATH3904 Introduction to optimization (6)</td>
</tr>
</tbody>
</table>

List B

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3301 Development of mathematical ideas (6)</td>
</tr>
<tr>
<td>MATH3302 Mathematics seminar (6)</td>
</tr>
<tr>
<td>MATH3303 Matrix theory and its applications (6)</td>
</tr>
<tr>
<td>MATH3304 Introduction to number theory (6)</td>
</tr>
<tr>
<td>MATH3405 Differential equations (6)</td>
</tr>
<tr>
<td>MATH3408 Computational methods and differential equations with applications (6)</td>
</tr>
<tr>
<td>MATH3541 Introduction to topology (6)</td>
</tr>
<tr>
<td>MATH3600 Discrete mathematics (6)</td>
</tr>
<tr>
<td>MATH3901 Operations research I (6)</td>
</tr>
<tr>
<td>MATH3905 Queueing theory and simulation (6)</td>
</tr>
<tr>
<td>MATH3906 Financial calculus (6)</td>
</tr>
<tr>
<td>MATH3911 Game theory and strategy (6)</td>
</tr>
<tr>
<td>MATH3943 Network models in operations research (6)</td>
</tr>
<tr>
<td>MATH4301 Algebra II (6)</td>
</tr>
<tr>
<td>MATH4402 Analysis II (6)</td>
</tr>
<tr>
<td>MATH4404 Functional analysis (6)</td>
</tr>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>MATH4406</td>
</tr>
<tr>
<td>MATH4501</td>
</tr>
<tr>
<td>MATH4511</td>
</tr>
<tr>
<td>MATH4602</td>
</tr>
<tr>
<td>MATH4902</td>
</tr>
<tr>
<td>MATH4907</td>
</tr>
<tr>
<td>MATH7101</td>
</tr>
<tr>
<td>MATH7201</td>
</tr>
<tr>
<td>MATH7202</td>
</tr>
<tr>
<td>MATH7217</td>
</tr>
<tr>
<td>MATH7219</td>
</tr>
<tr>
<td>MATH7224</td>
</tr>
<tr>
<td>MATH7501</td>
</tr>
<tr>
<td>MATH7502</td>
</tr>
<tr>
<td>MATH7503</td>
</tr>
<tr>
<td>MATH7504</td>
</tr>
<tr>
<td>MATH7505</td>
</tr>
</tbody>
</table>

3. **Capstone requirement (6 credits)**

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3999</td>
<td>Directed studies in mathematics</td>
<td>6</td>
</tr>
<tr>
<td>MATH4910</td>
<td>Senior mathematics seminar</td>
<td>6</td>
</tr>
<tr>
<td>MATH4911</td>
<td>Mathematics capstone project</td>
<td>6</td>
</tr>
<tr>
<td>MATH4966</td>
<td>Mathematics internship</td>
<td>6</td>
</tr>
<tr>
<td>MATH4999</td>
<td>Mathematica project</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/crurriculum/overlapping-course-req.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

241
Major Title: Major in Mathematics
Offered to students admitted to Year 1 in 2015

Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and data science, logistics, management, research and further studies.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)

PLO 2: apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)

PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)

PLO 4: collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)

PLO 5: appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

Impermissible Combinations:
Major in Mathematics/Physics
Minor in Computational & Financial Mathematics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (36 credits)
 MATH1013 University mathematics II (6)
 MATH2012 Fundamental concepts of mathematics (6)
 MATH2101 Linear algebra I (6)
 MATH2102 Linear algebra II (6)
 MATH2211 Multivariable calculus (6)
 MATH2241 Introduction to mathematical analysis (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Course (6 credits)
 MATH3401 Analysis I (6)
 Disciplinary Electives (36 credits)
 At least 36 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at least 12 credits are selected from List A and at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List A, List B and those courses not selected to fulfill the capstone requirements, but excluding MATH4966 Mathematics Internship.
 List A
 MATH3301 Algebra I (6)
 MATH3403 Functions of a complex variable (6)
 MATH3601 Numerical analysis (6)
 MATH3603 Probability theory (6)
 MATH3904 Introduction to optimization (6)
 List B
 MATH3001 Development of mathematical ideas (6)
 MATH3002 Mathematics seminar (6)
 MATH3303 Matrix theory and its applications (6)
 MATH3304 Introduction to number theory (6)
 MATH3405 Differential equations (6)
 MATH3408 Computational methods and differential equations with applications (6)
 MATH3541 Introduction to topology (6)
 MATH3600 Discrete mathematics (6)
 MATH3901 Operations research I (6)
 MATH3905 Queueing theory and simulation (6)
 MATH3906 Financial calculus (6)
 MATH3911 Game theory and strategy (6)
 MATH3943 Network models in operations research (6)
 MATH4302 Algebra II (6)
 MATH4402 Analysis II (6)
 MATH4404 Functional analysis (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH4406</td>
<td>Introduction to partial differential equations (6)</td>
</tr>
<tr>
<td>MATH4501</td>
<td>Geometry (6)</td>
</tr>
<tr>
<td>MATH4511</td>
<td>Introduction to differentiable manifolds (6)</td>
</tr>
<tr>
<td>MATH4602</td>
<td>Scientific computing (6)</td>
</tr>
<tr>
<td>MATH4902</td>
<td>Operations research II (6)</td>
</tr>
<tr>
<td>MATH4907</td>
<td>Numerical methods for financial calculus (6)</td>
</tr>
<tr>
<td>MATH7101</td>
<td>Intermediate complex analysis (6)</td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry (6)</td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds (6)</td>
</tr>
<tr>
<td>MATH7217</td>
<td>Topics in financial mathematics (6)</td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis (6)</td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory (6)</td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra (6)</td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics (6)</td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization (6)</td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology (6)</td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis (6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- MATH3999 Direct ed studies in mathematics (6)
- MATH4910 Senior mathematics seminar (6)
- MATH4911 Mathematics capstone project (6)
- MATH4966 Mathematics internship (6)
- MATH4999 Mathematics project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Mathematics
Offered to students admitted to Year 1 in 2014

Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and data science, logistics, management, research and further studies.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)

PLO 2: apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)

PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)

PLO 4: collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)

PLO 5: appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

Impermissible Combinations:
Major in Mathematics/Physics
Minor in Computational & Financial Mathematics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (96 credits)

1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 MATH1013 University mathematics II (6)
 MATH2012 Fundamental concepts of mathematics (6)
 MATH2101 Linear algebra I (6)
 MATH2102 Linear algebra II (6)
 MATH211 Multivariable calculus (6)
 MATH2241 Introduction to mathematical analysis (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (18 credits)
 MATH3301 Algebra I (6)
 MATH3401 Analysis I (6)
 MATH3403 Functions of a complex variable (6)

 Disciplinary Electives (24 credits)
 At least 24 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone requirements, but excluding MATH4966 Mathematics Internship.

 List A
 MATH3001 Development of mathematical ideas (6)
 MATH3002 Mathematics seminar (6)
 MATH3303 Matrix theory and its applications (6)
 MATH3304 Introduction to number theory (6)
 MATH3405 Differential equations (6)
 MATH3408 Computational methods and differential equations with applications (6)
 MATH3541 Introduction to topology (6)
 MATH3600 Discrete mathematics (6)
 MATH3601 Numerical analysis (6)
 MATH3603 Probability theory (6)
 MATH3901 Operations research I (6)
 MATH3904 Introduction to optimization (6)
 MATH3905 Queueing theory and simulation (6)
 MATH3906 Financial calculus (6)
 MATH3911 Game theory and strategy (6)
 MATH3943 Network models in operations research (6)
 MATH4301 Algebra II (6)
 MATH4402 Analysis II (6)
 MATH4404 Functional analysis (6)
 MATH4406 Introduction to partial differential equations (6)
MATH4501 Geometry (6)
MATH4511 Introduction to differentiable manifolds (6)
MATH4602 Scientific computing (6)
MATH4902 Operations research II (6)
MATH4907 Numerical methods for financial calculus (6)
MATH7101 Intermediate complex analysis (6)
MATH7201 Topics in geometry (6)
MATH7202 Complex manifolds (6)
MATH7217 Topics in financial mathematics (6)
MATH7219 Topics in applied functional analysis (6)
MATH7224 Topics in advanced probability theory (6)
MATH7501 Topics in algebra (6)
MATH7502 Topics in applied discrete mathematics (6)
MATH7503 Topics in mathematical programming and optimization (6)
MATH7504 Geometric topology (6)
MATH7505 Real analysis (6)

3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
MATH3999 Directed studies in mathematics (6)
MATH4910 Senior mathematics seminar (6)
MATH4911 Mathematics capstone project (6)
MATH4966 Mathematics internship (6)
MATH4999 Mathematics project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ('disciplinary core') in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.
5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Mathematics
Offered to students admitted to Year 1 in: 2013

Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and data science, logistics, management, research and further studies.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)
- **PLO 2**: apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)
- **PLO 3**: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)
- **PLO 4**: collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)
- **PLO 5**: appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

Impermissible Combinations:
- Major in Mathematics/Physics
- Minor in Computational & Financial Mathematics
- Minor in Mathematics
- Minor in Operations Research & Mathematical Programming

Required courses (96 credits)

1. **Introductory level courses (48 credits)**
 - **Disciplinary Core Courses: Science Foundation Courses (12 credits)**
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 - **Disciplinary Core Courses (36 credits)**
 - MATH1101 University mathematics I (6)
 - MATH2102 Fundamental concepts of mathematics (6)
 - MATH2101 Linear algebra I (6)
 - MATH2211 Multivariable calculus (6)

2. **Advanced level courses (42 credits)**
 - **Disciplinary Core Courses (18 credits)**
 - MATH3403 Functions of a complex variable (6)
 - MATH3601 Numerical analysis (6)
 - MATH3603 Probability theory (6)
 - MATH3901 Operations research I (6)
 - **Disciplinary Electives (24 credits)**
 - At least 24 credits advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), of which at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone requirements, but excluding MATH4966 Mathematics Internship.

List A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3001</td>
<td>Development of mathematical ideas</td>
<td>6</td>
</tr>
<tr>
<td>MATH3002</td>
<td>Mathematics seminar</td>
<td>6</td>
</tr>
<tr>
<td>MATH3003</td>
<td>Matrix theory and its applications</td>
<td>6</td>
</tr>
<tr>
<td>MATH3004</td>
<td>Introduction to number theory</td>
<td>6</td>
</tr>
<tr>
<td>MATH3405</td>
<td>Differential equations</td>
<td>6</td>
</tr>
<tr>
<td>MATH3406</td>
<td>Computational methods and differential equations with applications</td>
<td>6</td>
</tr>
<tr>
<td>MATH3541</td>
<td>Introduction to topology</td>
<td>6</td>
</tr>
<tr>
<td>MATH3600</td>
<td>Discrete mathematics</td>
<td>6</td>
</tr>
<tr>
<td>MATH3601</td>
<td>Numerical analysis</td>
<td>6</td>
</tr>
<tr>
<td>MATH3603</td>
<td>Probability theory</td>
<td>6</td>
</tr>
<tr>
<td>MATH3901</td>
<td>Operations research I</td>
<td>6</td>
</tr>
<tr>
<td>MATH3904</td>
<td>Introduction to optimization</td>
<td>6</td>
</tr>
<tr>
<td>MATH3905</td>
<td>Queueing theory and simulation</td>
<td>6</td>
</tr>
<tr>
<td>MATH3906</td>
<td>Financial calculus</td>
<td>6</td>
</tr>
<tr>
<td>MATH3911</td>
<td>Game theory and strategy</td>
<td>6</td>
</tr>
<tr>
<td>MATH3943</td>
<td>Network models in operations research</td>
<td>6</td>
</tr>
<tr>
<td>MATH4302</td>
<td>Algebra II</td>
<td>6</td>
</tr>
<tr>
<td>MATH4402</td>
<td>Analysis II</td>
<td>6</td>
</tr>
<tr>
<td>MATH4404</td>
<td>Functional analysis</td>
<td>6</td>
</tr>
<tr>
<td>MATH4406</td>
<td>Introduction to partial differential equations</td>
<td>6</td>
</tr>
</tbody>
</table>
Science Majors

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH4501</td>
<td>Geometry (6)</td>
</tr>
<tr>
<td>MATH4511</td>
<td>Introduction to differentiable manifolds (6)</td>
</tr>
<tr>
<td>MATH4602</td>
<td>Scientific computing (6)</td>
</tr>
<tr>
<td>MATH4902</td>
<td>Operations research II (6)</td>
</tr>
<tr>
<td>MATH4907</td>
<td>Numerical methods for financial calculus (6)</td>
</tr>
<tr>
<td>MATH7101</td>
<td>Intermediate complex analysis (6)</td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry (6)</td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds (6)</td>
</tr>
<tr>
<td>MATH7217</td>
<td>Topics in financial mathematics (6)</td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis (6)</td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory (6)</td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra (6)</td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics (6)</td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization (6)</td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology (6)</td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis (6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3999</td>
<td>Directed studies in mathematics (6)</td>
</tr>
<tr>
<td>MATH4910</td>
<td>Senior mathematics seminar (6)</td>
</tr>
<tr>
<td>MATH4911</td>
<td>Mathematics capstone project (6)</td>
</tr>
<tr>
<td>MATH4966</td>
<td>Mathematics internship (6)</td>
</tr>
<tr>
<td>MATH4999</td>
<td>Mathematics project (12)</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Mathematics
Offered to students admitted to Year 1 in 2012

Objectives:
The Major in Mathematics provides students with a solid and comprehensive undergraduate education in the subject. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems. Core courses in the curriculum emphasize fundamental knowledge and concepts in Mathematics and elective courses provide training in both pure and applied aspects of Mathematics. Throughout the curriculum there is also emphasis on experiential learning through guided studies, projects, seminars and summer internships. With the diversity of courses offered in the major, various specializations are available. These will lead to careers in a wide range of sectors including education, economics and finance, analytics and data science, logistics, management, research and further studies.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and present fundamental concepts in mathematics (by means of coursework and learning activities in the major or minor curriculum)

PLO 2: apply mathematical theory and techniques to different areas of Sciences, and appraise the related ethical issues (by means of coursework and learning activities in the major or minor curriculum)

PLO 3: communicate in mathematical language and present scientific arguments (by means of coursework, seminars, guided studies and projects)

PLO 4: collaborate and work with other students in an effective manner (by means of guided studies, projects and seminars)

PLO 5: appreciate the beauty and power of mathematics (by means of guided studies, projects and seminars)

Impermissible Combinations:
Major in Mathematics/Physics
Minor in Computational & Financial Mathematics
Minor in Mathematics

Required courses (96 credits)
1. Introductory level courses (48 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (36 credits)
MATH1013 University mathematics II (6)
MATH2012 Fundamental concepts of mathematics (6)
MATH2101 Linear algebra I (6)
MATH2102 Linear algebra II (6)
MATH2211 Multivariable calculus (6)
MATH2241 Introduction to mathematical analysis (6)

2. Advanced level courses (42 credits)
Disciplinary Core Courses (18 credits)
MATH3301 Algebra I (6)
MATH3401 Analysis I (6)
MATH3403 Functions of a complex variable (6)

Disciplinary Electives (24 credits)
At least 24 credits advanced level Mathematics courses (MATHXXX or MATH4XXX or MATH7XXX level), of which at least 12 credits should be from MATH4XXX or MATH7XXX level, subject to pre-requisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone requirements, but excluding MATH4966 Mathematics Internship.

List A
MATH3001 Development of mathematical ideas (6)
MATH3002 Mathematics seminar (6)
MATH3303 Matrix theory and its applications (6)
MATH3304 Introduction to number theory (6)
MATH3405 Differential equations (6)
MATH3408 Computational methods and differential equations with applications (6)
MATH3541 Introduction to topology (6)
MATH3600 Discrete mathematics (6)
MATH3601 Numerical analysis (6)
MATH3603 Probability theory (6)
MATH3901 Operations research I (6)
MATH3904 Introduction to optimization (6)
MATH3905 Queueing theory and simulation (6)
MATH3906 Financial calculus (6)
MATH3911 Game theory and strategy (6)
MATH3943 Network models in operations research (6)
MATH4302 Algebra II (6)
MATH4402 Analysis II (6)
MATH4404 Functional analysis (6)
MATH4406 Introduction to partial differential equations (6)
MATH4501 Geometry (6)
3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 MATH3999 Directed studies in mathematics (6)
 MATH4910 Senior mathematics seminar (6)
 MATH4911 Mathematics capstone project (6)
 MATH4966 Mathematics internship (6)
 MATH4999 Mathematics project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Major in Mathematics/Physics aims to provide students with a solid foundation in both physics and mathematics. This major is catered especially for students interested in the more theoretical aspects of physics. It covers a wide range of core areas in both disciplines which form the blocks of fundamental knowledge for further specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics, electrodynamics, linear algebra, mathematical analysis, abstract algebra, complex variables, differential equations, modern differential geometry, etc. A large selection of elective courses is provided for students to pursue a broad spectrum of professional knowledge in mathematical and theoretical physics. Analytical thinking, quantitative reasoning and innovative ideas are fostered through the effective design of courses and research projects. The curriculum emphasizes experiential learning through internships, field studies and research projects supervised by experts. With the comprehensive training received, graduates are expected to be well-prepared for further studies and to pursue careers in many fields of science and engineering.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe physical systems with a rigorous representation using their professional knowledge (by means of coursework and tutorial classes in the curriculum)

PLO 2: have developed their scientific intuition, abilities and techniques to tackle physical problems with intellectual rigor theoretically (by means of coursework, tutorial classes and assessments in the curriculum)

PLO 3: apply mathematical theory and techniques to analyze physical problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)

PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
- Major in Mathematics
- Major in Physics
- Minor in Computational & Financial Mathematics
- Minor in Mathematics
- Minor in Operations Research & Mathematical Programming
- Minor in Physics

Required courses (96 credits)

1. Introductory level courses (48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
- SCNC1111: Scientific method and reasoning (6)
- SCNC1112: Fundamentals of modern science (6)

Disciplinary Core Courses (30 credits)
- MATH1013: University mathematics II (6)
- MATH2101: Linear algebra I (6)
- MATH2211: Multivariable calculus (6)
- PHYS1250: Fundamental physics (6)
- PHYS2250: Introductory mechanics (6)
- PHYS2255: Introductory electricity and magnetism (6)

Disciplinary Electives (6 credits)
At least 6 credits selected from the following courses:
- PHYS1150: Problem solving in physics (6)
- PHYS2055: Introduction to relativity (6)
- PHYS2150: Methods in physics I (6)
- PHYS2155: Methods in physics II (6)
- PHYS2250: Introductory mechanics (6)
- PHYS2255: Introductory electricity and magnetism (6)
- PHYS2260: Heat and waves (6)

2. Advanced level courses (42 credits)

Disciplinary Core Courses (36 credits)
- MATH3301: Algebra I (6)
- MATH3401: Analysis I (6)
- MATH4501: Geometry (6)
- PHYS3350: Classical mechanics (6)
- PHYS3355: Quantum mechanics (6)
- PHYS4351: Advanced quantum mechanics (6)

Disciplinary Electives (6 credits)
At least 6 credits of advanced level Mathematics or Physics courses (MATH3XXX or MATH4XXX or MATH7XXX or PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list of courses include courses in List A and those courses not selected to fulfill the capstone requirement, but excluding MATH4966 Mathematics Internship.

List A
- MATH3001: Development of mathematical ideas (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3002</td>
<td>Mathematics seminar (6)</td>
</tr>
<tr>
<td>MATH3303</td>
<td>Matrix theory and its applications (6)</td>
</tr>
<tr>
<td>MATH3304</td>
<td>Introduction to number theory (6)</td>
</tr>
<tr>
<td>MATH3403</td>
<td>Functions of a complex variable (6)</td>
</tr>
<tr>
<td>MATH3405</td>
<td>Differential equations (6)</td>
</tr>
<tr>
<td>MATH3408</td>
<td>Computational methods and differential equations with applications (6)</td>
</tr>
<tr>
<td>MATH3541</td>
<td>Introduction to topology (6)</td>
</tr>
<tr>
<td>MATH3600</td>
<td>Discrete mathematics (6)</td>
</tr>
<tr>
<td>MATH3601</td>
<td>Numerical analysis (6)</td>
</tr>
<tr>
<td>MATH3603</td>
<td>Probability theory (6)</td>
</tr>
<tr>
<td>MATH3901</td>
<td>Operations research I (6)</td>
</tr>
<tr>
<td>MATH3904</td>
<td>Introduction to optimization (6)</td>
</tr>
<tr>
<td>MATH3905</td>
<td>Queueing theory and simulation (6)</td>
</tr>
<tr>
<td>MATH3906</td>
<td>Financial calculus (6)</td>
</tr>
<tr>
<td>MATH3911</td>
<td>Game theory and strategy (6)</td>
</tr>
<tr>
<td>MATH3943</td>
<td>Network models in operations research (6)</td>
</tr>
<tr>
<td>MATH4302</td>
<td>Algebra II (6)</td>
</tr>
<tr>
<td>MATH4402</td>
<td>Analysis II (6)</td>
</tr>
<tr>
<td>MATH4404</td>
<td>Functional analysis (6)</td>
</tr>
<tr>
<td>MATH4406</td>
<td>Introduction to partial differential equations (6)</td>
</tr>
<tr>
<td>MATH4511</td>
<td>Introduction to differentiable manifolds (6)</td>
</tr>
<tr>
<td>MATH4602</td>
<td>Scientific computing (6)</td>
</tr>
<tr>
<td>MATH4902</td>
<td>Operations research II (6)</td>
</tr>
<tr>
<td>MATH4907</td>
<td>Numerical methods for financial calculus (6)</td>
</tr>
<tr>
<td>MATH7101</td>
<td>Intermediate complex analysis (6)</td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry (6)</td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds (6)</td>
</tr>
<tr>
<td>MATH7217</td>
<td>Topics in financial mathematics (6)</td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis (6)</td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced functional analysis (6)</td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra (6)</td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics (6)</td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization (6)</td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology (6)</td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis (6)</td>
</tr>
<tr>
<td>PHYS3150</td>
<td>Theoretical physics (6)</td>
</tr>
<tr>
<td>PHYS3450</td>
<td>Electromagnetism (6)</td>
</tr>
<tr>
<td>PHYS3550</td>
<td>Statistical mechanics & thermodynamics (6)</td>
</tr>
<tr>
<td>PHYS3551</td>
<td>Introductory solid state physics (6)</td>
</tr>
<tr>
<td>PHYS3650</td>
<td>Observational astronomy (6)</td>
</tr>
<tr>
<td>PHYS3651</td>
<td>The physical universe (6)</td>
</tr>
<tr>
<td>PHYS3652</td>
<td>Principles of astronomy (6)</td>
</tr>
<tr>
<td>PHYS3750</td>
<td>Laser and spectroscopy (6)</td>
</tr>
<tr>
<td>PHYS3751</td>
<td>Physics of nanomaterials (5)</td>
</tr>
<tr>
<td>PHYS3850</td>
<td>Waves and optics (6)</td>
</tr>
<tr>
<td>PHYS3851</td>
<td>Atomic and nuclear physics (6)</td>
</tr>
<tr>
<td>PHYS4150</td>
<td>Computational physics (6)</td>
</tr>
<tr>
<td>PHYS4151</td>
<td>Data analysis and modeling in physics (6)</td>
</tr>
<tr>
<td>PHYS4350</td>
<td>Advanced classical mechanics (6)</td>
</tr>
<tr>
<td>PHYS4450</td>
<td>Advanced electromagnetism (6)</td>
</tr>
<tr>
<td>PHYS4550</td>
<td>Advanced statistical mechanics (6)</td>
</tr>
<tr>
<td>PHYS4551</td>
<td>Solid state physics (6)</td>
</tr>
<tr>
<td>PHYS4650</td>
<td>Stellar physics (6)</td>
</tr>
<tr>
<td>PHYS4651</td>
<td>Selected topics in astrophysics (6)</td>
</tr>
<tr>
<td>PHYS4652</td>
<td>Planetary science (6)</td>
</tr>
<tr>
<td>PHYS4653</td>
<td>Cosmology (6)</td>
</tr>
<tr>
<td>PHYS4654</td>
<td>General relativity (6)</td>
</tr>
<tr>
<td>PHYS4655</td>
<td>Interstellar medium (6)</td>
</tr>
<tr>
<td>PHYS4750</td>
<td>Experimental physics (6)</td>
</tr>
<tr>
<td>PHYS4850</td>
<td>Particle physics (6)</td>
</tr>
<tr>
<td>PHYS5350</td>
<td>Graduate classical mechanics (6)</td>
</tr>
<tr>
<td>PHYS5351</td>
<td>Graduate quantum mechanics (6)</td>
</tr>
<tr>
<td>PHYS5450</td>
<td>Graduate electromagnetism (6)</td>
</tr>
<tr>
<td>PHYS5550</td>
<td>Graduate statistical mechanics (6)</td>
</tr>
<tr>
<td>PHYS5751</td>
<td>Graduate solid state physics (6)</td>
</tr>
<tr>
<td>PHYS5750</td>
<td>Stellar atmospheres (6)</td>
</tr>
<tr>
<td>PHYS6750</td>
<td>Nanophysics (6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3999</td>
<td>Directed studies in mathematics (6)</td>
</tr>
<tr>
<td>MATH4910</td>
<td>Senior mathematics seminar (6)</td>
</tr>
<tr>
<td>MATH4911</td>
<td>Mathematics capstone project (6)</td>
</tr>
<tr>
<td>MATH4966</td>
<td>Mathematics internship (6)</td>
</tr>
<tr>
<td>MATH4999</td>
<td>Mathematics project (12)</td>
</tr>
<tr>
<td>PHYS3999</td>
<td>Directed studies in physics (6)</td>
</tr>
</tbody>
</table>
Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

6. (a) Students must have level 3 or above in HKDSE Physics or HKDSE Combined Science with Physics component or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry; and
(b) Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

7. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Mathematics/Physics
Offered to students: 2016
admitted to Year 1 in

Objectives:
The Major in Mathematics/Physics aims to provide students with a solid foundation in both physics and mathematics. This major is catered especially for students interested in the more theoretical aspects of physics. It covers a wide range of core areas in both disciplines which form the blocks of fundamental knowledge for further specializations, e.g., quantum mechanics, statistical mechanics, classical mechanics, electrodynamics, linear algebra, mathematical analysis, abstract algebra, complex variables, differential equations, modern differential geometry, etc. A large selection of elective courses is provided for students to pursue a broad spectrum of professional knowledge in mathematical and theoretical physics. Analytical thinking, quantitative reasoning and innovative ideas are fostered through the effective design of courses and research projects. The curriculum emphasizes experiential learning through internships, field studies and research projects supervised by experts. With the comprehensive training received, graduates are expected to be well-prepared for further studies and to pursue careers in many fields of science and engineering.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: identify and describe physical systems with a rigorous representation using their professional knowledge (by means of coursework and tutorial classes in the curriculum)
- **PLO 2**: have developed their scientific intuition, abilities and techniques to tackle physical problems with intellectual rigor theoretically (by means of coursework, tutorial classes and assessments in the curriculum)
- **PLO 3**: apply mathematical theory and techniques to analyze physical problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
- **PLO 4**: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
- **PLO 5**: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Major in Mathematics
Major in Physics
Minor in Computational & Financial Mathematics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming
Minor in Physics

Required courses (96 credits)

1. Introductory level courses (48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
- SCNC1111 Scientific method and reasoning (6)
- SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (30 credits)
- MATH1013 University mathematics II (6)
- MATH2101 Linear algebra I (6)
- MATH211 Multivariable calculus (6)
- PHYS1250 Fundamental physics (6)
- PHYS2250 Introductory mechanics (6)
- PHYS2255 Introductory electricity and magnetism (6)

Disciplinary Electives (6 credits)
At least 6 credits selected from the following courses:
- PHYS1150 Problem solving in physics (6)
- PHYS2055 Introduction to relativity (6)
- PHYS2150 Methods in physics I (6)
- PHYS215 Methods in physics II (6)
- PHYS2250 Introductory mechanics (6)
- PHYS2255 Introductory electricity and magnetism (6)
- PHYS225 Heat and waves (6)

2. Advanced level courses (42 credits)

Disciplinary Core Courses (36 credits)
- MATH3301 Algebra I (6)
- MATH3401 Analysis I (6)
- MATH4501 Geometry (6)
- PHYS3300 Classical mechanics (6)
- PHYS3351 Quantum mechanics (6)

Disciplinary Electives (6 credits)
At least 6 credits of advanced level Mathematics or Physics courses (MATH3XXX or MATH4XXX or MATH7XXX or PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list of courses include courses in List A and those courses not selected to fulfill the capstone requirement, but excluding MATH4966 Mathematics Internship.

List A
- MATH3001 Development of mathematical ideas (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3002</td>
<td>Mathematics seminar (6)</td>
</tr>
<tr>
<td>MATH3303</td>
<td>Matrix theory and its applications (6)</td>
</tr>
<tr>
<td>MATH3304</td>
<td>Introduction to number theory (6)</td>
</tr>
<tr>
<td>MATH3403</td>
<td>Functions of a complex variable (6)</td>
</tr>
<tr>
<td>MATH3405</td>
<td>Differential equations (6)</td>
</tr>
<tr>
<td>MATH3408</td>
<td>Computational methods and differential equations with applications (6)</td>
</tr>
<tr>
<td>MATH3541</td>
<td>Introduction to topology (6)</td>
</tr>
<tr>
<td>MATH3600</td>
<td>Discrete mathematics (6)</td>
</tr>
<tr>
<td>MATH3601</td>
<td>Numerical analysis (6)</td>
</tr>
<tr>
<td>MATH3603</td>
<td>Probability theory (6)</td>
</tr>
<tr>
<td>MATH3901</td>
<td>Operations research I (6)</td>
</tr>
<tr>
<td>MATH3904</td>
<td>Introduction to optimization (6)</td>
</tr>
<tr>
<td>MATH3905</td>
<td>Queueing theory and simulation (6)</td>
</tr>
<tr>
<td>MATH3906</td>
<td>Financial calculus (6)</td>
</tr>
<tr>
<td>MATH3911</td>
<td>Game theory and strategy (6)</td>
</tr>
<tr>
<td>MATH3943</td>
<td>Network models in operations research (6)</td>
</tr>
<tr>
<td>MATH4302</td>
<td>Algebra II (6)</td>
</tr>
<tr>
<td>MATH4402</td>
<td>Analysis II (6)</td>
</tr>
<tr>
<td>MATH4404</td>
<td>Functional analysis (6)</td>
</tr>
<tr>
<td>MATH4406</td>
<td>Introduction to partial differential equations (6)</td>
</tr>
<tr>
<td>MATH4511</td>
<td>Introduction to differentiable manifolds (6)</td>
</tr>
<tr>
<td>MATH4602</td>
<td>Scientific computing (6)</td>
</tr>
<tr>
<td>MATH4902</td>
<td>Operations research II (6)</td>
</tr>
<tr>
<td>MATH4907</td>
<td>Numerical methods for financial calculus (6)</td>
</tr>
<tr>
<td>MATH47101</td>
<td>Intermediate complex analysis (6)</td>
</tr>
<tr>
<td>MATH47201</td>
<td>Topics in geometry (6)</td>
</tr>
<tr>
<td>MATH47202</td>
<td>Complex manifolds (6)</td>
</tr>
<tr>
<td>MATH47217</td>
<td>Topics in financial mathematics (6)</td>
</tr>
<tr>
<td>MATH47219</td>
<td>Topics in applied functional analysis (6)</td>
</tr>
<tr>
<td>MATH47224</td>
<td>Topics in advanced functional analysis (6)</td>
</tr>
<tr>
<td>MATH47501</td>
<td>Topics in algebra (6)</td>
</tr>
<tr>
<td>MATH47502</td>
<td>Topics in applied discrete mathematics (6)</td>
</tr>
<tr>
<td>MATH47503</td>
<td>Topics in mathematical programming and optimization (6)</td>
</tr>
<tr>
<td>MATH47504</td>
<td>Geometric topology (6)</td>
</tr>
<tr>
<td>MATH47505</td>
<td>Real analysis (6)</td>
</tr>
<tr>
<td>PHYS3150</td>
<td>Theoretical physics (6)</td>
</tr>
<tr>
<td>PHYS3450</td>
<td>Electromagnetism (6)</td>
</tr>
<tr>
<td>PHYS3550</td>
<td>Statistical mechanics & thermodynamics (6)</td>
</tr>
<tr>
<td>PHYS3551</td>
<td>Introductory solid state physics (6)</td>
</tr>
<tr>
<td>PHYS3650</td>
<td>Observational astronomy (6)</td>
</tr>
<tr>
<td>PHYS3651</td>
<td>The physical universe (6)</td>
</tr>
<tr>
<td>PHYS3652</td>
<td>Principles of astronomy (6)</td>
</tr>
<tr>
<td>PHYS3750</td>
<td>Laser and spectroscopy (6)</td>
</tr>
<tr>
<td>PHYS3751</td>
<td>Physics of nanomaterials (6)</td>
</tr>
<tr>
<td>PHYS3850</td>
<td>Waves and optics (6)</td>
</tr>
<tr>
<td>PHYS3851</td>
<td>Atomic and nuclear physics (6)</td>
</tr>
<tr>
<td>PHYS4150</td>
<td>Computational physics (6)</td>
</tr>
<tr>
<td>PHYS4151</td>
<td>Data analysis and modeling in physics (6)</td>
</tr>
<tr>
<td>PHYS4350</td>
<td>Advanced classical mechanics (6)</td>
</tr>
<tr>
<td>PHYS4450</td>
<td>Advanced electromagnetism (6)</td>
</tr>
<tr>
<td>PHYS4550</td>
<td>Advanced statistical mechanics (6)</td>
</tr>
<tr>
<td>PHYS4551</td>
<td>Solid state physics (6)</td>
</tr>
<tr>
<td>PHYS4650</td>
<td>Stellar physics (6)</td>
</tr>
<tr>
<td>PHYS4651</td>
<td>Selected topics in astrophysics (6)</td>
</tr>
<tr>
<td>PHYS4652</td>
<td>Planetary science (6)</td>
</tr>
<tr>
<td>PHYS4653</td>
<td>Cosmology (6)</td>
</tr>
<tr>
<td>PHYS4654</td>
<td>General relativity (6)</td>
</tr>
<tr>
<td>PHYS4655</td>
<td>Interstellar medium (6)</td>
</tr>
<tr>
<td>PHYS4750</td>
<td>Experimental physics (6)</td>
</tr>
<tr>
<td>PHYS4850</td>
<td>Particle physics (6)</td>
</tr>
<tr>
<td>PHYS5350</td>
<td>Graduate classical mechanics (6)</td>
</tr>
<tr>
<td>PHYS5351</td>
<td>Graduate quantum mechanics (6)</td>
</tr>
<tr>
<td>PHYS5450</td>
<td>Graduate electromagnetism (6)</td>
</tr>
<tr>
<td>PHYS5550</td>
<td>Graduate statistical mechanics (6)</td>
</tr>
<tr>
<td>PHYS5651</td>
<td>Graduate solid state physics (6)</td>
</tr>
<tr>
<td>PHYS5750</td>
<td>Stellar atmospheres (6)</td>
</tr>
<tr>
<td>PHYS5750</td>
<td>Nanophysics (6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3999</td>
<td>Directed studies in mathematics (6)</td>
</tr>
<tr>
<td>MATH4910</td>
<td>Senior mathematics seminar (6)</td>
</tr>
<tr>
<td>MATH4911</td>
<td>Mathematics capstone project (6)</td>
</tr>
<tr>
<td>MATH4966</td>
<td>Mathematics internship (6)</td>
</tr>
<tr>
<td>MATH4999</td>
<td>Mathematics project (12)</td>
</tr>
<tr>
<td>PHYS3999</td>
<td>Directed studies in physics (6)</td>
</tr>
</tbody>
</table>
Notes:
1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

6. (a) Students must have level 3 or above in HKDSE Physics or HKDSE Combined Science with Physics component or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry; and
(b) Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

7. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Mathematics/Physics
Offered to students admitted to Year 1 in 2015

Objectives:
The Major in Mathematics/Physics aims to provide students with a solid foundation in both physics and mathematics. This major is catered especially for students interested in the more theoretical aspects of physics. It covers a wide range of core areas in both disciplines which form the blocks of fundamental knowledge for further specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics, electrodynamics, linear algebra, mathematical analysis, abstract algebra, complex variables, differential equations, modern differential geometry, etc. A large selection of elective courses is provided for students to pursue a broad spectrum of professional knowledge in mathematical and theoretical physics. Analytical thinking, quantitative reasoning and innovative ideas are fostered through the effective design of courses and research projects. The curriculum emphasizes experiential learning through internships, field studies and research projects supervised by experts. With the comprehensive training received, graduates are expected to be well-prepared for further studies and to pursue careers in many fields of science and engineering.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe physical systems with a rigorous representation using their professional knowledge (by means of coursework and tutorial classes in the curriculum)

PLO 2: have developed their scientific intuition, abilities and techniques to tackle physical problems with intellectual rigor theoretically (by means of coursework, tutorial classes and assessments in the curriculum)

PLO 3: apply mathematical theory and techniques to analyze physical problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)

PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Major in Mathematics
Major in Physics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming
Minor in Physics

Required courses (96 credits)
1. Introductory level courses (48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (30 credits)
MATH1013 University mathematics II (6)
MATH2101 Linear algebra I (6)
MATH2211 Multivariable calculus (6)
PHYS1250 Fundamental physics (6)
PHYS2265 Modern physics (6)

Disciplinary Electives (6 credits)
At least 6 credits selected from the following courses:
PHYS1150 Problem solving in physics (6)
PHYS2055 Introduction to relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)
PHYS2250 Introductory mechanics (6)
PHYS2255 Introductory electricity and magnetism (6)
PHYS2260 Heat and waves (6)

2. Advanced level courses (42 credits)

Disciplinary Core Courses (36 credits)
MATH3301 Algebra I (6)
MATH3401 Analysis I (6)
MATH4501 Geometry (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS4351 Advanced quantum mechanics (6)

Disciplinary Electives (6 credits)
At least 6 credits of advanced level Mathematics or Physics courses (MATH3XXX or MATH4XXX or MATH7XXX or PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list of courses include courses in List A and those courses not selected to fulfill the capstone requirement, but excluding MATH4966 Mathematics Internship.

List A
MATH3001 Development of mathematical ideas (6)
MATH3002 Mathematics seminar (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3303</td>
<td>Matrix theory and its applications (6)</td>
</tr>
<tr>
<td>MATH3304</td>
<td>Introduction to number theory (6)</td>
</tr>
<tr>
<td>MATH3403</td>
<td>Functions of a complex variable (6)</td>
</tr>
<tr>
<td>MATH3405</td>
<td>Differential equations (6)</td>
</tr>
<tr>
<td>MATH3408</td>
<td>Computational methods and differential equations with applications (6)</td>
</tr>
<tr>
<td>MATH3541</td>
<td>Introduction to topology (6)</td>
</tr>
<tr>
<td>MATH3600</td>
<td>Discrete mathematics (6)</td>
</tr>
<tr>
<td>MATH3601</td>
<td>Numerical analysis (6)</td>
</tr>
<tr>
<td>MATH3603</td>
<td>Probability theory (6)</td>
</tr>
<tr>
<td>MATH3901</td>
<td>Operations research I (6)</td>
</tr>
<tr>
<td>MATH3904</td>
<td>Introduction to optimization (6)</td>
</tr>
<tr>
<td>MATH3905</td>
<td>Queuing theory and simulation (6)</td>
</tr>
<tr>
<td>MATH3906</td>
<td>Financial calculus (6)</td>
</tr>
<tr>
<td>MATH3911</td>
<td>Game theory and strategy (6)</td>
</tr>
<tr>
<td>MATH3943</td>
<td>Network models in operations research (6)</td>
</tr>
<tr>
<td>MATH4302</td>
<td>Algebra II (6)</td>
</tr>
<tr>
<td>MATH4402</td>
<td>Analysis II (6)</td>
</tr>
<tr>
<td>MATH4404</td>
<td>Functional analysis (6)</td>
</tr>
<tr>
<td>MATH4406</td>
<td>Introduction to partial differential equations (6)</td>
</tr>
<tr>
<td>MATH4511</td>
<td>Introduction to differentiable manifolds (6)</td>
</tr>
<tr>
<td>MATH4602</td>
<td>Scientific computing (6)</td>
</tr>
<tr>
<td>MATH4602</td>
<td>Operations research II (6)</td>
</tr>
<tr>
<td>MATH4907</td>
<td>Numerical methods for financial calculus (6)</td>
</tr>
<tr>
<td>MATH7101</td>
<td>Intermediate complex analysis (6)</td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry (6)</td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds (6)</td>
</tr>
<tr>
<td>MATH7217</td>
<td>Topics in financial mathematics (6)</td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis (6)</td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory (6)</td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra (6)</td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics (6)</td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization (6)</td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology (6)</td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis (6)</td>
</tr>
<tr>
<td>PHYS3150</td>
<td>Theoretical physics (6)</td>
</tr>
<tr>
<td>PHYS3450</td>
<td>Electromagnetism (6)</td>
</tr>
<tr>
<td>PHYS3550</td>
<td>Statistical mechanics & thermodynamics (6)</td>
</tr>
<tr>
<td>PHYS3551</td>
<td>Introductory solid state physics (6)</td>
</tr>
<tr>
<td>PHYS3650</td>
<td>Observational astronomy (6)</td>
</tr>
<tr>
<td>PHYS3651</td>
<td>The physical universe (6)</td>
</tr>
<tr>
<td>PHYS3652</td>
<td>Principles of astronomy (6)</td>
</tr>
<tr>
<td>PHYS3750</td>
<td>Laser and spectroscopy (6)</td>
</tr>
<tr>
<td>PHYS3751</td>
<td>Physics of nanomaterials (6)</td>
</tr>
<tr>
<td>PHYS3850</td>
<td>Waves and optics (6)</td>
</tr>
<tr>
<td>PHYS3851</td>
<td>Atomic and nuclear physics (6)</td>
</tr>
<tr>
<td>PHYS4150</td>
<td>Computational physics (6)</td>
</tr>
<tr>
<td>PHYS4151</td>
<td>Data analysis and modeling in physics (6)</td>
</tr>
<tr>
<td>PHYS4350</td>
<td>Advanced classical mechanics (6)</td>
</tr>
<tr>
<td>PHYS4450</td>
<td>Advanced electromagnetism (6)</td>
</tr>
<tr>
<td>PHYS4550</td>
<td>Advanced statistical mechanics (6)</td>
</tr>
<tr>
<td>PHYS4551</td>
<td>Solid state physics (6)</td>
</tr>
<tr>
<td>PHYS4650</td>
<td>Stellar physics (6)</td>
</tr>
<tr>
<td>PHYS4651</td>
<td>Selected topics in astrophysics (6)</td>
</tr>
<tr>
<td>PHYS4652</td>
<td>Planetary science (6)</td>
</tr>
<tr>
<td>PHYS4653</td>
<td>Cosmology (6)</td>
</tr>
<tr>
<td>PHYS4654</td>
<td>General relativity (6)</td>
</tr>
<tr>
<td>PHYS4655</td>
<td>Interstellar medium (6)</td>
</tr>
<tr>
<td>PHYS4750</td>
<td>Experimental physics (6)</td>
</tr>
<tr>
<td>PHYS4850</td>
<td>Particle physics (6)</td>
</tr>
<tr>
<td>PHYS7350</td>
<td>Graduate classical mechanics (6)</td>
</tr>
<tr>
<td>PHYS7351</td>
<td>Graduate quantum mechanics (6)</td>
</tr>
<tr>
<td>PHYS7450</td>
<td>Graduate electromagnetism (6)</td>
</tr>
<tr>
<td>PHYS7550</td>
<td>Graduate statistical mechanics (6)</td>
</tr>
<tr>
<td>PHYS7551</td>
<td>Graduate solid state physics (6)</td>
</tr>
<tr>
<td>PHYS7650</td>
<td>Stellar atmospheres (6)</td>
</tr>
<tr>
<td>PHYS7750</td>
<td>Nanophysics (6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- MATH3999 Directed studies in mathematics (6)
- MATH4910 Senior mathematics seminar (6)
- MATH4911 Mathematics capstone project (6)
- MATH4966 Mathematics internship (6)
- MATH4999 Mathematics project (12)
- PHYS3999 Directed studies in physics (6)
- PHYS4966 Physics internship (6)
1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

6. (a) Students must have level 3 or above in HKDSE Physics or HKDSE Combined Science with Physics component or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry; and
(b) Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Mathematics/Physics
Offered to students: 2014
Admitted to Year 1 in

Objectives:
The Major in Mathematics/Physics aims to provide students with a solid foundation in both physics and mathematics. This major is catered especially for students interested in the more theoretical aspects of physics. It covers a wide range of core areas in both disciplines which form the blocks of fundamental knowledge for further specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics, electrodynamics, linear algebra, mathematical analysis, abstract algebra, complex variables, differential equations, modern differential geometry, etc. A large selection of elective courses is provided for students to pursue a broad spectrum of professional knowledge in mathematical and theoretical physics. Analytical thinking, quantitative reasoning and innovative ideas are fostered through the effective design of courses and research projects. The curriculum emphasizes experiential learning through internships, field studies and research projects supervised by experts. With the comprehensive training received, graduates are expected to be well-prepared for further studies and to pursue careers in many fields of science and engineering.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe physical systems with a rigorous representation using their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle physical problems with intellectual rigor theoretically (by means of coursework, tutorial classes and assessments in the curriculum)
PLO 3: apply mathematical theory and techniques to analyze physical problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Major in Mathematics
Major in Physics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming
Minor in Physics

Required courses (96 credits)
1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (36 credits)
 MATH1013 University mathematics II (6)
 MATH2101 Linear algebra I (6)
 MATH2211 Multivariable calculus (6)
 PHYS1250 Fundamental physics (6)
 PHYS2250 Introductory mechanics (6)
 PHYS2265 Modern physics (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (36 credits)
 MATH3301 Algebra I (6)
 MATH3401 Analysis I (6)
 MATH4501 Geometry (6)
 PHYS3350 Classical mechanics (6)
 PHYS3351 Quantum mechanics (6)
 PHYS4351 Advanced quantum mechanics (6)

Disciplinary Electives (6 credits)
At least 6 credits of advanced level Mathematics or Physics courses (MATH3XXX or MATH4XXX or MATH7XXX or PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list of courses include courses in List A and those courses not selected to fulfill the capstone requirement, but excluding MATH4966 Mathematics Internship.

List A
MATH3001 Development of mathematical ideas (6)
MATH3002 Mathematics seminar (6)
MATH3303 Matrix theory and its applications (6)
MATH3304 Introduction to number theory (6)
MATH3403 Functions of a complex variable (6)
MATH3405 Differential equations (6)
MATH3408 Computational methods and differential equations with applications (6)
MATH3541 Introduction to topology (6)
MATH3600 Discrete mathematics (6)
MATH3601 Numerical analysis (6)
MATH3603 Probability theory (6)
MATH3901 Operations research I (6)
MATH3904 Introduction to optimization (6)
MATH3905 Financial calculus (6)
MATH3911 Game theory and strategy (6)
MATH3943 Network models in operations research (6)
MATH4302 Algebra II (6)
MATH4402 Analysis II (6)
MATH4404 Functional analysis (6)
MATH4406 Introduction to partial differential equations (6)
MATH4511 Introduction to differentiable manifolds (6)
MATH4602 Scientific computing (6)
MATH4902 Operations research II (6)
MATH4907 Numerical methods for financial calculus (6)
MATH7101 Intermediate complex analysis (6)
MATH7201 Topics in geometry (6)
MATH7202 Complex manifolds (6)
MATH7217 Topics in financial mathematics (6)
MATH7219 Topics in applied functional analysis (6)
MATH7224 Topics in advanced probability theory (6)
MATH7501 Topics in algebra (6)
MATH7502 Topics in applied discrete mathematics (6)
MATH7503 Topics in mathematical programming and optimization (6)
MATH7504 Geometric topology (6)
MATH7505 Real analysis (6)
PHYS3150 Theoretical physics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics & thermodynamics (6)
PHYS3551 Introductory solid state physics (6)
PHYS3650 Observational astronomy (6)
PHYS3651 The physical universe (6)
PHYS3652 Principles of astronomy (6)
PHYS3750 Laser and spectroscopy (6)
PHYS3751 Physics of nanomaterials (6)
PHYS3850 Waves and optics (6)
PHYS3851 Atomic and nuclear physics (6)
PHYS4150 Computational physics (6)
PHYS4151 Data analysis and modeling in physics (6)
PHYS4350 Advanced classical mechanics (6)
PHYS4450 Advanced electromagnetism (6)
PHYS4550 Advanced statistical mechanics (6)
PHYS4551 Solid state physics (6)
PHYS4650 Stellar physics (6)
PHYS4651 Selected topics in astrophysics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4750 Experimental physics (6)
PHYS4850 Particle physics (6)
PHYS4950 Graduate classical mechanics (6)
PHYS4951 Graduate quantum mechanics (6)
PHYS4952 Graduate electromagnetism (6)
PHYS4955 Graduate statistical mechanics (6)
PHYS4956 Graduate solid state physics (6)
PHYS4957 Stellar atmospheres (6)
PHYS4958 Nanophysics (6)

3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
MATH3999 Directed studies in mathematics (6)
MATH4910 Senior mathematics seminar (6)
MATH4911 Mathematics capstone project (6)
MATH4966 Mathematics internship (6)
MATH4999 Mathematics project (12)
PHYS3999 Directed studies in physics (6)
PHYS4966 Physics internship (6)
PHYS4999 Physics project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

260
2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. (a) Students must have level 3 or above in HKDSE Physics or HKDSE Combined Science with Physics component or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry; and
(b) Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Major in Mathematics/Physics aims to provide students with a solid foundation in both physics and mathematics. This major is catered especially for students interested in the more theoretical aspects of physics. It covers a wide range of core areas in both disciplines which form the blocks of fundamental knowledge for further specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics, electrodynamics, linear algebra, mathematical analysis, abstract algebra, complex variables, differential equations, modern differential geometry, etc. A large selection of elective courses is provided for students to pursue a broad spectrum of professional knowledge in mathematical and theoretical physics. Analytical thinking, quantitative reasoning and innovative ideas are fostered through the effective design of courses and research projects. The curriculum emphasizes experiential learning through internships, field studies and research projects supervised by experts. With the comprehensive training received, graduates are expected to be well-prepared for further studies and to pursue careers in many fields of science and engineering.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: identify and describe physical systems with a rigorous representation using their professional knowledge (by means of coursework and tutorial classes in the curriculum)
- **PLO 2**: have developed their scientific intuition, abilities and techniques to tackle physical problems with intellectual rigor theoretically (by means of coursework, tutorial classes and assessments in the curriculum)
- **PLO 3**: apply mathematical theory and techniques to analyze physical problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
- **PLO 4**: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
- **PLO 5**: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
- Major in Mathematics
- Major in Physics
- Minor in Mathematics
- Minor in Operations Research & Mathematical Programming
- Minor in Physics

Required courses (96 credits)

1. Introductory level courses (48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
- SCNC1111: Scientific method and reasoning (6)
- SCNC1112: Fundamentals of modern science (6)

Disciplinary Core Courses (36 credits)
- MATH1013: University mathematics II (6)
- MATH2101: Linear algebra I (6)
- MATH2211: Multivariable calculus (6)
- PHYS1250: Fundamental physics (6)
- PHYS2250: Introductory mechanics (6)
- PHYS2265: Modern physics (6)

2. Advanced level courses (42 credits)

Disciplinary Core Courses (36 credits)
- MATH3301: Algebra I (6)
- MATH3401: Analysis I (6)
- MATH4501: Geometry (6)
- PHYS3350: Classical mechanics (6)
- PHYS3351: Quantum mechanics (6)
- PHYS4351: Advanced quantum mechanics (6)

Disciplinary Electives (6 credits)

At least 6 credits of advanced level Mathematics or Physics courses (MATH3XXX or MATH4XXX or MATH7XXX or PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list of courses include courses in List A and those courses not selected to fulfill the capstone requirement, but excluding MATH4966 Mathematics Internship.

List A
- MATH3001: Development of mathematical ideas (6)
- MATH3002: Mathematics seminar (6)
- MATH3303: Matrix theory and its applications (6)
- MATH3304: Introduction to number theory (6)
- MATH3403: Functions of a complex variable (6)
- MATH3405: Differential equations (6)
- MATH3408: Computational methods and differential equations with applications (6)
- MATH3541: Introduction to topology (6)
- MATH3600: Discrete mathematics (6)
- MATH3601: Numerical analysis (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3603</td>
<td>Probability theory</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH3901</td>
<td>Operations research I</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH3904</td>
<td>Introduction to optimization</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH3905</td>
<td>Queueing theory and simulation</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH3906</td>
<td>Financial calculus</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH3911</td>
<td>Game theory and strategy</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH3943</td>
<td>Network models in operations research</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH4302</td>
<td>Algebra II</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH4402</td>
<td>Analysis II</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH4404</td>
<td>Functional analysis</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH4406</td>
<td>Introduction to partial differential equations</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH4511</td>
<td>Introduction to differentiable manifolds</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH4602</td>
<td>Scientific computing</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH4902</td>
<td>Operations research II</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH4907</td>
<td>Numerical methods for financial calculus</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7101</td>
<td>Intermediate complex analysis</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7217</td>
<td>Topics in financial mathematics</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3150</td>
<td>Theoretical physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3450</td>
<td>Electromagnetism</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3550</td>
<td>Statistical mechanics & thermodynamics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3551</td>
<td>Introductory solid state physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3650</td>
<td>Observational astronomy</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3651</td>
<td>The physical universe</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3652</td>
<td>Principles of astronomy</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3750</td>
<td>Laser and spectroscopy</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3751</td>
<td>Physics of nanomaterials</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3850</td>
<td>Waves and optics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS3851</td>
<td>Atomic and nuclear physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4150</td>
<td>Computational physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4151</td>
<td>Data analysis and modeling in physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4350</td>
<td>Advanced classical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4450</td>
<td>Advanced electromagnetism</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4550</td>
<td>Advanced statistical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4551</td>
<td>Solid state physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4650</td>
<td>Stellar physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4651</td>
<td>Selected topics in astrophysics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4652</td>
<td>Planetary science</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4653</td>
<td>Cosmology</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4654</td>
<td>General relativity</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4655</td>
<td>Interstellar medium</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4750</td>
<td>Experimental physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4850</td>
<td>Particle physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7350</td>
<td>Graduate classical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7351</td>
<td>Graduate quantum mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7450</td>
<td>Graduate electromagnetism</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7550</td>
<td>Graduate statistical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7551</td>
<td>Graduate solid state physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7650</td>
<td>Stellar atmospheres</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7750</td>
<td>Nanophysics</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 - MATH3999: Directed studies in mathematics (6)
 - MATH4910: Senior mathematics seminar (6)
 - MATH4911: Mathematics capstone project (6)
 - MATH4966: Mathematics internship (6)
 - MATH4999: Mathematics project (12)
 - PHYS3999: Directed studies in physics (6)
 - PHYS4966: Physics internship (6)
 - PHYS4999: Physics project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. (a) Students must have level 3 or above in HKDSE Physics or HKDSE Combined Science with Physics component or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry; and

(b) Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Mathematics/Physics
Offered to students admitted to Year 1 in 2012

Objectives:
The Major in Mathematics/Physics aims to provide students with a solid foundation in both physics and mathematics. This major is catered especially for students interested in the more theoretical aspects of physics. It covers a wide range of core areas in both disciplines which form the blocks of fundamental knowledge for further specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics, electromodynamics, linear algebra, mathematical analysis, abstract algebra, complex variables, differential equations, modern differential geometry, etc. A large selection of elective courses is provided for students to pursue a broad spectrum of professional knowledge in mathematical and theoretical physics. Analytical thinking, quantitative reasoning and innovative ideas are fostered through the effective design of courses and research projects. The curriculum emphasizes experiential learning through internships, field studies and research projects supervised by experts. With the comprehensive training received, graduates are expected to be well-prepared for further studies and to pursue careers in many fields of science and engineering.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe physical systems with a rigorous representation using their professional knowledge (by means of coursework and tutorial classes in the curriculum)

PLO 2: have developed their scientific intuition, abilities and techniques to tackle physical problems with intellectual rigor theoretically (by means of coursework, tutorial classes and assessments in the curriculum)

PLO 3: apply mathematical theory and techniques to analyze physical problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)

PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Major in Mathematics
Major in Physics
Minor in Mathematics
Minor in Physics

Required courses (96 credits)
1. Introductory level courses (48 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 MATH1013 University mathematics II (6)
 MATH2101 Linear algebra I (6)
 MATH2211 Multivariable calculus (6)
 PHYS1250 Fundamental physics (6)
 PHYS2250 Introductory mechanics (6)
 PHYS2265 Modern physics (6)

2. Advanced level courses (42 credits)
 Disciplinary Core Courses (36 credits)
 MATH3301 Algebra I (6)
 MATH3401 Analysis I (6)
 MATH4501 Geometry (6)
 PHYS3350 Classical mechanics (6)
 PHYS3351 Quantum mechanics (6)
 PHYS4351 Advanced quantum mechanics (6)

 Disciplinary Electives (6 credits)
 At least 6 credits of advanced level Mathematics or Physics courses (MATH3XXX or MATH4XXX or MATH7XXX or PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list of courses include courses in List A and those courses not selected to fulfill the capstone requirement, but excluding MATH4966 Mathematics Internship.

 List A
 MATH3001 Development of mathematical ideas (6)
 MATH3002 Mathematics seminar (6)
 MATH3303 Matrix theory and its applications (6)
 MATH3304 Introduction to number theory (6)
 MATH3403 Functions of a complex variable (6)
 MATH3405 Differential equations (6)
 MATH3408 Computational methods and differential equations with applications (6)
 MATH3541 Introduction to topology (6)
 MATH3600 Discrete mathematics (6)
 MATH3601 Numerical analysis (6)
 MATH3603 Probability theory (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3901</td>
<td>Operations research I (6)</td>
<td></td>
</tr>
<tr>
<td>MATH3904</td>
<td>Introduction to optimization (6)</td>
<td></td>
</tr>
<tr>
<td>MATH3905</td>
<td>Queueing theory and simulation (6)</td>
<td></td>
</tr>
<tr>
<td>MATH3906</td>
<td>Financial calculus (6)</td>
<td></td>
</tr>
<tr>
<td>MATH3911</td>
<td>Game theory and strategy (6)</td>
<td></td>
</tr>
<tr>
<td>MATH3943</td>
<td>Network models in operations research (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4302</td>
<td>Algebra II (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4402</td>
<td>Analysis II (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4404</td>
<td>Functional analysis (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4406</td>
<td>Introduction to partial differential equations (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4511</td>
<td>Introduction to differentiable manifolds (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4602</td>
<td>Scientific computing (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4902</td>
<td>Operations research II (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4907</td>
<td>Numerical methods for financial calculus (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7101</td>
<td>Intermediate complex analysis (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7217</td>
<td>Topics in financial mathematics (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology (6)</td>
<td></td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS3150</td>
<td>Theoretical physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS3450</td>
<td>Electromagnetism (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS3550</td>
<td>Statistical mechanics & thermodynamics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS3551</td>
<td>Introductory solid state physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS3650</td>
<td>Observational astronomy (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS3651</td>
<td>The physical universe (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS3652</td>
<td>Principles of astronomy (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS3750</td>
<td>Laser and spectroscopy (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS3751</td>
<td>Physics of nanomaterials (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS3850</td>
<td>Waves and optics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS3851</td>
<td>Atomic and nuclear physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4150</td>
<td>Computational physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4151</td>
<td>Data analysis and modeling in physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4350</td>
<td>Advanced classical mechanics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4450</td>
<td>Advanced electromagnetism (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4550</td>
<td>Advanced statistical mechanics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4551</td>
<td>Solid state physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4650</td>
<td>Stellar physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4651</td>
<td>Selected topics in astrophysics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4652</td>
<td>Planetary science (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4653</td>
<td>Cosmology (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4654</td>
<td>General relativity (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4655</td>
<td>Interstellar medium (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4750</td>
<td>Experimental physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4850</td>
<td>Particle physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7350</td>
<td>Graduate classical mechanics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7351</td>
<td>Graduate quantum mechanics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7450</td>
<td>Graduate electromagnetism (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7550</td>
<td>Graduate statistical mechanics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7551</td>
<td>Graduate solid state physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7650</td>
<td>Stellar atmospheres (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7750</td>
<td>Nanophysics (6)</td>
<td></td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3999</td>
<td>Directed studies in mathematics (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4910</td>
<td>Senior mathematics seminar (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4911</td>
<td>Mathematics capstone project (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4966</td>
<td>Mathematics internship (6)</td>
<td></td>
</tr>
<tr>
<td>MATH4999</td>
<td>Mathematics project (12)</td>
<td></td>
</tr>
<tr>
<td>PHYS3999</td>
<td>Directed studies in physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4966</td>
<td>Physics internship (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4999</td>
<td>Physics project (12)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second
majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. (a) Students must have level 3 or above in HKDSE Physics or HKDSE Combined Science with Physics component or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry; and
(b) Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major in Molecular Biology & Biotechnology

Offered to students admitted to Year 1 in 2018

Objectives:
Recent advancements in Molecular Biology & Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 2: apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)

PLO 4: acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

Impermissible Combinations:
Major in Molecular Biology & Biotechnology (Intensive)
Minor in Molecular Biology & Biotechnology

Required courses (96 credits)
1. Introductory level courses (42 credits)

 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (24 credits)
 BIOL1110 From molecules to cells (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2220 Principles of biochemistry (6)

 BIOC2600 Basic biochemistry (6)

 Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both.
 BIOL2220 and BIOC2600 are mutually exclusive.

 Disciplinary Electives (6 credits)
 BIOL1309 Evolutionary diversity (6)
 BIOL2306 Ecology and evolution (6)

 Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.

2. Advanced level courses (48 credits)

 Disciplinary Core Courses (24 credits)
 BIOL3401 Molecular biology (6)
 BIOL3402 Cell biology and cell technology (6)
 BIOL4411 Plant and food biotechnology (6)
 BIOL4415 Healthcare biotechnology (6)

 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 BIOL3403 Immunology (6)
 BIOL3404 Protein structure and function (6)
 BIOL3406 Reproduction and reproductive biotechnology (6)
 BIOL3408 Genetics (6)
 BIOL3508 Microbial physiology and biotechnology (6)
 BIOL4401 Medical microbiology and applied immunology (6)
 BIOL4409 General virology (6)
 BIOL4416 Stem cells and regenerative biology (6)
 BIOL4417 ’Omics’ and systems biology (6)
 ENVS4110 Environmental remediation (6)
3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

BIOL3993	Directed studies in Molecular biology & biotechnology (6)
BIOL4963	Molecular biology & biotechnology internship (6)
BIOL4993	Molecular biology & biotechnology project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
Recent advancements in Molecular Biology & Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical research for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

- **PLO 2:** apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

- **PLO 3:** communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)

- **PLO 4:** acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

- **PLO 5:** gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

Impermissible Combinations:
- Major in Molecular Biology & Biotechnology (Intensive)
- Minor in Molecular Biology & Biotechnology

Required courses (96 credits)

1. **Introductory level courses (42 credits)**
 - **Disciplinary Core Courses: Science Foundation Courses (12 credits)**
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)
 - **Disciplinary Core Courses (24 credits)**
 - BIOL1110 From molecules to cells (6)
 - BIOL2102 Biostatistics (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry (6)
 - BIOL2600 Basic biochemistry (6)

2. **Advanced level courses (48 credits)**
 - **Disciplinary Core Courses (30 credits)**
 - BIOL3401 Molecular biology (6)
 - BIOL3402 Cell biology and cell technology (6)
 - BIOL3508 Microbial physiology and biotechnology (6)
 - BIOL4411 Plant and food biotechnology (6)
 - BIOL4415 Healthcare biotechnology (6)
 - **Disciplinary Electives (18 credits)**
 - At least 18 credits selected from the following courses:
 - BIOL3403 Immunology (6)
 - BIOL3404 Protein structure and function (6)
 - BIOL3406 Reproduction and reproductive biotechnology (6)
 - BIOL3408 Genetics (6)
 - BIOL3409 Business aspects of biotechnology (6)
 - BIOL4401 Medical microbiology and applied immunology (6)
 - BIOL4409 General virology (6)
 - BIOL4416 Stem cells and regenerative biology (6)
 - BIOL4417 ‘Omics’ and systems biology (6)
3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 - BIOL3993 Directed studies in Molecular biology & biotechnology (6)
 - BIOL4963 Molecular biology & biotechnology internship (6)
 - BIOL4993 Molecular biology & biotechnology project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Molecular Biology & Biotechnology

Offered to students admitted to Year 1 in 2016

Objectives:
Recent advancements in Molecular Biology & Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical research for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 2: apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)

PLO 4: acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

Impermissible Combinations:
Major in Molecular Biology & Biotechnology (Intensive)
Minor in Molecular Biology & Biotechnology

Required courses (96 credits)
1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (24 credits)
 BIOL1110 From molecules to cells (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2220 Principles of biochemistry (6)
 BIOL2306 Ecology and evolution (6)
 BIOL2600 Basic biochemistry (6)

 Take either BIOL2220 or BIOL2600 to fulfill this 24 credits requirement, but not both.
 BIOL2220 and BIOL2600 are mutually exclusive.

 Disciplinary Electives (6 credits)
 BIOL1309 Evolutionary diversity (6)
 BIOL2306 Ecology and evolution (6)

 Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (30 credits)
 BIOL3401 Molecular biology (6)
 BIOL3402 Cell biology and cell technology (6)
 BIOL3508 Microbial physiology and biotechnology (6)
 BIOL4411 Plant and food biotechnology (6)
 BIOL4415 Healthcare biotechnology (6)

 Disciplinary Electives (18 credits)
 At least 18 credits selected from the following courses:
 BIOL3403 Immunology (6)
 BIOL3404 Protein structure and function (6)
 BIOL3406 Reproduction and reproductive biotechnology (6)
 BIOL3408 Genetics (6)
 BIOL3409 Business aspects of biotechnology (6)
 BIOL4401 Medical microbiology and applied immunology (6)
 BIOL4409 General virology (6)
 BIOL4416 Stem cells and regenerative biology (6)
 BIOL4417 ‘Omics’ and systems biology (6)

 Take either BIOL3403 or BIOL4401 to fulfill this 6 credits requirement, but not both.
3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3993</td>
<td>Directed studies in Molecular biology & biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4963</td>
<td>Molecular biology & biotechnology internship</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4993</td>
<td>Molecular biology & biotechnology project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Molecular Biology & Biotechnology
Offered to students admitted to Year 1 in 2015

Objectives:
Recent advancements in Molecular Biology & Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 2: apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)

PLO 4: acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

Impermissible Combinations:
Major in Molecular Biology & Biotechnology (Intensive)
Minor in Molecular Biology & Biotechnology

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111 Scientific method and reasoning (6)
 - SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (24 credits)
 - BIOL1110 From molecules to cells (6)
 - BIOL2102 Biostatistics (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry (6)
 - BIOL2600 Basic biochemistry (6)
 Take either BIOL2220 or BIOL2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOL2600 are mutually exclusive.

 Disciplinary Electives (6 credits)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2306 Ecology and evolution (6)
 Take either BIOL1309 or BIOL2306 to fulfill this 6 credits requirement, but not both.

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (30 credits)
 - BIOL3401 Molecular biology (6)
 - BIOL3402 Cell biology and cell technology (6)
 - BIOL3508 Microbial physiology and biotechnology (6)
 - BIOL4402 Microbial biotechnology (6)
 - BIOL3403 Immunology (6)
 - BIOL4402 Healthcare biotechnology (6)
 Take either BIOL3508 or BIOL4402 to fulfill this 30 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

 Disciplinary Electives (18 credits)
 At least 18 credits selected from the following courses:
 - BIOL3404 Protein structure and function (6)
 - BIOL3405 Molecular microbiology (6)
3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
- BIOL3993 Directed studies in Molecular biology & biotechnology (6)
- BIOL4963 Molecular biology & biotechnology internship (6)
- BIOL4993 Molecular biology & biotechnology project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Molecular Biology & Biotechnology
Offered to students admitted to Year 1 in 2014

Objectives:
Recent advancements in Molecular Biology & Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 2: apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)

PLO 4: acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

Impermissible Combinations:
Major in Molecular Biology & Biotechnology (Intensive)
Minor in Molecular Biology & Biotechnology

Required courses (96 credits)

1. Introductory level courses (42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
- SCNC1111: Scientific method and reasoning (6)
- SCNC1112: Fundamentals of modern science (6)

Disciplinary Core Courses (24 credit)
- BIOL1110: From molecules to cells (6)
- BIOL2102: Biostatistics (6)
- BIOL2103: Biological sciences laboratory course (6)
- BIOL2220: Principles of biochemistry (6)

- BIOC2600: Basic biochemistry (6)

Disciplinary Electives (6 credits)
- BIOL1309: Evolutionary diversity (6)
- BIOL2306: Ecology and evolution (6)

2. Advanced level courses (48 credits)

Disciplinary Core Courses (30 credits)
- BIOL3401: Molecular biology (6)
- BIOL3402: Cell biology and cell technology (6)
- BIOL3508: Microbial physiology and biotechnology (6)

- BIOL3403: Immunology (6)
- BIOL3404: Protein structure and function (6)
- BIOL3405: Molecular microbiology (6)

Disciplinary Electives (18 credit)
At least 18 credits selected from the following courses:
- BIOL3508: Health care biotechnology (6)
- BIOL3508: Biomedical biotechnology (6)
- BIOL3508: Molecular biology (6)
- BIOL3508: Cell biology and cell technology (6)
- BIOL3508: Microbial physiology and biotechnology (6)
- BIOL3508: Immunology (6)
- BIOL3508: Protein structure and function (6)
- BIOL3508: Molecular microbiology (6)
3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
- BIOL3993 Directed studies in Molecular biology & biotechnology (6)
- BIOL4963 Molecular biology & biotechnology internship (6)
- BIOL4993 Molecular biology & biotechnology project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Molecular Biology & Biotechnology
Offered to students admitted to Year 1 in 2013

Objectives:
Recent advancements in Molecular Biology & Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 2: apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)

PLO 4: acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

Impermissible Combinations:
Major in Molecular Biology & Biotechnology (Intensive)
Minor in Molecular Biology & Biotechnology

Required courses (96 credits)

1. Introductory level courses (42 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)
- SCNC1111 Scientific method and reasoning (6)
- SCNC1112 Fundamentals of modern science (6)
Disciplinary Core Courses (24 credits)
- BIOL1110 From molecules to cells (6)
- BIOL2102 Biostatistics (6)
- BIOL2103 Biological sciences laboratory course (6)
- BIOL2220 Principles of biochemistry (6)
 Take either BIOL2220 or BIOC2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
- BIOC2600 Basic biochemistry (6)
Disciplinary Electives (6 credits)
- BIOL1309 Evolutionary diversity (6)
- BIOL2306 Ecology and evolution (6)

2. Advanced level courses (48 credits)
Disciplinary Core Courses (30 credits)
- BIOL3401 Molecular biology (6)
- BIOL3402 Cell biology and cell technology (6)
- BIOL3508 Microbial physiology and biotechnology (6)
 Take either BIOL3508 or BIOL4402 to fulfill this 30 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.
- BIOL4402 Microbial biotechnology (6)
- BIOL4411 Plant and food biotechnology (6)
- BIOL4415 Healthcare biotechnology (6)
 Take either BIOL3508 or BIOL4402 to fulfill this 30 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
- BIOL3403 Immunology (6)
- BIOL3404 Protein structure and function (6)
- BIOL3405 Molecular microbiology (6)
BIOL3406 Reproduction and reproductive biotechnology (6)
BIOL3408 Genetics (6)
BIOL3409 Business aspects of biotechnology (6)
BIOL4401 Medical microbiology and applied immunology (6)
BIOL4409 General virology (6)
BIOL4416 Stem cells and regenerative biology (6)
BIOL4417 'Omics' and systems biology (6)
ENVS4110 Environmental remediation (6)

3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 - BIOL3993 Directed studies in Molecular biology & biotechnology (6)
 - BIOL4963 Molecular biology & biotechnology internship (6)
 - BIOL4993 Molecular biology & biotechnology project (12)

Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Molecular Biology & Biotechnology

Offered to students admitted to Year 1 in 2012

Objectives:
Recent advancements in Molecular Biology & Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major offers specialized training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 2: apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)

PLO 4: acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

Impermissible Combinations:
Major in Molecular Biology & Biotechnology (Intensive)
Minor in Molecular Biology & Biotechnology

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (24 credits)
 BIOL1110 From molecules to cells (6)
 BIOL2102 Biostatistics (6)
 BIOL2103 Biological sciences laboratory course (6)
 BIOL2220 Principles of biochemistry (6)
 BIOC2600 Basic biochemistry (6)
 Take either BIOL2220 or BIOL2600 to fulfill this 24 credits requirement, but not both. BIOL2220 and BIOL2600 are mutually exclusive.

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (30 credits)
 BIOL3401 Molecular biology (6)
 BIOL3402 Cell biology and cell technology (6)
 BIOL3508 Microbial physiology and biotechnology (6)
 BIOL4402 Microbial biotechnology (6)
 BIOL4411 Plant and food biotechnology (6)
 BIOL4415 Healthcare biotechnology (6)
 Take either BIOL3508 or BIOL4402 to fulfill this 30 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

 Disciplinary Electives (18 credits)
 At least 18 credits selected from the following courses:
 BIOL3403 Immunology (6)
 BIOL3404 Protein structure and function (6)
 BIOL3405 Molecular microbiology (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3406</td>
<td>Reproduction and reproductive biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3408</td>
<td>Genetics</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3409</td>
<td>Business aspects of biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4401</td>
<td>Medical microbiology and applied immunology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4409</td>
<td>General virology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4416</td>
<td>Stem cells and regenerative biology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4417</td>
<td>‘Omics’ and systems biology</td>
<td>(6)</td>
</tr>
<tr>
<td>ENV44110</td>
<td>Environmental remediation</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3993</td>
<td>Directed studies in Molecular biology & biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4963</td>
<td>Molecular biology & biotechnology internship</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4993</td>
<td>Molecular biology & biotechnology project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Molecular Biology & Biotechnology (Intensive)

Offered to students admitted to Year 1 in 2018

Objectives:
Recent advancements in Molecular Biology & Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major aims to provide comprehensive training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

The intensive major involves additional coursework and research/capstone experience. It is designed for students with interest on a fuller scope of the discipline or planning to pursue research studies for a higher degree in any area of life science.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 2: apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)

PLO 4: acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

PLO 6: equip with knowledges in chemistry, mathematics, statistics, or computer programming, with sufficient depth and breadth to apply these knowledges within a biological context (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 7: solve a scientific question empirically by designing and implementing experiments, learning new experimental skills and tackling experimental errors, reporting results unbiasedly and systematically (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

Impermissible Combinations:
Major in Biological Sciences
Major in Molecular Biology & Biotechnology
Minor in Molecular Biology & Biotechnology

Required courses (144 credits)

1. Introductory level courses (66 credits)

<table>
<thead>
<tr>
<th>Disciplinary Core Courses: Science Foundation Courses (12 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111 Scientific method and reasoning (6)</td>
</tr>
<tr>
<td>SCNC1112 Fundamentals of modern science (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Courses (42 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110 From molecules to cells (6)</td>
</tr>
<tr>
<td>CHEM1042 General chemistry I (6)</td>
</tr>
<tr>
<td>CHEM1043 General chemistry II (6)</td>
</tr>
<tr>
<td>BIOL2102 Biostatistics (6)</td>
</tr>
<tr>
<td>BIOL2103 Biological sciences laboratory course (6)</td>
</tr>
<tr>
<td>BIOL2220 Principles of biochemistry (6)</td>
</tr>
<tr>
<td>BIOL2409 Biotechnology industry and entrepreneurship (6)</td>
</tr>
<tr>
<td>BIOC2600 Basic biochemistry (6)</td>
</tr>
</tbody>
</table>

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both.
BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

<table>
<thead>
<tr>
<th>Disciplinary Electives (12 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1309 Evolutionary diversity (6)</td>
</tr>
<tr>
<td>BIOL2306 Ecology and evolution (6)</td>
</tr>
</tbody>
</table>

May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.

Note 1: BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2408</td>
<td>Green earth-plants and mankind (6)</td>
<td></td>
</tr>
<tr>
<td>COMP1117</td>
<td>Computer programming (6)</td>
<td></td>
</tr>
<tr>
<td>MATH1011</td>
<td>University mathematics I (6)</td>
<td></td>
</tr>
<tr>
<td>MATH1013</td>
<td>University mathematics II (6)</td>
<td></td>
</tr>
</tbody>
</table>

2. Advanced level courses (66 credits)

Disciplinary Core Courses (30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3401</td>
<td>Molecular biology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3402</td>
<td>Cell biology and cell technology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4411</td>
<td>Plant and food biotechnology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4415</td>
<td>Healthcare biotechnology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4417</td>
<td>'Omics' and systems biology (6)</td>
<td></td>
</tr>
</tbody>
</table>

Disciplinary Electives (36 credits)

Plus at least 36 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3107</td>
<td>Plant physiology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3205</td>
<td>Human physiology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3403</td>
<td>Immunology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3404</td>
<td>Protein structure and function (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3406</td>
<td>Reproduction and reproductive biotechnology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3408</td>
<td>Genetics (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3508</td>
<td>Microbial physiology and biotechnology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4401</td>
<td>Medical microbiology and applied immunology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4409</td>
<td>General virology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4416</td>
<td>Stem cells and regenerative biology (6)</td>
<td></td>
</tr>
<tr>
<td>ENVS4110</td>
<td>Environmental remediation (6)</td>
<td></td>
</tr>
</tbody>
</table>

3. Capstone requirement (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL4993</td>
<td>Molecular biology & biotechnology project (12)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. These are core courses in the regular Molecular Biology and Biotechnology Major (96 credits) curriculum.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Science Majors

Major Title: Major in Molecular Biology & Biotechnology (Intensive)
Offered to students admitted to Year 1 in 2017

Objectives:
Recent advancements in Molecular Biology & Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major aims to provide comprehensive training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

The intensive major involves additional coursework and research/capstone experience. It is designed for students with interest on a fuller scope of the discipline or planning to pursue research studies for a higher degree in any area of life science.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 2: apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)

PLO 4: acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

PLO 6: equip with knowledges in chemistry, mathematics, statistics, or computer programming, with sufficient depth and breadth to apply these knowledges within a biological context (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 7: solve a scientific question empirically by designing and implementing experiments, learning new experimental skills and tackling experimental errors, reporting results unbiasedly and systematically (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

Impermissible Combinations:
Major in Biological Sciences
Major in Molecular Biology & Biotechnology
Minor in Molecular Biology & Biotechnology

Required courses (144 credits)

1. Introductory level courses (66 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111</td>
<td>Scientific method and reasoning</td>
<td>6</td>
</tr>
<tr>
<td>SCNC1112</td>
<td>Fundamentals of modern science</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Core Courses (42 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110</td>
<td>From molecules to cells</td>
<td>6</td>
</tr>
<tr>
<td>CHEM1042</td>
<td>General chemistry I</td>
<td>6</td>
</tr>
<tr>
<td>CHEM1043</td>
<td>General chemistry II</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2102</td>
<td>Biostatistics</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2103</td>
<td>Biological sciences laboratory course</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2220</td>
<td>Principles of biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2409</td>
<td>Biotechnology industry and entrepreneurship</td>
<td>6</td>
</tr>
<tr>
<td>BIOC2600</td>
<td>Basic biochemistry</td>
<td>6</td>
</tr>
</tbody>
</table>

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

Disciplinary Electives (12 credits)

Plus at least 12 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1309</td>
<td>Evolutionary diversity</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2306</td>
<td>Ecology and evolution</td>
<td>6</td>
</tr>
</tbody>
</table>

May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.

Note 1: BIOL2220 and BIOC2600 are mutually exclusive.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2408</td>
<td>Green earth-plants and mankind</td>
<td>(6)</td>
</tr>
<tr>
<td>COMP1117</td>
<td>Computer programming</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH1011</td>
<td>University mathematics I</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH1013</td>
<td>University mathematics II</td>
<td>(6)</td>
</tr>
</tbody>
</table>

2. Advanced level courses (66 credits)

Disciplinary Core Courses (30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3401</td>
<td>Molecular biology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3402</td>
<td>Cell biology and cell technology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4411</td>
<td>Plant and food biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4415</td>
<td>Healthcare biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4417</td>
<td>‘Omic’ and systems biology</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Disciplinary Electives (36 credits)

Plus at least 36 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3107</td>
<td>Plant physiology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3205</td>
<td>Human physiology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3403</td>
<td>Immunology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3404</td>
<td>Protein structure and function</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3406</td>
<td>Reproduction and reproductive biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3408</td>
<td>Genetics</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3508</td>
<td>Microbial physiology and biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4401</td>
<td>Medical microbiology and applied immunology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4409</td>
<td>General virology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4416</td>
<td>Stem cells and regenerative biology</td>
<td>(6)</td>
</tr>
<tr>
<td>ENVS4110</td>
<td>Environmental remediation</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL4993</td>
<td>Molecular biology & biotechnology project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:
1. These are core courses in the regular Molecular Biology and Biotechnology Major (96 credits) curriculum.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
Recent advancements in Molecular Biology & Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major aims to provide comprehensive training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

The intensive major involves additional coursework and research/capstone experience. It is designed for students with interest on a fuller scope of the discipline or planning to pursue research studies for a higher degree in any area of life science.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 2: apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 3: communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)

PLO 4: acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 5: gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)

PLO 6: equip with knowledges in chemistry, mathematics, statistics, or computer programming, with sufficient depth and breadth to apply these knowledges within a biological context (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

PLO 7: solve a scientific question empirically by designing and implementing experiments, learning new experimental skills and tackling experimental errors, reporting results unbiasedly and systematically (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

Impermissible Combinations:
Major in Biological Sciences
Major in Molecular Biology & Biotechnology
Minor in Molecular Biology & Biotechnology

Required courses (144 credits)
1. Introductory level courses (66 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6) (Note 1)
 SCNC1112 Fundamentals of modern science (6) (Note 1)

Disciplinary Core Courses (42 credits)
 BIOL1110 From molecules to cells (6) (Note 1)
 CHEM1042 General chemistry I (6)
 CHEM1043 General chemistry II (6)
 BIOL2102 Biostatistics (6) (Note 1)
 BIOL2103 Biological sciences laboratory course (6) (Note 1)
 BIOL2220 Principles of biochemistry (6)
 BIOL2409 Biotechnology industry and entrepreneurship (6)
 BIOC2600 Basic biochemistry (6) Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

Disciplinary Electives (12 credits)
 Plus at least 12 credits selected from the following courses:
 BIOL1309 Evolutionary diversity (6) May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
 BIOL2306 Ecology and evolution (6) May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2408</td>
<td>Green earth-plants and mankind</td>
<td>6</td>
</tr>
<tr>
<td>COMP1117</td>
<td>Computer programming</td>
<td>6</td>
</tr>
<tr>
<td>MATH1011</td>
<td>University mathematics I</td>
<td>6</td>
</tr>
<tr>
<td>MATH1013</td>
<td>University mathematics II</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Advanced level courses (66 credits)

Disciplinary Core Courses (30 credits)

- BIOL3401 Molecular biology (6) (Note 1)
- BIOL3402 Cell biology and cell technology (6) (Note 1)
- BIOL4411 Plant and food biotechnology (6) (Note 1)
- BIOL4415 Healthcare biotechnology (6) (Note 1)
- BIOL4417 'Omics' and systems biology (6)

Disciplinary Electives (36 credits)

Plus at least 36 credits selected from the following courses:

- BIOL3107 Plant physiology (6)
- BIOL3205 Human physiology (6)
- BIOL3403 Immunology (6)
- BIOL3404 Protein structure and function (6)
- BIOL3406 Reproduction and reproductive biotechnology (6)
- BIOL3408 Genetics (6)
- BIOL3508 Microbial physiology and biotechnology (6)
- BIOL4401 Medical microbiology and applied immunology (6)
- BIOL4409 General virology (6)
- BIOL4416 Stem cells and regenerative biology (6)
- ENV4110 Environmental remediation (6)

3. Capstone requirement (12 credits)

- BIOL4993 Molecular biology & biotechnology project (12)

Notes:

1. These are core courses in the regular Molecular Biology and Biotechnology Major (96 credits) curriculum.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Science Majors

Major Title

Major in Molecular Biology & Biotechnology (Intensive)

Offered to students admitted to Year 1 in:

2015

Objectives:

Recent advancements in Molecular Biology & Biotechnology have not only cracked important and fundamental problems in life sciences, but also emerged as a mainstay of science and technologies of the 21st century. Innovations from advances in these fields have substantially transformed our daily lives, society and environment. This Major aims to provide comprehensive training in state-of-the-art molecular and cell biology, and in the translation of basic knowledge into modern industrial and medical applications. Students will be able to gain an understanding of cutting edge molecular biology and biotechnological applications, ranging from exploitation of bioactive substances, genetic engineering for agricultural production, fisheries and aquaculture, biomedical researches for pharmaceutical and clinical purposes, biofuels as alternative energy sources, bioremediation for cleaning up contaminated environments, and wastewater treatment. Built upon a sound theoretical foundation, students will further develop various essential skills in molecular biology and biotechnology through hands-on laboratory trainings and experimental biology-based projects. A feature of this major is to provide key transferable skills by engaging students in inquiry, critical thinking, and problem solving in their learning.

The intensive major involves additional coursework and research/capstone experience. It is designed for students with interest on a fuller scope of the discipline or planning to pursue research studies for a higher degree in any area of life science.

This intensive major has been accredited by the Royal Society of Biology (RSB), UK, for the purpose of meeting in part the academic and experience requirement for the Membership and Chartered Biologist (CBiol).

Learning Outcomes:

By the end of this programme, students should be able to:

- **PLO 1:** describe key concepts in molecular biology and modern biotechnology using knowledge from cell biology, microbiology, biochemistry, immunology, omics and systems biology (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
- **PLO 2:** apply laboratory techniques essential to modern molecular science (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
- **PLO 3:** communicate in written and oral communication skills and collaborate with other students effectively (by means of coursework, research-based learning and presentation opportunities in the curriculum)
- **PLO 4:** acquire scientific inquiry and critical thinking skills, including the ability to understand, analyze, and evaluate debated problems in the field and develop solutions, and appraise the related ethical issues (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
- **PLO 5:** gain insights into real-life experience in the applications of biotechnology for human health, agriculture, and the environment (by means of coursework, laboratory-based and experiential learning in the curriculum)
- **PLO 6:** equip with knowledges in chemistry, mathematics, statistics, or computer programming, with sufficient depth and breadth to apply these knowledges within a biological context (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)
- **PLO 7:** solve a scientific question empirically by designing and implementing experiments, learning new experimental skills and tackling experimental errors, reporting results unbiasedly and systematically (by means of coursework and laboratory-based and/or research-based opportunities in the curriculum)

Impermissible Combinations:

- Major in Biological Sciences
- Major in Molecular Biology & Biotechnology
- Minor in Molecular Biology & Biotechnology

Required courses (144 credits)

1. Introductory level courses (66 credits)

<table>
<thead>
<tr>
<th>Disciplinary Core Courses: Science Foundation Courses (12 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111 Scientific method and reasoning (6)</td>
</tr>
<tr>
<td>SCNC1112 Fundamentals of modern science (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Courses (42 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110 From molecules to cells (6)</td>
</tr>
<tr>
<td>CHEM1042 General chemistry I (6)</td>
</tr>
<tr>
<td>CHEM1043 General chemistry II (6)</td>
</tr>
<tr>
<td>BIOL2102 Biostatistics (6)</td>
</tr>
<tr>
<td>BIOL2103 Biological sciences laboratory course (6)</td>
</tr>
<tr>
<td>BIOL2220 Principles of biochemistry (6)</td>
</tr>
<tr>
<td>BIOL2409 Biotechnology industry and entrepreneurship (6)</td>
</tr>
<tr>
<td>BIOC2600 Basic biochemistry (6)</td>
</tr>
</tbody>
</table>

Take either BIOL2220 or BIOC2600 to fulfill this 42 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive. (Note 1)

Disciplinary Electives (12 credits)

Plus at least 12 credits selected from the following courses:

| BIOL1309 Evolutionary diversity (6) |
| BIOC2306 Ecology and evolution (6) |

May take either BIOL1309 or BIOC2306 to fulfill this 12 credits requirement, but not both.
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2408</td>
<td>Green earth-plants and mankind</td>
<td>(6)</td>
</tr>
<tr>
<td>COMP1117</td>
<td>Computer programming</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH1011</td>
<td>University mathematics I</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH1013</td>
<td>University mathematics II</td>
<td>(6)</td>
</tr>
</tbody>
</table>

2. Advanced level courses (66 credits)

Disciplinary Core Courses (30 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3401</td>
<td>Molecular biology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3402</td>
<td>Cell biology and cell technology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4411</td>
<td>Plant and food biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4415</td>
<td>Healthcare biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4417</td>
<td>'Omics' and systems biology</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Disciplinary Electives (36 credits)

Plus at least 36 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3107</td>
<td>Plant physiology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3205</td>
<td>Human physiology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3403</td>
<td>Immunology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3404</td>
<td>Protein structure and function</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3406</td>
<td>Reproduction and reproductive biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3408</td>
<td>Genetics</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL3508</td>
<td>Microbial physiology and biotechnology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4401</td>
<td>Medical microbiology and applied immunology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4409</td>
<td>General virology</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4416</td>
<td>Stem cells and regenerative biology</td>
<td>(6)</td>
</tr>
<tr>
<td>ENV54110</td>
<td>Environmental remediation</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (12 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL4993</td>
<td>Molecular biology & biotechnology project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:
1. These are core courses in the regular Molecular Biology and Biotechnology Major (96 credits) curriculum.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Physics
Offered to students admitted to Year 1 in 2018

Objectives:
The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g., quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e., subatomic particles) to the large scale (i.e., cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)

PLO 2: have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)

PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)

PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

PLO 5: apply scientific and quantitative methods in tackling problems in research or real-word setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Minor in Physics

Required courses (96 credits)

1. Introductory level courses (48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
- SCNC1111 Scientific method and reasoning (6)
- SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (24 credits)
- PHYS2250 Introductory mechanics (6)
- PHYS2255 Introductory electricity and magnetism (6)
- PHYS2261 Introductory heat and thermodynamics (6)
- PHYS2265 Modern physics (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
- PHYS1150 Problem solving in physics (6)
- PHYS2055 Introduction to relativity (6)
- PHYS2150 Methods in physics I (6)
- PHYS2155 Methods in physics II (6)

2. Advanced level courses (42 credits)

Disciplinary Electives (42 credits)
At least 24 credits selected from courses in List A:
List A
- PHYS3150 Theoretical physics (6)
- PHYS3350 Classical mechanics (6)
- PHYS3351 Quantum mechanics (6)
- PHYS3450 Electromagnetism (6)
- PHYS3550 Statistical mechanics & thermodynamics (6)
- PHYS3760 Physics laboratory (6)

Plus at least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in Lists A and B and those courses not selected to fulfill the capstone requirements.

List B
- PHYS3151 Machine learning in physics (6)
- PHYS3650 Observational astronomy (6)
- PHYS3653 Astrophysics (6)
- PHYS3660 Astronomy laboratory (6)
- PHYS3750 Laser and spectroscopy (6)
- PHYS3850 Waves and optics (6)
- PHYS3851 Atomic and nuclear physics (6)
- PHYS4150 Computational physics (6)
- PHYS4151 Data analysis and modeling in physics (6)
- PHYS4351 Advanced quantum mechanics (6)
- PHYS4450 Advanced electromagnetism (6)
- PHYS4551 Solid state physics (6)
- PHYS4652 Planetary science (6)
- PHYS4653 Cosmology (6)
3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- PHYS3999 Directed studies in physics (6)
- PHYS4966 Physics internship (6)
- PHYS4999 Physics project (12)

Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

7. Those who want to specialize in the astrophysics theme should pass any three of the following courses: PHYS3650 Observational astronomy, PHYS3652 Astronomy laboratory, PHYS4552 Planetary science, PHYS4654 General relativity, PHYS4655 Interstellar medium, and PHYS4656 Advanced astrophysics, out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in astrophysics.

8. Those who want to specialize in the computational physics theme should pass any three of the following courses: PHYS3150 Theoretical physics, PHYS3151 Machine learning in physics, PHYS4150 Computational physics, and PHYS4151 Data analysis and modeling in physics, out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in computational physics.

9. Those who want to specialize in the experimental physics theme should pass PHYS3760 Physics laboratory, plus any two of the following courses: PHYS3751 Laser and spectroscopy, PHYS3851 Atomic and nuclear physics, PHYS4151 Data analysis and modeling in physics, PHYS4551 Solid state physics, and PHYS4850 Particle physics out of which at least one must be a 4000+ level course, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in experimental physics.

10. Those who want to specialize in the theoretical physics theme should pass any four of the following courses: PHYS3350 Classical mechanics, PHYS3351 Quantum mechanics, PHYS3450 Electromagnetism, PHYS3550 Statistical mechanics & thermodynamics, PHYS4351 Advanced quantum mechanics, PHYS4450 Advanced electromagnetism, PHYS4551 Solid state physics, PHYS4654 General relativity, PHYS4850 Particle physics, PHYS7351 Graduate quantum mechanics, PHYS7450 Graduate electromagnetism, PHYS7550 Graduate statistical mechanics, out of which at least two must be 4000+ level courses, as well as passing either PHYS3999 Directed studies in physics or PHYS4999 Physics project with topics of study in theoretical physics.

11. Upon prior approval, one may use PHYS4966 Physics internship to replace PHYS3999 Directed studies in physics or PHYS4999 Physics project requirement in one of the theme specializations by a regular course in the same theme of specialization.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Physics
Offered to students: admitted to Year 1 in 2017

Objectives:
The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g., quantum mechanics, statistical mechanics, classical mechanics, and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e., subatomic particles) to the large scale (i.e., cosmology). Students will attain professional knowledge in physics, research experience, and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1	identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2	have developed their scientific intuition, abilities, and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes, and laboratory works in the curriculum)
PLO 3	analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes, and research-based projects in the curriculum)
PLO 4	communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions, and presentation opportunities in the curriculum)
PLO 5	apply scientific and quantitative methods in tackling problems in research or real-word setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Major in Mathematics/Physics
Minor in Physics

Required courses (96 credits)

1. **Introductory level courses (48 credits)**

 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111: Scientific method and reasoning (6)
 - SCNC1112: Fundamentals of modern science (6)

 Disciplinary Core Courses (30 credits)
 - PHYS1250: Fundamental physics (6)
 - PHYS2250: Introductory mechanics (6)
 - PHYS2255: Introductory electricity and magnetism (6)
 - PHYS2260: Heat and waves (6)
 - PHYS2265: Modern physics (6)

 Disciplinary Electives (6 credits)
 - At least 6 credits selected from the following courses:
 - PHYS1150: Problem solving in physics (6)
 - PHYS2055: Introduction to relativity (6)
 - PHYS2150: Methods in physics I (6)
 - PHYS2155: Methods in physics II (6)

2. **Advanced level courses (42 credits)**

 Disciplinary Core Courses (24 credits)
 - PHYS3350: Classical mechanics (6)
 - PHYS3351: Quantum mechanics (6)
 - PHYS3450: Electromagnetism (6)
 - PHYS3550: Statistical mechanics & thermodynamics (6)

 Disciplinary Electives (18 credits)
 - At least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone requirements.

 List A
 - PHYS3150: Theoretical physics (6)
 - PHYS3551: Introductory solid state physics (6)
 - PHYS3650: Observational astronomy (6)
 - PHYS3651: The physical universe (6)
 - PHYS3652: Principles of astronomy (6)
 - PHYS3750: Laser and spectroscopy (6)
 - PHYS3751: Physics of nanomaterials (6)
 - PHYS3850: Waves and optics (6)
 - PHYS3851: Atomic and nuclear physics (6)
 - PHYS4150: Computational physics (6)
 - PHYS4151: Data analysis and modeling in physics (6)
 - PHYS4350: Advanced classical mechanics (6)
 - PHYS4351: Advanced quantum mechanics (6)
 - PHYS4450: Advanced electromagnetism (6)
 - PHYS4550: Advanced statistical mechanics (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS4551</td>
<td>Solid state physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4650</td>
<td>Stellar physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4651</td>
<td>Selected topics in astrophysics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4652</td>
<td>Planetary science</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4653</td>
<td>Cosmology</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4654</td>
<td>General relativity</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4655</td>
<td>Interstellar medium</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4750</td>
<td>Experimental physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4850</td>
<td>Particle physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7350</td>
<td>Graduate classical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7351</td>
<td>Graduate quantum mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7450</td>
<td>Graduate electromagnetism</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7550</td>
<td>Graduate statistical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7551</td>
<td>Graduate solid state physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7650</td>
<td>Stellar atmospheres</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7750</td>
<td>Nanophysics</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. **Capstone requirement (6 credits)**

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3999</td>
<td>Directed studies in physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4966</td>
<td>Physics internship</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4999</td>
<td>Physics project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Physics
Offered to students admitted to Year 1 in 2016

Objectives:
The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics, and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e., subatomic particles) to the large scale (i.e., cosmology). Students will attain professional knowledge in physics, research experience, and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)

PLO 2: have developed their scientific intuition, abilities, and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes, and laboratory works in the curriculum)

PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes, and research-based projects in the curriculum)

PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions, and presentation opportunities in the curriculum)

PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local, and foreign internships attached to universities, research centers, government bodies, NGOs, and influential companies)

Impermissible Combinations:
Major in Mathematics/Physics
Minor in Physics

Required courses (96 credits)

1. Introductory level courses (48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
SCNC1111 Scientific method and reasoning (6)
SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (30 credits)
PHYS1250 Fundamental physics (6)
PHYS2250 Introductory mechanics (6)
PHYS2255 Introductory electricity and magnetism (6)
PHYS2260 Heat and waves (6)
PHYS2265 Modern physics (6)

Disciplinary Electives (6 credits)
At least 6 credits selected from the following courses:
PHYS1150 Problem solving in physics (6)
PHYS2050 Introduction to relativity (6)
PHYS2150 Methods in physics I (6)
PHYS2155 Methods in physics II (6)

2. Advanced level courses (42 credits)

Disciplinary Core Courses (24 credits)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics & thermodynamics (6)

Disciplinary Electives (18 credits)
At least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone requirements.

List A
PHYS3150 Theoretical physics (6)
PHYS3551 Introductory solid state physics (6)
PHYS3650 Observational astronomy (6)
PHYS3651 The physical universe (6)
PHYS3652 Principles of astronomy (6)
PHYS3750 Laser and spectroscopy (6)
PHYS3751 Physics of nanomaterials (6)
PHYS3850 Waves and optics (6)
PHYS3851 Atomic and nuclear physics (6)
PHYS4150 Computational physics (6)
PHYS4151 Data analysis and modeling in physics (6)
PHYS4350 Advanced classical mechanics (6)
PHYS4351 Advanced quantum mechanics (6)
PHYS4450 Advanced electromagnetism (6)
PHYS4550 Advanced statistical mechanics (6)
PHYS4551 Solid state physics (6)
PHYS4650 Stellar physics (6)
PHYS4651 Selected topics in astrophysics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4750 Experimental physics (6)
PHYS4850 Particle physics (6)
PHYS7350 Graduate classical mechanics (6)
PHYS7351 Graduate quantum mechanics (6)
PHYS7450 Graduate electromagnetism (6)
PHYS7550 Graduate statistical mechanics (6)
PHYS7551 Graduate solid state physics (6)
PHYS7650 Stellar atmospheres (6)
PHYS7750 Nanophysics (6)

3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
PHYS3999 Directed studies in physics (6)
PHYS4966 Physics internship (6)
PHYS4999 Physics project (12)

Notes:
1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.
2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.
3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.
5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.
6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Physics
Offered to students admitted to Year 1 in 2015

Objectives:
The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)

PLO 2: have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)

PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)

PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

PLO 5: apply scientific and quantitative methods in tackling problems in research or real-word setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Major in Mathematics/Physics
Minor in Physics

Required courses (96 credits)

1. Introductory level courses (48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
- SCNC1111 Scientific method and reasoning (6)
- SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (30 credits)
- PHYS1250 Fundamental physics (6)
- PHYS2250 Introductory mechanics (6)
- PHYS2255 Introductory electricity and magnetism (6)
- PHYS2260 Heat and waves (6)
- PHYS2265 Modern physics (6)

Disciplinary Electives (6 credits)
At least 6 credits selected from the following courses:
- PHYS1150 Problem solving in physics (6)
- PHYS2050 Introduction to relativity (6)
- PHYS2150 Methods in physics I (6)
- PHYS2155 Methods in physics II (6)

2. Advanced level courses (42 credits)

Disciplinary Core Courses (24 credits)
- PHYS3350 Classical mechanics (6)
- PHYS3351 Quantum mechanics (6)
- PHYS3450 Electromagnetism (6)
- PHYS3550 Statistical mechanics & thermodynamics (6)

Disciplinary Electives (18 credits)
At least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone requirements.

List A
- PHYS3150 Theoretical physics (6)
- PHYS3551 Introductory solid state physics (6)
- PHYS3650 Observational astronomy (6)
- PHYS3651 The physical universe (6)
- PHYS3652 Principles of astronomy (6)
- PHYS3750 Laser and spectroscopy (6)
- PHYS3751 Physics of nanomaterials (6)
- PHYS3850 Waves and optics (6)
- PHYS3851 Atomic and nuclear physics (6)
- PHYS4150 Computational physics (6)
- PHYS4151 Data analysis and modeling in physics (6)
- PHYS4350 Advanced classical mechanics (6)
- PHYS4450 Advanced quantum mechanics (6)
- PHYS4455 Advanced electromagnetism (6)
- PHYS4550 Advanced statistical mechanics (6)
Science Majors

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS4551</td>
<td>Solid state physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4650</td>
<td>Stellar physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4651</td>
<td>Selected topics in astrophysics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4652</td>
<td>Planetary science</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4653</td>
<td>Cosmology</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4654</td>
<td>General relativity</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4655</td>
<td>Interstellar medium</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4750</td>
<td>Experimental physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4850</td>
<td>Particle physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7350</td>
<td>Graduate classical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7351</td>
<td>Graduate quantum mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7450</td>
<td>Graduate electromagnetism</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7550</td>
<td>Graduate statistical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7551</td>
<td>Graduate solid state physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7650</td>
<td>Stellar atmospheres</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7750</td>
<td>Nanophysics</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3999</td>
<td>Directed studies in physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4966</td>
<td>Physics internship</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4999</td>
<td>Physics project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. Students are strongly advised to consult departmental course selection advisors for course and career planning before selecting the courses.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

6. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)

PLO 2: have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)

PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)

PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Major in Mathematics/Physics
Minor in Physics

Required courses (96 credits)

1. Introductory level courses (48 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)

- SCNC1111: Scientific method and reasoning (6)
- SCNC1112: Fundamentals of modern science (6)

Disciplinary Core Courses (36 credits)

- PHYS1150: Problem solving in physics (6)
- PHYS1250: Fundamental physics (6)
- PHYS2250: Introductory mechanics (6)
- PHYS2255: Introductory electricity and magnetism (6)
- PHYS2260: Heat and waves (6)
- PHYS2265: Modern physics (6)

2. Advanced level courses (42 credits)

Disciplinary Core Courses (24 credits)

- PHYS3350: Classical mechanics (6)
- PHYS3351: Quantum mechanics (6)
- PHYS3450: Electromagnetism (6)
- PHYS3550: Statistical mechanics & thermodynamics (6)

Disciplinary Electives (18 credits)

At least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone requirements.

List A

- PHYS3150: Theoretical physics (6)
- PHYS3351: Introductory solid state physics (6)
- PHYS3650: Observational astronomy (6)
- PHYS3651: The physical universe (6)
- PHYS3652: Principles of astronomy (6)
- PHYS3750: Laser and spectroscopy (6)
- PHYS3751: Physics of nanomaterials (6)
- PHYS3850: Waves and optics (6)
- PHYS3851: Atomic and nuclear physics (6)
- PHYS4150: Computational physics (6)
- PHYS4151: Data analysis and modeling in physics (6)
- PHYS4350: Advanced classical mechanics (6)
- PHYS4351: Advanced quantum mechanics (6)
- PHYS4450: Advanced electromagnetism (6)
- PHYS4550: Advanced statistical mechanics (6)
- PHYS4551: Solid state physics (6)
- PHYS4650: Stellar physics (6)
- PHYS4651: Selected topics in astrophysics (6)
- PHYS4652: Planetary science (6)
- PHYS4653: Cosmology (6)
Science Majors

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS4654</td>
<td>General relativity</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4655</td>
<td>Interstellar medium</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4750</td>
<td>Experimental physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4850</td>
<td>Particle physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7350</td>
<td>Graduate classical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7351</td>
<td>Graduate quantum mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7450</td>
<td>Graduate electromagnetism</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7550</td>
<td>Graduate statistical mechanics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7551</td>
<td>Graduate solid state physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7650</td>
<td>Stellar atmospheres</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS7750</td>
<td>Nanophysics</td>
<td>(6)</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3999</td>
<td>Directed studies in physics</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4966</td>
<td>Physics internship</td>
<td>(6)</td>
</tr>
<tr>
<td>PHYS4999</td>
<td>Physics project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Physics
Offered to students admitted to Year 1 in: 2013

Objectives:
The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
- **PLO 2**: have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
- **PLO 3**: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
- **PLO 4**: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
- **PLO 5**: apply scientific and quantitative methods in tackling problems in research or real-word setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Major in Mathematics/Physics
Minor in Physics

Required courses (96 credits)

1. **Introductory level courses (48 credits)**

 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111: Scientific method and reasoning (6)
 - SCNC1112: Fundamentals of modern science (6)

 Disciplinary Core Courses (36 credits)
 - PHYS1150: Problem solving in physics (6)
 - PHYS1250: Fundamental physics (6)
 - PHYS2250: Introductory mechanics (6)
 - PHYS2255: Introductory electricity and magnetism (6)
 - PHYS2260: Heat and waves (6)
 - PHYS2265: Modern physics (6)

2. **Advanced level courses (42 credits)**

 Disciplinary Core Courses (24 credits)
 - PHYS3350: Classical mechanics (6)
 - PHYS3351: Quantum mechanics (6)
 - PHYS3450: Electromagnetism (6)
 - PHYS3550: Statistical mechanics & thermodynamics (6)

 Disciplinary Electives (18 credits)

 At least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone requirements.

 List A
 - PHYS3150: Theoretical physics (6)
 - PHYS3551: Introductory solid state physics (6)
 - PHYS3650: Observational astronomy (6)
 - PHYS3651: The physical universe (6)
 - PHYS3652: Principles of astronomy (6)
 - PHYS3750: Laser and spectroscopy (6)
 - PHYS3751: Physics of nanomaterials (6)
 - PHYS3850: Waves and optics (6)
 - PHYS3851: Atomic and nuclear physics (6)
 - PHYS4150: Computational physics (6)
 - PHYS4151: Data analysis and modeling in physics (6)
 - PHYS4350: Advanced classical mechanics (6)
 - PHYS4351: Advanced quantum mechanics (6)
 - PHYS4450: Advanced electromagnetism (6)
 - PHYS4550: Advanced statistical mechanics (6)
 - PHYS4551: Solid state physics (6)
 - PHYS4650: Stellar physics (6)
 - PHYS4651: Selected topics in astrophysics (6)
 - PHYS4652: Planetary science (6)
 - PHYS4653: Cosmology (6)
Science Majors

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS4654</td>
<td>General relativity (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4655</td>
<td>Interstellar medium (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4750</td>
<td>Experimental physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4850</td>
<td>Particle physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7350</td>
<td>Graduate classical mechanics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7351</td>
<td>Graduate quantum mechanics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7450</td>
<td>Graduate electromagnetism (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7550</td>
<td>Graduate statistical mechanics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7551</td>
<td>Graduate solid state physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7650</td>
<td>Stellar atmospheres (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS7750</td>
<td>Nanophysics (6)</td>
<td></td>
</tr>
</tbody>
</table>

3. **Capstone requirement (6 credits)**

 At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3999</td>
<td>Directed studies in physics (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4966</td>
<td>Physics internship (6)</td>
<td></td>
</tr>
<tr>
<td>PHYS4999</td>
<td>Physics project (12)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Physics
Offered to students admitted to Year 1 in 2012

Objectives:
The Major in Physics aims to provide students with a solid foundation on the subject. Core courses form the blocks of fundamental knowledge to pursue learning in specializations, e.g. quantum mechanics, statistical mechanics, classical mechanics and electrodynamics. A large selection of elective courses is provided for students to pursue a wide range of topics from the very small scale (i.e. subatomic particles) to the large scale (i.e. cosmology). Students will attain professional knowledge in physics, research experience and the training of analytical thinking and quantitative reasoning during their studies. Graduates are expected to have acquired the broad training which can equip them well for further studies in multiple science and technology disciplines and to work in their specialized area.

Learning Outcomes:
By the end of this programme, students should be able to:
PLO 1: identify and describe physical systems with their professional knowledge (by means of coursework and tutorial classes in the curriculum)
PLO 2: have developed their scientific intuition, abilities and techniques to tackle problems either theoretical or experimental in nature (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: analyze problems qualitatively and quantitatively, and appraise the related ethical issues (by means of coursework, tutorial classes and research-based projects in the curriculum)
PLO 4: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)
PLO 5: apply scientific and quantitative methods in tackling problems in research or real-world setting (by means of projects, directed studies, local and foreign internships attached to universities, research centers, government bodies, NGOs and influential companies)

Impermissible Combinations:
Major in Mathematics/Physics
Minor in Physics

Required courses (96 credits)

1. Introductory level courses (48 credits)
Disciplinary Core Courses: Science Foundation Courses (12 credits)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111</td>
<td>Scientific method and reasoning</td>
<td>6</td>
</tr>
<tr>
<td>SCNC1112</td>
<td>Fundamentals of modern science</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Core Courses (36 credits)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1150</td>
<td>Problem solving in physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS1250</td>
<td>Fundamental physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS2250</td>
<td>Introductory mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS2255</td>
<td>Introductory electricity and magnetism</td>
<td>6</td>
</tr>
<tr>
<td>PHYS2260</td>
<td>Heat and waves</td>
<td>6</td>
</tr>
<tr>
<td>PHYS2265</td>
<td>Modern physics</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Advanced level courses (42 credits)
Disciplinary Core Courses (24 credits)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3350</td>
<td>Classical mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3351</td>
<td>Quantum mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3450</td>
<td>Electromagnetism</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3550</td>
<td>Statistical mechanics & thermodynamics</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Electives (18 credits)
At least 18 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current list includes courses in List A and those courses not selected to fulfill the capstone requirements.

List A
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3150</td>
<td>Theoretical physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3551</td>
<td>Introductory solid state physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3650</td>
<td>Observational astronomy</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3651</td>
<td>The physical universe</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3652</td>
<td>Principles of astronomy</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3750</td>
<td>Laser and spectroscopy</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3751</td>
<td>Physics of nanomaterials</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3850</td>
<td>Waves and optics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS3851</td>
<td>Atomic and nuclear physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4150</td>
<td>Computational physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4151</td>
<td>Data analysis and modeling in physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4350</td>
<td>Advanced classical mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4351</td>
<td>Advanced quantum mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4450</td>
<td>Advanced electromagnetism</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4550</td>
<td>Advanced statistical mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4551</td>
<td>Solid state physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4650</td>
<td>Stellar physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4651</td>
<td>Selected topics in astrophysics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4652</td>
<td>Planetary science</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4653</td>
<td>Cosmology</td>
<td>6</td>
</tr>
</tbody>
</table>
Science Majors

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS4654</td>
<td>General relativity</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4655</td>
<td>Interstellar medium</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4750</td>
<td>Experimental physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS4850</td>
<td>Particle physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7350</td>
<td>Graduate classical mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7351</td>
<td>Graduate quantum mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7450</td>
<td>Graduate electromagnetism</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7550</td>
<td>Graduate statistical mechanics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7551</td>
<td>Graduate solid state physics</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7650</td>
<td>Stellar atmospheres</td>
<td>6</td>
</tr>
<tr>
<td>PHYS7750</td>
<td>Nanophysics</td>
<td>6</td>
</tr>
</tbody>
</table>

3. **Capstone requirement (6 credits)**

At least 6 credits selected from the following courses:

- PHYS3999: Directed studies in physics (6)
- PHYS4966: Physics internship (6)
- PHYS4999: Physics project (12)

Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required (‘disciplinary core’) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses (‘disciplinary core’) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Capstone requirement for BEd&BSc degree students is different. Students are required to take an additional 6-credit advanced level course (disciplinary electives) in the major to replace the capstone requirement of this Major. Students should consult the Faculty of Education for details.

5. Students must have level 3 or above in HKDSE Physics or equivalent to take this major. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Risk Management

Offered to students admitted to Year 1 in 2018

Objectives:
The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (30 credits)
 MATH1013 University mathematics II (6)
 STAT1600 Statistics: ideas and concepts (6)
 MATH2014 Multivariable calculus and linear algebra (6)
 STAT2601 Probability and statistics I (6)
 STAT2602 Probability and statistics II (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (24 credits)
 STAT3600 Linear statistical analysis (6)
 STAT3609 The statistics of investment risk (6)
 STAT3615 Practical mathematics for investment (6)
 STAT4601 Time-series analysis (6)
 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
 STAT3610 Risk management and insurance (6)
 STAT3612 Data mining (6)
 STAT3618 Derivatives and risk management (6)
 STAT3911 Financial economics II (6)
 STAT4603 Current topics in risk management (6)
 STAT4606 Risk management and Basel Accords in banking and finance (6)
 STAT4607 Credit risk analysis (6)
 STAT4608 Market risk analysis (6)

3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 STAT3799 Directed studies in statistics (6)
 STAT4710 Capstone experience for statistics undergraduates (6)
 STAT4766 Statistics internship (6)
 STAT4799 Statistics project (12)
Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required (’disciplinary core’) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses (“disciplinary core”) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Risk Management
Offered to students admitted to Year 1 in 2017

Objectives:
The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (30 credits)
 MATH1013 University mathematics II (6)
 STAT1600 Statistics: ideas and concepts (6)
 MATH2014 Multivariable calculus and linear algebra (6)
 STAT2601 Probability and statistics I (6)
 STAT2602 Probability and statistics II (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (24 credits)
 STAT3600 Linear statistical analysis (6)
 STAT3609 The statistics of investment risk (6)
 STAT3615 Practical mathematics for investment (6)
 STAT4601 Time-series analysis (6)

 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
 STAT3610 Risk management and insurance (6)
 STAT3612 Data mining (6)
 STAT3618 Derivatives and risk management (6)
 STAT3911 Financial economics II (6)
 STAT4603 Current topics in risk management (6)
 STAT4606 Risk management and Basel Accords in banking and finance (6)
 STAT4607 Credit risk analysis (6)
 STAT4608 Market risk analysis (6)

3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 STAT3799 Directed studies in statistics (6)
 STAT4710 Capstone experience for statistics undergraduates (6)
 STAT4766 Statistics internship (6)
 STAT4799 Statistics project (12)
Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Risk Management
Offered to students admitted to Year 1 in 2016

Objectives:
The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

Learning Outcomes:
By the end of this programme, students should be able to:
PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 2: analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 4: make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
PLO 5: communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
PLO 6: gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

Required courses (96 credits)
1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (30 credits)
 MATH1013 University mathematics II (6)
 STAT1600 Statistics: ideas and concepts (6)
 MATH2014 Multivariable calculus and linear algebra (6)
 STAT2601 Probability and statistics I (6)
 STAT2602 Probability and statistics II (6)
2. Advanced level courses (48 credits)
 Disciplinary Core Courses (24 credits)
 STAT3600 Linear statistical analysis (6)
 STAT3609 The statistics of investment risk (6)
 STAT3615 Practical mathematics for investment (6)
 STAT4601 Time-series analysis (6)
 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 STAT3603 Stochastic processes (6)
 STAT3610 Risk management and insurance (6)
 STAT3612 Data mining (6)
 STAT3618 Derivatives and risk management (6)
 STAT3911 Financial economics II (6)
 STAT4603 Current topics in risk management (6)
 STAT4606 Risk management and Basel Accords in banking and finance (6)
 STAT4607 Credit risk analysis (6)
 STAT4608 Market risk analysis (6)
3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 STAT3799 Directed studies in statistics (6)
 STAT4710 Capstone experience for statistics undergraduates (6)
 STAT4766 Statistics internship (6)
 STAT4799 Statistics project (12)
Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Risk Management
Offered to students admitted to Year 1 in 2015

Objectives:
The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
- **PLO 2**: analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
- **PLO 3**: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
- **PLO 4**: make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)
- **PLO 5**: communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)
- **PLO 6**: gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
- Major in Computing and Data Analytics
- Major in Decision Analytics
- Major in Statistics
- Minor in Risk Management
- Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 - SCNC1111: Scientific method and reasoning (6)
 - SCNC1112: Fundamentals of modern science (6)

 Disciplinary Core Courses (30 credits)
 - MATH1013: University mathematics II (6)
 - STAT1600: Statistics: ideas and concepts (6)
 - MATH2014: Multivariable calculus and linear algebra (6)
 - STAT2601: Probability and statistics I (6)
 - STAT2602: Probability and statistics II (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (24 credits)
 - STAT3600: Linear statistical analysis (6)
 - STAT3609: The statistics of investment risk (6)
 - STAT3615: Practical mathematics for investment (6)
 - STAT4601: Time-series analysis (6)

 Disciplinary Electives (24 credits)
 - At least 24 credits selected from the following courses:
 - STAT3603: Stochastic processes (6)
 - STAT3610: Risk management and insurance (6)
 - STAT3612: Data mining (6)
 - STAT3618: Derivatives and risk management (6)
 - STAT3911: Financial economics II (6)
 - STAT4603: Current topics in risk management (6)
 - STAT4606: Risk management and Basel Accords in banking and finance (6)
 - STAT4607: Credit risk analysis (6)
 - STAT4608: Market risk analysis (6)

3. Capstone requirement (6 credits)
 - At least 6 credits selected from the following courses:
 - STAT3799: Directed studies in statistics (6)
 - STAT4710: Capstone experience for statistics undergraduates (6)
 - STAT4766: Statistics internship (6)
 - STAT4799: Statistics project (12)
Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Risk Management
Offered to students admitted to Year 1 in 2014

Objectives:
The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)
- SCNC1111 Scientific method and reasoning (6)
- SCNC1112 Fundamentals of modern science (6)

Disciplinary Core Courses (30 credits)
- MATH1013 University mathematics II (6)
- STAT1600 Statistics: ideas and concepts (6)
- MATH2014 Multivariable calculus and linear algebra (6)
- STAT2601 Probability and statistics I (6)
- STAT2602 Probability and statistics II (6)

2. Advanced level courses (48 credits)

Disciplinary Core Courses (24 credits)
- STAT3600 Linear statistical analysis (6)
- STAT3609 The statistics of investment risk (6)
- STAT3615 Practical mathematics for investment (6)
- STAT4601 Time-series analysis (6)

Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:
- STAT3603 Stochastic processes (6)
 [previous title: Probability modelling (6)]
- STAT3610 Risk management and insurance (6)
- STAT3612 Data mining (6)
- STAT3618 Derivatives and risk management (6)
- STAT3911 Financial economics II (6)
- STAT4603 Current topics in risk management (6)
- STAT4606 Risk management and Basel Accords in banking and finance (6)
- STAT4607 Credit risk analysis (6)
- STAT4608 Market risk analysis (6)

3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:
- STAT3799 Directed studies in statistics (6)
- STAT4710 Capstone experience for statistics undergraduates (6)
- STAT4766 Statistics internship (6)
- STAT4799 Statistics project (12)
Notes:
1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Risk Management

Offered to students admitted to Year 1 in 2013

Objectives:
The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (42 credits)

 Discipline Core Courses: Science Foundation Courses (12 credits)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111</td>
<td>Scientific method and reasoning</td>
<td>6</td>
</tr>
<tr>
<td>SCNC1112</td>
<td>Fundamentals of modern science</td>
<td>6</td>
</tr>
</tbody>
</table>

 Discipline Core Courses (30 credits)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1013</td>
<td>University mathematics II</td>
<td>6</td>
</tr>
<tr>
<td>STAT1600</td>
<td>Statistics: ideas and concepts</td>
<td>6</td>
</tr>
<tr>
<td>STAT2601</td>
<td>Probability and statistics I</td>
<td>6</td>
</tr>
<tr>
<td>STAT2602</td>
<td>Probability and statistics II</td>
<td>6</td>
</tr>
<tr>
<td>STAT2603</td>
<td>Data management with SAS</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Advanced level courses (48 credits)

 Discipline Core Courses (24 credits)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3600</td>
<td>Linear statistical analysis</td>
<td>6</td>
</tr>
<tr>
<td>STAT3609</td>
<td>The statistics of investment risk</td>
<td>6</td>
</tr>
<tr>
<td>STAT3615</td>
<td>Practical mathematics for investment</td>
<td>6</td>
</tr>
<tr>
<td>STAT4601</td>
<td>Time-series analysis</td>
<td>6</td>
</tr>
</tbody>
</table>

 Discipline Electives (24 credits)
 At least 24 credits selected from the following courses:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3603</td>
<td>Stochastic processes</td>
<td>6</td>
</tr>
<tr>
<td>STAT3610</td>
<td>Risk management and insurance</td>
<td>6</td>
</tr>
<tr>
<td>STAT3612</td>
<td>Data mining</td>
<td>6</td>
</tr>
<tr>
<td>STAT3618</td>
<td>Derivatives and risk management</td>
<td>6</td>
</tr>
<tr>
<td>STAT3911</td>
<td>Financial economics II</td>
<td>6</td>
</tr>
<tr>
<td>STAT4603</td>
<td>Current topics in risk management</td>
<td>6</td>
</tr>
<tr>
<td>STAT4606</td>
<td>Risk management and Basel Accords in banking and finance</td>
<td>6</td>
</tr>
<tr>
<td>STAT4607</td>
<td>Credit risk analysis</td>
<td>6</td>
</tr>
<tr>
<td>STAT4608</td>
<td>Market risk analysis</td>
<td>6</td>
</tr>
</tbody>
</table>

3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3799</td>
<td>Directed studies in statistics</td>
<td>6</td>
</tr>
<tr>
<td>STAT4710</td>
<td>Capstone experience for statistics undergraduates</td>
<td>6</td>
</tr>
<tr>
<td>STAT4766</td>
<td>Statistics internship</td>
<td>6</td>
</tr>
<tr>
<td>STAT4799</td>
<td>Statistics project</td>
<td>12</td>
</tr>
</tbody>
</table>
Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Risk Management

Offered to students admitted to Year 1 in 2012

Objectives:
The Major in Risk Management aims to provide students with the skills and expertise in the theory and methodology behind the scientific process of risk management, with application to actuarial science, finance and other related areas of interest. It is designed to provide solid training in the concepts of the risk management process, statistical models and methods of risk management, and good risk management practice. Core courses in the curriculum emphasize fundamental concepts and nature of risk assessment, risk management and governance from different standpoints while elective courses provide either training in specific Risk Management disciplines or an extension of knowledge aiming to give students more modeling, technical and analytical skills in risk management, including data mining, stochastic calculus, and financial time series modeling.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and categorize the various risks faced by an organization and be able to demonstrate a critical understanding of generic risk management issues and techniques (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: analyze and assess risk management situations, and be able to deal with qualitative as well as quantitative aspects appropriate to the situation (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: critically evaluate and make effective use of models and techniques for risk assessment and management, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: make informed risk management decisions, employ any techniques necessary to acquire and interpret relevant data and information from different sources and the factors that influence their perceptions of risk identification, risk reduction, risk mitigation and risk transfer (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate and collaborate with people effectively on risk management issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: gain insights into current advances in risk management through either project or industrial training (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
Major in Decision Analytics
Major in Statistics
Minor in Risk Management
Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (30 credits)
 MATH1013 University mathematics II (6)
 STAT1600 Statistics: ideas and concepts (6)
 STAT2601 Probability and statistics I (6)
 STAT2602 Probability and statistics II (6)
 STAT2603 Data management with SAS (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (24 credits)
 STAT3600 Linear statistical analysis (6)
 STAT3609 The statistics of investment risk (6)
 STAT3615 Practical mathematics for investment (6)
 STAT4601 Time-series analysis (6)
 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 STAT3603 Stochastic processes (6) [previous title: Probability modelling (6)]
 STAT3610 Risk management and insurance (6)
 STAT3612 Data mining (6)
 STAT3618 Derivatives and risk management (6)
 STAT3911 Financial economics II (6)
 STAT4603 Current topics in risk management (6)
 STAT4606 Risk management and Basel Accords in banking and finance (6)
 STAT4607 Credit risk analysis (6)
 STAT4608 Market risk analysis (6)

3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 STAT3799 Directed studies in statistics (6)
 STAT4710 Capstone experience for statistics undergraduates (6)
 STAT4766 Statistics internship (6)
 STAT4799 Statistics project (12)
Notes:

1. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

3. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

4. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

5. Students taking the Mathematics related major/minor should check the exemption and replacement arrangement for the introductory level Disciplinary Core Mathematics courses at http://www.scifac.hku.hk/ug/current/bsc/curriculum/overlapping-course-req.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Statistics
Offered to students: admitted to Year 1 in 2018

Objectives:
The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: equip with hands-on experience in data analysis using commercial statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (30 credits)
 MATH1013 University mathematics II (6)
 STAT1600 Statistics: ideas and concepts (6)
 MATH2014 Multivariable calculus and linear algebra (6)
 STAT2601 Probability and statistics I (6)
 STAT2602 Probability and statistics II (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (24 credits)
 STAT3600 Linear statistical analysis (6)
 STAT3603 Stochastic processes (6)
 STAT4601 Time-series analysis (6)
 STAT4602 Multivariate data analysis (6)

 Disciplinary Electives (24 credits)
 At least 24 credits from Lists A and B, among which at least 6 credits from List A:
 List A
 STAT3602 Statistical inference (6)
 STAT3604 Design and analysis of experiments (6)
 STAT3620 Modern nonparametric statistics (6)
 STAT3621 Statistical data analysis (6)
 List B
 STAT3605 Quality control and management (6)
 STAT3606 Business logistics (6)
 STAT3607 Statistics in clinical medicine and bio-medical research (6)
 STAT3608 Statistical genetics (6)
 STAT3612 Data mining (6)
 STAT3613 Marketing engineering (6)
 STAT3617 Sample survey methods (6)
3. Capstone requirement (6 credits)
At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3799</td>
<td>Directed studies in statistics (6)</td>
<td></td>
</tr>
<tr>
<td>STAT4710</td>
<td>Capstone experience for statistics undergraduates (6)</td>
<td></td>
</tr>
<tr>
<td>STAT4766</td>
<td>Statistics internship (6)</td>
<td></td>
</tr>
<tr>
<td>STAT4799</td>
<td>Statistics project (12)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613 and STAT3621. Note that students who wish to take STAT3621 are strongly recommended to take STAT2603 first.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Statistics
Offered to students admitted to Year 1 in 2017

Objectives:
The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: equip with hands-on experience in data analysis using commercial statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

Required courses (96 credits)
1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (30 credits)
 MATH1013 University mathematics II (6)
 STAT1600 Statistics: ideas and concepts (6)
 MATH2014 Multivariable calculus and linear algebra (6)
 STAT2601 Probability and statistics I (6)
 STAT2602 Probability and statistics II (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (24 credits)
 STAT3600 Linear statistical analysis (6)
 STAT3603 Stochastic processes (6)
 STAT4601 Time-series analysis (6)
 STAT4602 Multivariate data analysis (6)

 Disciplinary Electives (24 credits)
 At least 24 credits from Lists A and B, among which at least 6 credits from List A:
 List A
 STAT3602 Statistical inference (6)
 STAT3604 Design and analysis of experiments (6)
 STAT3620 Modern nonparametric statistics (6)
 STAT3621 Statistical data analysis (6)

 List B
 STAT3605 Quality control and management (6)
 STAT3606 Business logistics (6)
 STAT3607 Statistics in clinical medicine and bio-medical research (6)
 STAT3608 Statistical genetics (6)
 STAT3612 Data mining (6)
 STAT3613 Marketing engineering (6)
 STAT3616 Advanced SAS programming (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3617</td>
<td>Sample survey methods</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT3955</td>
<td>Survival analysis</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT3799</td>
<td>Directed studies in statistics</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4710</td>
<td>Capstone experience for statistics undergraduates</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4766</td>
<td>Statistics internship</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4799</td>
<td>Statistics project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

3. **Capstone requirement (6 credits)**

At least 6 credits selected from the following courses:

- STAT3799 Directed studies in statistics (6)
- STAT4710 Capstone experience for statistics undergraduates (6)
- STAT4766 Statistics internship (6)
- STAT4799 Statistics project (12)

Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613, STAT3616 and STAT3621. Note that students who wish to take STAT3616 and STAT3621 are strongly recommended to take STAT2603 first.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title: Major in Statistics
Offered to students admitted to Year 1 in 2016

Objectives:
The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: equip with hands-on experience in data analysis using commercial statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Core Courses (30 credits)
 MATH1013 University mathematics II (6)
 STAT1600 Statistics: ideas and concepts (6)
 MATH2014 Multivariable calculus and linear algebra (6)
 STAT2601 Probability and statistics I (6)
 STAT2602 Probability and statistics II (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (24 credits)
 STAT3600 Linear statistical analysis (6)
 STAT3603 Stochastic processes (6)
 STAT4601 Time-series analysis (6)
 STAT4602 Multivariate data analysis (6)
 [previous title: Probability modelling (6)]
 Disciplinary Electives (24 credits)
 At least 24 credits from Lists A and B, among which at least 6 credits from List A:
 List A
 STAT3602 Statistical inference (6)
 STAT3604 Design and analysis of experiments (6)
 STAT3620 Modern nonparametric statistics (6)
 STAT3621 Statistical data analysis (6)
 List B
 STAT3605 Quality control and management (6)
 STAT3606 Business logistics (6)
 STAT3607 Statistics in clinical medicine and bio-medical research (6)
 STAT3608 Statistical genetics (6)
 STAT3612 Data mining (6)
 STAT3613 Marketing engineering (6)
 STAT3616 Advanced SAS programming (6)
3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- STAT3799 Directed studies in statistics (6)
- STAT4710 Capstone experience for statistics undergraduates (6)
- STAT4766 Statistics internship (6)
- STAT4799 Statistics project (12)

Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613, STAT3616 and STAT3621. Note that students who wish to take STAT3616 and STAT3621 are strongly recommended to take STAT2603 first.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title

Major in Statistics

Offered to students admitted to Year 1 in **2015**

Objectives:

The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision-making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

Learning Outcomes:

By the end of this programme, students should be able to:

- **PLO 1**: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

- **PLO 2**: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

- **PLO 3**: equip with hands-on experience in data analysis using commercial statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

- **PLO 4**: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

- **PLO 5**: communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

- **PLO 6**: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:

- Major in Computing and Data Analytics
- Major in Decision Analytics
- Major in Risk Management
- Minor in Risk Management
- Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (42 credits)

Disciplinary Core Courses: Science Foundation Courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111</td>
<td>Scientific method and reasoning</td>
<td>6</td>
</tr>
<tr>
<td>SCNC1112</td>
<td>Fundamentals of modern science</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Core Courses (30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1013</td>
<td>University mathematics II</td>
<td>6</td>
</tr>
<tr>
<td>STAT1600</td>
<td>Statistics: ideas and concepts</td>
<td>6</td>
</tr>
<tr>
<td>MATH2014</td>
<td>Multivariable calculus and linear algebra</td>
<td>6</td>
</tr>
<tr>
<td>STAT2601</td>
<td>Probability and statistics I</td>
<td>6</td>
</tr>
<tr>
<td>STAT2602</td>
<td>Probability and statistics II</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Advanced level courses (48 credits)

Disciplinary Core Courses (24 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3600</td>
<td>Linear statistical analysis</td>
<td>6</td>
</tr>
<tr>
<td>STAT3603</td>
<td>Stochastic processes</td>
<td>6</td>
</tr>
<tr>
<td>STAT4601</td>
<td>Time-series analysis</td>
<td>6</td>
</tr>
<tr>
<td>STAT4602</td>
<td>Multivariate data analysis</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Electives (24 credits)

At least 24 credits from Lists A and B, among which at least 6 credits from List A:

List A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3602</td>
<td>Statistical inference</td>
<td>6</td>
</tr>
<tr>
<td>STAT3604</td>
<td>Design and analysis of experiments</td>
<td>6</td>
</tr>
<tr>
<td>STAT3620</td>
<td>Modern nonparametric statistics</td>
<td>6</td>
</tr>
<tr>
<td>STAT3621</td>
<td>Statistical data analysis</td>
<td>6</td>
</tr>
</tbody>
</table>

List B

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3605</td>
<td>Quality control and management</td>
<td>6</td>
</tr>
<tr>
<td>STAT3606</td>
<td>Business logistics</td>
<td>6</td>
</tr>
<tr>
<td>STAT3607</td>
<td>Statistics in clinical medicine and bio-medical research</td>
<td>6</td>
</tr>
<tr>
<td>STAT3608</td>
<td>Statistical genetics</td>
<td>6</td>
</tr>
<tr>
<td>STAT3612</td>
<td>Data mining</td>
<td>6</td>
</tr>
<tr>
<td>STAT3613</td>
<td>Marketing engineering</td>
<td>6</td>
</tr>
<tr>
<td>STAT3616</td>
<td>Advanced SAS programming</td>
<td>6</td>
</tr>
</tbody>
</table>
3. Capstone requirement (6 credits)
 At least 6 credits selected from the following courses:
 - STAT3799 Directed studies in statistics (6)
 - STAT4710 Capstone experience for statistics undergraduates (6)
 - STAT4766 Statistics internship (6)
 - STAT4799 Statistics project (12)

Notes:
1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613, STAT3616 and STAT3621. Note that students who wish to take STAT3616 and STAT3621 are strongly recommended to take STAT2603 first.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Statistics
Offered to students admitted to Year 1 in 2014

Objectives:
The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: equip with hands-on experience in data analysis using commercial statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)
 Disciplinary Courses (30 credits)
 MATH1013 University mathematics II (6)
 STAT1600 Statistics: ideas and concepts (6)
 MATH2014 Multivariable calculus and linear algebra (6)
 STAT2601 Probability and statistics I (6)
 STAT2602 Probability and statistics II (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (24 credits)
 STAT3600 Linear statistical analysis (6)
 STAT3603 Stochastic processes (6)
 STAT4601 Time-series analysis (6)
 STAT4602 Multivariate data analysis (6)

 Disciplinary Electives (24 credits)
 At least 24 credits from Lists A and B, among which at least 6 credits from List A:
 List A
 STAT3602 Statistical inference (6)
 STAT3604 Design and analysis of experiments (6)
 STAT3620 Modern nonparametric statistics (6)
 STAT3621 Statistical data analysis (6)
 List B
 STAT3605 Quality control and management (6)
 STAT3606 Business logistics (6)
 STAT3607 Statistics in clinical medicine and bio-medical research (6)
 STAT3608 Statistical genetics (6)
 STAT3612 Data mining (6)
 STAT3613 Marketing engineering (6)
 STAT3616 Advanced SAS programming (6)
3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

- STAT3617 Sample survey methods (6)
- STAT3955 Survival analysis (6)
- STAT3799 Directed studies in statistics (6)
- STAT4710 Capstone experience for statistics undergraduates (6)
- STAT4766 Statistics internship (6)
- STAT4799 Statistics project (12)

Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613, STAT3616 and STAT3621. Note that students who wish to take STAT3616 and STAT3621 are strongly recommended to take STAT2603 first.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title Major in Statistics
Offered to students admitted to Year 1 in 2013

Objectives:
The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: equip with hands-on experience in data analysis using commercial statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:
Major in Decision Analytics
Major in Risk Management
Minor in Risk Management
Minor in Statistics

Required courses (96 credits)

1. Introductory level courses (42 credits)
 Disciplinary Core Courses: Science Foundation Courses (12 credits)
 SCNC1111 Scientific method and reasoning (6)
 SCNC1112 Fundamentals of modern science (6)

 Disciplinary Core Courses (30 credits)
 MATH1013 University mathematics II (6)
 STAT1600 Statistics: ideas and concepts (6)
 STAT2601 Probability and statistics I (6)
 STAT2602 Probability and statistics II (6)
 STAT2603 Data management with SAS (6)

2. Advanced level courses (48 credits)
 Disciplinary Core Courses (24 credits)
 STAT3600 Linear statistical analysis (6)
 STAT3603 Stochastic processes (6)
 STAT4601 Time-series analysis (6)
 STAT4602 Multivariate data analysis (6)

 Disciplinary Electives (24 credits)
 At least 24 credits from Lists A and B, among which at least 6 credits from List A:

 List A
 STAT3602 Statistical inference (6)
 STAT3604 Design and analysis of experiments (6)
 STAT3620 Modern nonparametric statistics (6)
 STAT3621 Statistical data analysis (6)

 List B
 STAT3605 Quality control and management (6)
 STAT3606 Business logistics (6)
 STAT3607 Statistics in clinical medicine and bio-medical research (6)
 STAT3608 Statistical genetics (6)
 STAT3612 Data mining (6)
 STAT3613 Marketing engineering (6)
 STAT3616 Advanced SAS programming (6)
 STAT3617 Sample survey methods (6)
Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3799</td>
<td>Directed studies in statistics</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4710</td>
<td>Capstone experience for statistics undergraduates</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4766</td>
<td>Statistics internship</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4799</td>
<td>Statistics project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613, STAT3616 and STAT3621. Note that students who wish to take STAT3616 and STAT3621 are strongly recommended to take STAT2603 first.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ('disciplinary core') by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses (“disciplinary core”) in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Major Title

Major in Statistics

Offered to students admitted to Year 1 in 2012

Objectives:

The Major in Statistics focuses on the study of statistics, a scientific discipline characterized by the development and applications of analytical and quantitative tools which involve logical thinking, problem formulation, probability reasoning and intensive data analyses. The programme aims to equip students with powerful mathematical, analytical and computational skills, which are in great demand in practical areas where data are obtained for the purpose of extracting information in support of decision making. It gives students a strong background in statistical concepts, and provides broad and solid training in applied statistical methodologies. The curriculum is constantly revised to meet a steadily rising demand for specialist statisticians or quantitative analysts in government, business, finance, industry, as well as in research and teaching in local and overseas institutions.

Learning Outcomes:

By the end of this programme, students should be able to:

PLO 1: receive solid training in probability and statistics, gain insight into their underlying theory and be acquainted with their state-of-the-art applications in the modern world (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 2: conduct meticulous data analyses, supported by rigorous statistical reasoning, to make informed decisions in the face of uncertainty that arises in all sorts of institutions and companies, and appraise the related ethical issues (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 3: equip with hands-on experience in data analysis using commercial statistical software, and be competent for data-analytic jobs which require advanced computational skills (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 4: be highly motivated to explore cross-disciplinary applications of statistics in a broad variety of academic or professional areas including, in particular, mathematics, natural sciences, economics, finance, business, risk management, actuarial work, social sciences and engineering (by means of coursework, tutorial classes and/or project-based learning in the curriculum)

PLO 5: communicate and collaborate with people effectively on probability and statistical issues (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

PLO 6: through the understanding and application of statistical concepts and techniques, gain confidence to meet challenges posed by increasingly complicated real-life problems encountered in the modern era in a creative and rational manner (by means of coursework, tutorial classes, project-based and/or capstone learning in the curriculum)

Impermissible Combinations:

- Major in Decision Analytics
- Major in Risk Management
- Minor in Risk Management
- Minor in Statistics

Required courses (96 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCNC1111</td>
<td>Scientific method and reasoning</td>
<td>6</td>
</tr>
<tr>
<td>SCNC1112</td>
<td>Fundamentals of modern science</td>
<td>6</td>
</tr>
<tr>
<td>MATH1013</td>
<td>University mathematics II</td>
<td>6</td>
</tr>
<tr>
<td>STAT1600</td>
<td>Statistics: ideas and concepts</td>
<td>6</td>
</tr>
<tr>
<td>STAT2601</td>
<td>Probability and statistics I</td>
<td>6</td>
</tr>
<tr>
<td>STAT2602</td>
<td>Probability and statistics II</td>
<td>6</td>
</tr>
<tr>
<td>STAT2603</td>
<td>Data management with SAS</td>
<td>6</td>
</tr>
<tr>
<td>STAT3600</td>
<td>Linear statistical analysis</td>
<td>6</td>
</tr>
<tr>
<td>STAT3603</td>
<td>Stochastic processes</td>
<td>6</td>
</tr>
<tr>
<td>STAT4601</td>
<td>Time-series analysis</td>
<td>6</td>
</tr>
<tr>
<td>STAT4602</td>
<td>Multivariate data analysis</td>
<td>6</td>
</tr>
<tr>
<td>STAT3602</td>
<td>Statistical inference</td>
<td>6</td>
</tr>
<tr>
<td>STAT3604</td>
<td>Design and analysis of experiments</td>
<td>6</td>
</tr>
<tr>
<td>STAT3620</td>
<td>Modern nonparametric statistics</td>
<td>6</td>
</tr>
<tr>
<td>STAT3621</td>
<td>Statistical data analysis</td>
<td>6</td>
</tr>
<tr>
<td>STAT3605</td>
<td>Quality control and management</td>
<td>6</td>
</tr>
<tr>
<td>STAT3606</td>
<td>Business logistics</td>
<td>6</td>
</tr>
<tr>
<td>STAT3607</td>
<td>Statistics in clinical medicine and bio-medical research</td>
<td>6</td>
</tr>
<tr>
<td>STAT3608</td>
<td>Statistical genetics</td>
<td>6</td>
</tr>
<tr>
<td>STAT3612</td>
<td>Data mining</td>
<td>6</td>
</tr>
<tr>
<td>STAT3613</td>
<td>Marketing engineering</td>
<td>6</td>
</tr>
<tr>
<td>STAT3616</td>
<td>Advanced SAS programming</td>
<td>6</td>
</tr>
<tr>
<td>STAT3617</td>
<td>Sample survey methods</td>
<td>6</td>
</tr>
</tbody>
</table>

Science Majors

330
3. Capstone requirement (6 credits)

At least 6 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3799</td>
<td>Directed studies in statistics</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4710</td>
<td>Capstone experience for statistics undergraduates</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4766</td>
<td>Statistics internship</td>
<td>(6)</td>
</tr>
<tr>
<td>STAT4799</td>
<td>Statistics project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:

1. Students who wish to specialize in the theme of data science are recommended to choose the combination of courses STAT3612, STAT3613, STAT3616 and STAT3621. Note that students who wish to take STAT3616 and STAT3621 are strongly recommended to take STAT2603 first.

2. Double-counting of courses up to a maximum of 24 credits is permissible when a student with a science major opts to undertake a second major in science. The double-counted courses must include SCNC1111 Scientific method and reasoning (6 credits) and SCNC1112 Fundamentals of modern science (6 credits). Additional credits to be double-counted must be for courses required ("disciplinary core") by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

3. If more than 24 credits (including SCNC1111 & SCNC1112) are listed as required courses ("disciplinary core") in both the first and second majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) (disciplinary electives) in the second major. Double counting of credits is not permissible for major-minor or double-minors combinations. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

4. Students are not required to take Capstone if this Science major is taken as a second major on the condition that the capstone experience in the first major requires the integration or application of knowledge from both major disciplines. If this is approved, a 6-credit advanced level course (disciplinary electives) in the second major must be taken to fulfill the credit requirement of the capstone experience.

5. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
SECTION VII Science Minors on offer in 2018/19

Minors offered by Science Faculty

Minors

Actuarial Studies [not for BSc(ActuarSc) students]
Astronomy
Biochemistry
Chemistry
Computational & Financial Mathematics
Earth Sciences
Ecology & Biodiversity
Environmental Science
Food & Nutritional Science
Marine Biology
Mathematics
Molecular Biology & Biotechnology
Operations Research & Mathematical Programming
Physics
Plant Science
Risk Management
Statistics
Minor Title: Minor in Actuarial Studies
Offered to students admitted to Year 1 in 2018

Objectives:
The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)

PLO 2: develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

Impermissible Combinations:
Bachelor of Science in Actuarial Science

Required courses (42 credits)
1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
- FINA1310 Corporate finance (6)
- MATH1013 University mathematics II (6)
- STAT2601 Probability and statistics I (6)
- STAT2602 Probability and statistics II (6)
- STAT2605 Demographic and socio-economic statistics (6)
- STAT2901 Probability and statistics: foundations of actuarial science (6)

2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:
- STAT3615 Practical mathematics for investment (6)
- STAT3901 Life contingencies I (6)
- STAT3904 Corporate finance for actuarial science (6)
- STAT3906 Risk theory I (6)
- STAT3908 Credibility theory and loss distributions (6)
- STAT3910 Financial economics I (6)
- STAT3911 Financial economics II (6)
- STAT4903 Actuarial techniques for general insurance (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title	Minor in Actuarial Studies
Offered to students | 2017 admitted to Year 1 in

Objectives:
The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)

PLO 2: develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

Impermissible Combinations:
Bachelor of Science in Actuarial Science

<table>
<thead>
<tr>
<th>Required courses (42 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introductory level courses (12 credits)</td>
</tr>
<tr>
<td>Disciplinary Electives (12 credits)</td>
</tr>
<tr>
<td>At least 12 credits selected from the following courses:</td>
</tr>
<tr>
<td>FINA1310</td>
</tr>
<tr>
<td>MATH1013</td>
</tr>
<tr>
<td>STAT2601</td>
</tr>
<tr>
<td>STAT2602</td>
</tr>
<tr>
<td>STAT2605</td>
</tr>
<tr>
<td>STAT2901</td>
</tr>
</tbody>
</table>

| **2. Advanced level courses (30 credits)** |
| **Disciplinary Electives (30 credits)** |
| At least 30 credits selected from the following courses: |
STAT3615	Practical mathematics for investment (6)
STAT3901	Life contingencies I (6)
STAT3904	Corporate finance for actuarial science (6)
STAT3906	Risk theory I (6)
STAT3908	Credibility theory and loss distributions (6)
STAT3910	Financial economics I (6)
STAT3911	Financial economics II (6)
STAT4903	Actuarial techniques for general insurance (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Actuarial Studies

Offered to students
admitted to Year 1 in

Objectives:
The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)

- **PLO 2**: develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

Impermissible Combinations:
Bachelor of Science in Actuarial Science

Required courses (42 credits)

1. Introductory level courses (12 credits)
 - **Disciplinary Electives (12 credits)**
 - At least 12 credits selected from the following courses:
 - FINA1310 Corporate finance (6)
 - MATH1013 University mathematics II (6)
 - STAT2601 Probability and statistics I (6)
 - STAT2602 Probability and statistics II (6)
 - STAT2605 Demographic and socio-economic statistics (6)
 - STAT2901 Probability and statistics: foundations of actuarial science (6)

2. Advanced level courses (30 credits)
 - **Disciplinary Electives (30 credits)**
 - At least 30 credits selected from the following courses:
 - STAT3615 Practical mathematics for investment (6)
 - STAT3901 Life contingencies I (6)
 - STAT3904 Corporate finance for actuarial science (6)
 - STAT3906 Risk theory I (6)
 - STAT3908 Credibility theory and loss distributions (6)
 - STAT3910 Financial economics I (6)
 - STAT3911 Financial economics II (6)
 - STAT4903 Actuarial techniques for general insurance (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Actuarial Studies

Offered to students admitted to Year 1 in 2015

Objectives:
The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)

PLO 2: develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

Impermissible Combinations:
Bachelor of Science in Actuarial Science

Required courses (42 credits)
1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:

- FINA1310 Corporate finance (6)
- MATH1013 University mathematics II (6)
- STAT2601 Probability and statistics I (6)
- STAT2602 Probability and statistics II (6)
- STAT2605 Demographic and socio-economic statistics (6)
- STAT2901 Probability and statistics: foundations of actuarial science (6)

2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:

- STAT3615 Practical mathematics for investment (6)
- STAT3901 Life contingencies I (6)
- STAT3904 Corporate finance for actuarial science (6)
- STAT3906 Risk theory I (6)
- STAT3908 Credibility theory and loss distributions (6)
- STAT3910 Financial economics I (6)
- STAT3911 Financial economics II (6)
- STAT4903 Actuarial techniques for general insurance (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Actuarial Studies
Offered to students admitted to Year 1 in 2014

Objectives:
The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)

PLO 2: develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

Impermissible Combinations:
Bachelor of Science in Actuarial Science

Required courses (42 credits)
1. Introductory level courses (12 credits)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - FINA1310 Corporate finance (6)
 - MATH1013 University mathematics II (6)
 - STAT2601 Probability and statistics I (6)
 - STAT2602 Probability and statistics II (6)
 - STAT2605 Demographic and socio-economic statistics (6)
 - STAT2901 Probability and statistics: foundations of actuarial science (6)

2. Advanced level courses (30 credits)
 Disciplinary Electives (30 credits)
 At least 30 credits selected from the following courses:
 - STAT3615 Practical mathematics for investment (6)
 - STAT3901 Life contingencies I (6)
 - STAT3904 Corporate finance for actuarial science (6)
 - STAT3906 Risk theory I (6)
 - STAT3908 Credibility theory and loss distributions (6)
 - STAT3910 Financial economics I (6)
 - STAT3911 Financial economics II (6)
 - STAT4903 Actuarial techniques for general insurance (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Actuarial Studies
Offered to students admitted to Year 1 in 2013

Objectives:
The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)

PLO 2: develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

Impermissible Combinations:
Bachelor of Science in Actuarial Science

Required courses (42 credits)

1. Introductory level courses (12 credits)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - FINA1310 Corporate finance (6)
 - MATH1013 University mathematics II (6)
 - STAT2601 Probability and statistics I (6)
 - STAT2602 Probability and statistics II (6)
 - STAT2605 Demographic and socio-economic statistics (6)
 - STAT2901 Probability and statistics: foundations of actuarial science (6)

2. Advanced level courses (30 credits)
 Disciplinary Electives (30 credits)
 At least 30 credits selected from the following courses:
 - STAT3615 Practical mathematics for investment (6)
 - STAT3901 Life contingencies I (6)
 - STAT3904 Corporate finance for actuarial science (6)
 - STAT3906 Risk theory I (6)
 - STAT3908 Credibility theory and loss distributions (6)
 - STAT3910 Financial economics I (6)
 - STAT3911 Financial economics II (6)
 - STAT4903 Actuarial techniques for general insurance (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Actuarial Studies
Offered to students admitted to Year 1 in 2012

Objectives:
The Minor in Actuarial Studies aims to provide interested students with an introduction to the basic concepts and methodologies in Actuarial Science. The minor curriculum is designed particularly for students from different majors to enhance their interests in Actuarial Science and to strengthen their confidence and potential in solving mathematical, financial, economical and investment-related problems.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and apply the methods used by actuaries to solve problems of insurance, investment, pension, financial risk management and demography (by means of coursework and tutorial classes and/or research-based project in the curriculum)

PLO 2: develop and apply problem-solving skills appropriate to the level of the preliminary education component specified by international actuarial bodies such as the Society of Actuaries (by means of coursework and tutorial classes and/or research-based project in the curriculum)

Impermissible Combinations:
Bachelor of Science in Actuarial Science

Required courses (42 credits)
1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:

- FINA1310 Corporate finance (6)
- MATH1013 University mathematics II (6)
- STAT2601 Probability and statistics I (6)
- STAT2602 Probability and statistics II (6)
- STAT2605 Demographic and socio-economic statistics (6)
- STAT2901 Probability and statistics: foundations of actuarial science (6)

2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)

At least 30 credits selected from the following courses:

- STAT3615 Practical mathematics for investment (6)
- STAT3901 Life contingencies I (6)
- STAT3904 Corporate finance for actuarial science (6)
- STAT3906 Risk theory I (6)
- STAT3908 Credibility theory and loss distributions (6)
- STAT3910 Financial economics I (6)
- STAT3911 Financial economics II (6)
- STAT4903 Actuarial techniques for general insurance (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Astronomy

Offered to students admitted to Year 1 in 2018

Objectives:
The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)

PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)

PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Astronomy

Required courses (36 credits)

1. Introductory level courses (18 credits)
 Disciplinary Core Courses (12 credits)
 PHYS1650 Nature of the universe (6)
 PHYS2650 Modern astronomy (6)
 Disciplinary Electives (6 credits)
 At least 6 credits selected from the following courses:
 PHYS1250 Fundamental physics (6)
 PHYS2055 Introduction to relativity (6)
 EASC2408 Planetary geology (6)

2. Advanced level courses (18 credits)
 Disciplinary Core Courses (6 credits)
 PHYS3650 Observational astronomy (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 PHYS3653 Astrophysics (6)
 PHYS3660 Astronomy laboratory (6)
 PHYS4652 Planetary science (6)
 PHYS4653 Cosmology (6)
 PHYS4654 General relativity (6)
 PHYS4655 Interstellar medium (6)
 PHYS4656 Advanced astrophysics (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Astronomy

Offered to students admitted to Year 1 in
2017

Objectives:
The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
- **PLO 2**: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
- **PLO 3**: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Astronomy

Required courses (42 credits)

1. Introductory level courses (18 credits)

Disciplinary Core Courses (18 credits)

- PHYS1250 Fundamental physics (6)
- PHYS1650 Nature of the universe (6)
- PHYS2265 Modern physics (6)

2. Advanced level courses (24 credits)

Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:

- PHYS3650 Observational astronomy (6)
- PHYS3651 The physical universe (6)
- PHYS3652 Principles of astronomy (6)
- PHYS4650 Stellar physics (6)
- PHYS4651 Selected topics in astrophysics (6)
- PHYS4652 Planetary science (6)
- PHYS4653 Cosmology (6)
- PHYS4654 General relativity (6)
- PHYS4655 Interstellar medium (6)
- PHYS7650 Stellar atmospheres (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Astronomy

Offered to students
admitted to Year 1 in 2016

Objectives:
The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)

PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)

PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Astronomy

Required courses (42 credits)

1. Introductory level courses (18 credits)

 Disciplinary Core Courses (18 credits)
 - PHYS1250 Fundamental physics (6)
 - PHYS1650 Nature of the universe (6)
 - PHYS2265 Modern physics (6)

2. Advanced level courses (24 credits)

 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 - PHYS3650 Observational astronomy (6)
 - PHYS3651 The physical universe (6)
 - PHYS3652 Principles of astronomy (6)
 - PHYS4650 Stellar physics (6)
 - PHYS4651 Selected topics in astrophysics (6)
 - PHYS4652 Planetary science (6)
 - PHYS4653 Cosmology (6)
 - PHYS4654 General relativity (6)
 - PHYS4655 Interstellar medium (6)
 - PHYS7650 Stellar atmospheres (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Astronomy
Offered to students admitted to Year 1 in 2015

Objectives:
The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)

PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)

PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Astronomy

Required courses (42 credits)

1. Introductory level courses (18 credits)
 Disciplinary Core Courses (18 credits)
 PHYS1250 Fundamental physics (6)
 PHYS1650 Nature of the universe (6)
 PHYS2265 Modern physics (6)

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 PHYS3650 Observational astronomy (6)
 PHYS3651 The physical universe (6)
 PHYS3652 Principles of astronomy (6)
 PHYS4650 Stellar physics (6)
 PHYS4651 Selected topics in astrophysics (6)
 PHYS4652 Planetary science (6)
 PHYS4653 Cosmology (6)
 PHYS4654 General relativity (6)
 PHYS4655 Interstellar medium (6)
 PHYS7650 Stellar atmospheres (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Astronomy
Offered to students admitted to Year 1 in 2014

Objectives:
The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)

PLO 2: develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)

PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Astronomy

Required courses (42 credits)
1. Introductory level courses (18 credits)
 Disciplinary Core Courses (18 credits)
 PHYS1250 Fundamental physics (6)
 PHYS1650 Nature of the universe (6)
 PHYS2265 Modern physics (6)

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 PHYS3650 Observational astronomy (6)
 PHYS3651 The physical universe (6)
 PHYS3652 Principles of astronomy (6)
 PHYS4650 Stellar physics (6)
 PHYS4651 Selected topics in astrophysics (6)
 PHYS4652 Planetary science (6)
 PHYS4653 Cosmology (6)
 PHYS4654 General relativity (6)
 PHYS4655 Interstellar medium (6)
 PHYS7650 Stellar atmospheres (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfil this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Astronomy

Offered to students
admitted to Year 1 in **2013**

Objectives:
The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
- **PLO 2:** develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
- **PLO 3:** communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Astronomy

Required courses (42 credits)

1. **Introductory level courses (18 credits)**
2. **Disciplinary Core Courses (18 credits)**
 - PHYS1250 Fundamental physics (6)
 - PHYS1650 Nature of the universe (6)
 - PHYS2265 Modern physics (6)
3. **Advanced level courses (24 credits)**
 - **Disciplinary Electives (24 credits)**
 - At least 24 credits selected from the following courses:
 - PHYS3650 Observational astronomy (6)
 - PHYS3651 The physical universe (6)
 - PHYS3652 Principles of astronomy (6)
 - PHYS4650 Stellar physics (6)
 - PHYS4651 Selected topics in astrophysics (6)
 - PHYS4652 Planetary science (6)
 - PHYS4653 Cosmology (6)
 - PHYS4654 General relativity (6)
 - PHYS4655 Interstellar medium (6)
 - PHYS7650 Stellar atmospheres (6)

Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Minor in Astronomy is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses to allow them to pursue their interests in the subject and to establish connections between the field of astronomy and other science disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** identify and describe astrophysical phenomena with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
- **PLO 2:** develop their scientific intuition, abilities and techniques to tackle astrophysical problems either theoretical or observational in nature (by means of coursework, tutorial classes, and opportunities of field activities in the curriculum)
- **PLO 3:** communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Astronomy

<table>
<thead>
<tr>
<th>Required courses (42 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introductory level courses (18 credits)</td>
</tr>
<tr>
<td>Disciplinary Core Courses (18 credits)</td>
</tr>
<tr>
<td>PHYS1250</td>
</tr>
<tr>
<td>PHYS1650</td>
</tr>
<tr>
<td>PHYS2265</td>
</tr>
<tr>
<td>2. Advanced level courses (24 credits)</td>
</tr>
<tr>
<td>Disciplinary Electives (24 credits)</td>
</tr>
<tr>
<td>At least 24 credits selected from the following courses:</td>
</tr>
<tr>
<td>PHYS3650</td>
</tr>
<tr>
<td>PHYS3651</td>
</tr>
<tr>
<td>PHYS3652</td>
</tr>
<tr>
<td>PHYS4650</td>
</tr>
<tr>
<td>PHYS4651</td>
</tr>
<tr>
<td>PHYS4652</td>
</tr>
<tr>
<td>PHYS4653</td>
</tr>
<tr>
<td>PHYS4654</td>
</tr>
<tr>
<td>PHYS4655</td>
</tr>
<tr>
<td>PHYS7650</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Biochemistry
Offered to students admitted to Year 1 in 2018

Objectives:
The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student’s Major.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
- **PLO 2**: integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
- **PLO 3**: develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Biochemistry

Required courses (36 credits)

1. Introductory level courses (12 credits)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - BIOL1110: From molecules to cells (6)
 - BIOL2220: Principles of biochemistry (6)
 - BIOC1600: Perspectives in biochemistry (6)
 - BIOL2220: Principles of biochemistry (6)
 Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.
 - BIOL2220: Principles of biochemistry (6)
 - BIOL2220: Principles of biochemistry (6)
 Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 - BIOC3601: Basic metabolism (6)
 - BIOC3604: Essential techniques in biochemistry and molecular biology (6)
 - BIOC3605: Sequence bioinformatics (6)
 - BIOC3606: Molecular medicine (6)
 - BIOL3202: Nutritional biochemistry (6)
 - BIOL3401: Molecular biology (6)
 - BIOL3402: Cell biology and cell technology (6)
 - BIOL3403: Immunology (6)
 - BIOL3404: Protein structure and function (6)
 - BIOC4610: Advanced biochemistry (6)
 - BIOC4612: Molecular biology of the gene (6)
 - BIOC4613: Advanced techniques in biochemistry & molecular biology (6)
 - BIOL4417: 'Omnis' and systems biology (6)
 - CHEM4444: Chemical biology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course (“disciplinary core”) in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Biochemistry
Offered to students: 2017

Objectives:
The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)

PLO 2: integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)

PLO 3: develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Biochemistry

Required courses (36 credits)

1. Introductory level courses (12 credits)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - BIOC1600: Perspectives in biochemistry (6)
 - BIOL1110: From molecules to cells (6)
 - BIOC2600: Basic biochemistry (6)
 - BIOL2220: Principles of biochemistry (6)

 Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 - BIOC3601: Basic metabolism (6)
 - BIOC3604: Essential techniques in biochemistry and molecular biology (6)
 - BIOC3605: Sequence bioinformatics (6)
 - BIOC3606: Molecular medicine (6)
 - BIOL3202: Nutritional biochemistry (6)
 - BIOL3401: Molecular biology (6)
 - BIOL3402: Cell biology and cell technology (6)
 - BIOL3403: Immunology (6)
 - BIOL3404: Protein structure and function (6)
 - BIOC4610: Advanced biochemistry (6)
 - BIOC4612: Molecular biology of the gene (6)
 - BIOC4613: Advanced techniques in biochemistry & molecular biology (6)
 - BIOL4417: 'Omics' and systems biology (6)
 - CHEM4444: Chemical biology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Biochemistry

Offered to students admitted to Year 1 in 2016

Objectives:
The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student’s Major.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
- **PLO 2**: integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
- **PLO 3**: develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Biochemistry

Required courses (36 credits)

1. **Introductory level courses (12 credits)**

 - **Disciplinary Electives (12 credits)**
 - At least 12 credits selected from the following courses:
 - BIOC1600 Perspectives in biochemistry (6)
 - BIOL1110 From molecules to cells (6)
 - BIOC2600 Basic biochemistry (6)

 Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.

 - BIOL2220 Principles of biochemistry (6)

2. **Advanced level courses (24 credits)**

 - **Disciplinary Electives (24 credits)**
 - At least 24 credits selected from the following courses:
 - BIOC3601 Basic metabolism (6)
 - BIOC3604 Essential techniques in biochemistry and molecular biology (6)
 - BIOC3605 Sequence bioinformatics (6)
 - BIOC3606 Molecular medicine (6)
 - BIOL3202 Nutritional biochemistry (6)
 - BIOL3401 Molecular biology (6)
 - BIOL3402 Cell biology and cell technology (6)
 - BIOL3403 Immunology (6)
 - BIOL3404 Protein structure and function (6)
 - BIOC4610 Advanced biochemistry (6)
 - BIOC4612 Molecular biology of the gene (6)
 - BIOC4613 Advanced techniques in biochemistry & molecular biology (6)
 - BIOL4417 ‘Omics’ and systems biology (6)
 - CHEM4444 Chemical biology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Biochemistry
Offered to students admitted to Year 1 in 2015

Objectives:
The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)

PLO 2: integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)

PLO 3: develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Biochemistry

<table>
<thead>
<tr>
<th>Required courses (36 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introductory level courses (12 credits)</td>
<td></td>
</tr>
<tr>
<td>Disciplinary Electives (12 credits)</td>
<td></td>
</tr>
<tr>
<td>At least 12 credits selected from the following courses:</td>
<td></td>
</tr>
<tr>
<td>BIOL1110 From molecules to cells (6)</td>
<td></td>
</tr>
<tr>
<td>BIOC1600 Perspectives in biochemistry (6)</td>
<td></td>
</tr>
<tr>
<td>BIOC2600 Basic biochemistry (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL2220 Principles of biochemistry (6)</td>
<td></td>
</tr>
<tr>
<td>Take either BIOC2600 or BIOL2220 to fulfill this 12 credits requirement, but not both. BIOC2600 and BIOL2220 are mutually exclusive.</td>
<td></td>
</tr>
<tr>
<td>2. Advanced level courses (24 credits)</td>
<td></td>
</tr>
<tr>
<td>Disciplinary Electives (24 credits)</td>
<td></td>
</tr>
<tr>
<td>At least 24 credits selected from the following courses:</td>
<td></td>
</tr>
<tr>
<td>BIOL3202 Nutritional biochemistry (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3401 Molecular biology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3402 Cell biology and cell technology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3403 Immunology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3404 Protein structure and function (6)</td>
<td></td>
</tr>
<tr>
<td>BIOC3601 Basic metabolism (6)</td>
<td></td>
</tr>
<tr>
<td>BIOC3604 Essential techniques in biochemistry and molecular biology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOC3605 Sequence bioinformatics (6)</td>
<td></td>
</tr>
<tr>
<td>BIOC3606 Molecular medicine (6)</td>
<td></td>
</tr>
<tr>
<td>BIOC4610 Advanced biochemistry (6)</td>
<td></td>
</tr>
<tr>
<td>BIOC4612 Molecular biology of the gene (6)</td>
<td></td>
</tr>
<tr>
<td>BIOC4613 Advanced techniques in biochemistry & molecular biology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4417 'Omics' and systems biology (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4444 Chemical biology (6)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Biochemistry
Offered to students admitted to Year 1 in 2014

Objectives:
The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student's Major.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)

PLO 2: integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)

PLO 3: develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Biochemistry

<table>
<thead>
<tr>
<th>Required courses (36 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introductory level courses (12 credits)</td>
</tr>
<tr>
<td>Disciplinary Electives (12 credits)</td>
</tr>
<tr>
<td>At least 12 credits selected from the following courses:</td>
</tr>
<tr>
<td>BIOC1600</td>
</tr>
<tr>
<td>BIOL1110</td>
</tr>
<tr>
<td>BIOC2600</td>
</tr>
</tbody>
</table>

| 2. Advanced level courses (24 credits) |
| Disciplinary Electives (24 credits) |
| At least 24 credits selected from the following courses: |
BIOC3601	Basic metabolism (6)
BIOC3604	Essential techniques in biochemistry and molecular biology (6)
BIOC3605	Sequence bioinformatics (6)
BIOC3606	Molecular medicine (6)
BIOL3202	Nutritional biochemistry (6)
BIOL3401	Molecular biology (6)
BIOL3402	Cell biology and cell technology (6)
BIOL3403	Immunology (6)
BIOL3404	Protein structure and function (6)
BIOC4610	Advanced biochemistry (6)
BIOC4612	Molecular biology of the gene (6)
BIOC4613	Advanced techniques in biochemistry & molecular biology (6)
BIOL4417	"Ome"ics and systems biology (6)
CHEM4444	Chemical biology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Biochemistry

Offered to students admitted to Year 1 in
2013

Objectives:
The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student’s Major.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
- **PLO 2**: integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
- **PLO 3**: develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Biochemistry

Required courses (36 credits)

1. **Introductory level courses (12 credits)**
 - **Disciplinary Electives (12 credits)**
 - At least 12 credits selected from the following courses:
 - BIOC1600 Perspectives in biochemistry (6)
 - BIOL1110 From molecules to cells (6)
 - BIOC2600 Basic biochemistry (6)

2. **Advanced level courses (24 credits)**
 - **Disciplinary Electives (24 credits)**
 - At least 24 credits selected from the following courses:
 - BIOC3601 Basic metabolism (6)
 - BIOC3604 Essential techniques in biochemistry and molecular biology (6)
 - BIOC3605 Sequence bioinformatics (6)
 - BIOC3606 Molecular medicine (6)
 - BIOL3202 Nutritional biochemistry (6)
 - BIOL3401 Molecular biology (6)
 - BIOL3402 Cell biology and cell technology (6)
 - BIOL3403 Immunology (6)
 - BIOL3404 Protein structure and function (6)
 - BIOC4610 Advanced biochemistry (6)
 - BIOC4612 Molecular biology of the gene (6)
 - BIOC4613 Advanced techniques in biochemistry & molecular biology (6)
 - BIOL4417 ‘Omics’ and systems biology (6)
 - CHEM4444 Chemical biology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course (“disciplinary core”) in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Biochemistry

Offered to students
admitted to Year 1 in 2012

Objectives:
The Minor in Biochemistry is designed to provide students from all backgrounds with a multidisciplinary perspective on contemporary biochemistry and molecular biology. This minor curriculum incorporates significant flexibility to allow students to select courses that will complement the individual student’s Major.

Learning Outcomes:
By the end of this programme, students should be able to:

1. **PLO 1**: describe the fundamentals of biochemistry and molecular biology, and apply biochemical knowledge appropriately and effectively (by means of coursework and laboratory-based learning in the curriculum)
2. **PLO 2**: integrate knowledge regarding the structure and function of biological molecules and how they come together to form the systems that make up life (by means of coursework and laboratory-based learning in the curriculum)
3. **PLO 3**: develop a general interest in biochemistry and recognize the inter-relationship of biochemistry with other disciplines (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Biochemistry

Required courses (36 credits)

1. Introductory level courses (12 credits)

Disciplinary Electives (12 credits)

- At least 12 credits selected from the following courses:
 - BIOC1600 Perspectives in biochemistry (6)
 - BIOL1110 From molecules to cells (6)
 - BIOC2600 Basic biochemistry (6)

2. Advanced level courses (24 credits)

Disciplinary Electives (24 credits)

- At least 24 credits selected from the following courses:
 - BIOC3601 Basic metabolism (6)
 - BIOC3604 Essential techniques in biochemistry and molecular biology (6)
 - BIOC3605 Sequence bioinformatics (6)
 - BIOC3606 Molecular medicine (6)
 - BIOL3202 Nutritional biochemistry (6)
 - BIOL3401 Molecular biology (6)
 - BIOL3402 Cell biology and cell technology (6)
 - BIOL3403 Immunology (6)
 - BIOL3404 Protein structure and function (6)
 - BIOC4610 Advanced biochemistry (6)
 - BIOC4612 Molecular biology of the gene (6)
 - BIOC4613 Advanced techniques in biochemistry & molecular biology (6)
 - BIOL4417 ‘Omics’ and systems biology (6)
 - CHEM4444 Chemical biology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Chemistry
Offered to students admitted to Year 1 in 2018

Objectives:
The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)

PLO 2: apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)

PLO 3: transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Chemistry
Major in Chemistry (Intensive)

Required courses (42 credits)
1. Introductory level courses (24 credits)
Disciplinary Core Courses (12 credits)

- CHEM1042 General chemistry I (6)
- CHEM1043 General chemistry II (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:

- CHEM2241 Analytical chemistry I (6)
- CHEM2341 Inorganic chemistry I (6)
- CHEM2441 Organic chemistry I (6)

CHEM2441 and CHEM2442 are mutually exclusive.

- CHEM2442 Fundamentals of organic chemistry (6)

CHEM2441 and CHEM2442 are mutually exclusive.

- CHEM2541 Introductory physical chemistry (6)

2. Advanced level courses (18 credits)
Disciplinary Electives (18 credits)
At least 18 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

List A

- CHEM3141 Environmental chemistry (6)
- CHEM3142 Chemical process industries and analysis (6)
- CHEM3143 Introduction to materials chemistry (6)
- CHEM3146 Principles and applications of spectroscopic and analytical techniques (6)
- CHEM3241 Analytical chemistry II: chemical instrumentation (6)
- CHEM3242 Food and water analysis (6)
- CHEM3243 Introductory instrumental chemical analysis (6)
- CHEM3244 Analytical techniques for pharmacy students (6)
- CHEM3341 Inorganic chemistry II (6)
- CHEM3342 Bioinorganic chemistry (6)
- CHEM3344 Organic chemistry II (6)
- CHEM3345 Organic chemistry of biomolecules (6)
- CHEM3346 Organic chemistry laboratory (6)
- CHEM3347 Integrated laboratory (6)
- CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
- CHEM3542 Physical chemistry: statistical thermodynamics and kinetics theory (6)
- CHEM3999 Directed studies in chemistry (6)
- CHEM4142 Symmetry, group theory and applications (6)
- CHEM4143 Interfacial science and technology (6)
- CHEM4144 Advanced materials (6)
- CHEM4145 Medicinal chemistry (6)
- CHEM4147 Supramolecular chemistry (6)
- CHEM4241 Modern chemical instrumentation and applications (6)
- CHEM4242 Analytical chemistry (6)
- CHEM4341 Advanced inorganic chemistry (6)
- CHEM4342 Organometallic chemistry (6)
- CHEM4441 Advanced organic chemistry (6)
- CHEM4443 Integrated organic synthesis (6)
- CHEM4444 Chemical biology (6)
- CHEM4542 Computational chemistry (6)
- CHEM4543 Advanced physical chemistry (6)
- CHEM4544 Electrochemical science and technology (6)
- CHEM4910 Chemistry literacy and research (6)
- CHEM4911
Capstone experience for chemistry undergraduates:
- HKUtopia (6)
- CHEM4966 Chemistry internship (6)
- CHEM4999 Chemistry project (12)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Chemistry
Offered to students admitted to Year 1 in 2017

Objectives:
The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)

PLO 2: apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)

PLO 3: transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Chemistry
Major in Chemistry (Intensive)

Required courses (42 credits)

1. Introductory level courses (24 credits)

 Disciplinary Core Courses (12 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1042</td>
<td>General chemistry I (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM1043</td>
<td>General chemistry II (6)</td>
<td></td>
</tr>
</tbody>
</table>

 Disciplinary Electives (12 credits)

 At least 12 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM2241</td>
<td>Analytical chemistry I (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM2341</td>
<td>Inorganic chemistry I (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM2441</td>
<td>Organic chemistry I (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM2442</td>
<td>Fundamentals of organic chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM2541</td>
<td>Introductory physical chemistry (6)</td>
<td></td>
</tr>
</tbody>
</table>

 CHEM2441 and CHEM2442 are mutually exclusive.

2. Advanced level courses (18 credits)

 Disciplinary Electives (18 credits)

 At least 18 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

 List A

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3141</td>
<td>Environmental chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3142</td>
<td>Chemical process industries and analysis (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3143</td>
<td>Introduction to materials chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3146</td>
<td>Principles and applications of spectroscopic and analytical techniques (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3241</td>
<td>Analytical chemistry II: chemical instrumentation (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3242</td>
<td>Food and water analysis (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3243</td>
<td>Introductory instrumental chemical analysis (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3244</td>
<td>Analytical techniques for pharmacy students (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3341</td>
<td>Inorganic chemistry II (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3342</td>
<td>Bioinorganic chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3441</td>
<td>Organic chemistry II (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3442</td>
<td>Organic chemistry of biomolecules (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3443</td>
<td>Organic chemistry laboratory (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3445</td>
<td>Integrated laboratory (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3541</td>
<td>Physical chemistry: Introduction to quantum chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3542</td>
<td>Physical chemistry: statistical thermodynamics and kinetics theory (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3999</td>
<td>Directed studies in chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4142</td>
<td>Symmetry, group theory and applications (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4143</td>
<td>Interfacial science and technology (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4144</td>
<td>Advanced materials (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4145</td>
<td>Medicinal chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4147</td>
<td>Supramolecular chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4241</td>
<td>Modern chemical instrumentation and applications (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4242</td>
<td>Analytical chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4341</td>
<td>Advanced inorganic chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4342</td>
<td>Organometallic chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4441</td>
<td>Advanced organic chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4443</td>
<td>Integrated organic synthesis (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4444</td>
<td>Chemical biology (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4542</td>
<td>Computational chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4543</td>
<td>Advanced physical chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4544</td>
<td>Electrochemical science and technology (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4910</td>
<td>Chemistry literacy and research (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4911</td>
<td>Science Minors</td>
<td></td>
</tr>
</tbody>
</table>
Capstone experience for chemistry undergraduates:
HKUtopia (6)
CHEM4966 Chemistry internship (6)
CHEM4999 Chemistry project (12)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Chemistry

Offered to students admitted to Year 1 in 2016

Objectives:
The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)

PLO 2: apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)

PLO 3: transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Chemistry
Major in Chemistry (Intensive)

Required courses (42 credits)

1. **Introductory level courses (24 credits)**
 - **Disciplinary Core Courses (12 credits)**
 - CHEM1042 General chemistry I (6)
 - CHEM1043 General chemistry II (6)
 - **Disciplinary Electives (12 credits)**
 - **At least 12 credits selected from the following courses:**
 - CHEM2041 Principles of chemistry (6)
 - CHEM2241 Analytical chemistry I (6)
 - CHEM2341 Inorganic chemistry I (6)
 - CHEM2441 Organic chemistry I (6)
 - CHEM2442 Fundamentals of organic chemistry (6)
 - CHEM2541 Introductory physical chemistry (6)

2. **Advanced level courses (18 credits)**
 - **Disciplinary Electives (18 credits)**
 - **At least 18 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:**
 - **List A**
 - CHEM3141 Environmental chemistry (6)
 - CHEM3142 Chemical process industries and analysis (6)
 - CHEM3143 Introduction to materials chemistry (6)
 - CHEM3146 Principles and applications of spectroscopic and analytical techniques (6)
 - CHEM3241 Analytical chemistry II: chemical instrumentation (6)
 - CHEM3242 Food and water analysis (6)
 - CHEM3243 Introductory instrumental chemical analysis (6)
 - CHEM3244 Analytical techniques for pharmacy students (6)
 - CHEM3341 Inorganic chemistry II (6)
 - CHEM3342 Bioinorganic chemistry (6)
 - CHEM3441 Organic chemistry II (6)
 - CHEM3442 Organic chemistry of biomolecules (6)
 - CHEM3443 Organic chemistry laboratory (6)
 - CHEM3445 Integrated laboratory (6)
 - CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)
 - CHEM3542 Physical chemistry: statistical thermodynamics and kinetics theory (6)
 - CHEM3999 Directed studies in chemistry (6)
 - CHEM4142 Symmetry, group theory and applications (6)
 - CHEM4143 Interfacial science and technology (6)
 - CHEM4144 Advanced materials (6)
 - CHEM4145 Medicinal chemistry (6)
 - CHEM4147 Supramolecular chemistry (6)
 - CHEM4241 Modern chemical instrumentation and applications (6)
 - CHEM4242 Analytical chemistry (6)
 - CHEM4341 Advanced inorganic chemistry (6)
 - CHEM4342 Organometallic chemistry (6)
 - CHEM4441 Advanced organic chemistry (6)
 - CHEM4443 Integrated organic synthesis (6)
 - CHEM4444 Chemical biology (6)
 - CHEM4542 Computational chemistry (6)
 - CHEM4543 Advanced physical chemistry (6)
 - CHEM4544 Electrochemical science and technology (6)
 - CHEM4910 Chemistry literacy and research (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM4911</td>
<td>Capstone experience for chemistry undergraduates: HKUtopia (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4966</td>
<td>Chemistry internship (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4999</td>
<td>Chemistry project (12)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Chemistry
Offered to students admitted to Year 1 in 2015

Objectives:
The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)
- **PLO 2:** apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)
- **PLO 3:** transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
- Major in Chemistry
- Major in Chemistry (Intensive)

<table>
<thead>
<tr>
<th>Required courses (42 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disciplinary Core Courses (12 credits)</td>
<td></td>
</tr>
<tr>
<td>CHEM1042 General chemistry I (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM1043 General chemistry II (6)</td>
<td></td>
</tr>
<tr>
<td>Disciplinary Electives (12 credits)</td>
<td></td>
</tr>
<tr>
<td>CHEM2041 Principles of chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM2241 Analytical chemistry I (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM2341 Inorganic chemistry I (6)</td>
<td></td>
</tr>
</tbody>
</table>
| CHEM2441 Organic chemistry I (6) | CHEM2441 and CHEM2442 are mutually exclusive.
| CHEM2442 Fundamentals of organic chemistry (6) | CHEM2441 and CHEM2442 are mutually exclusive.
| CHEM2541 Introductory physical chemistry (6) | |

<table>
<thead>
<tr>
<th>2. Advanced level courses (18 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disciplinary Electives (18 credits)</td>
<td></td>
</tr>
<tr>
<td>At least 18 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:</td>
<td></td>
</tr>
<tr>
<td>List A</td>
<td></td>
</tr>
<tr>
<td>CHEM3141 Environmental chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3142 Chemical process industries and analysis (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3143 Introduction to materials chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3146 Principles and applications of spectroscopic and analytical techniques (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3241 Analytical chemistry II: chemical instrumentation (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3242 Food and water analysis (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3243 Introductory instrumental chemical analysis (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3244 Analytical techniques for pharmacy students (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3341 Inorganic chemistry II (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3342 Bioinorganic chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3441 Organic chemistry II (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3442 Organic chemistry of biomolecules (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3443 Organic chemistry laboratory (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3445 Integrated laboratory (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3541 Physical chemistry: Introduction to quantum chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3542 Physical chemistry: statistical thermodynamics and kinetics theory (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM3999 Directed studies in chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4142 Symmetry, group theory and applications (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4143 Interfacial science and technology (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4144 Advanced materials (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4145 Medicinal chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4147 Supramolecular chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4241 Modern chemical instrumentation and applications (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4242 Analytical chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4341 Advanced inorganic chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4342 Organometallic chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4441 Advanced organic chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4443 Integrated organic synthesis (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4444 Chemical biology (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4542 Computational chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4543 Advanced physical chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4544 Electrochemical science and technology (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4910 Chemistry literacy and research (6)</td>
<td></td>
</tr>
</tbody>
</table>
Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Chemistry
Offered to students admitted to Year 1 in 2014

Objectives:
The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)

PLO 2: apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)

PLO 3: transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Chemistry
Major in Chemistry (Intensive)

Required courses (42 credits)

1. Introductory level courses (18 credits)
 Disciplinary Core Courses (6 credits)
 CHEM104 General chemistry I (6) [previous title: General chemistry (6)]

 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 CHEM2041 Principles of chemistry (6)
 CHEM2241 Analytical chemistry I (6)
 CHEM2341 Inorganic chemistry I (6)
 CHEM2441 Organic chemistry I (6) CHEM2441 and CHEM2442 are mutually exclusive.
 CHEM2442 Fundamentals of organic chemistry (6) CHEM2441 and CHEM2442 are mutually exclusive.
 CHEM2541 Introductory physical chemistry (6) [previous title: Physical chemistry I (6)]

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 At least 24 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

 List A
 CHEM3141 Environmental chemistry (6)
 CHEM3142 Chemical process industries and analysis (6)
 CHEM3143 Introduction to materials chemistry (6)
 CHEM3146 Principles and applications of spectroscopic and analytical techniques (6)
 CHEM3241 Analytical chemistry II: chemical instrumentation (6)
 CHEM3242 Food and water analysis (6)
 CHEM3243 Introductory instrumental chemical analysis (6)
 CHEM3244 Analytical techniques for pharmacy students (6)
 CHEM3341 Inorganic chemistry II (6)
 CHEM3342 Bioinorganic chemistry (6)
 CHEM3441 Organic chemistry II (6)
 CHEM3442 Organic chemistry of biomolecules (6)
 CHEM3443 Organic chemistry laboratory (6)
 CHEM3445 Integrated laboratory (6)
 CHEM3541 Physical chemistry: Introduction to quantum chemistry (6) [previous title: Physical chemistry II: Introduction to quantum chemistry (6)]
 CHEM3542 Physical chemistry: statistical thermodynamics and kinetics theory (6)
 CHEM3999 Directed studies in chemistry (6)
 CHEM4142 Symmetry, group theory and applications (6)
 CHEM4143 Interfacial science and technology (6)
 CHEM4144 Advanced materials (6)
 CHEM4145 Medicinal chemistry (6)
 CHEM4147 Supramolecular chemistry (6)
 CHEM4241 Modern chemical instrumentation and applications (6)
 CHEM4242 Analytical chemistry (6)
 CHEM4341 Advanced inorganic chemistry (6)
 CHEM4342 Organometallic chemistry (6)
 CHEM4441 Advanced organic chemistry (6)
 CHEM4443 Integrated organic synthesis (6)
 CHEM4444 Chemical biology (6)
 CHEM4542 Computational chemistry (6)
 CHEM4543 Advanced physical chemistry (6)
 CHEM4544 Electrochemical science and technology (6)
 CHEM4910 Chemistry literacy and research (6)
CHEM4911 Capstone experience for chemistry undergraduate: HKUtopia (6)
CHEM4966 Chemistry internship (6)
CHEM4999 Chemistry project (12)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Chemistry
Offered to students admitted to Year 1 in 2013

Objectives:
The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)
PLO 2: apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)
PLO 3: transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Chemistry
Major in Chemistry (Intensive)

Required courses (42 credits)
1. Introductory level courses (18 credits)
 Disciplinary Core Courses (6 credits)
 CHEM1042 General chemistry I (6) [previous title: General chemistry (6)]
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 CHEM2041 Principles of chemistry (6)
 CHEM2241 Analytical chemistry I (6)
 CHEM2341 Inorganic chemistry I (6)
 CHEM2441 Organic chemistry I (6) CHEM2441 and CHEM2442 are mutually exclusive.
 CHEM2442 Fundamentals of organic chemistry (6) CHEM2441 and CHEM2442 are mutually exclusive.
 CHEM2541 Introductory physical chemistry (6) [previous title: Physical chemistry I (6)]

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 At least 24 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
 List A
 CHEM3141 Environmental chemistry (6)
 CHEM3142 Chemical process industries and analysis (6)
 CHEM3143 Introduction to materials chemistry (6)
 CHEM3146 Principles and applications of spectroscopic and analytical techniques (6)
 CHEM3241 Analytical chemistry II: chemical instrumentation (6)
 CHEM3242 Food and water analysis (6)
 CHEM3243 Introductory instrumental chemical analysis (6)
 CHEM3244 Analytical techniques for pharmacy students (6)
 CHEM3341 Inorganic chemistry II (6)
 CHEM3342 Bioinorganic chemistry (6)
 CHEM3441 Organic chemistry II (6)
 CHEM3442 Organic chemistry of biomolecules (6)
 CHEM3443 Organic chemistry laboratory (6)
 CHEM3445 Integrated laboratory (6)
 CHEM3541 Physical chemistry: Introduction to quantum chemistry (6) [previous title: Physical chemistry II: Introduction to quantum chemistry (6)]
 CHEM3542 Physical chemistry: statistical thermodynamics and kinetics theory (6)
 CHEM3999 Directed studies in chemistry (6)
 CHEM4142 Symmetry, group theory and applications (6)
 CHEM4143 Interfacial science and technology (6)
 CHEM4144 Advanced materials (6)
 CHEM4145 Medicinal chemistry (6)
 CHEM4147 Supramolecular chemistry (6)
 CHEM4241 Modern chemical instrumentation and applications (6)
 CHEM4242 Analytical chemistry (6)
 CHEM4341 Advanced inorganic chemistry (6)
 CHEM4342 Organometallic chemistry (6)
 CHEM4441 Advanced organic chemistry (6)
 CHEM4443 Integrated organic synthesis (6)
 CHEM4444 Chemical biology (6)
 CHEM4541 Physical chemistry III: statistical thermodynamics and kinetics theory (6)
 CHEM4542 Computational chemistry (6)
 CHEM4543 Advanced physical chemistry (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM4544</td>
<td>Electrochemical science and technology</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4910</td>
<td>Chemistry literacy and research</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4911</td>
<td>Capstone experience for chemistry under gradients: HKUtopia</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4966</td>
<td>Chemistry internship</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4999</td>
<td>Chemistry project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Chemistry
Offered to students admitted to Year 1 in 2012

Objectives:
The Minor in Chemistry aims to provide students with fundamental knowledge and skills of chemistry. The minor curriculum is flexible. Students of different majors in science and other disciplines will be able to select courses that complement their major areas of study as well as enhance their knowledge in chemistry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and apply the basic concepts of chemistry (by means of coursework and laboratory-based learning in the curriculum)

PLO 2: apply chemistry concepts in other subjects (by means of coursework and laboratory-based learning in the curriculum)

PLO 3: transfer the basic concepts to complement their major area of study (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Chemistry
Major in Chemistry (Intensive)

Required courses (42 credits)

1. Introductory level courses (18 credits)
Disciplinary Core Courses (6 credits)
CHEM104 General chemistry I (6) [previous title: General chemistry (6)]

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
- CHEM204 Principles of chemistry (6)
- CHEM224 Analytical chemistry I (6)
- CHEM234 Inorganic chemistry I (6)
- CHEM244 Organic chemistry I (6) CHEM2441 and CHEM2442 are mutually exclusive.
- CHEM254 Introductory physical chemistry (6) [previous title: Physical chemistry I (6)]

2. Advanced level courses (24 credits)
Disciplinary Electives (24 credits)
At least 24 credits of advanced level Chemistry courses (CHEM3XXX or CHEM4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

List A
- CHEM314 Environmental chemistry (6)
- CHEM3142 Chemical process industries and analysis (6)
- CHEM3143 Introduction to materials chemistry (6)
- CHEM3146 Principles and applications of spectroscopic and analytical techniques (6)
- CHEM324 Analytical chemistry II: chemical instrumentation (6)
- CHEM3242 Food and water analysis (6)
- CHEM3243 Introductory instrumental chemical analysis (6)
- CHEM3244 Analytical techniques for pharmacy students (6)
- CHEM334 Inorganic chemistry II (6)
- CHEM3342 Bioinorganic chemistry (6)
- CHEM3441 Organic chemistry II (6)
- CHEM3442 Organic chemistry of biomolecules (6)
- CHEM3443 Organic chemistry laboratory (6)
- CHEM3445 Integrated laboratory (6)
- CHEM354 Physical chemistry: Introduction to quantum chemistry (6) [previous title: Physical chemistry II: Introduction to quantum chemistry (6)]
- CHEM3542 Physical chemistry: statistical thermodynamics and kinetics theory (6)
- CHEM3999 Directed studies in chemistry (6)
- CHEM4142 Symmetry, group theory and applications (6)
- CHEM4143 Interfacial science and technology (6)
- CHEM4144 Advanced materials (6)
- CHEM4145 Medicinal chemistry (6)
- CHEM4147 Supramolecular chemistry (6)
- CHEM4241 Modern chemical instrumentation and applications (6)
- CHEM4242 Analytical chemistry (6)
- CHEM4341 Advanced inorganic chemistry (6)
- CHEM4342 Organometallic chemistry (6)
- CHEM4441 Advanced organic chemistry (6)
- CHEM4443 Integrated organic synthesis (6)
- CHEM4444 Chemical biology (6)
- CHEM4541 Physical chemistry III: statistical thermodynamics and kinetics theory (6)
- CHEM4542 Computational chemistry (6)
- CHEM4543 Advanced physical chemistry (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM4544</td>
<td>Electrochemical science and technology</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4910</td>
<td>Chemistry literacy and research</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4911</td>
<td>Capstone experience for chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>undergraduates: HKUtopia (6)</td>
<td></td>
</tr>
<tr>
<td>CHEM4966</td>
<td>Chemistry internship</td>
<td>(6)</td>
</tr>
<tr>
<td>CHEM4999</td>
<td>Chemistry project</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Chemistry or equivalent to take this major. Students who do not fulfill this requirement are advised to take CHEM1041 Foundations of chemistry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Computational & Financial Mathematics

Offered to students admitted to Year 1 in 2018

Objectives:
The Minor in Computational & Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Major in Mathematics/Physics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (42 credits)
1. Introductory level courses (18 credits) (note 3)
 Disciplinary Core Course (6 credits)
 MATH1013 University mathematics II (6)

 Disciplinary Electives (12 credits)
 Select either List A or List B:
 List A
 MATH2101 Linear algebra I (6)
 MATH2211 Multivariable calculus (6)
 List B
 MATH2012 Fundamental concepts of mathematics (6)
 MATH2014 Multivariable calculus and linear algebra (6)

2. Advanced level courses (24 credits)
 Disciplinary Core Courses (12 credits)
 MATH3601 Numerical analysis (6)
 MATH3906 Financial calculus (6)

 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 MATH3408 Computational methods and differential equations with applications (6)
 MATH3603 Probability theory (6)
 MATH3904 Introduction to optimization (6)
 MATH3911 Game theory and strategy (6)
 MATH4602 Scientific computing (6)
 MATH4907 Numerical methods for financial calculus (6)
 MATH7217 Topics in financial mathematics (6)
 MATH7224 Topics in advanced probability theory (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title | Minor in Computational & Financial Mathematics
Offered to students | 2017
Admitted to Year 1 in |
Objectives:
The Minor in Computational & Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

Learning Outcomes:
By the end of this programme, students should be able to:
- **PLO 1:** understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 2:** apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 3:** communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
- Major in Mathematics
- Major in Mathematics/Physics
- Minor in Mathematics
- Minor in Operations Research & Mathematical Programming

Required courses (42 credits)
1. Introductory level courses (18 credits) (note 3)
Disciplinary Core Course (6 credits)
- MATH1013 University mathematics II (6)
Disciplinary Electives (12 credits)
- **Select either List A or List B:**
 - **List A**
 - MATH2101 Linear algebra I (6)
 - MATH2211 Multivariable calculus (6)
 - **List B**
 - MATH2012 Fundamental concepts of mathematics (6)
 - MATH2014 Multivariable calculus and linear algebra (6)

2. Advanced level courses (24 credits)
Disciplinary Core Courses (12 credits)
- MATH3601 Numerical analysis (6)
- MATH3906 Financial calculus (6)
Disciplinary Electives (12 credits)
- At least 12 credits selected from the following courses:
 - MATH3408 Computational methods and differential equations with applications (6)
 - MATH3603 Probability theory (6)
 - MATH3904 Introduction to optimization (6)
 - MATH3911 Game theory and strategy (6)
 - MATH4602 Scientific computing (6)
 - MATH4907 Numerical methods for financial calculus (6)
 - MATH7217 Topics in financial mathematics (6)
 - MATH7224 Topics in advanced probability theory (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Computational & Financial Mathematics
Offered to students admitted to Year 1 in 2016

Objectives:
The Minor in Computational & Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Major in Mathematics/Physics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (42 credits)
1. Introductory level courses (18 credits) (note 3)
 Disciplinary Core Course (6 credits)
 MATH1013 University mathematics II (6)
 Disciplinary Electives (12 credits)
 Select either List A or List B:
 List A
 MATH2101 Linear algebra I (6)
 MATH2211 Multivariable calculus (6)
 List B
 MATH2012 Fundamental concepts of mathematics (6)
 MATH2014 Multivariable calculus and linear algebra (6)

2. Advanced level courses (24 credits)
 Disciplinary Core Courses (12 credits)
 MATH3601 Numerical analysis (6)
 MATH3906 Financial calculus (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 MATH3408 Computational methods and differential equations with applications (6)
 MATH3603 Probability theory (6)
 MATH3904 Introduction to optimization (6)
 MATH3911 Game theory and strategy (6)
 MATH4602 Scientific computing (6)
 MATH4907 Numerical methods for financial calculus (6)
 MATH7217 Topics in financial mathematics (6)
 MATH7224 Topics in advanced probability theory (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor in Computational & Financial Mathematics
Offered to students admitted to Year 1 in **2015**

Objectives:
The Minor in Computational & Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (42 credits)

1. **Introductory level courses (18 credits) (note 3)**
 - **Disciplinary Core Course (6 credits)**
 - MATH1013 University mathematics II (6)
 - **Disciplinary Electives (12 credits)**
 - Select either List A or List B:
 - **List A**
 - MATH2101 Linear algebra I (6)
 - MATH2211 Multivariable calculus (6)
 - **List B**
 - MATH2012 Fundamental concepts of mathematics (6)
 - MATH2014 Multivariable calculus and linear algebra (6)

2. **Advanced level courses (24 credits)**
 - **Disciplinary Core Courses (12 credits)**
 - MATH3601 Numerical analysis (6)
 - MATH3906 Financial calculus (6)
 - **Disciplinary Electives (12 credits)**
 - At least 12 credits selected from the following courses:
 - MATH3408 Computational methods and differential equations with applications (6)
 - MATH3503 Probability theory (6)
 - MATH3904 Introduction to optimization (6)
 - MATH3911 Game theory and strategy (6)
 - MATH4602 Scientific computing (6)
 - MATH4907 Numerical methods for financial calculus (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor in Computational & Financial Mathematics

Objectives:
The Minor in Computational & Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (42 credits)

1. Introductory level courses (18 credits) (note 3)
 Disciplinary Core Courses (18 credits)
 MATH1013 University mathematics II (6)
 MATH2101 Linear algebra I (6)
 MATH2211 Multivariable calculus (6)

2. Advanced level courses (24 credits)
 Disciplinary Core Courses (12 credits)
 MATH3601 Numerical analysis (6)
 MATH3906 Financial calculus (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 MATH3408 Computational methods and differential equations with applications (6)
 MATH3603 Probability theory (6)
 MATH3904 Introduction to optimization (6)
 MATH3911 Game theory and strategy (6)
 MATH4602 Scientific computing (6)
 MATH4907 Numerical methods for financial calculus (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Computational & Financial Mathematics

Offered to students admitted to Year 1 in 2013

Objectives:
The Minor in Computational & Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Minor in Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (42 credits)

1. Introductory level courses (18 credits) (note 3)
 Disciplinary Core Courses (18 credits)
 - MATH1013 University mathematics II (6)
 - MATH2101 Linear algebra I (6)
 - MATH2211 Multivariable calculus (6)

2. Advanced level courses (24 credits)
 Disciplinary Core Courses (12 credits)
 - MATH3601 Numerical analysis (6)
 - MATH3906 Financial calculus (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - MATH3408 Computational methods and differential equations with applications (6)
 - MATH3603 Probability theory (6)
 - MATH3904 Introduction to optimization (6)
 - MATH3911 Game theory and strategy (6)
 - MATH4602 Scientific computing (6)
 - MATH4907 Numerical methods for financial calculus (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Computational & Financial Mathematics

Offered to students admitted to Year 1 in 2012

Objectives:
The Minor in Computational & Financial Mathematics provides students with fundamental knowledge in both computational mathematics and financial mathematics. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from computational sciences and financial industry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe fundamental concepts in computational and financial mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Minor in Mathematics

Required courses (42 credits)

1. Introductory level courses (18 credits) (note 3)

Disciplinary Core Courses (18 credits)
- MATH1013 University mathematics II (6)
- MATH2101 Linear algebra I (6)
- MATH2211 Multivariable calculus (6)

2. Advanced level courses (24 credits)

Disciplinary Core Courses (12 credits)
- MATH3601 Numerical analysis (6)
- MATH3906 Financial calculus (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
- MATH3408 Computational methods and differential equations with applications (6)
- MATH3603 Probability theory (6)
- MATH3904 Introduction to optimization (6)
- MATH3911 Game theory and strategy (6)
- MATH4602 Scientific computing (6)
- MATH4907 Numerical methods for financial calculus (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Earth Sciences
Offered to students admitted to Year 1 in 2018

Objectives:
The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)

PLO 2: understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)

PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

Impermissible Combinations:
Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

Required courses (36 credits)
1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
- EASC1401 Blue Planet (6)
- EASC1402 Principles of geology (6)
- EASC2401 Fluid/solid interactions in earth processes (6)

2. Advanced level courses (24 credits)
Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

List A
- EASC3020 Global change: anthropogenic impacts (6)
- EASC3402 Petrology (6)
- EASC3403 Sedimentary environments (6)
- EASC3404 Structural geology (6)
- EASC3405 Environmental remote sensing (6)
- EASC3406 Reconstruction of past climate (6)
- EASC3408 Geophysics (6)
- EASC3409 Igneous and metamorphic petrogenesis (6)
- EASC3410 Hydrogeology (6)
- EASC3412 Earth resources (6)
- EASC3413 Engineering geology (6)
- EASC3414 Soil and rock mechanics (6)
- EASC3415 Meteorology (6)
- EASC3416 Advanced geochemistry and geochronology (6)
- EASC3417 Earth through time (6)
- EASC3999 Directed studies in earth sciences (6)
- EASC4403 Biogeochemical cycles (6)
- EASC4406 Earth dynamics & global tectonics (6)
- EASC4407 Regional geology (6)
- EASC4408 Special topics in earth sciences (6)
- EASC4911 Earth system: contemporary issues (6)
- EASC4955 Integrated field studies (6)
- EASC4966 Earth sciences internship (6)
- EASC4999 Earth sciences project (12)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Earth Sciences
Offered to students admitted to Year 1 in 2017

Objectives:
The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)

PLO 2: understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)

PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

Impermissible Combinations:
Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

Required courses (36 credits)
1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
- EASC1401 Blue Planet (6)
- EASC1402 Principles of geology (6)
- EASC2401 Fluid/solid interactions in earth processes (6)

2. Advanced level courses (24 credits)
Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

List A:
- EASC3020 Global change: anthropogenic impacts (6)
- EASC3402 Petrology (6)
- EASC3403 Sedimentary environments (6)
- EASC3404 Structural geology (6)
- EASC3405 Environmental remote sensing (6)
- EASC3406 Reconstruction of past climate (6)
- EASC3408 Geophysics (6)
- EASC3409 Igneous and metamorphic petrogenesis (6)
- EASC3410 Hydrogeology (6)
- EASC3412 Earth resources (6)
- EASC3413 Engineering geology (6)
- EASC3414 Soil and rock mechanics (6)
- EASC3415 Meteorology (6)
- EASC3416 Advanced geochemistry and geochronology (6)
- EASC3417 Earth through time (6)
- EASC3908 Directed studies in earth sciences (6)
- EASC4403 Biogeochemical cycles (6)
- EASC4406 Earth dynamics & global tectonics (6)
- EASC4407 Regional geology (6)
- EASC4408 Special topics in earth sciences (6)
- EASC4911 Earth system: contemporary issues (6)
- EASC4955 Integrated field studies (6)
- EASC4966 Earth sciences internship (6)
- EASC4999 Earth sciences project (12)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Earth Sciences
Offered to students admitted to Year 1 in 2016

Objectives:
The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)
- **PLO 2**: understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)
- **PLO 3**: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

Impermissible Combinations:
- Major in Earth System Science
- Major in Geology
- Major in Geology (Intensive)

Required courses (36 credits)

1. Introductory level courses (12 credits)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - EASC1401 Blue Planet (6)
 - EASC1402 Principles of geology (6)
 - EASC2401 Fluid/solid interactions in earth processes (6)

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
 - **List A**
 - EASC3020 Global change: anthropogenic impacts (6)
 - EASC3402 Petrology (6)
 - EASC3403 Sedimentary environments (6)
 - EASC3404 Structural geology (6)
 - EASC3405 Environmental remote sensing (6)
 - EASC3406 Reconstruction of past climate (6)
 - EASC3408 Geophysics (6)
 - EASC3409 Igneous and metamorphic petrogenesis (6)
 - EASC3410 Hydrogeology (6)
 - EASC3412 Earth resources (6)
 - EASC3413 Engineering geology (6)
 - EASC3414 Soil and rock mechanics (6)
 - EASC3415 Meteorology (6)
 - EASC3416 Advanced geochemistry and geochronology (6)
 - EASC3417 Earth through time (6)
 - EASC3998 Directed studies in earth sciences (6)
 - EASC4403 Biogeochemical cycles (6)
 - EASC4406 Earth dynamics & global tectonics (6)
 - EASC4407 Regional geology (6)
 - EASC4408 Special topics in earth sciences (6)
 - EASC4911 Earth system: contemporary issues (6)
 - EASC4955 Integrated field studies (6)
 - EASC4966 Earth sciences internship (6)
 - EASC4999 Earth sciences project (12)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Earth Sciences
Offered to students admitted to Year 1 in 2015

Objectives:
The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)
- **PLO 2:** understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)
- **PLO 3:** discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

Impermissible Combinations:
Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

Required courses (36 credits)

1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC1401</td>
<td>Blue Planet</td>
<td>6</td>
</tr>
<tr>
<td>EASC1402</td>
<td>Principles of geology</td>
<td>6</td>
</tr>
<tr>
<td>EASC2401</td>
<td>Fluid/solid interactions in earth processes</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Advanced level courses (24 credits)
Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

List A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASC3020</td>
<td>Global change: anthropogenic impacts</td>
<td>6</td>
</tr>
<tr>
<td>EASC3402</td>
<td>Petrology</td>
<td>6</td>
</tr>
<tr>
<td>EASC3403</td>
<td>Sedimentary environments</td>
<td>6</td>
</tr>
<tr>
<td>EASC3404</td>
<td>Structural geology</td>
<td>6</td>
</tr>
<tr>
<td>EASC3405</td>
<td>Environmental remote sensing</td>
<td>6</td>
</tr>
<tr>
<td>EASC3406</td>
<td>Reconstruction of past climate</td>
<td>6</td>
</tr>
<tr>
<td>EASC3408</td>
<td>Geophysics</td>
<td>6</td>
</tr>
<tr>
<td>EASC3409</td>
<td>Igneous and metamorphic petrogenesis</td>
<td>6</td>
</tr>
<tr>
<td>EASC3410</td>
<td>Hydrogeology</td>
<td>6</td>
</tr>
<tr>
<td>EASC3412</td>
<td>Earth resources</td>
<td>6</td>
</tr>
<tr>
<td>EASC3413</td>
<td>Engineering geology</td>
<td>6</td>
</tr>
<tr>
<td>EASC3414</td>
<td>Soil and rock mechanics</td>
<td>6</td>
</tr>
<tr>
<td>EASC3415</td>
<td>Meteorology</td>
<td>6</td>
</tr>
<tr>
<td>EASC3416</td>
<td>Advanced geochemistry and geochronology</td>
<td>6</td>
</tr>
<tr>
<td>EASC3417</td>
<td>Earth through time</td>
<td>6</td>
</tr>
<tr>
<td>EASC3998</td>
<td>Directed studies in earth sciences</td>
<td>6</td>
</tr>
<tr>
<td>EASC4403</td>
<td>Biogeochemical cycles</td>
<td>6</td>
</tr>
<tr>
<td>EASC4406</td>
<td>Earth dynamics & global tectonics</td>
<td>6</td>
</tr>
<tr>
<td>EASC4407</td>
<td>Regional geology</td>
<td>6</td>
</tr>
<tr>
<td>EASC4408</td>
<td>Special topics in earth sciences</td>
<td>6</td>
</tr>
<tr>
<td>EASC4911</td>
<td>Earth system: contemporary issues</td>
<td>6</td>
</tr>
<tr>
<td>EASC4955</td>
<td>Integrated field studies</td>
<td>6</td>
</tr>
<tr>
<td>EASC4966</td>
<td>Earth sciences internship</td>
<td>6</td>
</tr>
<tr>
<td>EASC4999</td>
<td>Earth sciences project</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)

PLO 2: understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)

PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

Impermissible Combinations:
Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

Required courses (36 credits)

1. Introductory level courses (12 credits)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - EASC1401 Blue Planet (6)
 - EASC1402 Principles of geology (6)
 - EASC2401 Fluid/solid interactions in earth processes (6)

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

 List A
 - EASC3020 Global change: anthropogenic impacts (6)
 - EASC3402 Petrology (6)
 - EASC3403 Sedimentary environments (6)
 - EASC3404 Structural geology (6)
 - EASC3405 Environmental remote sensing (6)
 - EASC3406 Reconstruction of past climate (6)
 - EASC3408 Geophysics (6)
 - EASC3409 Igneous and metamorphic petrogenesis (6)
 - EASC3410 Hydrogeology (6)
 - EASC3412 Earth resources (6)
 - EASC3413 Engineering geology (6)
 - EASC3414 Soil and rock mechanics (6)
 - EASC3415 Meteorology (6)
 - EASC3416 Advanced geochemistry and geochronology (6)
 - EASC3417 Earth through time (6)
 - EASC3498 Directed studies in earth sciences (6)
 - EASC4403 Biogeochromical cycles (6)
 - EASC4406 Earth dynamics & global tectonics (6)
 - EASC4407 Regional geology (6)
 - EASC4408 Special topics in earth sciences (6)
 - EASC4911 Earth system: contemporary issues (6)
 - EASC4955 Integrated field studies (6)
 - EASC4966 Earth sciences internship (6)
 - EASC4999 Earth sciences project (12)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Earth Sciences
Offered to students admitted to Year 1 in 2013

Objectives:
The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)

PLO 2: understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)

PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

Impermissible Combinations:
Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

Required courses (36 credits)
1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)

2. Advanced level courses (24 credits)
Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

List A
EASC3020 Global change: anthropogenic impacts (6)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3415 Meteorology (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
EASC4403 Biogeochemical cycles (6)
EASC4406 Earth dynamics & global tectonics (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)
EASC4955 Integrated field studies (6)
EASC4966 Earth sciences internship (6)
EASC4999 Earth sciences project (12)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Earth Sciences
Offered to students admitted to Year 1 in 2012

Objectives:
The Minor in Earth Sciences aims to provide interested students with an introduction to the fundamental structure, process and history of the Earth. The minor curriculum is designed particularly to provide students from different majors the flexibility to select courses to enhance their interests in Earth Sciences or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe the methods used by the Earth scientists to study the Earth systems (by means to coursework, tutorial classes and field-based learning in the curriculum)

PLO 2: understand and describe the basic nomenclature used in Earth Sciences (by means to coursework, tutorial classes and field-based learning in the curriculum)

PLO 3: discuss and comment critically issues related to the Earth Sciences in media reports (by means to coursework, tutorial classes and field-based learning in the curriculum)

Impermissible Combinations:
Major in Earth System Science
Major in Geology
Major in Geology (Intensive)

Required courses (36 credits)
1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
EASC1401 Blue Planet (6)
EASC1402 Principles of geology (6)
EASC2401 Fluid/solid interactions in earth processes (6)

2. Advanced level courses (24 credits)
Disciplinary Electives (24 credits)
At least 24 credits of advanced level Earth Sciences courses (EASC3XXX or EASC4XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

List A
EASC3020 Global change: anthropogenic impacts (6)
EASC3402 Petrology (6)
EASC3403 Sedimentary environments (6)
EASC3404 Structural geology (6)
EASC3405 Environmental remote sensing (6)
EASC3406 Reconstruction of past climate (6)
EASC3408 Geophysics (6)
EASC3409 Igneous and metamorphic petrogenesis (6)
EASC3410 Hydrogeology (6)
EASC3412 Earth resources (6)
EASC3413 Engineering geology (6)
EASC3414 Soil and rock mechanics (6)
EASC3415 Meteorology (6)
EASC3416 Advanced geochemistry and geochronology (6)
EASC3417 Earth through time (6)
EASC3999 Directed studies in earth sciences (6)
EASC4403 Biogeochemical cycles (6)
EASC4406 Earth dynamics & global tectonics (6)
EASC4407 Regional geology (6)
EASC4408 Special topics in earth sciences (6)
EASC4911 Earth system: contemporary issues (6)
EASC4955 Integrated field studies (6)
EASC4966 Earth sciences internship (6)
EASC4999 Earth sciences project (12)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Ecology & Biodiversity
Offered to students admitted to Year 1 in 2018

Objectives:
This Minor in Ecology & Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity
Major in Ecology & Biodiversity (Intensive)

Required courses (36 credits)
1. Introductory level courses (12 credits)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2306 Ecology and evolution (6)

2. Advanced level courses (24 credits)
 - BIOL3101 Animal behaviour (6)
 - BIOL3301 Marine biology (6)
 - BIOL3302 Systematics and phylogenetics (6)
 - BIOL3303 Conservation biology (6)
 - BIOL3313 Freshwater ecology (6)
 - BIOL3314 Plant structure and evolution (6)
 - BIOL3318 Experimental intertidal ecology (6)
 - BIOL3319 Tropical terrestrial ecology (6)
 - BIOL3419 Insect ecology: the little things that run the world (6)
 - BIOL4301 Fish and fisheries (6)
 - BIOL4302 Environmental impact assessment (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Ecology & Biodiversity

Offered to students admitted to Year 1 in
2017

Objectives:
This Minor in Ecology & Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 2:** understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 3:** appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity
Major in Ecology & Biodiversity (Intensive)

Required courses (36 credits)

<table>
<thead>
<tr>
<th>1. Introductory level courses (12 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disciplinary Core Courses (12 credits)</td>
</tr>
<tr>
<td>BIOL1309 Evolutionary diversity (6)</td>
</tr>
<tr>
<td>BIOL2306 Ecology and evolution (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Advanced level courses (24 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disciplinary Electives (24 credits)</td>
</tr>
<tr>
<td>BIOL3101 Animal behaviour (6)</td>
</tr>
<tr>
<td>BIOL3301 Marine biology (6)</td>
</tr>
<tr>
<td>BIOL3302 Systematics and phylogenetics (6)</td>
</tr>
<tr>
<td>BIOL3303 Conservation biology (6)</td>
</tr>
<tr>
<td>BIOL3313 Freshwater ecology (6)</td>
</tr>
<tr>
<td>BIOL3314 Plant structure and evolution (6)</td>
</tr>
<tr>
<td>BIOL3318 Experimental intertidal ecology (6)</td>
</tr>
<tr>
<td>BIOL3319 Tropical terrestrial ecology (6)</td>
</tr>
<tr>
<td>BIOL3419 Insect ecology: the little things that run the world (6)</td>
</tr>
<tr>
<td>BIOL4301 Fish and fisheries (6)</td>
</tr>
<tr>
<td>BIOL4302 Environmental impact assessment (6)</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title Minor in Ecology & Biodiversity
Offered to students 2016
admitted to Year 1 in

Objectives:
This Minor in Ecology & Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and
the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna
of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able
to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that
offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas
of ecology and biodiversity.

Learning Outcomes:
By the end of this programme, students should be able to:
PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to
humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 2: understand and describe the impacts of environmental change and the causes and consequences of biodiversity
loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
PLO 3: appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation
and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratory-
based learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity
Major in Ecology & Biodiversity (Intensive)

Required courses (36 credits)
1. Introductory level courses (12 credits)
 Disciplinary Core Courses (12 credits)
 BIOL1309 Evolutionary diversity (6)
 BIOL2306 Ecology and evolution (6)
2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 BIOL3101 Animal behaviour (6)
 BIOL3301 Marine biology (6)
 BIOL3302 Systematics and phylogenetics (6)
 BIOL3303 Conservation biology (6) [previous title: Conservation ecology (6)]
 BIOL3313 Freshwater ecology (6)
 BIOL3314 Plant structure and evolution (6)
 BIOL3318 Experimental intertidal ecology (6)
 BIOL3319 Tropical terrestrial ecology (6) [previous title: Terrestrial ecology (6)]
 BIOL3320 The biology of marine mammals (6)
 BIOL3419 Insect ecology: the little things that run the world (6)
 BIOL4301 Fish and fisheries (6)
 BIOL4302 Environmental impact assessment (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course
 ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For
details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc
syllabuses.
Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled.
Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.

384
Minor Title: Minor in Ecology & Biodiversity
Offered to students: admitted to Year 1 in 2015

Objectives:
This Minor in Ecology & Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

- **PLO 2:** understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

- **PLO 3:** appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity
Major in Ecology & Biodiversity (Intensive)

Required courses (36 credits)

1. Introductory level courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1309</td>
<td>Evolutionary diversity</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2306</td>
<td>Ecology and evolution</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Advanced level courses (24 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3101</td>
<td>Animal behaviour</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3301</td>
<td>Marine biology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3302</td>
<td>Systematics and phylogenetics</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3303</td>
<td>Conservation biology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3313</td>
<td>Freshwater ecology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3314</td>
<td>Plant structure and evolution</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3318</td>
<td>Experimental intertidal ecology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3319</td>
<td>Tropical terrestrial ecology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3320</td>
<td>The biology of marine mammals</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3419</td>
<td>Insect ecology: the little things that run the world</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4301</td>
<td>Fish and fisheries</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4302</td>
<td>Environmental impact assessment</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:
- **Take either BIOL3101 or BIOL4303 to fulfill this 24 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.**

Reremarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Ecology & Biodiversity

Offered to students admitted to Year 1 in 2014

Objectives:
This Minor in Ecology & Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity
Major in Ecology & Biodiversity (Intensive)

Required courses (36 credits)

1. Introductory level courses (12 credits)
 Disciplinary Core Courses (12 credits)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2306 Ecology and evolution (6)

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 - BIOL3101 Animal behaviour (6)
 - BIOL3301 Marine biology (6)
 - BIOL3302 Systematics and phylogenetics (6)
 - BIOL3303 Conservation biology (6)
 - BIOL3313 Freshwater ecology (6)
 - BIOL3314 Plant structure and evolution (6)
 - BIOL3318 Experimental intertidal ecology (6)
 - BIOL3319 Tropical terrestrial ecology (6)
 - BIOL3320 The biology of marine mammals (6)
 - BIOL3419 Insect ecology: the little things that run the world (6)
 - BIOL4301 Fish and fisheries (6)
 - BIOL4302 Environmental impact assessment (6)
 - BIOL4303 Animal behaviour (6)

 Take either BIOL3101 or BIOL4303 to fulfill this 24 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.

 [previous title: Conservation ecology (6)]

 [previous title: Terrestrial ecology (6)]

 Take either BIOL3101 or BIOL4303 to fulfill this 24 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Ecology & Biodiversity

Offered to students admitted to Year 1 in 2013

Objectives:
This Minor in Ecology & Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity
Major in Ecology & Biodiversity (Intensive)

Required courses (36 credits)
1. Introductory level courses (12 credits)
 Disciplinary Core Courses (12 credits)
 BIOL1309 Evolutionary diversity (6)
 BIOL2306 Ecology and evolution (6)

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 BIOL3101 Animal behaviour (6)
 BIOL3301 Marine biology (6)
 BIOL3302 Systematics and phylogenetics (6)
 BIOL3303 Conservation biology (6)
 BIOL3313 Freshwater ecology (6)
 BIOL3314 Plant structure and evolution (6)
 BIOL3318 Experimental intertidal ecology (6)
 BIOL3319 Tropical terrestrial ecology (6)
 BIOL3320 The biology of marine mammals (6)
 BIOL3419 Insect ecology: the little things that run the world (6)
 BIOL4301 Fish and fisheries (6)
 BIOL4302 Environmental impact assessment (6)
 BIOL4303 Animal behaviour (6)

 Take either BIOL3101 or BIOL4303 to fulfill this 24 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.

 [previous title: Conservation ecology (6)]
 [previous title: Terrestrial ecology (6)]

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Ecology & Biodiversity

Offered to students admitted to Year 1 in: 2012

Objectives:
This Minor in Ecology & Biodiversity is an ideal introduction to the natural world, the species and ecosystems it comprises and the biological rules it follows. It aims to allow students to learn about general ecological principles and the local flora and fauna of the region, and the conservation challenges that will need to be addressed in a rapidly-changing world. Students will be able to build upon this basic knowledge developed at the introductory level by selecting from among a wide range of courses that offer learning opportunities through practical and field work, as well as traditional and virtual teaching, in more specialized areas of ecology and biodiversity.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: appreciate and describe the importance of ecology and biodiversity, and the importance of the variety of life to humans (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: understand and describe the impacts of environmental change and the causes and consequences of biodiversity loss (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: appreciate and describe the ecological principles underlying different policies and plans for biodiversity conservation and sustainable development in Hong Kong and elsewhere (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Ecology & Biodiversity
Major in Ecology & Biodiversity (Intensive)

Required courses (36 credits)

1. **Introductory level courses (12 credits)**
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2306 Ecology and evolution (6)

2. **Advanced level courses (24 credits)**
 - BIOL3101 Animal behaviour (6)
 - BIOL3301 Marine biology (6)
 - BIOL3302 Systematics and phylogenetics (6)
 - BIOL3303 Conservation biology (6)
 - BIOL3313 Freshwater ecology (6)
 - BIOL3314 Plant structure and evolution (6)
 - BIOL3318 Experimental intertidal ecology (6)
 - BIOL3319 Tropical terrestrial ecology (6)
 - BIOL3320 The biology of marine mammals (6)
 - BIOL3419 Insect ecology: the little things that run the world (6)
 - BIOL4301 Fish and fisheries (6)
 - BIOL4302 Environmental impact assessment (6)
 - BIOL4303 Animal behaviour (6)

 Notes:
 - Take either BIOL3101 or BIOL4303 to fulfill this 24 credits requirement, but not both. BIOL3101 and BIOL4303 are mutually exclusive.

 - [previous title: Conservation ecology (6)]

 - [previous title: Terrestrial ecology (6)]

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title | Minor in Environmental Science
Offered to students | 2018
admitted to Year 1 in

Objectives:
The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help students understand certain aspects of the environment and possible ways to solve environmental problems which will be useful to students to enhance their career prospects.

Learning Outcomes:
By the end of this programme, students should be able to:
PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)
PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)
PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)
PLO 4: gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/laboratory/team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:
Major in Environmental Science

<table>
<thead>
<tr>
<th>Required courses (42 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introductory level courses (18 credits)</td>
</tr>
<tr>
<td>Disciplinary Core Courses (6 credits)</td>
</tr>
<tr>
<td>ENVS1401</td>
</tr>
<tr>
<td>Disciplinary Electives (12 credits)</td>
</tr>
<tr>
<td>At least 12 credits selected from the following courses (Level 1 & 2):</td>
</tr>
<tr>
<td>CHEM1042</td>
</tr>
<tr>
<td>EASC1020</td>
</tr>
<tr>
<td>EASC1401</td>
</tr>
<tr>
<td>EASC2404</td>
</tr>
<tr>
<td>ENVS1301</td>
</tr>
<tr>
<td>ENVS2001</td>
</tr>
<tr>
<td>ENVS2002</td>
</tr>
<tr>
<td>2. Advanced level courses (24 credits)</td>
</tr>
<tr>
<td>Disciplinary Core Courses (6 credits)</td>
</tr>
<tr>
<td>ENVS3004</td>
</tr>
<tr>
<td>Disciplinary Electives (18 credits)</td>
</tr>
<tr>
<td>At least 18 credits selected from the following courses:</td>
</tr>
<tr>
<td>BIOL3110</td>
</tr>
<tr>
<td>BIOL3303</td>
</tr>
<tr>
<td>BIOL4302</td>
</tr>
<tr>
<td>CHEM3141</td>
</tr>
<tr>
<td>CHEM3241</td>
</tr>
<tr>
<td>EASC3020</td>
</tr>
<tr>
<td>EASC3405</td>
</tr>
<tr>
<td>ENVS3007</td>
</tr>
<tr>
<td>ENVS3010</td>
</tr>
<tr>
<td>ENVS3019</td>
</tr>
<tr>
<td>ENVS3020</td>
</tr>
<tr>
<td>ENVS3042</td>
</tr>
<tr>
<td>ENVS3313</td>
</tr>
<tr>
<td>ENVS4110</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course (“disciplinary core”) in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Environmental Science
Offered to students admitted to Year 1 in 2017

Objectives:
The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help students understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)

PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)

PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)

PLO 4: gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/laboratory/team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:
Major in Environmental Science

Required courses (42 credits)
1. Introductory level courses (18 credits)
Disciplinary Core Courses (6 credits)
- ENVIS1401 Introduction to environmental science (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses (Level 1 & 2):
- CHEM1042 General chemistry I (6)
- CHEM2041 Principles of chemistry (6)
- CHEM2241 Analytical chemistry I (6)
- CHEM2442 Fundamentals of organic chemistry (6)
- EASC1020 Introduction to climate science (6)
- EASC1401 Blue Planet (6)
- EASC2404 Introduction to atmosphere and hydrosphere (6)
- ENVS1301 Environmental life science (6)
- ENVS2001 Methods in environmental science (6)
- ENVS2002 Environmental data analysis (6)

2. Advanced level courses (24 credits)
Disciplinary Core Courses (6 credits)
- ENVS3004 Environment, society and economics (6)

Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
- BIOL3110 Environmental toxicology (6)
- BIOL3303 Conservation biology (6)
- BIOL4302 Environmental impact assessment (6)
- CHEM3141 Environmental chemistry (6)
- CHEM3241 Analytical chemistry II: chemical instrumentation (6)
- CHEM3242 Food and water analysis (6)
- EASC3020 Global change: anthropogenic impacts (6)
- EASC3405 Environmental remote sensing (6)
- ENVS3006 Environmental radiation (6)
- ENVS3007 Natural hazards and mitigation (6)
- ENVS3010 Sustainable energy and environment (6)
- ENVS3019 Urban ecology (6)
- ENVS3020 Global change ecology (6)
- ENVS3042 Pollution (6)
- ENVS3313 Environmental oceanography (6)
- ENVS4110 Environmental remediation (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Environmental Science
Offered to students admitted to Year 1 in 2016

Objectives:
The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help students understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)

PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)

PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)

PLO 4: gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/laboratory/team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:
Major in Environmental Science

Required courses (42 credits)

1. Introductory level courses (18 credits)
 Disciplinary Core Courses (6 credits)
 - ENVS1401 Introduction to environmental science (6)

 Disciplinary Electives (12 credits)
 - At least 12 credits selected from the following courses (Level 1 & 2):
 - CHEM1042 General chemistry I (6)
 - CHEM2041 Principles of chemistry I (6)
 - CHEM2241 Analytical chemistry I (6)
 - CHEM2442 Fundamentals of organic chemistry (6)
 - EASC1020 Introduction to climate science (6)
 - EASC1401 Blue Planet (6)
 - EASC2404 Introduction to atmosphere and hydrosphere (6)
 - ENV2301 Environmental life science (6)
 - ENV2001 Methods in environmental science (6)
 - ENV2002 Environmental data analysis (6)

2. Advanced level courses (24 credits)
 Disciplinary Core Courses (6 credits)
 - ENVS3004 Environment, society and economics (6)

 Disciplinary Electives (18 credits)
 - At least 18 credits selected from the following courses:
 - BIOL3110 Environmental toxicology (6)
 - BIOL3303 Conservation biology (6)
 - BIOL4302 Environmental impact assessment (6)
 - CHEM3141 Environmental chemistry (6)
 - CHEM3241 Analytical chemistry II: chemical instrumentation (6)
 - CHEM3242 Food and water analysis (6)
 - EASC3020 Global change: anthropogenic impacts (6)
 - EASC3405 Environmental remote sensing (6)
 - ENV3006 Environmental radiation (6)
 - ENV3007 Natural hazards and mitigation (6)
 - ENV3010 Sustainable energy and environment (6)
 - ENV3019 Urban ecology (6)
 - ENV3020 Global change ecology (6)
 - ENV3042 Pollution (6)
 - ENV3313 Environmental oceanography (6)
 - ENV3411 Environmental remediation (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Environmental Science
Offered to students admitted to Year 1 in 2015

Objectives:
The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help students understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 4: gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:
Major in Environmental Science

Required courses (42 credits)

1. Introductory level courses (18 credits)

Disciplinary Core Courses (6 credits)
ENVS1401 Introduction to environmental science (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses (Level 1 & 2):
CHEM1042 General chemistry I (6)
CHEM2041 Principles of chemistry (6)
CHEM2241 Analytical chemistry I (6)
CHEM2442 Fundamentals of organic chemistry (6)
EASC1020 Introduction to climate science (6)
EASC1401 Blue Planet (6)
EASC2404 Introduction to atmosphere and hydrosphere (6)
ENVS1301 Environmental life science (6)
ENVS2001 Methods in environmental science (6)
ENVS2002 Environmental data analysis (6)

2. Advanced level courses (24 credits)

Disciplinary Core Courses (6 credits)
ENVS3004 Environment, society and economics (6)

Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
BIOL3110 Environmental toxicology (6)
BIOL3303 Conservation biology (6)
BIOL4302 Environmental impact assessment (6)
CHEM3141 Environmental chemistry (6)
CHEM3241 Analytical chemistry II: chemical instrumentation (6)
CHEM3242 Food and water analysis (6)
EASC3020 Global change: anthropogenic impacts (6)
EASC3405 Environmental remote sensing (6)
ENVS3006 Environmental radiation (6)
ENVS3007 Natural hazards and mitigation (6)
ENVS3010 Sustainable energy and environment (6)
ENVS3019 Urban ecology (6)
ENVS3020 Global change ecology (6)
ENVS3042 Pollution (6)
ENVS3313 Environmental oceanography (6)
ENVS4110 Environmental remediation (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Environmental Science
Offered to students: Year 1 in 2014

Objectives:
The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help students understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)

PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)

PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum)

PLO 4: gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/laboratory/team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:
Major in Environmental Science

Required courses (42 credits)

1. Introductory level courses (18 credits)
 Disciplinary Core Courses (6 credits)
 - ENVIS1401 Introduction to environmental science (6)

 Disciplinary Electives (12 credits)
 - At least 12 credits selected from the following courses (Level 1 & 2):
 - CHEM1042 General chemistry I (6)
 - CHEM2041 Principles of chemistry (6)
 - CHEM2241 Analytical chemistry I (6)
 - CHEM2442 Fundamentals of organic chemistry (6)
 - EASC1020 Introduction to climate science (6)
 - EASC1401 Blue Planet (6)
 - EASC2404 Introduction to atmosphere and hydrosphere (6)
 - ENVIS1301 Environmental life science (6)
 - ENVIS2001 Methods in environmental science (6)
 - ENVIS2002 Environmental data analysis (6)

2. Advanced level courses (24 credits)
 Disciplinary Core Courses (6 credits)
 - ENVIS3004 Environment, society and economics (6)

 Disciplinary Electives (18 credits)
 - At least 18 credits selected from the following courses:
 - BIOL3110 Environmental toxicology (6)
 - BIOL3303 Conservation biology (6)
 - BIOL4302 Environmental impact assessment (6)
 - CHEM3141 Environmental chemistry (6)
 - CHEM3241 Analytical chemistry II: chemical instrumentation (6)
 - CHEM3242 Food and water analysis (6)
 - EASC3020 Global change: anthropogenic impacts (6)
 - EASC3405 Environmental remote sensing (6)
 - ENVIS3006 Environmental radiation (6)
 - ENVIS3007 Natural hazards and mitigation (6)
 - ENVIS3010 Sustainable energy and environment (6)
 - ENVIS3019 Urban ecology (6)
 - ENVIS3020 Global change ecology (6)
 - ENVIS3042 Pollution (6)
 - ENVIS3313 Environmental oceanography (6)
 - ENVIS4110 Environmental remediation (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor in Environmental Science

Offered to students admitted to Year 1 in 2013

Objectives:
The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help students understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/ laboratory/ team-based learning in the curriculum)

PLO 4: gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/ laboratory/ team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum)

Impermissible Combinations:
Major in Environmental Science

<table>
<thead>
<tr>
<th>Required courses (42 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introductory level courses (18 credits)</td>
</tr>
<tr>
<td>Disciplinary Core Courses (6 credits)</td>
</tr>
<tr>
<td>ENVS1401 Introduction to environmental science (6)</td>
</tr>
<tr>
<td>Disciplinary Electives (12 credits)</td>
</tr>
<tr>
<td>At least 12 credits selected from the following courses (Level 1 & 2):</td>
</tr>
<tr>
<td>CHEM1042 General chemistry I (6)</td>
</tr>
<tr>
<td>CHEM2041 Principles of chemistry (6)</td>
</tr>
<tr>
<td>CHEM2241 Analytical chemistry I (6)</td>
</tr>
<tr>
<td>CHEM2442 Fundamentals of organic chemistry (6)</td>
</tr>
<tr>
<td>EASC1020 Introduction to climate science (6)</td>
</tr>
<tr>
<td>EASC1401 Blue Planet (6)</td>
</tr>
<tr>
<td>EASC2404 Introduction to atmosphere and hydrosphere (6)</td>
</tr>
<tr>
<td>ENVS1301 Environmental life science (6)</td>
</tr>
<tr>
<td>ENVS2001 Methods in environmental science (6)</td>
</tr>
<tr>
<td>ENVS2002 Environmental data analysis (6)</td>
</tr>
</tbody>
</table>

| **2. Advanced level courses (24 credits)** |
| Disciplinary Core Courses (6 credits) |
| ENVS3004 Environment, society and economics (6) |
| Disciplinary Electives (18 credits) |
| At least 18 credits selected from the following courses: |
| BIOL3110 Environmental toxicology (6) |
| BIOL3303 Conservation biology (6) |
| BIOL4302 Environmental impact assessment (6) |
| CHEM3141 Environmental chemistry (6) |
| CHEM3241 Analytical chemistry II: chemical instrumentation (6) |
| CHEM3242 Food and water analysis (6) |
| EASC3020 Global change: anthropogenic impacts (6) |
| EASC3405 Environmental remote sensing (6) |
| ENVS3006 Environmental radiation (6) |
| ENVS3007 Natural hazards and mitigation (6) |
| ENVS3010 Sustainable energy and environment (6) |
| ENVS3019 Urban ecology (6) |
| ENVS3020 Global change ecology (6) |
| ENVS3042 Pollution (6) |
| ENVS3313 Environmental oceanography (6) |
| ENVS4110 Environmental remediation (6) |

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remedies:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Environmental Science

Offered to students admitted to Year 1 in 2012

Objectives:
The Minor in Environmental Science aims to provide students with an introduction to some complex environmental issues. Students will gain ecological and physical knowledge of the environment, become literate in issues related to environmental sustainability, monitoring and management, and be able to explore interdisciplinary solutions to these problems. This training will help student understand certain aspects of the environment and possible ways to solving environmental problems which will be useful to students to enhance their career prospects.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe different components of the environmental systems and key issues in environmental science (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum).

PLO 2: observe, describe, measure and analyze physical, biological and chemical characteristics of natural and man-made environments (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum).

PLO 3: appropriately use and critically analyze a range of forms and sources of environmental data, and assess environmental problems (by means of lectures, coursework, tutorial classes and field/laboratory/team-based learning in the curriculum).

PLO 4: gain skills in scientific inquiry and effective communication of global environmental problems, issues of resource management, policies and management methods (by means of field/laboratory/team-based learning, research projects, presentation opportunities and capstone experiences in the curriculum).

Impermissible Combinations:
Major in Environmental Science

Required courses (42 credits)

1. Introductory level courses (18 credits)
 Disciplinary Core Courses (6 credits)
 ENVS1401 Introduction to environmental science (6)
 Disciplinary Electives (12 credits)
 At least 6 credits selected from the following courses (Level 1) in List A:
 List A
 CHEM1042 General chemistry I (6)
 EASC1401 Blue Planet (6)
 ENVS1301 Environmental life science (6)
 At least 6 credits selected from the following courses (Level 2) in List B:
 List B
 BIOL2102 Biostatistics (6)
 CHEM2041 Principles of chemistry (6)
 CHEM2241 Analytical chemistry I (6)
 CHEM2442 Fundamentals of organic chemistry (6)
 EASC2404 Introduction to atmosphere and hydrosphere (6)
 ENVS2001 Methods in environmental science (6)
 ENVS2002 Environmental data analysis (6)

2. Advanced level courses (24 credits)
 Disciplinary Core Courses (6 credits)
 ENVS3004 Environment, society and economics (6)
 Disciplinary Electives (18 credits)
 At least 18 credits selected from the following courses:
 BIOL3110 Environmental toxicology (6)
 BIOL3303 Conservation biology (6)
 BIOL3402 Environmental impact assessment (6)
 CHEM3141 Environmental chemistry (6)
 CHEM3241 Analytical chemistry II: chemical instrumentation (6)
 CHEM3242 Food and water analysis (6)
 EASC3020 Global change: anthropogenic impacts (6)
 EASC3405 Environmental remote sensing (6)
 ENVS3006 Environmental radiation (6)
 ENVS3007 Natural hazards and mitigation (6)
 ENVS3010 Sustainable energy and environment (6)
 ENVS3019 Urban ecology (6)
 ENVS3020 Global change ecology (6)
 ENVS3042 Pollution (6)
 ENVS3313 Environmental oceanography (6)
 ENVS4110 Environmental remediation (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Food & Nutritional Science

Offered to students admitted to Year 1 in
2018

Objectives:
The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Food & Nutritional Science

Required courses (36 credits)

1. Introductory level courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110</td>
<td>From molecules to cells</td>
<td>6</td>
</tr>
<tr>
<td>BIOL1201</td>
<td>Introduction to food and nutrition</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2101</td>
<td>Principles of food chemistry</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2220</td>
<td>Principles of biochemistry</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Electives (12 credits)

- At least 12 credits selected from the following courses:

 - BIOL1201 Introduction to food and nutrition (6)
 - BIOL2101 Principles of food chemistry (6)
 - BIOL2220 Principles of biochemistry (6)

Disciplinary Electives (12 credits)

- At least 12 credits selected from the following courses:

 - BIOL3202 Nutritional biochemistry (6)
 - BIOL3203 Food microbiology (6)
 - BIOL3204 Nutrition and the life cycle (6)
 - BIOL3205 Human physiology (6)
 - BIOL3206 Clinical nutrition (6)
 - BIOL3207 Food and nutritional toxicology (6)
 - BIOL3209 Food and nutrient analysis (6)
 - BIOL3211 Nutrigenomics (6)
 - BIOL3216 Food waste management (6)
 - BIOL3217 Food, environment and health (6)
 - BIOL3218 Food hygiene and quality control (6)
 - BIOL4201 Public health nutrition (6)
 - BIOL4202 Nutrition and sports performance (6)
 - BIOL4204 Diet, brain function and behavior (6)
 - BIOL4205 Food processing and engineering (6)
 - BIOL4208 Meat, dairy and grain sciences (6)
 - BIOL4209 Functional foods (6)
 - BIOL4411 Plant and food biotechnology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title Minor in Food & Nutritional Science
Offered to students 2017
admitted to Year 1 in

Objectives:
The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Food & Nutritional Science

Required courses (36 credits)
1. Introductory level courses (12 credits)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - BIOL1110 From molecules to cells (6)
 - BIOL1201 Introduction to food and nutrition (6)
 - BIOL2101 Principles of food chemistry (6)
 - BIOL2220 Principles of biochemistry (6)
 - BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.
 - BIOC2600 Basic biochemistry (6)

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 - BIOL3202 Nutritional biochemistry (6)
 - BIOL3203 Food microbiology (6)
 - BIOL3204 Nutrition and the life cycle (6)
 - BIOL3205 Human physiology (6)
 - BIOL3206 Clinical nutrition (6)
 - BIOL3207 Food and nutritional toxicology (6)
 - BIOL3209 Food and nutrient analysis (6)
 - BIOL3211 Nutrigenomics (6)
 - BIOL3216 Food waste management (6)
 - BIOL3217 Food, environment and health (6)
 - BIOL3218 Food hygiene and quality control (6)
 - BIOL4201 Public health nutrition (6)
 - BIOL4202 Nutrition and sports performance (6)
 - BIOL4204 Diet, brain function and behavior (6)
 - BIOL4205 Food processing and engineering (6)
 - BIOL4208 Meat, dairy and grain sciences (6)
 - BIOL4209 Functional foods (6)
 - BIOL4411 Plant and food biotechnology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Food & Nutritional Science
Offered to students admitted to Year 1 in 2016

Objectives:
The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Food & Nutritional Science

Required courses (36 credits)

1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110</td>
<td>From molecules to cells</td>
<td>6</td>
</tr>
<tr>
<td>BIOL1201</td>
<td>Introduction to food and nutrition</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2220</td>
<td>Principles of biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2600</td>
<td>Basic biochemistry</td>
<td>6</td>
</tr>
</tbody>
</table>

Take either BIOL2220 or BIOL2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOL2600 are mutually exclusive.

2. Advanced level courses (24 credits)
Disciplinary Electives (24 credits)

At least 24 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3201</td>
<td>Food chemistry</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3202</td>
<td>Nutritional biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3203</td>
<td>Food microbiology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3204</td>
<td>Nutrition and the life cycle</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3205</td>
<td>Human physiology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3206</td>
<td>Clinical nutrition</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3207</td>
<td>Food and nutritional toxicology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3208</td>
<td>Food safety and quality management</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3209</td>
<td>Food and nutrient analysis</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3210</td>
<td>Grain production and utilization</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3211</td>
<td>Nutrigenomics</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3216</td>
<td>Food waste management</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3217</td>
<td>Food, environment and health</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3218</td>
<td>Food hygiene and quality control</td>
<td>6</td>
</tr>
</tbody>
</table>

Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL4201</td>
<td>Public health nutrition</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4202</td>
<td>Nutrition and sports performance</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4204</td>
<td>Diet, brain function and behavior</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4205</td>
<td>Food processing and engineering</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4207</td>
<td>Meat and dairy sciences</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4208</td>
<td>Meat, dairy and grain sciences</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4209</td>
<td>Functional foods</td>
<td>6</td>
</tr>
</tbody>
</table>

Take either BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL4210</td>
<td>Food product development</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4411</td>
<td>Plant and food biotechnology</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Food & Nutritional Science

Offered to students admitted to Year 1 in 2015

Objectives:
The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Food & Nutritional Science

Required courses (36 credits)

1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110</td>
<td>From molecules to cells</td>
<td>6</td>
</tr>
<tr>
<td>BIOL1201</td>
<td>Introduction to food and nutrition</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2220</td>
<td>Principles of biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2600</td>
<td>Basic biochemistry</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Advanced level courses (24 credits)
Disciplinary Electives (24 credits)
At least 24 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3201</td>
<td>Food chemistry</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3202</td>
<td>Nutritional biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3203</td>
<td>Food microbiology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3204</td>
<td>Nutrition and the life cycle</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3205</td>
<td>Human physiology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3206</td>
<td>Clinical nutrition</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3207</td>
<td>Food and nutritional toxicology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3208</td>
<td>Food safety and quality management</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3209</td>
<td>Food and nutrient analysis</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3210</td>
<td>Grain production and utilization</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3211</td>
<td>Nutrigenomics</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3216</td>
<td>Food waste management</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3217</td>
<td>Food, environment and health</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3218</td>
<td>Food hygiene and quality control</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4201</td>
<td>Public health nutrition</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4202</td>
<td>Nutrition and sports performance</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4204</td>
<td>Diet, brain function and behavior</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4205</td>
<td>Food processing and engineering</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4207</td>
<td>Meat and dairy sciences</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4208</td>
<td>Meat, dairy and grain sciences</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4209</td>
<td>Functional foods</td>
<td>6</td>
</tr>
</tbody>
</table>
Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Food & Nutritional Science

Offered to students admitted to Year 1 in 2014

Objectives:
The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 2: recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 3: understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

PLO 4: synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Food & Nutritional Science

Required courses (36 credits)

1. Introductory level courses (12 credits)

Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:

- BIOL1110 From molecules to cells (6)
- BIOL1201 Introduction to food and nutrition (6)
- BIOL2220 Principles of biochemistry (6)
- BIOL2600 Basic biochemistry (6)

Take either BIOL2220 or BIOL2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOL2600 are mutually exclusive.

2. Advanced level courses (24 credits)

Disciplinary Electives (24 credits)

At least 24 credits selected from the following courses:

- BIOL3201 Food chemistry (6)
- BIOL3202 Nutritional biochemistry (6)
- BIOL3203 Food microbiology (6)
- BIOL3204 Nutrition and the life cycle (6)
- BIOL3205 Human physiology (6)
- BIOL3206 Clinical nutrition (6)
- BIOL3207 Food and nutritional toxicology (6)
- BIOL3208 Food safety and quality management (6)
- BIOL3209 Food and nutrient analysis (6)
- BIOL3210 Grain production and utilization (6)
- BIOL3211 Nutrigenomics (6)
- BIOL3216 Food waste management (6)
- BIOL3217 Food, environment and health (6)
- BIOL3218 Food hygiene and quality control (6)
- BIOL4201 Public health nutrition (6)
- BIOL4202 Nutrition and sports performance (6)
- BIOL4204 Diet, brain function and behavior (6)
- BIOL4205 Food processing and engineering (6)
- BIOL4207 Meat and dairy sciences (6)
- BIOL4208 Meat, dairy and grain sciences (6)
- BIOL4209 Functional foods (6)

Take either BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.
BIOL4210 Food product development (6)
BIOL4411 Plant and food biotechnology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Food & Nutritional Science

Offered to students admitted to Year 1 in
2013

Objectives:
The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 2:** recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 3:** understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 4:** synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Food & Nutritional Science

Required courses (36 credits)

1. **Introductory level courses (12 credits)**
 - **Disciplinary Electives (12 credits):** At least 12 credits selected from the following courses:
 - BIOL1110 From molecules to cells (6)
 - BIOL1201 Introduction to food and nutrition (6)
 - BIOL2220 Principles of biochemistry (6)
 - BIOL2600 Basic biochemistry (6)

2. **Advanced level courses (24 credits)**
 - **Disciplinary Electives (24 credits):** At least 24 credits selected from the following courses:
 - BIOL3201 Food chemistry (6)
 - BIOL3202 Nutritional biochemistry (6)
 - BIOL3203 Food microbiology (6)
 - BIOL3204 Nutrition and the life cycle (6)
 - BIOL3205 Human physiology (6)
 - BIOL3206 Clinical nutrition (6)
 - BIOL3207 Food and nutritional toxicology (6)
 - BIOL3208 Food safety and quality management (6)
 - BIOL3209 Food and nutrient analysis (6)
 - BIOL3210 Grain production and utilization (6)
 - BIOL3211 Nutrigenomics (6)
 - BIOL3216 Food waste management (6)
 - BIOL3217 Food, environment and health (6)
 - BIOL3218 Food hygiene and quality control (6)
 - BIOL4201 Public health nutrition (6)
 - BIOL4202 Nutrition and sports performance (6)
 - BIOL4204 Diet, brain function and behavior (6)
 - BIOL4205 Food processing and engineering (6)
 - BIOL4207 Meat and dairy sciences (6)
 - BIOL4208 Meat, dairy and grain sciences (6)
 - BIOL4209 Functional foods (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL4210</td>
<td>Food product development</td>
<td>(6)</td>
</tr>
<tr>
<td>BIOL4411</td>
<td>Plant and food biotechnology</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor in Food & Nutritional Science

Offered to students admitted to Year 1 in 2012

Objectives:
The Minor in Food and Nutritional Science aims to provide a comprehensive education in food, nutrition and related sociological and technological topics, enabling graduates to develop their interest in food and nutrition and have a wide range of employment and progression options.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** demonstrate broad knowledge in the field of food and nutritional science (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 2:** recognize and describe the health risks associated with food and specific nutrients, and discuss how to prevent these risks (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 3:** understand and describe ethical perspectives and practice in food product development, food safety and public health nutrition (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)
- **PLO 4:** synthesize and summarize information from a wide range of sources and draw reasoned conclusions with particular reference to food and nutritional sciences and related global and commercial issues (by means of coursework, tutorial classes and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Food & Nutritional Science

Required courses (36 credits)

1. Introductory level courses (12 credits)

<table>
<thead>
<tr>
<th>Disciplinary Electives (12 credits)</th>
<th>At least 12 credits chosen from the following courses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110 From molecules to cells (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL1201 Introduction to food and nutrition (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL2220 Principles of biochemistry (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL2600 Basic biochemistry (6)</td>
<td>Take either BIOL2220 or BIOL2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOL2600 are mutually exclusive.</td>
</tr>
</tbody>
</table>

2. Advanced level courses (24 credits)

<table>
<thead>
<tr>
<th>Disciplinary Electives (24 credits)</th>
<th>At least 24 credits chosen from the following courses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3201 Food chemistry (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3202 Nutritional biochemistry (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3203 Food microbiology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3204 Nutrition and the life cycle (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3205 Human physiology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3206 Clinical nutrition (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3207 Food and nutritional toxicology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3208 Food safety and quality management (6)</td>
<td>Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL3209 Food and nutrient analysis (6)</td>
<td>Take either BIOL3210 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL3210 Grain production and utilization (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3211 Nutrigenomics (6)</td>
<td>Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL3216 Food waste management (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3217 Food, environment and health (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3218 Food hygiene and quality control (6)</td>
<td>Take either BIOL3208 or BIOL3218 to fulfill this 24 credits requirement, but not both. BIOL3208 and BIOL3218 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4201 Public health nutrition (6)</td>
<td>Take either BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL4207 and BIOL4208 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4202 Nutrition and sports performance (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4204 Diet, brain function and behavior (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4205 Food processing and engineering (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4207 Meat and dairy sciences (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4208 Meat, dairy and grain sciences (6)</td>
<td>Take either BIOL3210 or BIOL4208; BIOL4207 or BIOL4208 to fulfill this 24 credits requirement, but not both. BIOL3210 and BIOL4208; BIOL4207 and BIOL4208 are mutually exclusive.</td>
</tr>
<tr>
<td>BIOL4209 Functional foods (6)</td>
<td></td>
</tr>
</tbody>
</table>
Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Marine Biology
Offered to students admitted to Year 1 in 2018

Objectives:
The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study. Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This Minor will provide students from diverse backgrounds (e.g., business, engineering and social science) an excellent opportunity to enter into a career or research in marine environment-related fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: appreciate the requirements and constraints to life in different marine environments (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
- **PLO 2**: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
- **PLO 3**: have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
- **PLO 4**: understand the major marine issues both locally and globally (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
- **PLO 5**: appreciate the possible implications of climate change on marine systems (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:

NIL

Required courses (36 credits)

1. **Introductory level courses (12 credits)**
 - **Disciplinary Electives (12 credits)**
 - At least 12 credits selected from the following courses:
 - BIOL1309 Evolutionary diversity (6)
 - ENVS1301 Environmental life science (6)
 - BIOL2306 Ecology and evolution (6)

2. **Advanced level courses (24 credits)**
 - **Disciplinary Core Courses (12 credits)**
 - BIOL3301 Marine biology (6)
 - ENVS3313 Environmental oceanography (6)
 - **Disciplinary Electives (12 credits)**
 - At least 12 credits selected from the following courses:
 - BIOL3303 Conservation biology (6)
 - BIOL3305 Tropical and temperate marine ecology field course (6)
 - BIOL3318 Experimental intertidal ecology (6)
 - BIOL3322 Marine invertebrate zoology (6)
 - BIOL3326 Nearshore marine and estuarine ecology (6)
 - BIOL4301 Fish and fisheries (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Marine Biology
Offered to students admitted to Year 1 in 2017

Objectives:
The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study. Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g. business, engineering and social science) an excellent opportunity to enter into a career or research in marine environment-related fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: appreciate the requirements and constraints to life in different marine environments (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
- **PLO 2**: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
- **PLO 3**: have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
- **PLO 4**: understand the major marine issues both locally and globally (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
- **PLO 5**: appreciate the possible implications of climate change on marine systems (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:
NIL

Required courses (36 credits)

1. **Introductory level courses (12 credits)**
 - Disciplinary Electives (12 credits)
 - At least 12 credits selected from the following courses:
 - BIOL1309 Evolutionary diversity (6)
 - ENV51301 Environmental life science (6)
 - BIOL2306 Ecology and evolution (6)

2. **Advanced level courses (24 credits)**
 - Disciplinary Core Courses (12 credits)
 - BIOL3301 Marine biology (6)
 - ENV53313 Environmental oceanography (6)
 - Disciplinary Electives (12 credits)
 - At least 12 credits selected from the following courses:
 - BIOL3303 Conservation biology (6)
 - BIOL3305 Tropical and temperate marine ecology field course (6)
 - BIOL3318 Experimental intertidal ecology (6)
 - BIOL3322 Marine invertebrate zoology (6)
 - BIOL3328 Nearshore marine and estuarine ecology (6)
 - BIOL4301 Fish and fisheries (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to ”Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Marine Biology
Offered to students admitted to Year 1 in 2016

Objectives:
The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study. Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g. business, engineering and social science) an excellent opportunity to enter into a career or research in marine environment-related fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: appreciate the requirements and constraints to life in different marine environments (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
- **PLO 2**: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
- **PLO 3**: have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
- **PLO 4**: understand the major marine issues both locally and globally (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
- **PLO 5**: appreciate the possible implications of climate change on marine systems (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:
NIL

Required courses (36 credits)

1. Introductory level courses (12 credits)

 Disciplinary Electives (12 credits)
 - At least 12 credits selected from the following courses:
 - BIOL1309 Evolutionary diversity (6)
 - ENVLS1301 Environmental life science (6)
 - BIOL2306 Ecology and evolution (6)

2. Advanced level courses (24 credits)

 Disciplinary Core Courses (12 credits)
 - BIOL3301 Marine biology (6)
 - ENVLS3313 Environmental oceanography (6)

 Disciplinary Electives (12 credits)
 - At least 12 credits selected from the following courses:
 - BIOL3303 Conservation biology (6)
 - BIOL3305 Tropical and temperate marine ecology field course (6)
 - BIOL3318 Experimental intertidal ecology (6)
 - BIOL3320 The biology of marine mammals (6)
 - BIOL3322 Marine invertebrate zoology (6)
 - BIOL3328 Nearshore marine and estuarine ecology (6)
 - BIOL4301 Fish and fisheries (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Marine Biology
Offered to students admitted to Year 1 in 2015

Objectives:
The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study. Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g. business, engineering and social science) an excellent opportunity to enter into a career or research in marine environment-related fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 3: have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 4: understand the major marine issues both locally and globally (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 5: appreciate the possible implications of climate change on marine systems (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:
NIL

Required courses (36 credits)
1. Introductory level courses (12 credits)
2. Advanced level courses (24 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
- BIOL1309 Evolutionary diversity (6)
- ENVS1301 Environmental life science (6)
- BIOL2306 Ecology and evolution (6)

Disciplinary Core Courses (12 credits)
- BIOL3301 Marine biology (6)
- ENVS3313 Environmental oceanography (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
- BIOL3303 Conservation biology (6)
- BIOL3305 Tropical and temperate marine ecology field course (6)
- BIOL3318 Experimental intertidal ecology (6)
- BIOL3320 The biology of marine mammals (6)
- BIOL3322 Marine invertebrate zoology (6)
- BIOL3328 Nearshore marine and estuarine ecology (6)
- BIOL4301 Fish and fisheries (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Marine Biology

Offered to students admitted to Year 1 in 2014

Objectives:
The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study. Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g. business, engineering and social science) an excellent opportunity to enter into a career or research in marine environment-related fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)

PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)

PLO 3: have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)

PLO 4: understand the major marine issues both locally and globally (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)

PLO 5: appreciate the possible implications of climate change on marine systems (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:
NIL

Required courses (36 credits)

1. Introductory level courses (12 credits)
 - Biol1309 Evolutionary diversity (6)
 - Envs1301 Environmental life science (6)
 - Biol2306 Ecology and evolution (6)

2. Advanced level courses (24 credits)
 - Biol3301 Marine biology (6)
 - Envs3313 Environmental oceanography (6)

Disciplinary Electives (12 credits)
 - Biol3303 Conservation biology (6)
 - Biol3305 Tropical and temperate marine ecology field course (6)
 - Biol3318 Experimental intertidal ecology (6)
 - Biol3320 The biology of marine mammals (6)
 - Biol3322 Marine invertebrate zoology (6)
 - Biol3328 Nearshore marine and estuarine ecology (6)
 - Biol4301 Fish and fisheries (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor in Marine Biology

Offered to students admitted to Year 1 in 2013

Objectives:
The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study. Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g. business, engineering and social science) an excellent opportunity to enter into a career or research in marine environment-related fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)

PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)

PLO 3: have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)

PLO 4: understand the major marine issues both locally and globally (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)

PLO 5: appreciate the possible implications of climate change on marine systems (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:
NIL

Required courses (36 credits)

1. Introductory level courses (12 credits)
2. Advanced level courses (24 credits)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:

- BIOL1309 Evolutionary diversity (6)
- ENVS1301 Environmental life science (6)
- BIOL2306 Ecology and evolution (6)

Disciplinary Core Courses (12 credits)

- BIOL3301 Marine biology (6)
- ENVS3313 Environmental oceanography (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:

- BIOL3303 Conservation biology (6)
- BIOL3305 Tropical and temperate marine ecology field course (6)
- BIOL3318 Experimental intertidal ecology (6)
- BIOL3320 The biology of marine mammals (6)
- BIOL3322 Marine invertebrate zoology (6)
- BIOL3328 Nearshore marine and estuarine ecology (6)
- BIOL4301 Fish and fisheries (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Marine Biology
Offered to students admitted to Year 1 in 2012

Objectives:
The field of marine biology has become increasingly popular as interest in and awareness of our marine environment grows. Hong Kong already has strong cultural and historical links with the sea as well as a strong economic and societal interest in natural marine resources. This Minor aims to introduce students to the field of marine biology from species, habitat and ecosystem levels, ranging from the deep ocean to intertidal environments, and from both theoretical and practical perspectives. Material will be global and include organisms and their physical, behavioral and physiological adaptations to the marine environment, as well as techniques for marine study. Major marine issues will be covered including benefits derived from the marine environment and possible implications of climate change for marine systems. Particularly relevant examples from Hong Kong and the Southeast Asia region will be highlighted. This minor will provide students from diverse backgrounds (e.g. business, engineering and social science) an excellent opportunity to enter into a career or research in marine environment-related fields such as coastal ecosystem management, fisheries, marine environmental protection, marine resource management, etc.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: appreciate the requirements and constraints to life in different marine environments (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 2: gain a comprehensive foundation for pursuing marine-orientated studies (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 3: have a general insight into an ecosystem that covers two-thirds of the planet and supports the only remaining natural resource harvested on a large scale (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 4: understand the major marine issues both locally and globally (by means of coursework, laboratory-based, and tutorial classes and project-based learning in the curriculum)
PLO 5: appreciate the possible implications of climate change on marine systems (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:
NIL

Required courses (36 credits)
1. Introductory level courses (12 credits)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 BIOL1309 Evolutionary diversity (6)
 ENVS1301 Environmental life science (6)
 BIOL2306 Ecology and evolution (6)

2. Advanced level courses (24 credits)
 Disciplinary Core Courses (12 credits)
 BIOL3301 Marine biology (6)
 ENVS3313 Environmental oceanography (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 BIOL3303 Conservation biology (6)
 BIOL3305 Tropical and temperate marine ecology field course (6)
 BIOL3318 Experimental intertidal ecology (6)
 BIOL3320 The biology of marine mammals (6)
 BIOL3322 Marine invertebrate zoology (6)
 BIOL3328 Nearshore marine and estuarine ecology (6)
 BIOL4301 Fish and fisheries (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Mathematics
Offered to students admitted to Year 1 in 2018

Objectives:
The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Major in Mathematics/Physics
Minor in Computational & Financial Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (36 credits)

1. Introductory level courses (18 credits) (note 4)

Disciplinary Core Course (6 credits)
MATH1013 University mathematics II (6)

Disciplinary Electives (12 credits)
Select either List A or List B:

List A
MATH2101 Linear algebra I (6)
MATH2211 Multivariable calculus (6)

List B
MATH2012 Fundamental concepts of mathematics (6)
MATH2014 Multivariable calculus and linear algebra (6)

2. Advanced level courses (18 credits)

Disciplinary Electives (18 credits)
At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to pre-requisite requirements. The current course list includes courses in List A:

List A
MATH3001 Development of mathematical ideas (6)
MATH3002 Mathematics seminar (6)
MATH3301 Algebra I (6)
MATH3303 Matrix theory and its applications (6)
MATH3304 Introduction to number theory (6)
MATH3401 Analysis I (6)
MATH3403 Functions of a complex variable (6)
MATH3405 Differential equations (6)
MATH3408 Computational methods and differential equations with applications (6)
MATH3541 Introduction to topology (6)
MATH3600 Discrete mathematics (6)
MATH3601 Numerical analysis (6)
MATH3603 Probability theory (6)
MATH3901 Operations research I (6)
MATH3904 Introduction to optimization (6)
MATH3905 Queueing theory and simulation (6)
MATH3906 Financial calculus (6)
MATH3911 Game theory and strategy (6)
MATH3934 Network models in operations research (6)
MATH3999 Directed studies in mathematics (6)
MATH4301 Algebra II (6)
MATH4402 Analysis II (6)
MATH4404 Functional analysis (6)
MATH4406 Introduction to partial differential equations (6)
MATH4501 Geometry (6)
MATH4511 Introduction to differentiable manifolds (6)
MATH4602 Scientific computing (6)
MATH4902 Operations research II (6)
MATH4907 Numerical methods for financial calculus (6)
MATH4910 Senior mathematics seminar (6)
MATH4911 Mathematics capstone project (6)
MATH4966 Mathematics internship (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH4999</td>
<td>Mathematics project</td>
<td>12</td>
</tr>
<tr>
<td>MATH7101</td>
<td>Intermediate complex analysis</td>
<td>6</td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry</td>
<td>6</td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds</td>
<td>6</td>
</tr>
<tr>
<td>MATH7217</td>
<td>Topics in financial mathematics</td>
<td>6</td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis</td>
<td>6</td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory</td>
<td>6</td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra</td>
<td>6</td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics</td>
<td>6</td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization</td>
<td>6</td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology</td>
<td>6</td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Mathematics

Offered to students admitted to Year 1 in 2017

Objectives:
The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 2**: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 3**: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
- Major in Mathematics
- Major in Mathematics/Physics
- Minor in Computational & Financial Mathematics
- Minor in Operations Research & Mathematical Programming

Required courses (36 credits)

1. Introductory level courses (18 credits) (note 4)

 Disciplinary Core Course (6 credits)
 - MATH1013 University mathematics II (6)

 Disciplinary Electives (12 credits)
 Select either List A or List B:
 - **List A**
 - MATH2101 Linear algebra I (6)
 - MATH2211 Multivariable calculus (6)
 - **List B**
 - MATH201 Fundamental concepts of mathematics (6)
 - MATH2014 Multivariable calculus and linear algebra (6)

2. Advanced level courses (18 credits)

 Disciplinary Electives (18 credits)
 At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to pre-requisite requirements. The current course list includes courses in List A:

 List A
 - MATH3001 Development of mathematical ideas (6)
 - MATH3002 Mathematics seminar (6)
 - MATH3301 Algebra I (6)
 - MATH3303 Matrix theory and its applications (6)
 - MATH3304 Introduction to number theory (6)
 - MATH3401 Analysis I (6)
 - MATH3403 Functions of a complex variable (6)
 - MATH3405 Differential equations (6)
 - MATH3408 Computational methods and differential equations with applications (6)
 - MATH3541 Introduction to topology (6)
 - MATH3600 Discrete mathematics (6)
 - MATH3601 Numerical analysis (6)
 - MATH3603 Probability theory (6)
 - MATH3901 Operations research I (6)
 - MATH3904 Introduction to optimization (6)
 - MATH3905 Queueing theory and simulation (6)
 - MATH3906 Financial calculus (6)
 - MATH3911 Game theory and strategy (6)
 - MATH3943 Network models in operations research (6)
 - MATH3999 Directed studies in mathematics (6)
 - MATH4301 Algebra II (6)
 - MATH4402 Analysis II (6)
 - MATH4404 Functional analysis (6)
 - MATH4406 Introduction to partial differential equations (6)
 - MATH4501 Geometry (6)
 - MATH4511 Introduction to differentiable manifolds (6)
 - MATH4602 Scientific computing (6)
 - MATH4902 Operations research II (6)
 - MATH4907 Numerical methods for financial calculus (6)
 - MATH4910 Senior mathematics seminar (6)
 - MATH4911 Mathematics capstone project (6)
 - MATH4966 Mathematics internship (6)
MATH4999 Mathematics project (12)
MATH7101 Intermediate complex analysis (6)
MATH7201 Topics in geometry (6)
MATH7202 Complex manifolds (6)
MATH7217 Topics in financial mathematics (6)
MATH7219 Topics in applied functional analysis (6)
MATH7224 Topics in advanced probability theory (6)
MATH7501 Topics in algebra (6)
MATH7502 Topics in applied discrete mathematics (6)
MATH7503 Topics in mathematical programming and optimization (6)
MATH7504 Geometric topology (6)
MATH7505 Real analysis (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Mathematics
Offered to students admitted to Year 1 in 2016

Objectives:
The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Major in Mathematics/Physics
Minor in Computational & Financial Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (36 credits)

1. Introductory level courses (18 credits) (note 4)
 Disciplinary Core Course (6 credits)
 MATH1013 University mathematics II (6)
 Disciplinary Electives (12 credits)
 Select either List A or List B:
 List A
 MATH2101 Linear algebra I (6)
 MATH2211 Multivariable calculus (6)
 List B
 MATH2012 Fundamental concepts of mathematics (6)
 MATH2014 Multivariable calculus and linear algebra (6)

2. Advanced level courses (18 credits)
 Disciplinary Electives (18 credits)
 At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to pre-requisite requirements. The current course list includes courses in List A:
 List A
 MATH3001 Development of mathematical ideas (6)
 MATH3002 Mathematics seminar (6)
 MATH3301 Algebra I (6)
 MATH3303 Matrix theory and its applications (6)
 MATH3304 Introduction to number theory (6)
 MATH3401 Analysis I (6)
 MATH3403 Functions of a complex variable (6)
 MATH3405 Differential equations (6)
 MATH3408 Computational methods and differential equations with applications (6)
 MATH3541 Introduction to topology (6)
 MATH3600 Discrete mathematics (6)
 MATH3601 Numerical analysis (6)
 MATH3603 Probability theory (6)
 MATH3901 Operations research I (6)
 MATH3904 Introduction to optimization (6)
 MATH3905 Queueing theory and simulation (6)
 MATH3906 Financial calculus (6)
 MATH3911 Game theory and strategy (6)
 MATH3943 Network models in operations research (6)
 MATH3999 Directed studies in mathematics (6)
 MATH4301 Algebra II (6)
 MATH4402 Analysis II (6)
 MATH4404 Functional analysis (6)
 MATH4406 Introduction to partial differential equations (6)
 MATH4501 Geometry (6)
 MATH4511 Introduction to differentiable manifolds (6)
 MATH4600 Scientific computing (6)
 MATH4902 Operations research II (6)
 MATH4907 Numerical methods for financial calculus (6)
 MATH4910 Senior mathematics seminar (6)
 MATH4911 Mathematics capstone project (6)
 MATH4966 Mathematics internship (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH4999</td>
<td>Mathematics project</td>
<td>12</td>
</tr>
<tr>
<td>MATH7101</td>
<td>Intermediate complex analysis</td>
<td>6</td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry</td>
<td>6</td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds</td>
<td>6</td>
</tr>
<tr>
<td>MATH7217</td>
<td>Topics in financial mathematics</td>
<td>6</td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis</td>
<td>6</td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory</td>
<td>6</td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra</td>
<td>6</td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics</td>
<td>6</td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization</td>
<td>6</td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology</td>
<td>6</td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Mathematics
Offered to students admitted to Year 1 in 2015

Objectives:
The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

Learning Outcomes:
By the end of this programme, students should be able to:
- **PLO 1:** understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 2:** apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 3:** communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
- Major in Mathematics
- Major in Mathematics/Physics
- Minor in Computational & Financial Mathematics
- Minor in Operations Research & Mathematical Programming

Required courses (36 credits)

1. **Introductory level courses (18 credits) (note 4)**
 - Disciplinary Core Course (6 credits)
 - MATH1013 University mathematics II (6)
 - Disciplinary Electives (12 credits)
 - List A
 - MATH2101 Linear algebra I (6)
 - MATH2211 Multivariable calculus (6)
 - List B
 - MATH2012 Fundamental concepts of mathematics (6)
 - MATH2014 Multivariable calculus and linear algebra (6)

2. **Advanced level courses (18 credits)**
 - Disciplinary Electives (18 credits)
 - At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to pre-requisite requirements. The current course list includes courses in List A:
 - List A
 - MATH3001 Development of mathematical ideas (6)
 - MATH3002 Mathematics seminar (6)
 - MATH3301 Algebra I (6)
 - MATH3303 Matrix theory and its applications (6)
 - MATH3304 Introduction to number theory (6)
 - MATH3401 Analysis I (6)
 - MATH3403 Functions of a complex variable (6)
 - MATH3405 Differential equations (6)
 - MATH3408 Computational methods and differential equations with applications (6)
 - MATH3541 Introduction to topology (6)
 - MATH3600 Discrete mathematics (6)
 - MATH3601 Numerical analysis (6)
 - MATH3603 Probability theory (6)
 - MATH3901 Operations research I (6)
 - MATH3904 Introduction to optimization (6)
 - MATH3905 Queueing theory and simulation (6)
 - MATH3906 Financial calculus (6)
 - MATH3911 Game theory and strategy (6)
 - MATH3943 Network models in operations research (6)
 - MATH3999 Directed studies in mathematics (6)
 - MATH4302 Algebra II (6)
 - MATH4402 Analysis II (6)
 - MATH4404 Functional analysis (6)
 - MATH4406 Introduction to partial differential equations (6)
 - MATH4501 Geometry (6)
 - MATH4511 Introduction to differentiable manifolds (6)
 - MATH4602 Scientific computing (6)
 - MATH4902 Operations research II (6)
 - MATH4907 Numerical methods for financial calculus (6)
 - MATH4910 Senior mathematics seminar (6)
 - MATH4911 Mathematics capstone project (6)
 - MATH4966 Mathematics internship (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH4999</td>
<td>Mathematics project</td>
<td>12</td>
</tr>
<tr>
<td>MATH7110</td>
<td>Intermediate complex analysis</td>
<td>6</td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry</td>
<td>6</td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds</td>
<td>6</td>
</tr>
<tr>
<td>MATH7217</td>
<td>Topics in financial mathematics</td>
<td>6</td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis</td>
<td>6</td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory</td>
<td>6</td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra</td>
<td>6</td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics</td>
<td>6</td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization</td>
<td>6</td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology</td>
<td>6</td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Mathematics
Offered to students admitted to Year 1 in 2014

Objectives:
The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 2**: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 3**: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
- Major in Mathematics
- Major in Mathematics/Physics
- Minor in Computational & Financial Mathematics
- Minor in Operations Research & Mathematical Programming

Required courses (36 credits)

<table>
<thead>
<tr>
<th>Disciplinary Core Courses (18 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1013 University mathematics II (6)</td>
</tr>
<tr>
<td>MATH2101 Linear algebra I (6)</td>
</tr>
<tr>
<td>MATH2211 Multivariable calculus (6)</td>
</tr>
</tbody>
</table>

2. Advanced level courses (18 credits)

<table>
<thead>
<tr>
<th>Disciplinary Electives (18 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to pre-requisite requirements. The current course list includes courses in List A:</td>
</tr>
</tbody>
</table>

List A

<p>| MATH3001 Development of mathematical ideas (6) |
| MATH3002 Mathematics seminar (6) |
| MATH3301 Algebra I (6) |
| MATH3303 Matrix theory and its applications (6) |
| MATH3304 Introduction to number theory (6) |
| MATH3401 Analysis I (6) |
| MATH3403 Functions of a complex variable (6) |
| MATH3405 Differential equations (6) |
| MATH3408 Computational methods and differential equations with applications (6) |
| MATH3501 Introduction to topology (6) |
| MATH3600 Discrete mathematics (6) |
| MATH3601 Numerical analysis (6) |
| MATH3603 Probability theory (6) |
| MATH3901 Operations research I (6) |
| MATH3904 Introduction to optimization (6) |
| MATH3905 Queueing theory and simulation (6) |
| MATH3906 Financial calculus (6) |
| MATH3911 Game theory and strategy (6) |
| MATH3943 Network models in operations research (6) |
| MATH3999 Directed studies in mathematics (6) |
| MATH4302 Algebra II (6) |
| MATH4402 Analysis II (6) |
| MATH4404 Functional analysis (6) |
| MATH4406 Introduction to partial differential equations (6) |
| MATH4501 Geometry (6) |
| MATH4511 Introduction to differentiable manifolds (6) |
| MATH4602 Scientific computing (6) |
| MATH4902 Operations research II (6) |
| MATH4907 Numerical methods for financial calculus (6) |
| MATH4910 Senior mathematics seminar (6) |
| MATH4911 Mathematics capstone project (6) |
| MATH4966 Mathematics internship (6) |
| MATH4999 Mathematics project (12) |
| MATH7101 Intermediate complex analysis (6) |
| MATH7201 Topics in geometry (6) |
| MATH7202 Complex manifolds (6) |
| MATH7217 Topics in financial mathematics (6) |
| MATH7219 Topics in applied functional analysis (6) |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory (6)</td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra (6)</td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics (6)</td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization (6)</td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology (6)</td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis (6)</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Mathematics
Offered to students admitted to Year 1 in 2013

Objectives:
The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Major in Mathematics/Physics
Minor in Computational & Financial Mathematics
Minor in Operations Research & Mathematical Programming

Required courses (36 credits)
1. Introductory level courses (18 credits) (note 4)
Disciplinary Core Courses (18 credits)
- MATH1013 University mathematics II (6)
- MATH2101 Linear algebra I (6)
- MATH2211 Multivariable calculus (6)

2. Advanced level courses (18 credits)
Disciplinary Electives (18 credits)
At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to pre-requisite requirements. The current course list includes courses in List A:

List A
- MATH3001 Development of mathematical ideas (6)
- MATH3002 Mathematics seminar (6)
- MATH3301 Algebra I (6)
- MATH3303 Matrix theory and its applications (6)
- MATH3304 Introduction to number theory (6)
- MATH3401 Analysis I (6)
- MATH3403 Functions of a complex variable (6)
- MATH3405 Differential equations (6)
- MATH3408 Computational methods and differential equations with applications (6)
- MATH3541 Introduction to topology (6)
- MATH3600 Discrete mathematics (6)
- MATH3601 Numerical analysis (6)
- MATH3603 Probability theory (6)
- MATH3901 Operations research I (6)
- MATH3904 Introduction to optimization (6)
- MATH3905 Queueing theory and simulation (6)
- MATH3906 Financial calculus (6)
- MATH3911 Game theory and strategy (6)
- MATH3943 Network models in operations research (6)
- MATH3999 Directed studies in mathematics (6)
- MATH4302 Algebra II (6)
- MATH4402 Analysis II (6)
- MATH4406 Functional analysis (6)
- MATH4407 Introduction to partial differential equations (6)
- MATH4501 Geometry (6)
- MATH4511 Introduction to differentiable manifolds (6)
- MATH4602 Scientific computing (6)
- MATH4902 Operations research II (6)
- MATH4903 Numerical methods for financial calculus (6)
- MATH4910 Senior mathematics seminar (6)
- MATH4911 Mathematics capstone project (6)
- MATH4966 Mathematics internship (6)
- MATH4999 Mathematics project (12)
- MATH7101 Intermediate complex analysis (6)
- MATH7201 Topics in geometry (6)
- MATH7202 Complex manifolds (6)
- MATH7217 Topics in financial mathematics (6)
- MATH7219 Topics in applied functional analysis (6)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology</td>
<td>(6)</td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Minor in Mathematics provides students with fundamental knowledge in the subject. It is specifically designed for students who are interested in the subject and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving, and capability to tackle novel situations and ill-defined problems.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: understand and describe fundamental concepts of mathematics (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: communicate and discuss scientific issues related to mathematics. (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Major in Mathematics/Physics
Minor in Computational & Financial Mathematics

Required courses (36 credits)

1. Introductory level courses (18 credits) (note 4)
Disciplinary Core Courses (18 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1013</td>
<td>University mathematics II (6)</td>
</tr>
<tr>
<td>MATH2101</td>
<td>Linear algebra I (6)</td>
</tr>
<tr>
<td>MATH2211</td>
<td>Multivariable calculus (6)</td>
</tr>
</tbody>
</table>

2. Advanced level courses (18 credits)
Disciplinary Electives (18 credits)

At least 18 credits of advanced level Mathematics courses (MATH3XXX or MATH4XXX or MATH7XXX level), subject to pre-requisite requirements. The current course list includes courses in List A:

List A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3001</td>
<td>Development of mathematical ideas (6)</td>
</tr>
<tr>
<td>MATH3002</td>
<td>Mathematics seminar (6)</td>
</tr>
<tr>
<td>MATH3301</td>
<td>Algebra I (6)</td>
</tr>
<tr>
<td>MATH3303</td>
<td>Matrix theory and its applications (6)</td>
</tr>
<tr>
<td>MATH3304</td>
<td>Introduction to number theory (6)</td>
</tr>
<tr>
<td>MATH3401</td>
<td>Analysis I (6)</td>
</tr>
<tr>
<td>MATH3403</td>
<td>Functions of a complex variable (6)</td>
</tr>
<tr>
<td>MATH3405</td>
<td>Differential equations (6)</td>
</tr>
<tr>
<td>MATH3408</td>
<td>Computational methods and differential equations with applications (6)</td>
</tr>
<tr>
<td>MATH3541</td>
<td>Introduction to topology (6)</td>
</tr>
<tr>
<td>MATH3600</td>
<td>Discrete mathematics (6)</td>
</tr>
<tr>
<td>MATH3601</td>
<td>Numerical analysis (6)</td>
</tr>
<tr>
<td>MATH3603</td>
<td>Probability theory (6)</td>
</tr>
<tr>
<td>MATH3901</td>
<td>Operations research I (6)</td>
</tr>
<tr>
<td>MATH3904</td>
<td>Introduction to optimization (6)</td>
</tr>
<tr>
<td>MATH3905</td>
<td>Queueing theory and simulation (6)</td>
</tr>
<tr>
<td>MATH3906</td>
<td>Financial calculus (6)</td>
</tr>
<tr>
<td>MATH3911</td>
<td>Game theory and strategy (6)</td>
</tr>
<tr>
<td>MATH3943</td>
<td>Network models in operations research (6)</td>
</tr>
<tr>
<td>MATH3998</td>
<td>Directed studies in mathematics (6)</td>
</tr>
<tr>
<td>MATH4302</td>
<td>Algebra II (6)</td>
</tr>
<tr>
<td>MATH4402</td>
<td>Analysis II (6)</td>
</tr>
<tr>
<td>MATH4404</td>
<td>Functional analysis (6)</td>
</tr>
<tr>
<td>MATH4406</td>
<td>Introduction to partial differential equations (6)</td>
</tr>
<tr>
<td>MATH4501</td>
<td>Geometry (6)</td>
</tr>
<tr>
<td>MATH4511</td>
<td>Introduction to differentiable manifolds (6)</td>
</tr>
<tr>
<td>MATH4602</td>
<td>Scientific computing (6)</td>
</tr>
<tr>
<td>MATH4902</td>
<td>Operations research II (6)</td>
</tr>
<tr>
<td>MATH4907</td>
<td>Numerical methods for financial calculus (6)</td>
</tr>
<tr>
<td>MATH4910</td>
<td>Senior mathematics seminar (6)</td>
</tr>
<tr>
<td>MATH4911</td>
<td>Mathematics capstone project (6)</td>
</tr>
<tr>
<td>MATH4966</td>
<td>Mathematics internship (6)</td>
</tr>
<tr>
<td>MATH4999</td>
<td>Mathematics project (12)</td>
</tr>
<tr>
<td>MATH7101</td>
<td>Intermediate complex analysis (6)</td>
</tr>
<tr>
<td>MATH7201</td>
<td>Topics in geometry (6)</td>
</tr>
<tr>
<td>MATH7202</td>
<td>Complex manifolds (6)</td>
</tr>
<tr>
<td>MATH7217</td>
<td>Topics in financial mathematics (6)</td>
</tr>
<tr>
<td>MATH7219</td>
<td>Topics in applied functional analysis (6)</td>
</tr>
<tr>
<td>MATH7224</td>
<td>Topics in advanced probability theory (6)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>MATH7501</td>
<td>Topics in algebra (6)</td>
</tr>
<tr>
<td>MATH7502</td>
<td>Topics in applied discrete mathematics (6)</td>
</tr>
<tr>
<td>MATH7503</td>
<td>Topics in mathematical programming and optimization (6)</td>
</tr>
<tr>
<td>MATH7504</td>
<td>Geometric topology (6)</td>
</tr>
<tr>
<td>MATH7505</td>
<td>Real analysis (6)</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this major. Students who do not fulfill this requirement are advised to take MATH1011 University mathematics I.

3. If students would like to take more courses in analysis such as MATH3401 (Analysis I), they are advised to take the introductory course MATH2241 Introduction to mathematical analysis first.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Molecular Biology & Biotechnology
Offered to students admitted to Year 1 in: 2018

Objectives:
The Minor in Molecular Biology & Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

Learning Outcomes:
By the end of this programme, students should be able to:
- **PLO 1**: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
- **PLO 2**: develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
- **PLO 3**: understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Molecular Biology & Biotechnology
Major in Molecular Biology & Biotechnology (Intensive)

Required courses (36 credits)

1. Introductory level courses (12 credits)

Disciplinary Electives (12 credits)
- At least 12 credits selected from the following courses:
 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOC2600 Basic biochemistry (6)
 - BIOL2102 Biostatistics (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry (6)
 - BIOL2306 Ecology and evolution (6)

2. Advanced level courses (24 credits)

Disciplinary Core Courses (6 credits)
- BIOL3401 Molecular biology (6)

Disciplinary Electives (18 credits)
- At least 18 credits selected from the following courses:
 - BIOL3402 Cell biology and cell technology (6)
 - BIOL3403 Immunology (6)
 - BIOL3409 Business aspects of biotechnology (6)
 - BIOL3508 Microbial physiology and biotechnology (6)
 - BIOL4401 Medical microbiology and applied immunology (6)
 - BIOL4411 Plant and food biotechnology (6)
 - BIOL4415 Healthcare biotechnology (6)
 - BIOL4416 Stem cells and regenerative biology (6)
 - BIOL4417 'Omics' and systems biology (6)
 - ENVS4110 Environmental remediation (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course (“disciplinary core”) in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Minor in Molecular Biology & Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
- **PLO 2**: develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
- **PLO 3**: understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
- Major in Molecular Biology & Biotechnology
- Major in Molecular Biology & Biotechnology (Intensive)

Required courses (36 credits)

1. Introductory level courses (12 credits)

Disciplinary Electives (12 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110</td>
<td>6</td>
</tr>
<tr>
<td>BIOL1309</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2102</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2103</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2220</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2306</td>
<td>6</td>
</tr>
</tbody>
</table>

May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOL2600 are mutually exclusive.

2. Advanced level courses (24 credits)

Disciplinary Core Courses (6 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3401</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Electives (18 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3402 Cell biology and cell technology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3403 Immunology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3409 Business aspects of biotechnology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3508 Microbial physiology and biotechnology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4401 Medical microbiology and applied immunology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4411 Plant and food biotechnology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4415 Healthcare biotechnology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4416 Stem cells and regenerative biology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4417 'Omics' and systems biology</td>
<td>6</td>
</tr>
<tr>
<td>ENVS4110 Environmental remediation</td>
<td>6</td>
</tr>
</tbody>
</table>

May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor in Molecular Biology & Biotechnology

Objectives:
The Minor in Molecular Biology & Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)

PLO 2: develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)

PLO 3: understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Molecular Biology & Biotechnology
Major in Molecular Biology & Biotechnology (Intensive)

Required courses (36 credits)

1. Introductory level courses (12 credits)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOC2600 Basic biochemistry (6)
 - BIOL2102 Biostatistics (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry (6)
 - BIOL2306 Ecology and evolution (6)
 - May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.
 - May take either BIOL2220 or BIOC2600 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

2. Advanced level courses (24 credits)
 Disciplinary Core Courses (6 credits)
 - BIOL3401 Molecular biology (6)
 Disciplinary Electives (18 credits)
 At least 18 credits selected from the following courses:
 - BIOL3402 Cell biology and cell technology (6)
 - BIOL3403 Immunology (6)
 - BIOL3409 Business aspects of biotechnology (6)
 - BIOL3508 Microbial physiology and biotechnology (6)
 - BIOL4401 Medical microbiology and applied immunology (6)
 - BIOL4411 Plant and food biotechnology (6)
 - BIOL4415 Healthcare biotechnology (6)
 - BIOL4416 Stem cells and regenerative biology (6)
 - BIOL4417 'Omics' and systems biology (6)
 - ENV4110 Environmental remediation (6)
 - May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both.

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title

Minor in Molecular Biology & Biotechnology

Offered to students

Admitted to Year 1 in 2015

Objectives:

The Minor in Molecular Biology & Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

Learning Outcomes:

By the end of this programme, students should be able to:

1. **PLO 1**: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
2. **PLO 2**: develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
3. **PLO 3**: understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:

- Major in Molecular Biology & Biotechnology
- Major in Molecular Biology & Biotechnology (Intensive)

Required courses (36 credits)

1. Introductory level courses (12 credits)

Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110</td>
<td>From molecules to cells (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL1309</td>
<td>Evolutionary diversity (6)</td>
<td></td>
</tr>
<tr>
<td>BIOC2600</td>
<td>Basic biochemistry (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL2102</td>
<td>Biostatistics (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL2103</td>
<td>Biological sciences laboratory course (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL2220</td>
<td>Principles of biochemistry (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL2306</td>
<td>Ecology and evolution (6)</td>
<td></td>
</tr>
</tbody>
</table>

May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

2. Advanced level courses (24 credits)

Disciplinary Core Courses (6 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3401</td>
<td>Molecular biology (6)</td>
<td></td>
</tr>
</tbody>
</table>

Disciplinary Electives (18 credits)

At least 18 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3402</td>
<td>Cell biology and cell technology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3403</td>
<td>Immunology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3409</td>
<td>Business aspects of biotechnology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL3508</td>
<td>Microbial physiology and biotechnology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4401</td>
<td>Medical microbiology and applied immunology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4402</td>
<td>Microbial biotechnology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4411</td>
<td>Plant and food biotechnology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4415</td>
<td>Healthcare biotechnology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4416</td>
<td>Stem cells and regenerative biology (6)</td>
<td></td>
</tr>
<tr>
<td>BIOL4417</td>
<td>'Omic' and systems biology (6)</td>
<td></td>
</tr>
<tr>
<td>ENVS4110</td>
<td>Environmental remediation (6)</td>
<td></td>
</tr>
</tbody>
</table>

May take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Molecular Biology & Biotechnology
Offered to students admitted to Year 1 in 2014

Objectives:
The Minor in Molecular Biology & Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)

PLO 2: develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)

PLO 3: understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Molecular Biology & Biotechnology
Major in Molecular Biology & Biotechnology (Intensive)

Required courses (36 credits)

1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1100</td>
<td>From molecules to cells</td>
<td>6</td>
</tr>
<tr>
<td>BIOL1309</td>
<td>Evolutionary diversity</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2600</td>
<td>Basic biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2102</td>
<td>Biostatistics</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2103</td>
<td>Biological sciences laboratory course</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2220</td>
<td>Principles of biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2306</td>
<td>Ecology and evolution</td>
<td>6</td>
</tr>
</tbody>
</table>

May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOL2600 are mutually exclusive.

2. Advanced level courses (24 credits)
Disciplinary Core Courses (6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3401</td>
<td>Molecular biology</td>
<td>6</td>
</tr>
</tbody>
</table>

Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3402</td>
<td>Cell biology and cell technology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3403</td>
<td>Immunology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3409</td>
<td>Business aspects of biotechnology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3508</td>
<td>Microbial physiology and biotechnology</td>
<td>6</td>
</tr>
</tbody>
</table>

May take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL4401</td>
<td>Medical microbiology and applied immunology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4402</td>
<td>Microbial biotechnology</td>
<td>6</td>
</tr>
</tbody>
</table>

May take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL4411</td>
<td>Plant and food biotechnology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4415</td>
<td>Healthcare biotechnology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4416</td>
<td>Stem cells and regenerative biology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4417</td>
<td>'Omics' and systems biology</td>
<td>6</td>
</tr>
<tr>
<td>ENV54110</td>
<td>Environmental remediation</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Minor in Molecular Biology & Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

Learning Outcomes:
By the end of this programme, students should be able to:

1. **PLO 1:** develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)
2. **PLO 2:** develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)
3. **PLO 3:** understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Molecular Biology & Biotechnology
Major in Molecular Biology & Biotechnology (Intensive)

Required courses (36 credits)

1. **Introductory level courses (12 credits)**
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOC2600 Basic biochemistry (6)
 - BIOL2102 Biostatistics (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry (6)
 - BIOL2306 Ecology and evolution (6)
 - May take either BIOL1309 or BIOL2306 to fulfill this 12 credits requirement, but not both. BIOL2220 and BIOC2600 are mutually exclusive.

2. **Advanced level courses (24 credits)**
 Disciplinary Core Courses (6 credits)
 - BIOL3401 Molecular biology (6)
 Disciplinary Electives (18 credits)
 At least 18 credits selected from the following courses:
 - BIOL3402 Cell biology and cell technology (6)
 - BIOL3403 Immunology (6)
 - BIOL3409 Business aspects of biotechnology (6)
 - BIOL3508 Microbial physiology and biotechnology (6)
 - BIOL4401 Medical microbiology and applied immunology (6)
 - BIOL4402 Microbial biotechnology (6)
 - BIOL4411 Plant and food biotechnology (6)
 - BIOL4415 Healthcare biotechnology (6)
 - BIOL4416 Stem cells and regenerative biology (6)
 - BIOL4417 ‘Omics’ and systems biology (6)
 - ENVS4110 Environmental remediation (6)
 - Take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.
 - Take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.
 - Take either BIOL3508 or BIOL4402 to fulfill this 18 credits requirement, but not both. BIOL3508 and BIOL4402 are mutually exclusive.

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Molecular Biology & Biotechnology
Offered to students admitted to Year 1 in 2012

Objectives:
The Minor in Molecular Biology & Biotechnology aims to provide students with a fundamental understanding of molecular biology and biotechnology which are relevant to many other disciplines of study and our daily life. Students will learn the principles underlying current molecular and cell biology advances, and biotechnological applications and will become literate in biotechnology business and advancements.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: develop and apply basic technical and knowledge-based skills in molecular and cell biology, and biotechnology (by means of coursework and laboratory-based learning in the curriculum)

PLO 2: develop and apply skills of critical inquiry, teamwork, and effective communication (by means of group projects, tutorial classes and presentation opportunities in the curriculum)

PLO 3: understand and describe the issues and concerns fundamental to the field (by means of coursework and laboratory-based learning in the curriculum)

Impermissible Combinations:
Major in Molecular Biology & Biotechnology
Major in Molecular Biology & Biotechnology (Intensive)

Required courses (36 credits)

1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
- BIOL1110 From molecules to cells (6)
- BIOL1309 Evolutionary diversity (6)
- BIOL2600 Basic biochemistry (6)
- BIOL2102 Biostatistics (6)
- BIOL2103 Biological sciences laboratory course (6)
- BIOL2220 Principles of biochemistry (6)
- BIOL2306 Ecology and evolution (6)

2. Advanced level courses (24 credits)
Disciplinary Core Courses (6 credits)
- BIOL3401 Molecular biology (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
- BIOL3402 Cell biology and cell technology (6)
- BIOL3403 Immunology (6)
- BIOL3409 Business aspects of biotechnology (6)
- BIOL3508 Microbial physiology and biotechnology (6)
- BIOL3508 or BIOL4402 Medical microbiology and applied immunology (6)
- BIOL3508 or BIOL4402 Microbial biotechnology (6)
- BIOL4401 Plant and food biotechnology (6)
- BIOL4115 Healthcare biotechnology (6)
- BIOL4116 Stem cells and regenerative biology (6)
- BIOL4117 'Omics' and systems biology (6)
- ENVS4110 Environmental remediation (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Operations Research & Mathematical Programming

Objectives:
The Minor in Operations Research & Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and demonstrate understanding of fundamental concepts in operations research & mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Major in Mathematics/Physics
Minor in Mathematics
Minor in Computational & Financial Mathematics

Required courses (42 credits)
1. Introductory level courses (18 credits) (note 3)
 Disciplinary Core Course (6 credits)
 MATH1013 University mathematics II (6)
 Disciplinary Electives (12 credits)
 Select either List A or List B:
 List A
 MATH2101 Linear algebra I (6)
 MATH2211 Multivariable calculus (6)
 List B
 MATH2012 Fundamental concepts of mathematics (6)
 MATH2014 Multivariable calculus and linear algebra (6)

2. Advanced level courses (24 credits)
 Disciplinary Core Courses (12 credits)
 MATH3901 Operations research I (6)
 MATH3904 Introduction to optimization (6)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 MATH3405 Differential equations (6)
 MATH3600 Discrete mathematics (6)
 MATH3905 Queueing theory and simulation (6)
 MATH3906 Financial calculus (6)
 MATH3911 Game theory and strategy (6)
 MATH3943 Network models in operations research (6)
 MATH4902 Operations research II (6)
 MATH4907 Numerical methods for financial calculus (6)
 MATH7502 Topics in applied discrete mathematics (6)
 MATH7503 Topics in mathematical programming and optimization (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor in Operations Research & Mathematical Programming

Offered to students admitted to Year 1 in 2017

Objectives:
The Minor in Operations Research & Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

Learning Outcomes:
By the end of this programme, students should be able to:

1. **PLO 1:** describe and demonstrate understanding of fundamental concepts in operations research & mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)
2. **PLO 2:** apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)
3. **PLO 3:** communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
- Major in Mathematics
- Major in Mathematics/Physics
- Minor in Mathematics
- Minor in Computational & Financial Mathematics

Required courses (42 credits)

1. **Introductory level courses (18 credits) (note 3)**
 - Disciplinary Core Course (6 credits)
 - MATH1013 University mathematics II (6)
 - Disciplinary Electives (12 credits)
 - Select either List A or List B:
 - **List A**
 - MATH2101 Linear algebra I (6)
 - MATH2211 Multivariable calculus (6)
 - **List B**
 - MATH2012 Fundamental concepts of mathematics (6)
 - MATH2014 Multivariable calculus and linear algebra (6)

2. **Advanced level courses (24 credits)**
 - **Disciplinary Core Courses (12 credits)**
 - MATH3901 Operations research I (6)
 - MATH3904 Introduction to optimization (6)
 - **Disciplinary Electives (12 credits)**
 - At least 12 credits selected from the following courses:
 - MATH3405 Differential equations (6)
 - MATH3600 Discrete mathematics (6)
 - MATH3905 Queueing theory and simulation (6)
 - MATH3906 Financial calculus (6)
 - MATH3911 Game theory and strategy (6)
 - MATH3943 Network models in operations research (6)
 - MATH4902 Operations research II (6)
 - MATH4907 Numerical methods for financial calculus (6)
 - MATH4952 Topics in applied discrete mathematics (6)
 - MATH4953 Topics in mathematical programming and optimization (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course (“disciplinary core”) in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Operations Research & Mathematical Programming

Offered to students admitted to Year 1 in 2016

Objectives:
The Minor in Operations Research & Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and demonstrate understanding of fundamental concepts in operations research & mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Major in Mathematics/Physics
Minor in Mathematics
Minor in Computational & Financial Mathematics

Required courses (42 credits)
1. Introductory level courses (18 credits) (note 3)

Disciplinary Core Course (6 credits)
MATH1013 University mathematics II (6)

Disciplinary Electives (12 credits)
Select either List A or List B:
List A
MATH2101 Linear algebra I (6)
MATH2211 Multivariable calculus (6)
List B
MATH2012 Fundamental concepts of mathematics (6)
MATH2014 Multivariable calculus and linear algebra (6)

2. Advanced level courses (24 credits)

Disciplinary Core Courses (12 credits)
MATH3901 Operations research I (6)
MATH3904 Introduction to optimization (6)

Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
MATH3405 Differential equations (6)
MATH3600 Discrete mathematics (6)
MATH3905 Queueing theory and simulation (6)
MATH3906 Financial calculus (6)
MATH3911 Game theory and strategy (6)
MATH3943 Network models in operations research (6)
MATH4902 Operations research II (6)
MATH4907 Numerical methods for financial calculus (6)
MATH7502 Topics in applied discrete mathematics (6)
MATH7503 Topics in mathematical programming and optimization (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title | Minor in Operations Research & Mathematical Programming
Offered to students admitted to Year 1 in 2015
Objectives: The Minor in Operations Research & Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.
Learning Outcomes: By the end of this programme, students should be able to:
PLO 1: describe and demonstrate understanding of fundamental concepts in operations research & mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)
Impermissible Combinations: Major in Mathematics Major in Mathematics/Physics Minor in Mathematics Minor in Computational & Financial Mathematics
Required courses (42 credits)
1. Introductory level courses (18 credits) (note 3)
Disciplinary Core Course (6 credits)
MATH1013 University mathematics II (6)
Disciplinary Electives (12 credits)
Select either List A or List B:
List A
MATH2101 Linear algebra I (6)
MATH2211 Multivariable calculus (6)
List B
MATH2012 Fundamental concepts of mathematics (6)
MATH2014 Multivariable calculus and linear algebra (6)
2. Advanced level courses (24 credits)
Disciplinary Core Courses (12 credits)
MATH3901 Operations research I (6)
MATH3904 Introduction to optimization (6)
Disciplinary Electives (12 credits)
At least 12 credits selected from the following courses:
MATH3405 Differential equations (6)
MATH3600 Discrete mathematics (6)
MATH3905 Queueing theory and simulation (6)
MATH3906 Financial calculus (6)
MATH3911 Game theory and strategy (6)
MATH3943 Network models in operations research (6)
MATH4902 Operations research II (6)
MATH4907 Numerical methods for financial calculus (6)
MATH7502 Topics in applied discrete mathematics (6)
MATH7503 Topics in mathematical programming and optimization (6)
Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.
Remarks: Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Operations Research & Mathematical Programming

Offered to students admitted to Year 1 in 2014

Objectives:
The Minor in Operations Research & Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and demonstrate understanding of fundamental concepts in operations research & mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Major in Mathematics/Physics
Minor in Mathematics
Minor in Computational & Financial Mathematics

Required courses (42 credits)

1. Introductory level courses (18 credits) (note 3)
 Disciplinary Core Courses (18 credits)
 MATH1013 University mathematics II (6)
 MATH2101 Linear algebra I (6)
 MATH2211 Multivariable calculus (6)

2. Advanced level courses (24 credits)
 Disciplinary Core Courses (12 credits)
 MATH3901 Operations research I (6)
 MATH3904 Introduction to optimization (6)

 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 MATH3405 Differential equations (6)
 MATH3600 Discrete mathematics (6)
 MATH3905 Queueing theory and simulation (6)
 MATH3906 Financial calculus (6)
 MATH3911 Game theory and strategy (6)
 MATH3943 Network models in operations research (6)
 MATH4902 Operations research II (6)
 MATH4907 Numerical methods for financial calculus (6)
 MATH7502 Topics in applied discrete mathematics (6)
 MATH7503 Topics in mathematical programming and optimization (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Operations Research & Mathematical Programming
Offered to students admitted to Year 1 in 2013

Objectives:
The Minor in Operations Research & Mathematical Programming provides students with fundamental knowledge in optimization, computational algorithm, mathematical modeling, and decision making. It is specifically designed for students who are interested in the above subjects and those whose majors require sophisticated mathematical skills. It aims to nurture quantitative reasoning, logical, analytical and critical thinking, innovative imagination, meticulous care to work, ability to conceptualize, skills for problem-solving and skills to tackle novel situations and ill-defined problems. It is particularly useful for solving mathematical problems arising from decision sciences and logistic industry.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: describe and demonstrate understanding of fundamental concepts in operations research & mathematical programming (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply mathematical methods and analysis to real life problems (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: communicate and discuss scientific issues related to mathematics (by means of coursework, tutorial classes and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics
Major in Mathematics/Physics
Minor in Mathematics
Minor in Computational & Financial Mathematics

Required courses (42 credits)

1. Introductory level courses (18 credits) (note 3)

Disciplinary Core Courses (18 credits)

MATH1013 University mathematics II (6)
MATH2101 Linear algebra I (6)
MATH2211 Multivariable calculus (6)

2. Advanced level courses (24 credits)

Disciplinary Core Courses (12 credits)

MATH3901 Operations research I (6)
MATH3904 Introduction to optimization (6)

Disciplinary Electives (12 credits)

At least 12 credits selected from the following courses:

MATH3405 Differential equations (6)
MATH3600 Discrete mathematics (6)
MATH3905 Queueing theory and simulation (6)
MATH3906 Financial calculus (6)
MATH3911 Game theory and strategy (6)
MATH3943 Network models in operations research (6)
MATH4902 Operations research II (6)
MATH4907 Numerical methods for financial calculus (6)
MATH7502 Topics in applied discrete mathematics (6)
MATH7503 Topics in mathematical programming and optimization (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 2 or above in HKDSE Extended Module 1 or 2 of Mathematics or equivalent to take this minor. Students who do not fulfill this requirement are required to take MATH1011 University mathematics I.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title | Minor in Physics
Offered to students admitted to Year 1 in 2018
Objectives:
The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

Learning Outcomes:
By the end of this programme, students should be able to:
- PLO 1: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
- PLO 2: analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
- PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics/Physics
Major in Physics

Required courses (42 credits)
1. Introductory level courses (24 credits)
Disciplinary Core Courses (6 credits)
- PHYS1250 Fundamental physics (6)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
- PHYS1150 Problem solving in physics (6)
- PHYS2055 Introduction to relativity (6)
- PHYS2155 Methods in physics I (6)
- PHYS2250 Introductory mechanics (6)
- PHYS2255 Introductory electricity and magnetism (6)
- PHYS2261 Introductory heat and thermodynamics (6)
- PHYS2265 Modern physics (6)

2. Advanced level courses (18 credits)
Disciplinary Electives (18 credits)
At least 18 credits selected from the following courses:
List A
- PHYS3150 Theoretical physics (6)
- PHYS3151 Machine learning in physics (6)
- PHYS3350 Classical mechanics (6)
- PHYS3351 Quantum mechanics (6)
- PHYS3450 Electromagnetism (6)
- PHYS3550 Statistical mechanics & thermodynamics (6)
- PHYS3650 Observational astronomy (6)
- PHYS3653 Astrophysics (6)
- PHYS3660 Astronomy laboratory (6)
- PHYS3750 Laser and spectroscopy (6)
- PHYS3760 Physics laboratory (6)
- PHYS3850 Waves and optics (6)
- PHYS3851 Atomic and nuclear physics (6)
- PHYS4150 Computational physics (6)
- PHYS4151 Data analysis and modeling in physics (6)
- PHYS4351 Advanced quantum mechanics (6)
- PHYS4450 Advanced electromagnetism (6)
- PHYS4551 Solid state physics (6)
- PHYS4652 Planetary science (6)
- PHYS4653 Cosmology (6)
- PHYS4654 General relativity (6)
- PHYS4655 Interstellar medium (6)
- PHYS4850 Particle physics (6)
- PHYS7350 Graduate classical mechanics (6)
- PHYS7351 Graduate quantum mechanics (6)
- PHYS7450 Graduate electromagnetism (6)
- PHYS7550 Graduate statistical mechanics (6)
- PHYS7750 Nanophysics (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.
2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Physics
Offered to students admitted to Year 1 in 2017

Objectives:
The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

Learning Outcomes:
By the end of this programme, students should be able to:

1. **PLO 1:** identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
2. **PLO 2:** analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
3. **PLO 3:** communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics/Physics
Major in Physics

Required courses (42 credits)

1. **Introductory level courses (18 credits)**

 Disciplinary Core Courses (18 credits)
 - PHYS1250 Fundamental physics (6)
 - PHYS2250 Introductory mechanics (6)
 - PHYS2265 Modern physics (6)

2. **Advanced level courses (24 credits)**

 Disciplinary Electives (24 credits)
 At least 24 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

 List A
 - PHYS3150 Theoretical physics (6)
 - PHYS3350 Classical mechanics (6)
 - PHYS3351 Quantum mechanics (6)
 - PHYS3450 Electromagnetism (6)
 - PHYS3550 Statistical mechanics & thermodynamics (6)
 - PHYS3551 Introductory solid state physics (6)
 - PHYS3650 Observational astronomy (6)
 - PHYS3651 The physical universe (6)
 - PHYS3652 Principles of astronomy (6)
 - PHYS3750 Laser and spectroscopy (6)
 - PHYS3751 Physics of nanomaterials (6)
 - PHYS3850 Waves and optics (6)
 - PHYS3851 Atomic and nuclear physics (6)
 - PHYS3999 Directed studies in physics (6)
 - PHYS4150 Computational physics (6)
 - PHYS4151 Data analysis and modeling in physics (6)
 - PHYS4350 Advanced classical mechanics (6)
 - PHYS4351 Advanced quantum mechanics (6)
 - PHYS4450 Advanced electromagnetism (6)
 - PHYS4550 Advanced statistical mechanics (6)
 - PHYS4551 Solid state physics (6)
 - PHYS4650 Stellar physics (6)
 - PHYS4651 Selected topics in astrophysics (6)
 - PHYS4652 Planetary science (6)
 - PHYS4653 Cosmology (6)
 - PHYS4654 General relativity (6)
 - PHYS4655 Interstellar medium (6)
 - PHYS4750 Experimental physics (6)
 - PHYS4850 Particle physics (6)
 - PHYS4966 Physics internship (6)
 - PHYS4999 Physics project (12)
 - PHYS7350 Graduate classical mechanics (6)
 - PHYS7351 Graduate quantum mechanics (6)
 - PHYS7450 Graduate electromagnetism (6)
 - PHYS7550 Graduate statistical mechanics (6)
 - PHYS7551 Graduate solid state physics (6)
 - PHYS7650 Stellar atmospheres (6)
 - PHYS7750 Nanophysics (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For
details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1 : identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2 : analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics/Physics
Major in Physics

Required courses (42 credits)
1. Introductory level courses (18 credits)
 Disciplinary Core Courses (18 credits)
 PHYS1250 Fundamental physics (6)
 PHYS2250 Introductory mechanics (6)
 PHYS2265 Modern physics (6)

 Fundamental Physics & Modern Physics (12 credits)
 PHYS1250 Fundamental physics (6)
 PHYS2250 Introductory mechanics (6)
 PHYS2265 Modern physics (6)

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 At least 24 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
 List A
 PHYS3150 Theoretical physics (6)
 PHYS3350 Classical mechanics (6)
 PHYS3351 Quantum mechanics (6)
 PHYS3450 Electromagnetism (6)
 PHYS3550 Statistical mechanics & thermodynamics (6)
 PHYS3551 Introductory solid state physics (6)
 PHYS3650 Observational astronomy (6)
 PHYS3651 The physical universe (6)
 PHYS3652 Principles of astronomy (6)
 PHYS3750 Physics of nanomaterials (6)
 PHYS3850 Waves and optics (6)
 PHYS3851 Atomic and nuclear physics (6)
 PHYS3999 Directed studies in physics (6)
 PHYS4150 Computational physics (6)
 PHYS4151 Data analysis and modeling in physics (6)
 PHYS4350 Advanced classical mechanics (6)
 PHYS4351 Advanced quantum mechanics (6)
 PHYS4450 Advanced electromagnetism (6)
 PHYS4550 Advanced statistical mechanics (6)
 PHYS4551 Solid state physics (6)
 PHYS4650 Stellar physics (6)
 PHYS4651 Selected topics in astrophysics (6)
 PHYS4652 Planetary science (6)
 PHYS4653 Cosmology (6)
 PHYS4654 General relativity (6)
 PHYS4655 Interstellar medium (6)
 PHYS4750 Experimental physics (6)
 PHYS4850 Particle physics (6)
 PHYS4999 Physics project (12)
 PHYS5350 Graduate classical mechanics (6)
 PHYS5351 Graduate quantum mechanics (6)
 PHYS5450 Graduate electromagnetism (6)
 PHYS5550 Graduate statistical mechanics (6)
 PHYS5551 Graduate solid state physics (6)
 PHYS5750 Stellar atmospheres (6)
 PHYS7750 Nanophysics (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For
details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Physics
Offered to students admitted to Year 1 in 2015

Objectives:
The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
- **PLO 2:** analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
- **PLO 3:** communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
- Major in Mathematics/Physics
- Major in Physics

Required courses (42 credits)

1. **Introductory level courses (18 credits)**
 Disciplinary Core Courses (18 credits)
 - PHYS1250 Fundamental physics (6)
 - PHYS2250 Introductory mechanics (6)
 - PHYS2265 Modern physics (6)

2. **Advanced level courses (24 credits)**
 Disciplinary Electives (24 credits)
 At least 24 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

 List A
 - PHYS3150 Theoretical physics (6)
 - PHYS3350 Classical mechanics (6)
 - PHYS3351 Quantum mechanics (6)
 - PHYS3450 Electromagnetism (6)
 - PHYS3550 Statistical mechanics & thermodynamics (6)
 - PHYS3551 Introductory solid state physics (6)
 - PHYS3650 Observational astronomy (6)
 - PHYS3651 The physical universe (6)
 - PHYS3652 Principles of astronomy (6)
 - PHYS3750 Laser and spectroscopy (6)
 - PHYS3751 Physics of nanomaterials (6)
 - PHYS3850 Waves and optics (6)
 - PHYS3851 Atomic and nuclear physics (6)
 - PHYS3999 Directed studies in physics (6)
 - PHYS4150 Computational physics (6)
 - PHYS4151 Data analysis and modeling in physics (6)
 - PHYS4350 Advanced classical mechanics (6)
 - PHYS4351 Advanced quantum mechanics (6)
 - PHYS4450 Advanced electromagnetism (6)
 - PHYS4550 Advanced statistical mechanics (6)
 - PHYS4551 Solid state physics (6)
 - PHYS4650 Stellar physics (6)
 - PHYS4651 Selected topics in astrophysics (6)
 - PHYS4652 Planetary science (6)
 - PHYS4653 Cosmology (6)
 - PHYS4654 General relativity (6)
 - PHYS4655 Interstellar medium (6)
 - PHYS4750 Experimental physics (6)
 - PHYS4850 Particle physics (6)
 - PHYS4966 Physics internship (6)
 - PHYS4999 Physics project (12)
 - PHYS5350 Graduate classical mechanics (6)
 - PHYS5351 Graduate quantum mechanics (6)
 - PHYS5450 Graduate electromagnetism (6)
 - PHYS5550 Graduate statistical mechanics (6)
 - PHYS5651 Graduate solid state physics (6)
 - PHYS5750 Stellar atmospheres (6)
 - PHYS7750 Nanophysics (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For
details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Physics
Offered to students: admitted to Year 1 in 2014

Objectives:
The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
- **PLO 2**: analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
- **PLO 3**: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics/Physics
Major in Physics

Required courses (42 credits)

1. **Introductory level courses (18 credits)**
 Disciplinary Core Courses (18 credits)
 - PHYS1250 Fundamental physics (6)
 - PHYS2250 Introductory mechanics (6)
 - PHYS2265 Modern physics (6)

2. **Advanced level courses (24 credits)**
 Disciplinary Electives (24 credits)
 - At least 24 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

 List A
 - PHYS3150 Theoretical physics (6)
 - PHYS3350 Classical mechanics (6)
 - PHYS3351 Quantum mechanics (6)
 - PHYS3450 Electromagnetism (6)
 - PHYS3550 Statistical mechanics & thermodynamics (6)
 - PHYS3551 Introductory solid state physics (6)
 - PHYS3650 Observational astronomy (6)
 - PHYS3651 The physical universe (6)
 - PHYS3652 Principles of astronomy (6)
 - PHYS3750 Laser and spectroscopy (6)
 - PHYS3751 Physics of nanomaterials (6)
 - PHYS3850 Waves and optics (6)
 - PHYS3851 Atomic and nuclear physics (6)
 - PHYS3999 Directed studies in physics (6)
 - PHYS4150 Computational physics (6)
 - PHYS4151 Data analysis and modeling in physics (6)
 - PHYS4350 Advanced classical mechanics (6)
 - PHYS4351 Advanced quantum mechanics (6)
 - PHYS4450 Advanced electromagnetism (6)
 - PHYS4550 Advanced statistical mechanics (6)
 - PHYS4551 Solid state physics (6)
 - PHYS4650 Stellar physics (6)
 - PHYS4651 Selected topics in astrophysics (6)
 - PHYS4652 Planetary science (6)
 - PHYS4653 Cosmology (6)
 - PHYS4654 General relativity (6)
 - PHYS4655 Interstellar medium (6)
 - PHYS4750 Experimental physics (6)
 - PHYS4850 Particle physics (6)
 - PHYS4966 Physics internship (6)
 - PHYS4999 Physics project (12)
 - PHYS5350 Graduate classical mechanics (6)
 - PHYS5351 Graduate quantum mechanics (6)
 - PHYS5450 Graduate electromagnetism (6)
 - PHYS5550 Graduate statistical mechanics (6)
 - PHYS5651 Graduate solid state physics (6)
 - PHYS5750 Stellar atmospheres (6)
 - PHYS7750 Nanophysics (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For
details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Physics
Offered to students admitted to Year 1 in 2013

Objectives:
The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2: analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3: communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics/Physics
Major in Physics

Required courses (42 credits)
1. Introductory level courses (18 credits)
Disciplinary Core Courses (18 credits)

PHYS1250 Fundamental physics (6)
PHYS2250 Introductory mechanics (6)
PHYS2265 Modern physics (6)

2. Advanced level courses (24 credits)
Disciplinary Electives (24 credits)
At least 24 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List A:

List A
PHYS3150 Theoretical physics (6)
PHYS3350 Classical mechanics (6)
PHYS3351 Quantum mechanics (6)
PHYS3450 Electromagnetism (6)
PHYS3550 Statistical mechanics & thermodynamics (6)
PHYS3551 Introductory solid state physics (6)
PHYS3650 Observational astronomy (6)
PHYS3651 The physical universe (6)
PHYS3652 Principles of astronomy (6)
PHYS3750 Laser and spectroscopy (6)
PHYS3751 Physics of nanomaterials (6)
PHYS3850 Waves and optics (6)
PHYS3851 Atomic and nuclear physics (6)
PHYS3999 Directed studies in physics (6)
PHYS4150 Computational physics (6)
PHYS4151 Data analysis and modeling in physics (6)
PHYS4350 Advanced classical mechanics (6)
PHYS4351 Advanced quantum mechanics (6)
PHYS4450 Advanced electromagnetism (6)
PHYS4550 Advanced statistical mechanics (6)
PHYS4551 Solid state physics (6)
PHYS4650 Stellar physics (6)
PHYS4651 Selected topics in astrophysics (6)
PHYS4652 Planetary science (6)
PHYS4653 Cosmology (6)
PHYS4654 General relativity (6)
PHYS4655 Interstellar medium (6)
PHYS4750 Experimental physics (6)
PHYS4850 Particle physics (6)
PHYS4866 Physics internship (6)
PHYS4999 Physics project (12)
PHYS7350 Graduate classical mechanics (6)
PHYS7351 Graduate quantum mechanics (6)
PHYS7450 Graduate electromagnetism (6)
PHYS7550 Graduate statistical mechanics (6)
PHYS7551 Graduate solid state physics (6)
PHYS7650 Stellar atmospheres (6)
PHYS7750 Nanophysics (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For
details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Minor in Physics is intended to provide interested students with a fundamental outlook on the subject. Students would acquire a taste of the subject through a large selection of elective courses which provides them to pursue a wide range of topics from the very small scale of nanomaterials to the large scale of astrophysics.

Learning Outcomes:
By the end of this programme, students should be able to:
PLO 1 : identify and describe physical systems with fundamental knowledge in physics (by means of coursework and tutorial classes in the curriculum)
PLO 2 : analyze some physics problems qualitatively and quantitatively (by means of coursework, tutorial classes and laboratory works in the curriculum)
PLO 3 : communicate and collaborate with people effectively in scientific issues (by means of group projects, tutorial sessions and presentation opportunities in the curriculum)

Impermissible Combinations:
Major in Mathematics/Physics
Major in Physics

Required courses (42 credits)
1. Introductory level courses (18 credits)
 Disciplinary Core Courses (18 credits)
 PHYS1250 Fundamental physics (6)
 PHYS2250 Introductory mechanics (6)
 PHYS2265 Modern physics (6)

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 At least 24 credits of advanced level Physics courses (PHYS3XXX or PHYS4XXX or PHYS7XXX level), subject to prerequisite requirements. The current course list includes courses in List A:
 List A
 PHYS3150 Theoretical physics (6)
 PHYS3350 Classical mechanics (6)
 PHYS3351 Quantum mechanics (6)
 PHYS3450 Electromagnetism (6)
 PHYS3550 Statistical mechanics & thermodynamics (6)
 PHYS3551 Introductory solid state physics (6)
 PHYS3650 Observational astronomy (6)
 PHYS3651 The physical universe (6)
 PHYS3652 Principles of astronomy (6)
 PHYS3750 Laser and spectroscopy (6)
 PHYS3751 Physics of nanomaterials (6)
 PHYS3850 Waves and optics (6)
 PHYS3851 Atomic and nuclear physics (6)
 PHYS3999 Directed studies in physics (6)
 PHYS4150 Computational physics (6)
 PHYS4151 Data analysis and modeling in physics (6)
 PHYS4350 Advanced classical mechanics (6)
 PHYS4351 Advanced quantum mechanics (6)
 PHYS4450 Advanced electromagnetism (6)
 PHYS4550 Advanced statistical mechanics (6)
 PHYS4551 Solid state physics (6)
 PHYS4650 Stellar physics (6)
 PHYS4651 Selected topics in astrophysics (6)
 PHYS4652 Planetary science (6)
 PHYS4653 Cosmology (6)
 PHYS4654 General relativity (6)
 PHYS4655 Interstellar medium (6)
 PHYS4750 Experimental physics (6)
 PHYS4850 Particle physics (6)
 PHYS4966 Physics internship (6)
 PHYS4999 Physics project (12)
 PHYS7350 Graduate classical mechanics (6)
 PHYS7351 Graduate quantum mechanics (6)
 PHYS7450 Graduate electromagnetism (6)
 PHYS7550 Graduate statistical mechanics (6)
 PHYS7551 Graduate solid state physics (6)
 PHYS7650 Stellar atmospheres (6)
 PHYS7750 Nanophysics (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For
details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

2. Students must have level 3 or above in HKDSE Physics or equivalent to take this minor. Students who do not fulfill this requirement are advised to take PHYS1240 Physics by inquiry.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Plant Science

Offered to students
admitted to Year 1 in 2018

Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals. Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

PLO 2: understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

PLO 3: acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:
NIL

Required courses (36 credits)

1. **Introductory level courses (12 credits)**

 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry (6)

2. **Advanced level courses (24 credits)**

 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 - BIOL3107 Plant physiology (6)
 - BIOL3210 Grain production and utilization (6)
 - BIOL3314 Plant structure and evolution (6)
 - BIOL3408 Genetics (6)
 - BIOL4209 Functional foods (6)
 - BIOL4411 Plant and food biotechnology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Plant Science
Offered to students admitted to Year 1 in 2017

Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals. Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

Learning Outcomes:
By the end of this programme, students should be able to:
- PLO 1: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)
- PLO 2: understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)
- PLO 3: acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:
NIL

Required courses (36 credits)

1. **Introductory level courses (12 credits)**
 - Disciplinary Electives (12 credits)
 - At least 12 credits selected from the following courses:
 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry (6)

2. **Advanced level courses (24 credits)**
 - Disciplinary Electives (24 credits)
 - At least 24 credits selected from the following courses:
 - BIOL3107 Plant physiology (6)
 - BIOL3210 Grain production and utilization (6)
 - BIOL3314 Plant structure and evolution (6)
 - BIOL3408 Genetics (6)
 - BIOL4209 Functional foods (6)
 - BIOL4411 Plant and food biotechnology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course (“disciplinary core”) in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Plant Science

Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals. Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

PLO 2: understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

PLO 3: acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:
NIL

Required courses (36 credits)

1. Introductory level courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1110</td>
<td>From molecules to cells</td>
<td>6</td>
</tr>
<tr>
<td>BIOL1309</td>
<td>Evolutionary diversity</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2103</td>
<td>Biological sciences laboratory course</td>
<td>6</td>
</tr>
<tr>
<td>BIOL2220</td>
<td>Principles of biochemistry</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Advanced level courses (24 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3107</td>
<td>Plant physiology</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3210</td>
<td>Grain production and utilization</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3314</td>
<td>Plant structure and evolution</td>
<td>6</td>
</tr>
<tr>
<td>BIOL3408</td>
<td>Genetics</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4209</td>
<td>Functional foods</td>
<td>6</td>
</tr>
<tr>
<td>BIOL4411</td>
<td>Plant and food biotechnology</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals. Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

- **PLO 2**: understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

- **PLO 3**: acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:
NIL

Required courses (36 credits)

1. **Introductory level courses (12 credits)**
 - Disciplinary Electives (12 credits)
 - At least 12 credits selected from the following courses:
 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry (6)

2. **Advanced level courses (24 credits)**
 - Disciplinary Electives (24 credits)
 - At least 24 credits selected from the following courses:
 - BIOL3107 Plant physiology (6)
 - BIOL3210 Grain production and utilization (6)
 - BIOL3314 Plant structure and evolution (6)
 - BIOL3408 Genetics (6)
 - BIOL4209 Functional foods (6)
 - BIOL4411 Plant and food biotechnology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor in Plant Science

Offered to students admitted to Year 1 in 2014

Objectives:

The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals. Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

Learning Outcomes:

By the end of this programme, students should be able to:

- **PLO 1**: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)
- **PLO 2**: understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)
- **PLO 3**: acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:

NIL

Required courses (36 credits)

1. Introductory level courses (12 credits)

 Disciplinary Electives (12 credits)

 At least 12 credits selected from the following courses:

 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry (6)

2. Advanced level courses (24 credits)

 Disciplinary Electives (24 credits)

 At least 24 credits selected from the following courses:

 - BIOL3107 Plant physiology (6)
 - BIOL3210 Grain production and utilization (6)
 - BIOL3314 Plant structure and evolution (6)
 - BIOL3408 Genetics (6)
 - BIOL4209 Functional foods (6)
 - BIOL4411 Plant and food biotechnology (6)

Notes:

1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:

Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Plant Science
Offered to students admitted to Year 1 in 2013

Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals. Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

- **PLO 2**: understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

- **PLO 3**: acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:
NIL

Required courses (36 credits)

1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry (6)

2. Advanced level courses (24 credits)
Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 - BIOL3107 Plant physiology (6)
 - BIOL3210 Grain production and utilization (6)
 - BIOL3314 Plant structure and evolution (6)
 - BIOL3408 Genetics (6)
 - BIOL4209 Functional foods (6)
 - BIOL4411 Plant and food biotechnology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Plant Science
Offered to students admitted to Year 1 in 2012

Objectives:
The Minor in Plant Science is offered to students who are fascinated by the diversity and beauty of plants and the molecular mechanisms underlying their growth and development. Knowledge in plant science is essential for tackling daily-life issues such as the production of high-quality food, utilization of plant products as biofuels and extraction of beneficial phytochemicals. Recent advances in plant genetic engineering have also allowed scientists to manipulate plant growth and development for nutritional and environmental benefits. This minor aims to provide broad training in the biology of plants from the molecular to the organism level as well as the agricultural and nutritional applications of plants and plant-derived products.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: appreciate plants as an important part in our culture and their functions and roles in food, nutrition, and environment (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

PLO 2: understand and describe the fundamental concepts of plant evolution, anatomy, biochemistry, physiology and biotechnology (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

PLO 3: acquire necessary academic and practical skills for careers in government agencies, secondary school teaching and postgraduate research in different disciplines of plant science (by means of coursework, laboratory-based, and tutorial class and project-based learning in the curriculum)

Impermissible Combinations:
NIL

Required courses (36 credits)
1. Introductory level courses (12 credits)
 Disciplinary Electives (12 credits)
 At least 12 credits selected from the following courses:
 - BIOL1110 From molecules to cells (6)
 - BIOL1309 Evolutionary diversity (6)
 - BIOL2103 Biological sciences laboratory course (6)
 - BIOL2220 Principles of biochemistry (6)

2. Advanced level courses (24 credits)
 Disciplinary Electives (24 credits)
 At least 24 credits selected from the following courses:
 - BIOL3107 Plant physiology (6)
 - BIOL3210 Grain production and utilization (6)
 - BIOL3314 Plant structure and evolution (6)
 - BIOL3408 Genetics (6)
 - BIOL4209 Functional foods (6)
 - BIOL4411 Plant and food biotechnology (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Risk Management
Offered to students admitted to Year 1 in 2018

Objectives:
The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

Required courses (42 credits)
1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
At least 12 credits from List A and List B, with at least 6 credits from List B:

List A
- STAT1601 Elementary statistical methods (6)
- STAT1602 Business statistics (6)
- STAT2601 Probability and statistics I (6)

List B
- STAT2602 Probability and statistics II (6)
- STAT2603 Data management with SAS (6)

2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:

- STAT3609 The statistics of investment risk (6)
- STAT3610 Risk management and insurance (6)
- STAT3611 Computer-aided data analysis (6)
- STAT3612 Data mining (6)
- STAT3614 Business forecasting (6)
- STAT3615 Practical mathematics for investment (6)
- STAT3616 Derivatives and risk management (6)
- STAT4601 Time-series analysis (6)
- STAT4603 Current topics in risk management (6)
- STAT4606 Risk management and Basel Accords in banking and finance (6)
- STAT4607 Credit risk analysis (6)
- STAT4608 Market risk analysis (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Risk Management
Offered to students admitted to Year 1 in 2017

Objectives:
The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 2**: apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 3**: acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

<table>
<thead>
<tr>
<th>Required courses (42 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introductory level courses (12 credits)</td>
</tr>
<tr>
<td>Disciplinary Electives (12 credits)</td>
</tr>
<tr>
<td>At least 12 credits from List A and List B, with at least 6 credits from List B:</td>
</tr>
<tr>
<td>List A</td>
</tr>
<tr>
<td>STAT1601 Elementary statistical methods (6)</td>
</tr>
<tr>
<td>STAT1602 Business statistics (6)</td>
</tr>
<tr>
<td>STAT1603 Introductory statistics (6)</td>
</tr>
<tr>
<td>STAT2601 Probability and statistics I (6)</td>
</tr>
<tr>
<td>List B</td>
</tr>
<tr>
<td>STAT2602 Probability and statistics II (6)</td>
</tr>
<tr>
<td>STAT2603 Data management with SAS (6)</td>
</tr>
<tr>
<td>2. Advanced level courses (30 credits)</td>
</tr>
<tr>
<td>Disciplinary Electives (30 credits)</td>
</tr>
<tr>
<td>At least 30 credits selected from the following courses:</td>
</tr>
<tr>
<td>STAT3609 The statistics of investment risk (6)</td>
</tr>
<tr>
<td>STAT3610 Risk management and insurance (6)</td>
</tr>
<tr>
<td>STAT3611 Computer-aided data analysis (6)</td>
</tr>
<tr>
<td>STAT3612 Data mining (6)</td>
</tr>
<tr>
<td>STAT3614 Business forecasting (6)</td>
</tr>
<tr>
<td>STAT3615 Practical mathematics for investment (6)</td>
</tr>
<tr>
<td>STAT3618 Derivatives and risk management (6)</td>
</tr>
<tr>
<td>STAT4601 Time-series analysis (6)</td>
</tr>
<tr>
<td>STAT4603 Current topics in risk management (6)</td>
</tr>
<tr>
<td>STAT4606 Risk management and Basel Accords in banking and finance (6)</td>
</tr>
<tr>
<td>STAT4607 Credit risk analysis (6)</td>
</tr>
<tr>
<td>STAT4608 Market risk analysis (6)</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Risk Management

Objectives:
The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 3: acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

Required courses (42 credits)
1. Introductory level courses (12 credits)
2. Advanced level courses (30 credits)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Risk Management
Offered to students admitted to Year 1 in 2015

Objectives:
The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 2:** apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 3:** acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

Required courses (42 credits)

1. **Introductory level courses (12 credits)**

2. **Disciplinary Electives (12 credits)**
 - At least 12 credits from List A and List B, with at least 6 credits from List B:

 List A
 - STAT1601 Elementary statistical methods (6)
 - STAT1602 Business statistics (6)
 - STAT1603 Introductory statistics (6)
 - STAT2601 Probability and statistics I (6)

 List B
 - STAT2602 Probability and statistics II (6)
 - STAT2603 Data management with SAS (6)

2. **Advanced level courses (30 credits)**

 Disciplinary Electives (30 credits)
 - At least 30 credits selected from the following courses:

 - STAT3609 The statistics of investment risk (6)
 - STAT3610 Risk management and insurance (6)
 - STAT3611 Computer-aided data analysis (6)
 - STAT3612 Data mining (6)
 - STAT3614 Business forecasting (6)
 - STAT3615 Practical mathematics for investment (6)
 - STAT3618 Derivatives and risk management (6)
 - STAT4601 Time-series analysis (6)
 - STAT4603 Current topics in risk management (6)
 - STAT4606 Risk management and Basel Accords in banking and finance (6)
 - STAT4607 Credit risk analysis (6)
 - STAT4608 Market risk analysis (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Risk Management
Offered to students admitted to Year 1 in 2014

Objectives:
The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 2: apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
PLO 3: acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Risk Management
Major in Statistics
Minor in Statistics

Required courses (42 credits)
1. Introductory level courses (12 credits)
 Disciplinary Electives (12 credits)
 At least 12 credits from List A and List B, with at least 6 credits from List B:
 List A
 STAT1601 Elementary statistical methods (6)
 STAT1602 Business statistics (6)
 STAT1603 Introductory statistics (6)
 STAT2601 Probability and statistics I (6)
 List B
 STAT2602 Probability and statistics II (6)
 STAT2603 Data management with SAS (6)

2. Advanced level courses (30 credits)
 Disciplinary Electives (30 credits)
 At least 30 credits selected from the following courses:
 STAT3609 The statistics of investment risk (6)
 STAT3610 Risk management and insurance (6)
 STAT3611 Computer-aided data analysis (6)
 STAT3612 Data mining (6)
 STAT3614 Business forecasting (6)
 STAT3615 Practical mathematics for investment (6)
 STAT3618 Derivatives and risk management (6)
 STAT4601 Time-series analysis (6)
 STAT4603 Current topics in risk management (6)
 STAT4606 Risk management and Basel Accords in banking and finance (6)
 STAT4607 Credit risk analysis (6)
 STAT4608 Market risk analysis (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title
Minor in Risk Management

Offered to students admitted to Year 1 in
2013

Objectives:
The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1**: acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 2**: apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 3**: acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
- Major in Risk Management
- Major in Statistics
- Minor in Statistics

Required courses (42 credits)

1. Introductory level courses (12 credits)

Disciplinary Electives (12 credits)

At least 12 credits from List A and List B, with at least 6 credits from List B:

<table>
<thead>
<tr>
<th>List A</th>
<th>Course Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT1601</td>
<td>Elementary statistical methods (6)</td>
</tr>
<tr>
<td>STAT1602</td>
<td>Business statistics (6)</td>
</tr>
<tr>
<td>STAT1603</td>
<td>Introductory statistics (6)</td>
</tr>
<tr>
<td>STAT2601</td>
<td>Probability and statistics I (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>List B</th>
<th>Course Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT2602</td>
<td>Probability and statistics II (6)</td>
</tr>
<tr>
<td>STAT2603</td>
<td>Data management with SAS (6)</td>
</tr>
</tbody>
</table>

2. Advanced level courses (30 credits)

Disciplinary Electives (30 credits)

At least 30 credits selected from the following courses:

<table>
<thead>
<tr>
<th>Course Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3609: The statistics of investment risk (6)</td>
</tr>
<tr>
<td>STAT3610: Risk management and insurance (6)</td>
</tr>
<tr>
<td>STAT3611: Computer-aided data analysis (6)</td>
</tr>
<tr>
<td>STAT3612: Data mining (6)</td>
</tr>
<tr>
<td>STAT3614: Business forecasting (6)</td>
</tr>
<tr>
<td>STAT3615: Practical mathematics for investment (6)</td>
</tr>
<tr>
<td>STAT3618: Derivatives and risk management (6)</td>
</tr>
<tr>
<td>STAT4601: Time-series analysis (6)</td>
</tr>
<tr>
<td>STAT4603: Current topics in risk management (6)</td>
</tr>
<tr>
<td>STAT4606: Risk management and Basel Accords in banking and finance (6)</td>
</tr>
<tr>
<td>STAT4607: Credit risk analysis (6)</td>
</tr>
<tr>
<td>STAT4608: Market risk analysis (6)</td>
</tr>
</tbody>
</table>

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Risk Management
Offered to students admitted to Year 1 in 2012

Objectives:
The Minor in Risk Management aims to provide interested students with basic concepts of risk management and fundamental skills of employing various statistical techniques for managing risk. The minor curriculum is particularly designed for students from different majors to enhance their interests in Risk Management or to complement their major of study.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** acquire basic understanding and identify the generic risk management issues and techniques (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 2:** apply elementary methods and models for risk assessment and management (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 3:** acquire and interpret relevant data and information for risk management (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
- Major in Risk Management
- Major in Statistics
- Minor in Statistics

Required courses (42 credits)

1. **Introductory level courses (12 credits)**

 Disciplinary Electives (12 credits)
 At least 12 credits from List A and List B, with at least 6 credits from List B:
 - **List A**
 - STAT1601 Elementary statistical methods (6)
 - STAT1602 Business statistics (6)
 - STAT1603 Introductory statistics (6)
 - STAT2601 Probability and statistics I (6)
 - **List B**
 - STAT2602 Probability and statistics II (6)
 - STAT2603 Data management with SAS (6)

2. **Advanced level courses (30 credits)**

 Disciplinary Electives (30 credits)
 At least 30 credits selected from the following courses:
 - STAT3609 The statistics of investment risk (6)
 - STAT3610 Risk management and insurance (6)
 - STAT3611 Computer-aided data analysis (6)
 - STAT3612 Data mining (6)
 - STAT3614 Business forecasting (6)
 - STAT3615 Practical mathematics for investment (6)
 - STAT3618 Derivatives and risk management (6)
 - STAT4601 Time-series analysis (6)
 - STAT4603 Current topics in risk management (6)
 - STAT4606 Risk management and Basel Accords in banking and finance (6)
 - STAT4607 Credit risk analysis (6)
 - STAT4608 Market risk analysis (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)

PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
- Major in Computing and Data Analytics
- Major in Decision Analytics
- Major in Risk Management
- Major in Statistics
- Minor in Risk Management

Required courses (42 credits)

1. Introductory level courses (12 credits)

Disciplinary Electives (12 credits)

At least 12 credits from List A and List B, with at least 6 credits from List B:

List A
- STAT1601 Elementary statistical methods (6)
- STAT1602 Business statistics (6)
- STAT1603 Introductory statistics (6)
- STAT2601 Probability and statistics I (6)

List B
- STAT2602 Probability and statistics II (6)
- STAT2603 Data management with SAS (6)
- STAT2605 Demographic and socio-economic statistics (6)

2. Advanced level courses (30 credits)

Disciplinary Electives (30 credits)

At least 30 credits selected from the following courses:

- STAT3600 Linear statistical analysis (6)
- STAT3602 Statistical inference (6)
- STAT3603 Stochastic processes (6)
- STAT3604 Design and analysis of experiments (6)
- STAT3605 Quality control and management (6)
- STAT3606 Business logistics (6)
- STAT3607 Statistics in clinical medicine and bio-medical research (6)
- STAT3608 Statistical genetics (6)
- STAT3611 Computer-aided data analysis (6)
- STAT3612 Data mining (6)
- STAT3613 Marketing engineering (6)
- STAT3614 Business forecasting (6)
- STAT3617 Sample survey methods (6)
- STAT3620 Modern nonparametric statistics (6)
- STAT3621 Statistical data analysis (6)
- STAT3955 Survival analysis (6)
- STAT4601 Time-series analysis (6)
- STAT4602 Multivariate data analysis (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course (“disciplinary core”) in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to “Students taking double Majors, Major-Minor or double Minors with overlapping course requirements” in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Statistics
Offered to students admitted to Year 1 in 2017

Objectives:
The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)

PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
- Major in Computing and Data Analytics
- Major in Decision Analytics
- Major in Risk Management
- Major in Statistics
- Minor in Risk Management

Required courses (42 credits)

1. Introductory level courses (12 credits)

Disciplinary Electives (12 credits)

At least 12 credits from List A and List B, with at least 6 credits from List B:

List A
- STAT1601 Elementary statistical methods (6)
- STAT1602 Business statistics (6)
- STAT1603 Introductory statistics (6)
- STAT2601 Probability and statistics I (6)

List B
- STAT2602 Probability and statistics II (6)
- STAT2603 Data management with SAS (6)
- STAT2605 Demographic and socio-economic statistics (6)

2. Advanced level courses (30 credits)

Disciplinary Electives (30 credits)

At least 30 credits selected from the following courses:

- STAT3600 Linear statistical analysis (6)
- STAT3602 Statistical inference (6)
- STAT3603 Stochastic processes (6)
- STAT3604 Design and analysis of experiments (6)
- STAT3605 Quality control and management (6)
- STAT3606 Business logistics (6)
- STAT3607 Statistics in clinical medicine and bio-medical research (6)
- STAT3608 Statistical genetics (6)
- STAT3611 Computer-aided data analysis (6)
- STAT3612 Data mining (6)
- STAT3613 Marketing engineering (6)
- STAT3614 Business forecasting (6)
- STAT3616 Advanced SAS programming (6)
- STAT3617 Sample survey methods (6)
- STAT3620 Modern nonparametric statistics (6)
- STAT3621 Statistical data analysis (6)
- STAT3955 Survival analysis (6)
- STAT4601 Time-series analysis (6)
- STAT4602 Multivariate data analysis (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Objectives:
The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)

PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

Required courses (42 credits)
1. Introductory level courses (12 credits)
2. Advanced level courses (30 credits)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Statistics
Offered to students admitted to Year 1 in 2015

Objectives:
The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

- **PLO 1:** acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)
- **PLO 2:** equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)
- **PLO 3:** participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

Required courses (42 credits)

1. **Introductory level courses (12 credits)**

 Disciplinary Electives (12 credits)
 At least 12 credits from List A and List B, with at least 6 credits from List B:
 - **List A**
 - STAT1601: Elementary statistical methods (6)
 - STAT1602: Business statistics (6)
 - STAT1603: Introductory statistics (6)
 - STAT2601: Probability and statistics I (6)
 - **List B**
 - STAT2602: Probability and statistics II (6)
 - STAT2603: Data management with SAS (6)
 - STAT2605: Demographic and socio-economic statistics (6)

2. **Advanced level courses (30 credits)**

 Disciplinary Electives (30 credits)
 At least 30 credits selected from the following courses:
 - STAT3600: Linear statistical analysis (6)
 - STAT3602: Statistical inference (6)
 - STAT3603: Stochastic processes (6)
 - STAT3604: Design and analysis of experiments (6)
 - STAT3605: Quality control and management (6)
 - STAT3606: Business logistics (6)
 - STAT3607: Statistics in clinical medicine and bio-medical research (6)
 - STAT3608: Statistical genetics (6)
 - STAT3611: Computer-aided data analysis (6)
 - STAT3612: Data mining (6)
 - STAT3613: Marketing engineering (6)
 - STAT3614: Business forecasting (6)
 - STAT3616: Advanced SAS programming (6)
 - STAT3617: Sample survey methods (6)
 - STAT3620: Modern nonparametric statistics (6)
 - STAT3621: Statistical data analysis (6)
 - STAT3955: Survival analysis (6)
 - STAT4601: Time-series analysis (6)
 - STAT4602: Multivariate data analysis (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Statistics
Offered to students admitted to Year 1 in 2014

Objectives:
The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)

PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
Major in Computing and Data Analytics
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

Required courses (42 credits)
1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)

At least 12 credits from List A and List B, with at least 6 credits from List B:

List A
STAT1601 Elementary statistical methods (6)
STAT1602 Business statistics (6)
STAT1603 Introductory statistics (6)
STAT2601 Probability and statistics I (6)

List B
STAT2602 Probability and statistics II (6)
STAT2603 Data management with SAS (6)
STAT2605 Demographic and socio-economic statistics (6)

2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)

At least 30 credits selected from the following courses:

STAT3600 Linear statistical analysis (6)
STAT3602 Statistical inference (6)
STAT3603 Stochastic processes (6)
STAT3604 Design and analysis of experiments (6)
STAT3605 Quality control and management (6)
STAT3606 Business logistics (6)
STAT3607 Statistics in clinical medicine and bio-medical research (6)
STAT3608 Statistical genetics (6)
STAT3611 Computer-aided data analysis (6)
STAT3612 Data mining (6)
STAT3613 Marketing engineering (6)
STAT3614 Business forecasting (6)
STAT3616 Advanced SAS programming (6)
STAT3617 Sample survey methods (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
STAT3955 Survival analysis (6)
STAT4601 Time-series analysis (6)
STAT4602 Multivariate data analysis (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Statistics
Offered to students admitted to Year 1 in 2013

Objectives:
The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)

PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

Required courses (42 credits)
1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)
At least 12 credits from List A and List B, with at least 6 credits from List B:

List A
STAT1601 Elementary statistical methods (6)
STAT1602 Business statistics (6)
STAT1603 Introductory statistics (6)
STAT2601 Probability and statistics I (6)

List B
STAT2602 Probability and statistics II (6)
STAT2603 Data management with SAS (6)
STAT2605 Demographic and socio-economic statistics (6)

2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)
At least 30 credits selected from the following courses:

STAT3600 Linear statistical analysis (6)
STAT3602 Statistical inference (6)
STAT3603 Stochastic processes (6)
STAT3604 Design and analysis of experiments (6)
STAT3605 Quality control and management (6)
STAT3606 Business logistics (6)
STAT3607 Statistics in clinical medicine and bio-medical research (6)
STAT3608 Statistical genetics (6)
STAT3611 Computer-aided data analysis (6)
STAT3612 Data mining (6)
STAT3613 Marketing engineering (6)
STAT3614 Business forecasting (6)
STAT3616 Advanced SAS programming (6)
STAT3617 Sample survey methods (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
STAT3955 Survival analysis (6)
STAT4601 Time-series analysis (6)
STAT4602 Multivariate data analysis (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Minor Title: Minor in Statistics
Offered to students admitted to Year 1 in 2012

Objectives:
The curriculum of the Minor in Statistics is structured specifically to cater for the general need of non-statistical disciplines and provide basic training in statistical methodologies and their applications to practical problems. It aims to provide students with a strong and rigorous sense of quantitative reasoning that has become an indispensable skill in nearly all disciplines.

Learning Outcomes:
By the end of this programme, students should be able to:

PLO 1: acquire basic statistical knowledge alongside their major disciplines, with emphases on correct applications of statistical methods and insightful interpretations of statistical findings (by means of coursework, tutorial classes and project-based learning in the curriculum)

PLO 2: equip with computational skills essential to conducting complete data analyses (by means of coursework, tutorial classes, project-based learning and presentation opportunities in the curriculum)

PLO 3: participate proactively in large-scale, multi-disciplinary studies, determine objective findings, and provide guidance on all aspects of data collection and analyses (by means of coursework, tutorial classes and project-based learning in the curriculum)

Impermissible Combinations:
Major in Decision Analytics
Major in Risk Management
Major in Statistics
Minor in Risk Management

Required courses (42 credits)
1. Introductory level courses (12 credits)
Disciplinary Electives (12 credits)

At least 12 credits from List A and List B, with at least 6 credits from List B:

List A
STAT1601 Elementary statistical methods (6)
STAT1602 Business statistics (6)
STAT1603 Introductory statistics (6)
STAT2601 Probability and statistics I (6)

List B
STAT2602 Probability and statistics II (6)
STAT2603 Data management with SAS (6)
STAT2605 Demographic and socio-economic statistics (6)

2. Advanced level courses (30 credits)
Disciplinary Electives (30 credits)

At least 30 credits selected from the following courses:

STAT3600 Linear statistical analysis (6)
STAT3602 Statistical inference (6)
STAT3603 Stochastic processes (6)
STAT3604 Design and analysis of experiments (6)
STAT3605 Quality control and management (6)
STAT3606 Business logistics (6)
STAT3607 Statistics in clinical medicine and bio-medical research (6)
STAT3608 Statistical genetics (6)
STAT3611 Computer-aided data analysis (6)
STAT3612 Data mining (6)
STAT3613 Marketing engineering (6)
STAT3614 Business forecasting (6)
STAT3616 Advanced SAS programming (6)
STAT3617 Sample survey methods (6)
STAT3620 Modern nonparametric statistics (6)
STAT3621 Statistical data analysis (6)
STAT3955 Survival analysis (6)
STAT4601 Time-series analysis (6)
STAT4602 Multivariate data analysis (6)

Notes:
1. Double counting of credits is not permissible for major-minor or double-minors combinations. For a course appears as a core course ("disciplinary core") in the major-minor or double-minors, students have to make up the credits by taking replacement course in the minor. For details, please refer to "Students taking double Majors, Major-Minor or double Minors with overlapping course requirements" in the BSc syllabuses.

Remarks:
Important! Ultimate responsibility rests with students to ensure that the required pre-requisites and co-requisite of selected courses are fulfilled. Students must take and pass all required courses in the selected primary science major in order to satisfy the degree graduation requirements.
Students taking double Majors, Major-Minor or double Minors with overlapping course requirements.
SECTION VIII Students taking double Majors, Major-Minor or double Minors with overlapping course requirements

1. Double-counting of courses up to a maximum of 24 credits is permissible with double majors. The double-counted courses in both Science majors must include SCNC1111 and SCNC1112. Additional credits to be double-counted must be for courses required (‘disciplinary core’) by both majors. For cases with 24 or less double-counted credits, the student must make up an equivalent number of credits by taking other courses offered by any Faculty.

2. The following list shows the major-major combinations that have more than 24 credits of the same ‘disciplinary core’ courses that appear in both majors and is subject to the rule of double counting:

<table>
<thead>
<tr>
<th>Major-Major combination</th>
<th>Admission Year (Year 1)</th>
<th>No. of common ‘disciplinary core’ courses (credits) appear in both majors including SCNC1111 and SCNC1112</th>
<th>No. of replacement courses (credits) to be taken in the 2nd major (‘Major 2’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major in Astronomy</td>
<td>2013, 2014</td>
<td>5 (30 credits)</td>
<td>1 (6 credits)</td>
</tr>
<tr>
<td>Major in Mathematics/Physics</td>
<td>2013, 2014</td>
<td>6 (36 credits)</td>
<td>2 (12 credits)</td>
</tr>
<tr>
<td>Major in Astronomy</td>
<td>2015, 2016, 2017</td>
<td>5 (30 credits)</td>
<td>1 (6 credits)</td>
</tr>
<tr>
<td>Major in Biochemistry</td>
<td>2015, 2016, 2017, 2018</td>
<td>5 (30 credits)</td>
<td>1 (6 credits)</td>
</tr>
<tr>
<td>Major in Biochemistry</td>
<td>2013, 2014</td>
<td>5 (30 credits)</td>
<td>1 (6 credits)</td>
</tr>
<tr>
<td>Major in Biological Sciences</td>
<td>All years</td>
<td>7 (42 credits)</td>
<td>3 (18 credits)</td>
</tr>
<tr>
<td>Major in Biological Sciences</td>
<td>2014, 2017, 2018</td>
<td>6 (36 credits)</td>
<td>2 (12 credits)</td>
</tr>
<tr>
<td>Major in Biological Sciences</td>
<td>2013</td>
<td>5 (30 credits)</td>
<td>1 (6 credits)</td>
</tr>
<tr>
<td>Major in Biological Sciences</td>
<td>2015, 2016</td>
<td>7 (42 credits)</td>
<td>3 (18 credits)</td>
</tr>
<tr>
<td>Major in Biological Sciences</td>
<td>2013, 2014</td>
<td>5 (30 credits)</td>
<td>1 (6 credits)</td>
</tr>
<tr>
<td>Major in Earth System Science</td>
<td>2013, 2014, 2015, 2016</td>
<td>6 (36 credits)</td>
<td>2 (12 credits)</td>
</tr>
<tr>
<td>Major in Ecology & Biodiversity</td>
<td>2013, 2017, 2018</td>
<td>5 (30 credits)</td>
<td>1 (6 credits)</td>
</tr>
<tr>
<td>Major in Food & Nutritional Science</td>
<td>2014, 2015, 2016</td>
<td>6 (36 credits)</td>
<td>2 (12 credits)</td>
</tr>
<tr>
<td>Major in Ecology & Biodiversity</td>
<td>All years</td>
<td>5 (30 credits)</td>
<td>1 (6 credits)</td>
</tr>
<tr>
<td>Major in Food & Nutritional Science</td>
<td>All years</td>
<td>6 (36 credits)</td>
<td>2 (12 credits)</td>
</tr>
</tbody>
</table>

If more than 24 credits (including SCNC1111 & SCNC1112) are listed as ‘disciplinary core’ courses required in both the first (‘Major 1’) and second (‘Major 2’) majors undertaken by a student, the student must make up the number of credits above the 24 permissible by taking replacement course(s) in the second major (‘Major 2’). The replacement course(s) must be the disciplinary elective course in the second major (‘Major 2’) and have the same prefix and at the same or higher level as the double-counted course(s). The double counted credits should count the following courses in this order: (1) SCNC1111 and SCNC1112, (2) introductory level (levels 1 and 2) courses, and (3) advanced level (level 3 or above) courses. For example, if a student takes a first major in Ecology & Biodiversity (‘Major 1’) and a second major in Molecular Biology & Biotechnology (‘Major 2’), SCNC1111, SCNC1112, BIOL1110, BIOL2102 and BIOL2103 are the common ‘disciplinary core’ courses that appear in both majors. The first 3 courses SCNC1111, SCNC1112, and BIOL1110 would first be counted plus either BIOL2102 or BIOL2103 for the major in Molecular Biology & Biotechnology. The student has to take a replacement ‘disciplinary elective’ course (with a prefix of BIOL at level 2 or above) in the second major in Molecular Biology & Biotechnology to make up for BIOL2102 or BIOL2103.
3. Double counting of credits is not permissible for major–minor or double-minors combinations. When a course is required (‘disciplinary core’) both by the major and minor or by both minors, the student must take a replacement course for the minor. The replacement course must be the disciplinary elective in the minor and have the same prefix and at the same or higher level as the course to be replaced.

4. For students taking the Mathematics related majors/minors should note the following exemption and replacement arrangement:

Students who fall into the following exemption situation for the introductory level Disciplinary Core Mathematics courses in Science Majors/Minors are required to take the specified replacement course(s) as prescribed in the table below:

<table>
<thead>
<tr>
<th>Exempted Course</th>
<th>Exemption granted under the following circumstances</th>
<th>Specified Replacement Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1013</td>
<td>For students taking Minor with an overlap of Disciplinary Core Course: MATH1013</td>
<td>Select 6 credits from the following to replace MATH1013: MATH2012 Fundamental concepts of mathematics (6) MATH2241 Introduction to mathematical analysis (6) Any 6-credit advanced level Mathematics Disciplinary Elective chosen from the Programme/Major/Minor structure in which MATH1013 is the disciplinary core course</td>
</tr>
<tr>
<td>MATH1013</td>
<td>For students taking Programme / Major / Minor with Disciplinary Core Courses: MATH1851 and MATH1853 (which are together deemed equivalent to MATH1013)</td>
<td></td>
</tr>
<tr>
<td>MATH1013</td>
<td>For students taking Professional Core in Bachelor of Science in Actuarial Science with Disciplinary Core Course: MATH1821 (which is equivalent to MATH1013)</td>
<td></td>
</tr>
<tr>
<td>MATH2014</td>
<td>For students taking Professional Core in Bachelor of Science in Actuarial Science with Disciplinary Core Course: MATH2822 (which is equivalent to MATH2014)</td>
<td>Select 6 credits from the following to replace MATH2014: MATH2012 Fundamental concepts of mathematics (6) MATH2241 Introduction to mathematical analysis (6) Any 6-credit advanced level Mathematics Disciplinary Elective chosen from the Major/Minor structure in which MATH2014 is the disciplinary core course</td>
</tr>
<tr>
<td>MATH2101</td>
<td>For students taking Minor with an overlap of Disciplinary Core Course: MATH2101</td>
<td>Select 6 credits from the following to replace MATH2101: MATH2012 Fundamental concepts of mathematics (6) MATH2241 Introduction to mathematical analysis (6) Any 6-credit advanced level Mathematics Disciplinary Elective chosen from the Minor structure in which MATH2101 is the disciplinary core course</td>
</tr>
<tr>
<td>MATH2211</td>
<td>For students taking Minor with an overlap of Disciplinary Core Course: MATH2211</td>
<td>Select 6 credits from the following to replace MATH2211: MATH2012 Fundamental concepts of mathematics (6) MATH2241 Introduction to mathematical analysis (6) Any 6-credit advanced level Mathematics Disciplinary Elective chosen from the Minor structure in which MATH2211 is the disciplinary core course</td>
</tr>
<tr>
<td>18 credits of Introductory level courses requirement of the Minor: MATH1013 MATH2101 MATH2211</td>
<td>For students taking Professional Core in Bachelor of Science in Actuarial Science with Disciplinary Core courses: MATH1821 and MATH2822 (which are together deemed to have satisfied MATH1013, MATH2101 & MATH2211)</td>
<td>Select 18 credits from the following to replace the credit requirement of MATH1013, MATH2101 & MATH2211: MATH2012 Fundamental concepts of mathematics (6) (if not the disciplinary core course in the structure); and/or MATH2241 Introduction to mathematical analysis (6) (if not the disciplinary core course in the structure); and/or Equivalent credits of advanced level Mathematics Disciplinary Elective(s) chosen from the Major/Minor structure in which MATH1013, MATH2101 & MATH2211 are the disciplinary core courses</td>
</tr>
</tbody>
</table>

5. For the situations of 2, 3 and 4 above, students have to complete the application form, seek the written endorsement from the Course Selection Adviser of the second major (‘Major 2’) / minor and then return it to the Faculty Office by the closing dates of course selection or add/drop periods.
Course Descriptions

SECTION IX

SCIENCE
BIOC1600 Perspectives in biochemistry (6 credits) Academic Year 2018

Offering Department
Biomedical Sciences

Course Co-ordinator
Dr. J Tanner, Biomedical Sciences
(jatanner@hku.hk)

Teachers Involved
- Dr. B C W. Wong, Biomedical Sciences
- Dr. C Ho, Biomedical Sciences
- Dr. J Tanner, Biomedical Sciences
- Dr. L Y L Cheng, Biomedical Sciences
- Dr. M S Y Huen, Biomedical Sciences
- Dr. R C C Chang, Biomedical Sciences

Course Objectives
- Teach students a biochemical perspective on each of the Basic Sciences focusing on concepts fundamental to the learning of Biochemistry.
- Promote deep learning of course material through an integrated programme of practical and collaborative tasks.
- Inspire students with a view of the great discoveries and future challenges for Biochemistry.
- Help students make the transition from school to university by developing their teamwork, independent study skills and confidence to communicate within a Biochemistry learning environment.

Course Contents & Topics
A. Biochemical Perspective on the Basic Sciences

A. Chemistry for Biochemistry
- The elements and bonding (from carbon to Coenzyme A);
- Resonance and orbital theory (a focus on the electron);
- Structure and conformation (thinking in 3 dimensions);
- Isomerism (from mirrors to thalidomide);
- Water (the universal biochemical solvent) & buffer;
- Quantitation in chemistry (who was Avogadro anyway?).

B. Biology for Biochemistry
- The basic building blocks of life (proteins, DNA, lipids, carbohydrate);
- The Central Dogma of Molecular Biology;
- Evolution (considering molecular evolution);
- Origins of life (the chicken-egg paradox of proteins and DNA).

C. Physics and Mathematics for Biochemistry
- Thermodynamics from a Biological Perspective;
- Introduction to molecular recognition and binding (DNA melting);
- Statistics for biochemistry (applied statistics for what you really need to know);
- Thinking numbers (exponentials, logs and the limits of life).

D. Inspiring Biochemistry
- The protein; The gene; Vitamins and disease;
- Synthetic biology;
- The challenges of modern-day genetics;
- Drugs;
- D. Inspiring Biochemistry

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 describe the basics of biomolecular structure from a chemical perspective, thereby integrating the basic sciences of biology, chemistry and physics into a biochemical perspective.
- CLO 2 apply knowledge of biomolecular structure to review major discoveries and contemporary issues in molecular biology.
- CLO 3 interpret scientific data and discuss major issues in biochemistry using the scientific literature.
- CLO 4 demonstrate skills in working and collaborating together with colleagues in practicals and in presentation of scientific ideas.
- CLO 5 relate how biochemistry intersects with the three basic sciences of biology, chemistry and physics, and recognize the transition from school to university level study.

Pre-requisites (and Co-requisites and Impermissible combinations)
Level 3 or above in HKDSE Biology, Chemistry, or Combined Science with Biology or Chemistry component, or equivalent.

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

- **A**: Exceptionally good performance demonstrating comprehensive understanding of the subject matter; critical insight into use of scientific data and the scientific literature; superior presentation and group collaboration skills.
- **B**: Good performance demonstrating full understanding of the subject matter; coherent insight into use of scientific data and the scientific literature; good presentation and group collaboration skills.
- **C**: Satisfactory performance demonstrating adequate understanding of the subject matter; some insight into use of scientific data and the scientific literature; some presentation and group collaboration skills.
- **D**: Limited performance demonstrating some understanding of basic subject matter; some ability to use scientific data and the scientific literature; limited presentation and group collaboration skills.
- **Fail**: Poor understanding of subject matter; with little to no insight into use of scientific data; no understanding of the scientific literature and unable to present or collaborate.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Tanner</td>
<td></td>
<td>CLO 1,2,3,4,5</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Assignments</td>
<td>including practical writeups</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Project reports</td>
<td>group communication project</td>
<td>30</td>
<td>CLO 2,3,4,5</td>
</tr>
</tbody>
</table>

Additional Course Information
- TBC

BIOC2600 Basic biochemistry (6 credits) Academic Year 2018

Offering Department
Biomedical Sciences

Course Co-ordinator
Prof D K Y Shum, Biomedical Sciences
(shumdkhk@hku.hk)

Teachers Involved
- Dr. A S L Wong, Biomedical Sciences

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>or workshops</td>
<td>36</td>
</tr>
<tr>
<td>Group work</td>
<td>Practical classess</td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Assessment</td>
<td>Tasks and preparation</td>
<td>30</td>
</tr>
</tbody>
</table>

480
This course is designed to present an overview of biochemistry of fundamental importance to the life process. We aim to develop appreciation of the basics in biochemistry as a common ground for science and non-science students to progress into their areas of specialization. Students intending to pursue further studies in Biochemistry and Molecular Biology will find this course particularly helpful.

Course Objectives
On successful completion of this course, students should be able to:

1. Explain the significance of individual steps in a metabolic pathway.
2. Identify the functions of key metabolic processes.
3. Explain the significance of signaling across cell membranes.
4. Explain the flow of genetic information.

Pre-requisites
Pass in BIOC1600 or BIOL1110 or ENGO1207, and not for students who have passed in BIOC2600 or MEDE2301, or have already enrolled in these courses.

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y Examination Dec

Grade Descriptors
A Demonstrates thorough and extensive knowledge and skills required for attaining all the course learning outcomes. Displays a strong analytical ability and logical thinking and is able to apply knowledge to a wide range of complex situations. Consistently able to communicate sophisticated ideas confidently and clearly.

B Demonstrates substantial knowledge and skills required for attaining most of the course learning outcomes. Shows evidence of analytical ability and logical thinking and is sometimes able to apply knowledge to complex situations. Often communicates complex ideas clearly.

C Demonstrates general but incomplete knowledge and skills as required for attainment of some of the course learning outcomes; limited evidence of critical thinking towards application of the knowledge in a range of contexts.

D Demonstrates partial but limited knowledge and skills as required for attainment of some of the course learning outcomes; some evidence of critical thinking towards application of the knowledge in a range of contexts.

Fail Demonstrates little or no evidence of command of knowledge and analytical skills as required for attainment of the course learning outcomes; lacking in critical thinking towards application of the knowledge in a range of contexts.

Course Type
Lecture-based course

Course Teaching & Learning Activities
<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>20 CLO 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>60 CLO 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>20 CLO 1,2,3,4</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Additional Course Information
- Also offered as MEDE2301 "Life Sciences I (Biochemistry)" to students of the Faculty of Engineering. Students who have passed MEDE2301 is considered to have passed BIOC2600.

BIOC3601
Basic metabolism (6 credits)

Offering Department
Biomedical Sciences

Course Co-ordinator
Dr N S Wong, Biomedical Sciences (nswong@hku.hk)

Teachers Involved
- Dr L Y L Cheng, Biomedical Sciences
- Dr N S Wong, Biomedical Sciences
- Dr. L W Lim, Biomedical Sciences
- Dr. S Sanyal, Biomedical Sciences

Course Objectives
This course aims to provide foundation concepts of metabolism. It will enable students of this course to see how some of the basic concepts in biochemistry (specifically those learned in BIOC1600 and BIOC2600) could be applied to explain one of the most important and cardinal issues of biological life: the acquisition of metabolic energy. The course will lay the foundation for the more advanced courses offered in the Biochemistry Major and will also serve as a useful complement to courses on nutrition and dietetics.

Course Contents & Topics
This course focuses on the central metabolic pathways involved in the provision of energy needed by living organisms. Major metabolic pathways covered in this course include those that are involved in the synthesis and breakdown of glucose, glycogen, triacylglycerol, and amino acids. The metabolism of purines and pyrimidines will also be considered. Emphasis is on the understanding of the metabolic reactions involved and how they are regulated in relation to environmental cues. Metabolic derangements as a basis of diseases will also be discussed.

Course Learning Outcomes
On successful completion of this course, students should be able to:

1. Explain the significance of individual steps in a metabolic pathway.
2. Recognize the importance and the need for regulation of metabolic pathways.
3. Discuss the roles of enzymes in the regulation of metabolic pathways.
4. Describe how metabolic processes are integrated under different physiological and pathological conditions.

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOC2600 or BIOL2220 or MEDE2301

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y Examination Dec

Grade Descriptors
A Demonstrates thorough and extensive knowledge and skills required for attaining all the course learning outcomes. Displays a strong analytical ability and logical thinking and is able to apply knowledge to a wide range of complex situations. Consistently able to communicate sophisticated ideas confidently and clearly.

B Demonstrates substantial knowledge and skills required for attaining most of the course learning outcomes. Shows evidence of analytical ability and logical thinking and is sometimes able to apply knowledge to complex situations. Often communicates complex ideas clearly.

C Demonstrates general but incomplete knowledge and skills required for attaining most of the course learning outcomes. Shows evidence of some analytical ability and logical thinking and is sometimes able to apply knowledge to familiar or uncomplicated
Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>glycolysis; gluconeogenesis; pentose phosphate pathway; glycogen metabolism; lipid metabolism; purine and pyrimidine metabolism; regulation and integration of metabolic pathways</td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td>working on problems relating to the lecture topics</td>
<td>12</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>3 hrs examination</td>
<td>30</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td>70</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

BIOC3604

Essential techniques in biochemistry and molecular biology (6 credits)

Offering Department Biomedical Sciences

Course Co-ordinator Dr K M Yao, Biomedical Sciences (kmyao@hku.hk)

Course Contents & Topics

Basic concepts in experimental science; writing of lab notebooks; experimental approaches - genetic, biochemical, molecular, genomic and others; methods for isolation and analysis of carbohydrates, proteins, lipids and nucleic acids; subcellular fractionation; enzyme assays and spectrophotometry; basic nucleic acid manipulation - PCR, site-directed mutagenesis, blotting and hybridization, cloning strategies, restriction mapping.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** explain the basic principles of various biochemical and molecular techniques
- **CLO 2** describe different experimental approaches for achieving defined experimental aims
- **CLO 3** apply different techniques to biochemical and molecular analyses
- **CLO 4** appreciate the importance of maintaining a scientific laboratory notebook satisfactorily

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOC2600 or BIOL2220 or MEDE2301

Grade Descriptors

A Demonstrates thorough and extensive knowledge and skills required for attaining all the course learning outcomes. Shows strong analytical ability and logical thinking, with evidence of original thought. Competently conducts laboratory skills and techniques with confidence and can critically appraise data to draw appropriate and insightful conclusions.

B Demonstrates substantial knowledge and skills required for attaining most of the course learning outcomes. Shows evidence of critical thinking and analytical skills. Conducts laboratory skills and techniques with confidence and can appraise data to draw appropriate conclusions.

C Demonstrates general but incomplete knowledge and skills required for attaining most of the course learning outcomes. Shows some evidence of critical thinking and analytical skills. Conducts laboratory skills and techniques to a satisfactory level of competence and can sometimes correctly appraise data and draw appropriate conclusions.

D Demonstrates partial but limited knowledge and skills required for attaining some of the course learning outcomes. Shows limited critical thinking and analytical skills. Displays poor laboratory skills and techniques and is rarely able to use data to draw appropriate conclusions.

Fail Demonstrates little or no evidence of knowledge and skills required for attaining the course learning outcomes. Lacks analytical ability and logical thinking. Displays ineffective lab skills and techniques and is unable to use data to draw appropriate conclusions.

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>76</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>50</td>
<td>CLO 1.2.3,4</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>50</td>
<td>CLO 1.2.3</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

BIOC3605

Sequence bioinformatics (6 credits)

Academic Year 2018
On successful completion of this course, students should be able to:

CLO 1 search and retrieve sequence information from biological databases
CLO 2 describe the algorithms for pairwise and multiple alignments, BLAST search, and phylogenetic trees construction
CLO 3 perform sequence analysis using EMBOSS package and other web-based analysis tools
CLO 4 interpret results from sequence alignments and BLAST database searches
CLO 5 use results from various sequence analysis tools to annotate a biological sequence

On successful completion of this course, students should be able to:

CLO 1 explain the molecular mechanisms underlying selected human diseases including cancer
CLO 2 illustrate the application of molecular biology in medicine with examples
CLO 3 integrate and translate knowledge in molecular biology to new approaches in disease prevention and intervention

This course will examine existing bioinformatics tools for DNA and protein sequence analysis. The underlying principles of these analysis programs and services will be presented. Students will learn how to retrieve, analyze, and compare protein and DNA sequences using bioinformatics tools available on the World Wide Web.

DNA and protein sequence database, protein family databases; information searching and retrieval - Entrez and SRS; Simple sequence analysis; sequence alignment; pair-wise alignment, multiple sequence alignment, substitution matrices; sequence database searching: algorithm and parameters; sequence patterns and motifs, and profiles; phylogenetic analysis; gene prediction.

Pre-requisites
Pass in BIOC2600 or BIOL2220 or BBMS2003 or BBMS2007 or MEDE2301

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>30</td>
<td>CLO 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 2, 4</td>
</tr>
</tbody>
</table>

Course Objectives
This course will introduce and discuss the following topics:

- DNA and protein sequence databases
- Protein family databases
- Information searching and retrieval
- Simple sequence analysis
- Pair-wise and multiple sequence alignments
- Substitution matrices
- Sequence database searching
- Algorithm and parameters
- Sequence patterns and motifs
- Phylogenetic analysis
- Gene prediction

Course Teaching & Learning Activities
- Lectures: 36
- Tutorials: 12
- Reading / Self study: 100

Course Contents & Topics
This course will cover:

- Cell signaling in relation to human diseases
- Molecular basis of cancer and viral diseases
- Approaches to vaccine development
- Immune checkpoint therapy
- Stem cells and stem cell therapy
- Gene therapy
- Nucleic acid therapeutics

Assessment Methods
- Assignments: 30%
- Examination: 70%

Required/recommended reading and online materials

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrates thorough and complete mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes; strong critical thinking; excellent ability to apply bioinformatics skills in a range of context.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrates substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes; evidence of critical thinking; good ability to apply bioinformatics skills in a range of context.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrates general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes; some critical thinking; adequate ability to apply bioinformatics skills in a range of context.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrates partial but limited command of knowledge and skills required for attaining some of the course learning outcomes; limited critical thinking; limited ability to apply bioinformatics skills in a range of context.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrates little or no evidence of command of knowledge and skills required for attaining the course learning outcomes; lack of critical thinking; little or no ability to apply bioinformatics skills in a range of context.</td>
</tr>
</tbody>
</table>

CLO 1 search and retrieve sequence information from biological databases
CLO 2 describe the algorithms for pairwise and multiple alignments, BLAST search, and phylogenetic trees construction
CLO 3 perform sequence analysis using EMBOSS package and other web-based analysis tools
CLO 4 interpret results from sequence alignments and BLAST database searches
CLO 5 use results from various sequence analysis tools to annotate a biological sequence

Pre-requisites
Pass in BIOC2600 or BIOL2220 or BBMS2003 or BBMS2007 or MEDE2301

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>30</td>
<td>CLO 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 2, 4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrates thorough and complete mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes; strong critical thinking; excellent ability to apply bioinformatics skills in a range of context.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrates substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes; evidence of critical thinking; good ability to apply bioinformatics skills in a range of context.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrates general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes; some critical thinking; adequate ability to apply bioinformatics skills in a range of context.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrates partial but limited command of knowledge and skills required for attaining some of the course learning outcomes; limited critical thinking; limited ability to apply bioinformatics skills in a range of context.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrates little or no evidence of command of knowledge and skills required for attaining the course learning outcomes; lack of critical thinking; little or no ability to apply bioinformatics skills in a range of context.</td>
</tr>
<tr>
<td>Course Type</td>
<td>Lecture-based course</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
<td></td>
</tr>
<tr>
<td>Activities Details</td>
<td>No. of Hours</td>
</tr>
<tr>
<td>Lectures</td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td></td>
</tr>
<tr>
<td>Methods Details</td>
<td>Weighting in final course grade (%)</td>
</tr>
<tr>
<td>Examination</td>
<td>80</td>
</tr>
<tr>
<td>Text</td>
<td>20</td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td></td>
</tr>
<tr>
<td>Cassimeris et al: Lewin’s Cells, 2nd ed., 2011</td>
<td></td>
</tr>
</tbody>
</table>

Course Type: Directed studies in biochemistry (6 credits)
Offering Department: Biomedical Sciences
Quota: 36

Course Co-ordinator: Prof J D Huang, Biomedical Sciences (jdhuang@hku.hk)
Teachers Involved: (All academic staff in Biochemistry Major, Biomedical Sciences)

Course Objectives: To enhance students knowledge of a particular topic and the students self-directed learning and critical thinking skills.

Course Contents & Topics: The student undertakes a self-managed study on a topic in biochemistry under the supervision of a staff member. The topic is preferably one not sufficiently covered in the regular curriculum. The directed study can be a critical review or a synthesis of published work on the subject. A laboratory or field study may also be involved that would enhance the student's understanding of the subject.

Course Learning Outcomes: On successful completion of this course, students should be able to:
- CLO 1: critically appraise research literature in a specific area of biochemistry and molecular biology
- CLO 2: examine the theoretical or experimental basis for existing concepts
- CLO 3: identify questions and evaluate issues for further research development

Pre-requisites (and Co-requisites and Impermissible combinations): Passes in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Biochemistry Major including BIOC6000 and BIOL3401.

This capstone course is for Biochemistry Major students only.

The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019: Y
Examination: No Exam

<table>
<thead>
<tr>
<th>Grade Descriptors (A to F)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>produces a superficial appraisal of the biochemical literature, displaying a comprehensive and deep understanding of the selected topic. Able to contextualize a few of the ideas within a personal framework of knowledge but unable to identify any relevant issues emerging from the study. Works reluctantly with a supervisor and other co-workers to develop understanding and scientific writing skills. Displays weak communication skills when presenting the findings to a broader audience. Poor time-management and self-reflection skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>produces a superficial appraisal of the biochemical literature, displaying a comprehensive and deep understanding of the selected topic. Able to contextualize a few of the ideas within a personal framework of knowledge and identify some relevant issues emerging from the study. Works proactively with a supervisor to enhance understanding and scientific writing skills. Communicates the findings to a broader audience in an effective way and responds knowledgeably to questions. Excellent time-management skills and able to reflect honestly on one’s own learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>produces a superficial appraisal of the biochemical literature, displaying a comprehensive and deep understanding of the selected topic. Able to contextualize a few of the ideas within a personal framework of knowledge and identify some relevant issues emerging from the study. Works proactively with a supervisor to enhance understanding and scientific writing skills. Communicates the findings to a broader audience in an effective way and responds knowledgeably to questions. Excellent time-management skills and able to reflect honestly on one’s own learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>produces a superficial appraisal of the biochemical literature, displaying a comprehensive and deep understanding of the selected topic. Able to contextualize a few of the ideas within a personal framework of knowledge and identify some relevant issues emerging from the study. Works proactively with a supervisor to enhance understanding and scientific writing skills. Communicates the findings to a broader audience in an effective way and responds knowledgeably to questions. Excellent time-management skills and able to reflect honestly on one’s own learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>produces a superficial appraisal of the biochemical literature, displaying a comprehensive and deep understanding of the selected topic. Able to contextualize a few of the ideas within a personal framework of knowledge and identify some relevant issues emerging from the study. Works proactively with a supervisor to enhance understanding and scientific writing skills. Communicates the findings to a broader audience in an effective way and responds knowledgeably to questions. Excellent time-management skills and able to reflect honestly on one’s own learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type: Project-based course

<table>
<thead>
<tr>
<th>Course Teaching & Learning Activities</th>
<th>Activities Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities Details</td>
<td>No. of Hours</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>at least 120 hours on the project</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods Details</td>
<td>Weighting in final course grade (%)</td>
<td>Assessment Methods to CLO Mapping</td>
<td></td>
</tr>
<tr>
<td>Dissertation</td>
<td>including mind map (10%)</td>
<td>60</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Oral presentation</td>
<td></td>
<td>25</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Research report</td>
<td>Supervisor comments</td>
<td>15</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials: as suggested by project supervisors

BIOC4610: Advanced biochemistry (6 credits)
Academic Year: 2018
BIOC4611 Advanced biochemistry II (6 credits)

Offering Department: Biomedical Sciences
Course Co-ordinator: Prof D Chan, Biomedical Sciences (chand@hku.hk)

Teachers Involved:
- Dr C M Qian, Biomedical Sciences
- Dr J Tanner, Biomedical Sciences
- Dr M Kotaka, Physiology
- Dr N S Wong, Biomedical Sciences
- Prof D Chan, Biomedical Sciences

Course Objectives:
This course aims at providing students with an up-to-date knowledge of protein biochemistry from sequence to structure and disease; realizing the importance of kinetics in cellular function and an appreciation of the technological advances in the characterization of macromolecules.

Course Contents & Topics:
Topics including protein folding and misfolding in diseases; conformation of proteins and the role of conformational changes in protein function; catalytic mechanisms of enzymes and enzyme kinetics; biomolecular interactions; characterization of macromolecules using X-ray crystallography, nuclear magnetic resonance and other spectroscopy methods; protein engineering and therapeutic approaches targeting protein function.

Course Learning Outcomes:
On successful completion of this course, students should be able to:
- CLO 1 describe how protein structures inform functions
- CLO 2 recognize the roles of enzyme kinetics in cellular functions
- CLO 3 develop critical thinking and analytical skills

Pre-requisites (and Co-requisites and Impermissible combinations):
Pass in BIOC3601 or BIOL3401 or BIOL3402 or BIOL3404

Offer in 2018 - 2019:
Y 1st sem Offer in 2019 - 2020 : Y
Grade Descriptors (A+ to F):
- A: Demonstrate thorough and complete mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong critical thinking and analytical skills, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations.
- B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of critical thinking and analytical skills, and ability to apply knowledge to familiar and some unfamiliar situations.
- C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some critical thinking and analytical skills, and ability to apply knowledge to most familiar situations.
- D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some critical thinking, but with limited analytical skills. Show limited ability to apply knowledge to solve problems.
- Fail: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of critical thinking and analytical skills. Show very little or no ability to apply knowledge to solve problems.

Assessment Methods and Weighting:
- Assignments: 30
- Examination: 70
 Weighting in final course grade (%)
<table>
<thead>
<tr>
<th>Method</th>
<th>Details</th>
<th>No. of Hours</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>30</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials:
CLO 3 derive structural information of macromolecules from experimental data
CLO 4 apply their knowledge on protein engineering and therapeutics, and on experimental designs in basic and applied research

Pass in BIOC3601; and BiOL3404 or CHEM2441; and Pass in BIOC4610, or already enrolled in this course

Pre-requisites (and Co-requisites and Impermissible combinations)
Offer in 2018 - 2019
Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Clear and insightful description of how protein structure informs function; clear evidence of ability to recognize mechanisms of enzyme function and interpretation of data; effectual demonstration of applying knowledge to the design of scientific methodologies; and cohesive, systematic and creative organization of information for presentation and communication.</td>
</tr>
<tr>
<td>B</td>
<td>Clear description of how protein structure informs function; evidence of ability to recognize mechanisms of enzyme function and interpretation of data; capable demonstration of applying knowledge to the design of scientific methodologies; and cohesive and systematic organization of information for presentation and communication.</td>
</tr>
<tr>
<td>C</td>
<td>Awareness of how protein structure informs function; some evidence of ability to recognize mechanisms of enzyme function and interpretation of data; some capable demonstration of applying knowledge to the design of scientific methodologies and systematic organization of information for presentation and communication.</td>
</tr>
<tr>
<td>D</td>
<td>Superficial awareness of how protein structure informs function; limited evidence of ability to recognize mechanisms of enzyme function and interpretation of data; superficial demonstration of applying knowledge to the design of scientific methodologies and limited organizational skill of information for presentation and communication.</td>
</tr>
<tr>
<td>Fail</td>
<td>Lack of awareness of how protein structure informs function; lack of ability to recognize mechanisms of enzyme function and interpretation of data; superficial demonstration of applying knowledge to the design of scientific methodologies; insufficient organizational skill of information for presentation and communication.</td>
</tr>
</tbody>
</table>

Offer in 2019 - 2020

<table>
<thead>
<tr>
<th>Grade</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrates a deep and comprehensive understanding of the regulation of eukaryotic gene expression and its relevance to disease and effectively relates the knowledge to developmental processes. Uses skill and insight to analyse and interpret experimental data from gene regulation studies.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrates a competent grasp of the key concepts in the regulation of eukaryotic gene expression and its relevance to disease and is able to link the knowledge to developmental processes. Correctly analyses and interprets experimental data from gene regulation studies.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrates a basic understanding of the regulation of eukaryotic gene expression and its relevance to disease and is sometimes able to relate the knowledge to developmental processes. Displays a limited capacity to analyse and interpret experimental data from gene regulation studies.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrates a simplistic knowledge of the regulation of eukaryotic gene expression and rarely relates the information to developmental processes. Displays weak analytical skills and is rarely able to interpret experimental data from gene regulation studies.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrates incomplete or incorrect knowledge of the regulation of gene expression and is unable to relate the ideas to developmental processes. Unable to analyse or interpret experimental data from gene regulation studies.</td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>30</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>70</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

To be given.

BIOC4612

Molecular biology of the gene (6 credits)

Offering Department Biomedical Sciences

Course Co-ordinator Prof K S E Cheah, Biomedical Sciences (hrmbdck@hku.hk)

Teachers Involved (Dr K M Yao, Biomedical Sciences)
(Dr K R Ng, Biomedical Sciences)
(Prof K S E Cheah, Biomedical Sciences)
(Prof. ZJ Zhou, Biomedical Sciences)

Course Objectives

To provide an up-to-date knowledge of molecular biology, especially with respect to the regulation of eukaryotic gene expression.

Course Contents & Topics

This is a comprehensive course covering many detailed molecular aspects of gene regulation and gene function. Through this course an understanding of how gene expression can be regulated at levels of transcription and post transcription will be gained.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 describe the mechanisms for regulation of transcription, RNA processing and translation in eukaryotes
- CLO 2 explain how cellular homeostasis can be maintained by a combination of controls of gene expression at multiple levels
- CLO 3 illustrate the hierarchy of gene expression regulation in stem cells and developmental processes
- CLO 4 interpret experimental results in gene regulation studies

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOC3601 or BiOL3401 or BiOL3402 or BiOL3404 or BBMS2007

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>2nd sem Offer in 2019 - 2020 : Y</td>
</tr>
</tbody>
</table>

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrates a basic understanding of the regulation of eukaryotic gene expression and its relevance to disease and effectively relates the knowledge to developmental processes. Uses skill and insight to analyse and interpret experimental data from gene regulation studies.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrates a competent grasp of the key concepts in the regulation of eukaryotic gene expression and its relevance to disease and is able to link the knowledge to developmental processes. Correctly analyses and interprets experimental data from gene regulation studies.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrates a basic understanding of the regulation of eukaryotic gene expression and its relevance to disease and is sometimes able to relate the knowledge to developmental processes. Displays a limited capacity to analyse and interpret experimental data from gene regulation studies.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrates a simplistic knowledge of the regulation of eukaryotic gene expression and rarely relates the information to developmental processes. Displays weak analytical skills and is rarely able to interpret experimental data from gene regulation studies.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrates incomplete or incorrect knowledge of the regulation of gene expression and is unable to relate the ideas to developmental processes. Unable to analyse or interpret experimental data from gene regulation studies.</td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>20</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>80</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
</tbody>
</table>

486
Course Objectives:
This is an advanced experimental-based course for students majoring in Biochemistry and related disciplines. The aim is to provide the necessary training for students to pursue postgraduate research education and potential employment in a scientific laboratory/industry environment.

Course Contents & Topics:
Hands-on experiments using advanced techniques in biochemistry, molecular and cell biology, and bioinformatics. Students will also have the opportunity to familiarize themselves with modern instruments used in life sciences.

Course Learning Outcomes:
On successful completion of this course, students should be able to:

- CLO 1 explain the basic principles of current advanced techniques commonly used in biochemistry and molecular biology.
- CLO 2 apply and perform these techniques in other novel experimental settings.
- CLO 3 critically evaluate experimental data.
- CLO 4 design alternative approaches to test or validate hypotheses.
- CLO 5 write a concise experimental report using correct terminologies and nomenclatures.

Pre-requisites and Impermissible combinations:
Pass in BIOC3604

Offer in 2018 - 2019:
Y 1st sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F):
- A: Comprehensive and in-depth understanding of the principles and applications of advance technologies in biochemistry, clear and effective ability to identify problems and generate solutions relating to applications in a laboratory setting; clear evidence of ability to evaluate experimental data; cohesive and systematic planning and organization of experimental design and presentation of experimental data.
- B: Comprehensive understanding of the principles and applications of advance technologies in biochemistry; clear ability to identify problems and generate solutions relating to applications in a laboratory setting; evidence of ability to evaluate experimental data; systematic planning and organization of experimental design and presentation of experimental data.
- C: Sound understanding of the principles and applications of advance technologies in biochemistry; sound ability to identify problems and generate solutions relating to applications in a laboratory setting; some awareness of ability to evaluate experimental data; satisfactory planning and organization of experimental design and presentation of experimental data.
- D: Superficial understanding of the principles and applications of advance technologies in biochemistry; limited ability to identify problems and generate solutions relating to applications in a laboratory setting; some awareness of ability to evaluate experimental data; some evidence of planning and organization of experimental design and presentation of experimental data.
- Fail: Lack of understanding of the principles and applications of advance technologies in biochemistry; lack of ability to identify problems and generate solutions relating to applications in a laboratory setting; lack of evidence of ability to evaluate experimental data; insufficient evidence of planning and organization of experimental design and presentation of experimental data.

Assessment Methods and Weighting:
Assignments 50 CLO 1,2,3,4
Examination One 3-hour written examination 50 CLO 1,2,3,4,5

Required/recommended reading and online materials:
BIOC4999

Biochemistry project (12 credits)

Offering Department: Biomedical Sciences
Academic Year: 2018

Course Co-ordinator: Dr N S Wong, Biomedical Sciences (nswong@hku.hk)
Teachers Involved: (All academic staff in Biochemistry Major,Biomedical Sciences)
Quota: 25

Course Objectives:
To enable students to acquire the basic skills in scientific research emphasizing on critical and analytical reasoning, free and creative thinking, scholarly communication (both orally and in writing), research integrity, teamwork and time management. The course is particularly useful for those students who intend to pursue a career in life science either in research or industry.

Course Contents & Topics:
- Project-related topics in biochemistry, cell, molecular and developmental biology.
- Experimental methods in protein and nucleic acid biochemistry; bioinformatics and cell biology.
- Critical appraisal of current science literature
- Formulation of research questions
- Design of experiments.
- Data analysis and interpretation.
- Scientific writing

Course Learning Outcomes:
On successful completion of this course, students should be able to:

- **CLO 1**: describe recent research development in a defined area of biochemistry and molecular biology
- **CLO 2**: formulate research questions and design experiments to address these questions
- **CLO 3**: apply appropriate experimental techniques to solve research problems
- **CLO 4**: manage and interpret experimental results
- **CLO 5**: develop scientific writing skills and logically report their research findings

Pre-requisites (and Co-requisites and Impermissible combinations):
Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Biochemistry Major including BIOC3604.
This capstone course is for Biochemistry Major students only.

Offer in 2018 - 2019:
Year long
Examination: No Exam

Course Type

Project-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship work</td>
<td>it is expected that students are to work at least 160 hours (or the equivalent of 4 weeks full-time)</td>
<td>160</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation</td>
<td>30</td>
<td>CLO 1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>Supervisor's feedback</td>
<td>30</td>
<td>CLO 3</td>
<td></td>
</tr>
<tr>
<td>Written report</td>
<td>40</td>
<td>CLO 1, 2, 3</td>
<td></td>
</tr>
</tbody>
</table>

Additional Course Information:
Satisfactory completion of this course can be counted towards the Capstone requirement. Details of internship will be recorded on the student's transcript. This course will be assessed on "Pass/Fail" basis. Students who are interested to enrol in this course should contact the Department to obtain the approval. Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.
<table>
<thead>
<tr>
<th>and Weighting</th>
<th>course grade (%)</th>
<th>Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation</td>
<td>60</td>
<td>CLO 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Oral presentation including continuous assessment (15%)</td>
<td>40</td>
<td>CLO 5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

None prescribed
BIOL1110

From molecules to cells (6 credits)

Offering Department: Biological Sciences

Academic Year: 2018

Quota: 420

Course Co-ordinator: Prof B K C Chow, Biological Sciences (bkcc@hku.hk)

Teachers Involved: (Dr C S C Lo, Biological Sciences), (Dr J W Zhang, Biological Sciences), (Dr K W Y Yuen, Biological Sciences)

Course Objectives:
This course aims to provide basic conceptual understanding of the biology of molecules and cells to underpin later studies in applied biology, genetics, biochemistry, nutrition, biotechnology, microbiology, plant and animal physiology and developmental biology.

Course Contents & Topics:
An issue-based approach will be adopted to enable students to integrate basic concepts in molecules and cells and to inspire further investigation through the exploration of contemporary biological issues. The course is divided into 4 parts and the following is a list of some of the questions to be asked and discussed:

- Genes and inheritance: How do children resemble their parents? What is the central dogma of biology? What are the rules of genetic inheritance? What determines gender and sexuality? Why is that children resemble, but not identical to, their parents? What happen if some genes are non-functional or mutated?
- Metabolism and Health: How are diets related to good health? Do all humans have the same dietary requirements?
- Why can't we live without plants?
- Cells and cell division: What are the common features in a cell? How do cells communicate and assemble themselves to form tissues and organs? What is a cell cycle and how it is regulated? What happens if cell-cycle control system goes wrong? How newly formed cells commit themselves for differentiation?
- Genetic engineering and modern biology: To what extent can genes be modified? Is gene therapy the future of medicines? Is genetically modified food safe for consumption? What are the Genome Projects and why have they been important?

Pre-requisites (and Co-requisites and Impermissible combinations):
NIL

Offer in 2018 - 2019:

Y 1st sem 2nd sem Offer in 2019 - 2020 : Y

Examination: Dec May

Offer in 2018 - 2019:

Y 1st sem 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F):

A - Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational skills. Writings consistently demonstrate informed, thoughtful intellectual engagement with broad range of relevant concepts.

B - Demonstrate substantial command of a broad range of knowledge required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational skills. Writings mostly demonstrate informed, thoughtful intellectual engagement with broad range of relevant concepts.

C - Demonstrate general but incomplete command of knowledge required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational skills. Writings mostly indicate informed, intellectual engagement with concepts or theories, but not always with sufficient depth, breadth or understanding.

D - Demonstrate partial but limited command of knowledge required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational skills. Writings indicate some intellectual engagement with concepts or theories but mostly at a superficial level.

Fail - Demonstrate little or no evidence of command of knowledge required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organizational skills are minimally effective or ineffective. Writings reveal an absence of intellectual engagement with concepts or theories. Writings are irrelevant or superficial.

Course Type: Lecture-based course

Course Teaching & Learning Activities:

Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 100

Assessment Methods and Weighting:

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Examination 60 CLO 1,2,3,4,5,6
Test 40 CLO 1,2,3,4,5,6

Course Website: http://moodle.hku.hk/

Additional Course Information:

Quota in 1st Semester: 210
Quota in 2nd Semester: 210

BIOL1111

Introductory microbiology (6 credits)

Offering Department: Biological Sciences

Academic Year: 2018

Quota: 80

Course Co-ordinator: ---, Biological Sciences

Teachers Involved: ---, Biological Sciences

Course Objectives:
To introduce students to the diversity and function of microorganisms; and relate this to their importance in the natural environment, disease and public health, food production and spoilage and the biotechnology industry.

Course Contents & Topics:
Evolutionary diversity of bacteria, archaea, eukarya and viruses; Metabolic strategies, cell biology and genetics; Microbial ecology, marine microbiology, terrestrial microbiology; Microbial interactions with animals and plants; The human microbiome; Medical microbiology and immunology; Biotechnology applications; Food spoilage and food fermentations.

Course Learning:
On successful completion of this course, students should be able to:
Outcomes

CLO 1 describe the key features of the major microbial phyla and place them in an evolutionary context.

CLO 2 explain the major physiological and genetic processes in prokaryotes and eukaryotic microorganisms and compare the similarities and differences between these two domains.

CLO 3 identify the microorganisms involved and their role in ecological processes, human disease and medicine, food production and spoilage, and biotechnology.

Pre-requisites

(NIL)

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A to F)</th>
<th>Offer in 2019 - 2020 : N</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Examination ---</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>(85-100%) Meets the standard of excellence. All criteria are addressed. Organization of ideas and clarity are excellent. Additional reading or research is evident. Ideas show an exceptional understanding of concepts. Arguments are highly persuasive and show excellent judgment and prioritization of issues. Presentation is highly creative and appealing.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>(70-84%) Meets the standard of excellence. All criteria are addressed. Organization of ideas and clarity are very good. Ideas show a complete understanding of concepts. Arguments are persuasive and prioritize major issues. Presentation is creative and appealing.</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>(55-69%) Meets an acceptable standard. All criteria are addressed. Organization of ideas and clarity are sufficient. Ideas show an effective understanding of concepts. Arguments identify major issues. Presentation is appealing but may lack clarity.</td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td>(45-54%) Below acceptable standard. Most criteria are addressed. Organization of ideas and clarity are weak. Ideas show an incomplete understanding of concepts. Arguments are not persuasive. Presentation lacks creativity or is not appealing.</td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>30</td>
<td>CLO 3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website

http://moodle.hku.hk/

BIOL1201

Introduction to food and nutrition (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Biological Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Dr J M F Wan, Biological Sciences (jmfwan@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr C B Chan, Biological Sciences)</td>
</tr>
<tr>
<td>(Dr J M F Wan, Biological Sciences)</td>
<td></td>
</tr>
<tr>
<td>(Dr L Zhang, Biological Sciences)</td>
<td></td>
</tr>
<tr>
<td>Course Objectives</td>
<td>To enable student to appreciate the multidisciplinary nature of the study of Food and Nutrition. From the farmer's field to the dinner table, a basic understanding of the general properties of macro and micronutrients food production, processing and storage will be covered. Food safety, food selection behaviour as well as balanced nutrition as part of life style instrumental to good health will be discussed. This is an independent course which can be taken by students from various disciplines. It also prepares students for further studies in Food and Nutritional Science.</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>Topics will include food composition and functional properties of major nutrients; food additives; food hygiene, safety and regulation; determinants of food choice; examples of complex processed foods; healthy eating-concepts and practice; essential nutrients; diet and disease relationship.</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
</tr>
<tr>
<td>CLO 1</td>
<td>understand the key components of food and be able to discuss their functional properties</td>
</tr>
<tr>
<td>CLO 2</td>
<td>understand the significance of food safety and be able to identify sources of contamination</td>
</tr>
<tr>
<td>CLO 3</td>
<td>understand the concept of a balanced diet</td>
</tr>
<tr>
<td>CLO 4</td>
<td>critically assess health problems associate with malnutrition</td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
<td>NIL</td>
</tr>
<tr>
<td>Grade Descriptors (A to F)</td>
<td>Examination Dec</td>
</tr>
<tr>
<td>A</td>
<td>Demonstrate thorough grasp of the subject matter covered. Show exceptional ability to articulate concepts and integrate knowledge. Demonstrate highly effective organization / writing skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial grasp of the subject matter covered. Show full capacity to use the appropriate concepts and assimilate the materials to solve problems. Demonstrate effective organization / writing skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete grasp of the subject matter covered. Show ability to apply concepts to solve simple problems. Demonstrate adequate organization / writing skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Fail to understand concepts and show minimal competence in problem solving. Demonstrate poor organization and writing skills.</td>
</tr>
<tr>
<td>Course Type</td>
<td>Lecture-based course</td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities Details No. of Hours</td>
</tr>
<tr>
<td>Lectures</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>student-centered learning</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods Details Weighting in final course grade (%)</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
</tbody>
</table>
BIOL1309

Evolutionary diversity (6 credits)

Offering Department Biological Sciences

Course Co-ordinator Prof R M K Saunders, Biological Sciences (saunders@hku.hk)

Teachers Involved
- Dr C Yau, Biological Sciences
- Dr M Yasuhara, Biological Sciences
- Prof R M K Saunders, Biological Sciences
- Prof Y Sadovy, Biological Sciences

Course Objectives
To provide students with an introduction to the diversity of plant and animal life. Recent research has resulted in fundamental changes in our understanding of evolutionary history (phylogeny). Current evolutionary trees will be used as the basis for a survey of different groups in phylogenetic sequence, and for understanding how structures, processes and behaviours have changed through time.

Course Contents & Topics
Introduction to the methodology for reconstructing the sequence of past evolutionary events (cladistics); algae (Rhodophyta, Phaeophyta and Chlorophyta); non-vascular plants (Hepatophyta, Anthocerophyta and Bryophyta); seedless vascular plants (Lycophyta, Psilophyta, Sphenophyta and Pterophyta); seed plants (Cycadophyta, Ginkgophyta, Coniferophyta, Gnetaophyta and Anthophyta); invertebrates (Cnidaria, Platyhelminthes, Annelida, Mollusca, Nematoda, Arthropoda and Echinodermata); fish (Chondrichthyes and Actinopterygii); amphibians (Anura, Lepidosauromorpha, Archosauromorpha); and mammals (Monotremata, Metatheria and Eutheria).

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 interpret phylogenies in order to understand the relatedness of taxonomic groups and the pattern of evolutionary changes in structures, processes and behaviours
- CLO 2 describe the characteristics of different evolutionary lineages of plants and animals and recall the names of the main taxonomic groups
- CLO 3 explain the possible selective advantages of the highlighted structures, processes and behaviours

Pre-requisites (and Co-requisites and Impermissible combinations)
NIL

Offer in 2018 - 2019
Y 2nd sem

Offer in 2019 - 2020
Y

Grade Descriptors (A to F)

- **A** Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining most or all of the course learning outcomes, with extensive use of named examples. Show evidence of significant critical abilities and logical thinking. Apply highly effective presentation skills.
- **B** Demonstrate substantial command of knowledge required for attaining most of the course learning outcomes, with some use of named examples. Show evidence of critical abilities and logical thinking. Apply effective presentation skills.
- **C** Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes, with only limited use of named examples. Show evidence of some critical abilities and logical thinking. Apply moderately effective presentation skills.
- **D** Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes, with insufficient use of named examples. Show evidence of limited critical abilities and logical thinking. Apply limited presentation skills.
- **Fail** Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes, without use of named examples. Show little or no evidence of critical abilities and logical thinking. Presentational skills are minimally effective or ineffective.

Course Type Lecture with laboratory component course

Course Teaching & Learning Activities
- **Activities** Details No. of Hours
 - Lectures 24
 - Laboratory 36
 - Reading / Self study 100

Assessment Methods and Weighting
- **Methods** Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
 - Examination 70 CLO 1,2,3
 - Laboratory reports 30 CLO 1,2,3

Required/recommended reading and online materials
- TBC

Course Website http://www.biosch.hku.hk/ecology/lsc/

BIOL1501

Bioethics (6 credits)

Offering Department Biological Sciences

Course Co-ordinator ---, Biological Sciences ()

Teachers Involved ---, Biological Sciences)

Course Objectives
The aim is to explore the ethical implications of the latest major advances in biology and medicine.

Course Contents & Topics
The course will discuss research ethic between student and mentor, and ethical implications in recent major advancements in biological and medical sciences. Major areas to be discussed include but are not limited to: genetics, reproduction, disease diagnosis and therapy, development, transplantaion, aging, dying, environment, and the use of animals in research. Ethical and moral principles and implications for social framework and public policy raised by these advances will be discussed.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 familiarize with the current ethical theories, discussions, and arguments taking place in the field of bioethics specifically related to the advancement of modern molecular biology and genomics
- CLO 2 reflect upon and formulate in a professional manner their own opinions on these matters as well as to understand and enter into a respectful dialogue with those who possess another point of view

492
Pre-requisites (and Co-requisites and Impermissible combinations)

NIL

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use communication skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective individual as well as collaborative-based organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective individual as well as collaborative-based organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately individual as well as collaborative-based organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate individual as well as collaborative-based organizational and presentational skills of limited effectiveness.</td>
</tr>
<tr>
<td>F</td>
<td>Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results drawn to inappropriate but generally erroneous conclusions to real-world problems. Demonstrate ineffectiveness individual as well as collaborative-based organizational and presentational skills.</td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Assessment</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>continuous assessment of essays, presentation and debate exercises</td>
<td>60</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>40</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

NIL

Library & web-based reading materials

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL1502 The gene (6 credits)

Offering Department

Biological Sciences

Academic Year

2018

Course Co-ordinator

---, Biological Sciences (/)

Course Objectives

The objective is to expose students to the impacts of genes to the society. Recent completion of the human genome and many agricultural crops and animals genomes, it brings not only promises of a better quality of life as well as lots of technical and ethical issues/challenges that general public need to deal with. The goal of this course is to open up students from all backgrounds to this basic unit of inheritance called the gene and its impact on various scientific and social disciplines.

Course Contents & Topics

Content/topics include:
- Introduction and review of basic cell biology
- Basic genetic - The gene
- Basic Molecular Biology and Biotechnology - Recombinant DNA and cloning
- Bacterial Genes - Gene and Environment
- Human Genes/Human genome - history and its Impacts!
- Human Genome - The Amazing discovery!
- Genes and Biotechnology
- Genes and Disease
- Genes and Cancer
- Animal and Plant Cloning
- Genes and Agricultural/Food Biotechnology
- Genes and Human Behavior

Course Learning Outcomes

On successful completion of this course, students should be able to:
- CLO 1 demonstrate understanding and to explain the principle of inheritance, recombinant DNA and cloning
- CLO 2 gain deep understanding about the advancement of biotechnology
- CLO 3 determine and explain the benefits and shortcomings of the application of biotechnology knowledge

Pre-requisites (and Co-requisites and Impermissible combinations)

NIL

Not for students with level 3 or above in HKDSE Biology or Combined Science with Biology component or equivalent.

Offer in 2018 - 2019

N

Course Grade (%)

A (90-100) Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use communication skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective individual as well as collaborative-based organizational and presentational skills.

B (80-89) Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective individual as well as collaborative-based organizational and presentational skills.

C (70-79) Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately individual as well as collaborative-based organizational and presentational skills.

D (60-69) Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate individual as well as collaborative-based organizational and presentational skills of limited effectiveness.

F (0-59) Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results drawn to inappropriate but generally erroneous conclusions to real-world problems. Demonstrate ineffectiveness individual as well as collaborative-based organizational and presentational skills.
Principles of food chemistry (6 credits)

Offering Department
Biological Sciences

Course Co-ordinator
Dr J C Y Lee, Biological Sciences (jetylee@hku.hk)

Course Objectives
To provide a basic understanding of chemistry in food systems, and to provide practical training in chemistry related to food science and nutrition.

Course Contents & Topics
The course will cover the components of food, including water, proteins, carbohydrates and lipids, and minor components such as enzymes, vitamins, minerals, colorants, flavorants and additives. The physical and chemical properties of these important constituents of foods are covered in detail, and form the basis for understanding the reactions which occur during the production, processing, storage and handling of foods, and in understanding the methods used in analyzing foods.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 understand the functions and properties of major and minor food components
- CLO 2 understand the basic chemistry behind food processing
- CLO 3 understand how major chemical and biochemical reactions influence food quality
- CLO 4 have integrated their knowledge of biological and chemical principles into a food science and nutrition context

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL1201; and NOT for students who have passed in BIOL3201. The course is only for students admitted in 2017-2018 or thereafter.

Offer in 2018 - 2019 Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Descriptors</th>
<th>Course Grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrates thorough grasp of the subject matter covered. Shows extensive knowledge and understanding of the topics covered and can readily apply this knowledge. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions.</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrates substantial grasp of the subject matter covered. Shows thorough knowledge and understanding of the content and a high level of competence in the topics covered and able to apply this knowledge and skills to most situations. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions.</td>
<td>80</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrates general but incomplete grasp of the subject matter covered. The student has a sound knowledge and understanding of the main areas of content and has achieved an adequate level of competence in the topics covered. Use lab skills and techniques and analysis of data and results to draw moderately appropriate conclusions.</td>
<td>70</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrates partial but limited grasp, with retention of some relevant information of the subject matter covered. Show a basic knowledge and understanding of the content and has achieved a limited level of competence in the topics covered. Use lab skills and techniques and analysis of data and results inadequately, leading generally to inappropriate and usually erroneous conclusions.</td>
<td>60</td>
</tr>
<tr>
<td>E</td>
<td>Demonstrates little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use communication skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness individual as well as collaborative-based organizational and presentational skills.</td>
<td>50</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Laboratory reports</td>
<td>30</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
- Fennema OR, Food Chemistry (Marcel Dekker 4th Ed, 2008)
- Belitz HD, Grosch W, Schieberle, P, Food Chemistry (Springer 4th Ed, 2009)

Course Website
http://moodle.hku.hk
BIOL2102: Biostatistics (6 credits)

Offering Department: Biological Sciences
Course Objectives: This course aims to familiarise students with biostatistics. The course will give to students the skills to understand, interpret, and critically evaluate the statistics used in biological and biomedical studies. The course will also introduce students to fundamental principles of various statistical tests, basic computational tools for analysing data, choose the correct statistical test and avoid common statistical pitfalls.
Course Contents & Topics: Introduction to Statistics and Probability; Different Probability Distributions including Normal Distribution; Describing, Exploring and Comparing Data; Hypothesis Testing and Inferential Statistics (Both Parametric and Non-Parametric Tests such as Chi square test, Student t tests, Mana-Whitney test, Wilcoxon test, Analysis of Variance, and Kruskal-Wallis test); Correlation and Regression; Power Analysis; Experimental design.
Course Learning Outcomes: On successful completion of this course, students should be able to:
- **CLO 1**: formulate biological questions into statistical questions
- **CLO 2**: design experiments effectively
- **CLO 3**: appreciate and interpret statistics in scientific paper
- **CLO 4**: use Excel and R to carry out common statistical computations
- **CLO 5**: understand the assumptions of commonly used statistical methods
- **CLO 6**: critically evaluate the scientific literature
- **CLO 7**: create novel hypothesis for testing
Pre-requisites (and Co-requisites and impermissible combinations): Pass in BIOC1600 or BIOL1110 or BIOL2306 or ENVS1301 or ENVS2002
Offer in 2018 - 2019: Y
Grade Descriptors (A to F):
- **A**: Demonstrate thorough grasp of the subject and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply highly effective computational skills and techniques for basic statistical analyses. Be able to critically use data and statistical results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.
- **B**: Demonstrate substantial grasp of the subject and skills required for attaining at least most of the course learning outcomes. Present evidence of analytical and critical abilities and logical thinking. Apply effective computational skills and techniques for basic statistical analyses. Be able to correctly use data and statistical results to draw appropriate conclusions. Apply effective organizational and presentational skills.
- **C**: Demonstrate general but incomplete grasp of the subject and skills required for attaining some of the course learning outcomes. Present evidence of some analytical and critical abilities and logical thinking. Apply moderately effective computational skills and techniques for basic statistical analyses. Demonstrate mostly correct but some erroneous use of data and statistical results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.
- **D**: Demonstrate partial and limited grasp of the subject and skills required for attaining some of the course learning outcomes. Present evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective computational skills and techniques for basic statistical analyses. Demonstrate limited ability to use data and statistical results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.
- **Fail**: Demonstrate evidence of little or no grasp of the subject and skills required for attaining any of the course learning outcomes. Present evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Apply minimal effective or ineffective organizational and presentational skills.
Course Type: Lecture-based course
Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td>including demonstrations and projects</td>
<td>24</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>70</td>
<td>CLO 1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>30</td>
<td>CLO 1,3,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials:
Course Website: http://moodle.hku.hk/
Module three: Microbiology
Microscopy, observation of microorganisms and staining of bacteria, isolation of pure cultures by streaking and serial dilution, enumeration of microbial cells by Petroff-Haussner counting chamber, and turbidity. Identification and classification of microbes from natural source and statistical analysis.

On successful completion of this course, students should be able to:

CLO 1 demonstrate knowledge in proper use of simple research equipment
CLO 2 demonstrate knowledge and understanding of how and why certain techniques are used in a research setting
CLO 3 master some basic laboratory techniques for carrying out experiments
CLO 4 understand the different ways that microorganisms were categorized according to their size, shape, colour and response to dye etc. and how they were counted

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL1110

Offer in 2018 - 2019
Y 1st sem 2nd sem Offer in 2019 - 2020 : Y Examination Dec May

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge required for attaining at least most of the course learning outcomes. Evidence of analytical and critical abilities and logical thinking. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentional skills.
C Demonstrate general but incomplete command of knowledge required for attaining most of the course learning outcomes. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentional skills.
D Demonstrate partial but limited command of knowledge required for attaining some of the course learning outcomes. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentional skills.
E Fail

Course Objectives
On successful completion of this course, students should be able to:

CLO 1 describe the key structural features of carbohydrates, proteins, lipids and nucleoecdides
CLO 2 understand the basic enzyme kinetic properties
CLO 3 explain how the common sugars, fatty acids and amino acids are metabolized and synthesized in living cells

Course Contents & Topics
An introduction to various biomolecules in terms of their structures, functions, syntheses and metabolisms, with emphasis on amino acids, proteins, enzymes, carbohydrates, lipids and nucleic acids. The correlations between their biochemical properties and their roles in various life processes will be illustrated.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 describe the key structural features of carbohydrates, proteins, lipids and nucleoecdides
CLO 2 understand the basic enzyme kinetic properties
CLO 3 explain how the common sugars, fatty acids and amino acids are metabolized and synthesized in living cells

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL1110; and Not for students who have passed in BIOC2600, or have already enrolled in this course.

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y Examination Dec

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Integration of the full range of appropriate theories, principles, evidence and techniques
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. General integration of theories, principles, evidence and techniques
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Some partial integration of theories, principles, evidence and techniques
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Limited integration of theories, principles, evidence and techniques

Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack
BIOL2306
Ecology and evolution (6 credits)

Offering Department: Biological Sciences
Quota: 80

Course Co-ordinator:
Prof D Dudgion, Biological Sciences (ddudgeon@hku.hk)

Teachers Involved:
(Prof D Dudgion, Biological Sciences)
(Prof G A Williams (Field course component only), Biological Sciences)

Course Objectives:
The interaction between organisms and their environment is addressed using an issue-based approach in order to explain how the ecology of plants and animals has been shaped by evolution through interactions with their living and non-living environments. The course also demonstrates how we can understand and explain the significance of what we see in nature using scientific methods. A field course component provides the opportunity to investigate how the environment influences community composition, biodiversity and adaptive radiation in a variety of habitats.

Course Contents & Topics:
The environment influences organisms profoundly. It affects their present-day ecology (determining where they live and how many can survive there) and, through natural selection acting over past generations, influences their form and adaptations. Present day human-induced changes to the environment are also responsible for endangering species and degrading their habitats. This introductory course introduces some basic scientific principles of ecology and evolution, showing how they are linked to the environment by physiological tolerances and evolutionary adaptation which, in turn, lead to specialization and generate biodiversity. Individuals and their interactions will be a major focus of the course together with discussion of population dynamics, community structuring, life histories, and niche dynamics. The principles of ecology and evolution resulting from interaction with the environment will also be demonstrated by describing the origins of modern humans, including our fossil record and relationship to other primates, and the main ecological transformations caused by humans and their environmental impacts. The course will conclude with an account of the importance of biodiversity, and the factors that threaten it globally.

Lectures are complemented by a 5-day residential field course during the Reading Week when students visit a variety of Hong Kong habitats to study their biodiversity, community composition and the relationship between organisms and their environment.

Course Learning Outcomes:
On successful completion of this course, students should be able to:

CLO 1 understand how scientific methods (hypotheses, experiments, comparisons) are used to investigate ecological and evolutionary processes

CLO 2 understand the basic mechanism of natural selection, and how interactions with the environment lead to adaptation and generate biodiversity

CLO 3 understand that ecology and behaviour can be interpreted in the light of selective pressures from the environment upon individual organisms

CLO 4 understand the ecological factors influencing evolution, using the human evolutionary tree as an example

CLO 5 understand the community ecology and biodiversity of selected Hong Kong habitats, and typical adaptations of organisms found there

Pre-requisites (and Co-requisites and Impermissible combinations):
Pass in BIOL1110 or BIOL1309 or ENVS1301 or ENVS1401

Grade Descriptors (A+ to F):

Y 1st sem Offer in 2019 - 2020 : Y
Examination Dec

A Evidence of complete or near-complete understanding and a thorough grasp of the subject as demonstrated by attainment of all learning outcomes, and excellent use of named (organism) examples, including local species and habitats. Show excellent organizational, presentional and/or analytical skills and fieldwork techniques. Excellent or outstanding (for A+) work relative to what is required at degree level.

B Evidence of substantial understanding and a good grasp of the subject as demonstrated by attainment of the majority of learning outcomes, and use of named (organism) examples, including local species and habitats. Show good organizational, presentational and/or analytical skills and fieldwork techniques. Work more than sufficient for what is required at degree level.

C Evidence of general understanding with an adequate (but incomplete) grasp of the subject, as demonstrated by general but incomplete attainment of most of the learning outcomes, with limited use of named (organism) examples. Show fair organizational, analytical, presentational and/or analytical skills and fieldwork techniques. Work sufficient for what is required for degree level.

D Evidence of retention of a minimum of relevant information and incomplete understanding of the subject (i.e. knowledge is very incomplete), as demonstrated by partial but limited attainment of learning outcomes. Insufficient familiarity with fieldwork techniques, habits or organisms. Work merely (for D+) or barely (D) adequate for what is required at degree level.

Fail Evidence of poor or inadequate knowledge and understanding of the subject such that the majority of learning outcomes cannot be attained. Little or no evidence of familiarity with fieldwork techniques, habits or organisms. Work fails to reach degree level.

Course Type:
Lecture with laboratory component course

Activities Details No. of Hours
Lectures 24 hours lectures, plus 10 hours of lectures during residential field course 34
Laboratory at least 36 hours field and laboratory work, as groups and individuals 36
Reading / Self study during the semester in the form of internet tutorials, assigned reading and a laboratory workshop 80

Assessment Methods and Weighting:
Exam Papers Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Examination 60 CLO 1.2, 3
Laboratory reports 10 CLO 1.2, 3
Test 30 CLO 1.2, 3

Required/recommended reading and online materials:

Course Website:
http://moodle.hku.hk/
This course is intended for students interested in the fundamentals of plant biology. The course will emphasize on the essential attributes of plants to humans. At the end of the course, students are expected to know the distinct features of plants and appreciate the importance of plants in our daily lives. Specific topics such as genetic engineering and the use of plants for food and medicine, will be addressed.

Course Contents & Topics

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 Realize how plant structure enables functions
- CLO 2 Comprehend the essentials of plant growth and development
- CLO 3 Understand the abilities of plants to detect, process, and interpret information from their surrounding environment
- CLO 4 Recognize the interactions of plant with the living and non-living environment
- CLO 5 Appreciate the contribution of plants to humans

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL1110

Offer in 2018 - 2019

N Offer in 2019 - 2020 : Y Examination ---

Grade Descriptors (A to F)

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Demonstrate substantial grasp of the subject. Show evidence of analytical and critical abilities and logical thinking. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>30</td>
<td>CLO 5</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Core Textbooks

References and Online Materials
1. Teaching Tools in Plant Biology: http://www.plantcell.org/site/teachingtools/teaching.xhtml

Course Website
http://www.biosch.hku.hk/ecology/lsc/

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.
School of Biological Sciences

Offering Department: Biological Sciences

Course Co-ordinator: Dr W B L Lim, Biological Sciences (bllim@hku.hk)

Teachers Involved: Dr W B Lim, School of Biological Sciences

Course Objectives: The course will give an overview of the innovative developments in biotech industry and provide the students with useful tools in learning how an exciting research idea can be turned into a viable business.

Course Contents & Topics: The purpose of the course is to introduce you to the entrepreneurial process with a focus on the biotechnology industry. The course will provide a thoughtful, practical guide to the process of successfully launching an entrepreneurial venture. We place a special emphasis on the decision to become a biotech entrepreneur and how to develop successful business ideas, however we will also discuss the process of moving from an idea to a biotech firm. Topics on intellectual properties, patent laws, patent application process, licensing and fundraising will be covered as well. Throughout the course, guest entrepreneurs, managers and directors of the biotech industry will be presenting case studies and explain their involvement in various biotech and pharmaceutical companies.

Topics:
1. Introduction to Biotechnology Industry: 4 P in Biotechnology Business (3 hours)
2. IP rights: Patent application, Patent system, USPTO, Sipo, PCT (6 hours)
3. Licensing of IP rights (3 hours)
4. Technology Transfer Office and HKSTP (3 hours)
5. How to raise fund for startup companies (3 hours)?
6. Agribiotechnology and Green Tech (Monsanto, Novozyymes, etc) (4.5 hours)
7. Drug development and clinical trials (Gilead Sciences, WuXi PharmaTech, etc). (6 hours)
8. Diagnostics business (BGI, Diagcor, etc) (4.5 hours)
9. Company analysis (3 hours)
10. Company Visit
11. Company analysis

Course Learning Outcomes: On successful completion of this course, students should be able to:

- CLO 1 understand and demonstrate knowledge of the development and management of biotechnology business
- CLO 2 understand and demonstrate how discoveries and inventions are commercialized
- CLO 3 navigate the various steps in the development of a biotechnology derived product: from bench, to scale-up, to market
- CLO 4 gain technical and business knowledge of the biotechnology and bioprocessing industries
- CLO 5 participate and contribute to the business side of scientific enterprises

Pre-requisites (and Co-requisites and impermissible combinations): Pass in 1110

NOT for students who have passed in BIOL3409.

Offer in 2018 - 2019: N

Offer in 2019 - 2020: Y

Examination: ---

Grade Descriptors (A+ to F):
- A: Students acquire exceptional skills and knowledge from the course and are capable of independently analyzing the business and technological developments of various biotechnology ventures.
- B: Students demonstrate a broad and in-depth understanding of the current developments in biotechnology industry and are capable of analyzing the business and technological developments of various biotechnology ventures.
- C: Students demonstrate a broad and in-depth understanding of the current developments in biotechnology industry.
- D: Students demonstrate a moderate understanding of the current developments in biotechnology industry.
- F: Students fail to demonstrate a moderate understanding of the current developments in biotechnology industry.

Course Type: Lecture-based course

Course Teaching & Learning Activities:
- Lectures: 36
- Field work: 6
- Group work: Presentation
- Reading / Self study: 12
- Assessment: 60

Assessment Methods and Weighting:
- Assignments: 60
- Presentation: 20
- Test: 20

Weighting in final course grade (%): CLO 1,2,3,4,5

Assessment Methods to CLO Mapping:
- CLO 1,2,3,4,5

Required/recommended reading and online materials:
- McGraw Hill
- Company annual reports
- Online materials

Course Website: http://moodle.hku.hk/

Additional Course Information:
This course will be offered subject to a minimum enrollment number and availability of teachers. Priority will be given to students majoring or minoring in MBB

BIOL3101

Animal behaviour (6 credits)

Offering Department: Biological Sciences

Course Co-ordinator: Dr S Sin, Biological Sciences (sinyw@hku.hk)

Teachers Involved: Dr S Sin, School of Biological Sciences

Course Objectives: The purpose of this course is to introduce students with the diversity in animal behaviour and the means of understanding animal behaviour. The course will teach students the underlying mechanism and function of behaviour, and how did a particular behaviour develop and evolve.

Course Contents & Topics: Why do animal behaviours vary among individuals and species? How do environment and ecological interactions influence behaviours? What are the underlying genetic mechanism of a particular behaviour? In this course, students will learn to think within the ecological and evolutionary perspectives on animal behaviour. Topics include behavioral ecology; behavioral genetics; reproductive behaviour; mating system; parental care; communication; foraging; learning; migration and biological rhythms; evolutionary stable strategies; sexual selection; altruism; and sociality in vertebrates and invertebrates. We will discuss several classical studies that form the foundation of this field, as well as some recent research that has led to current understanding of animal behaviour. This course will give students a unique perspective on the natural world and our own species.

Course Learning: On successful completion of this course, students should be able to:
School of Biological Sciences

Outcomes

CLO 1 learn and appreciate the mechanism, function, development, and evolution of animal behaviour
CLO 2 understand the complexity of interactions between natural and sexual selection and animal behaviour
CLO 3 appreciate current theories that form basis for modern understanding of animal behaviour
CLO 4 learn the scientific reasoning and methodology in the field of Animal Behaviour
CLO 5 think analytically, based upon ecological and evolutionary principles, to explain the behaviours observed in the natural world and our own specie

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL2306

Offer in 2018 - 2019

Y 1st sem Offer in 2019 - 2020 : Y Examination Dec

Grade Descriptors (A+ to F)

A Evidence of a thorough grasp of the subject in a broader comparative perspective as demonstrated by background reading and excellent use of named examples and case studies. Evidence of independent critical thought with excellent use of a broad range of fundamental concepts to draw insightful and logical conclusions. Show eagerness to learn, great abilities of independent work, effective presentation skills with excellent analytical argumentation. Excellent or outstanding work relative to what is required at degree level.

B Evidence of a good grasp of the subject as demonstrated by some background reading and appropriate use of named examples and some case studies. Evidence of good critical thought, although not necessarily original. Good and very good (but not outstanding) abilities of independent work, effective presentation skills with good analytical and logical argumentation. Good general command of acquired knowledge to draw meaningful and logical conclusions. Work more than sufficient for what is required at degree level.

C Demonstrate an adequate, but not coherent and incomplete grasp of the subject, with limited background reading and limited use of named examples and case studies. Some abilities of logical critical thinking, but not insightful and/or independent; partial abilities to use acquired knowledge and work independently to draw meaningful conclusions. Fair presentation skills, with mostly correct argumentation, but limited (or no) abilities to integrate broader concepts. Work sufficient for what is required for degree level.

D Demonstrate some grasp of the subject, but partial and limited to the most basic concepts, examples, and limited (or none) case studies. Insufficient evidence of background reading, limited abilities of critical independent thinking, and not particularly effective presentation skills with generally weak logical argumentation and restricted ability of drawing appropriate conclusions. Work barely meets what is required at degree level.

Fail No evidence of basic minimum knowledge and understanding of the subject. No evidence of background reading and no familiarity with any relevant examples and case studies. Inadequate evidence of coherent logical thought; ineffective presentation skills with poor argumentation and no abilities to draw meaningful conclusions. Work fails to reach degree level.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

Activities Details No. of Hours
Lectures 24
Laboratory Lab work, field trips, or debates/presentations 24
Tutorials 6
Reading / Self study 100

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments 50 CLO 1,2,3,4,5
Examination 50 CLO 1,2,3,4,5

Required/recommended reading and online materials

Additional Course Information

This course will be offered subject to a minimum enrolment number and availability of teachers.

BIOL3105

Animal physiology and environmental adaptation (6 credits) Academic Year 2018

Offering Department Biological Sciences Quota 50

Course Co-ordinator Prof A O L Wong, Biological Sciences (olwong@hku.hk)

Teachers Involved (Dr W Y Liu,Biological Sciences)

(Prof A O L Wong,Biological Sciences)

(Prof A S T Wong,Biological Sciences)

Course Objectives

The course covers the major aspects of animal physiology for environmental adaptation in terrestrial & aquatic habitats. Stress will be given to the functional interactions between animals and the environment, especially on the mechanisms by which animals obtain resources for survival from the environment, detect environmental changes via sensory structures, and respond to adversities in the environment by altering their body forms & functions.

Course Contents & Topics

Basic concepts of animal adaptation to environmental changes/extreme environment; Modification of energy metabolism according to oxygen availability; Different models of gaseous exchange for aquatic, inter-tidal, and terrestrial habitats; Cross-adaptation to different environment: air-breathing fish vs diving adaptations in mammals; Visual signals & differential levels of photoreception from protozoa to mammals; Background adaptation: functions & mechanisms for color presentation; Sound wave as environmental signals: functions & mechanisms of detection in aquatic & terrestrial habitats; Echo sounding in bats for navigation without visual signals; Behavioral, morphological & physiological adaptations in hostile environment: extreme hot vs freezing cold; salinity changes in aquatic habitats & water availability in terrestrial habitats on osmoregulation, water balance & nitrogenous metabolism.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 have a broad understanding on functional interactions between animals and their environment
CLO 2 appreciate the role of the environment in shaping the evolution of animal structures & functions
CLO 3 comprehend a wide range of physiological adaptations (both structurally & functionally) in coping with environmental stress and environmental changes

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL2103 or BIOL2220 or BIOC2600 or MEDE2301

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y Examination May

Grade Descriptors (A+ to F)

A Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational skills. Writings consistently demonstrate informed, thoughtful intellectual engagement with broad range of relevant concepts.
BIOL3107

Course Title: Plant physiology (6 credits)
Academic Year: 2018

Offering Department: Biological Sciences
Quota: 30

Course Co-ordinator: Dr W K Yip, Biological Sciences (wkhyip@hku.hk)
Teachers Involved: (Dr W K Yip, Biological Sciences)

Course Objectives: To give an understanding of plant processes such as plant growth and development and their regulatory mechanisms.

Course Contents & Topics: Discovery, assay, chemical nature, mechanism, structure-activity relationships, physiological effects, and signal transduction of plant hormones. Hormonal transport. Selected topics on plant growth and development including photo-morphogenesis, seed germination, dormancy, apical dominance, fruit ripening, leaf abscission, and plant defense.

Course Learning Outcomes: On successful completion of this course, students should be able to:
- Understand the study of plant biology using mutants in model plant Arabidopsis
- Understand biotechnological opportunities by manipulating plant gene expression
- Understand the regulation of plant growth and development by various plant hormones

Pre-requisites: Pass in BIOL2103

Offer in 2018 - 2019: Y (1st sem) Offer in 2019 - 2020: Y
Exam Grade: Examination
No. of Hours: 501
Externally Assessed: Academic Year
Internal Assessment: Academic Year

Grade Descriptors (A to F):
- **A:** In written examination: Exceptionally good organization and presentation, the discussion would be very clearly written and show evidence of originality. In practical sessions: excellent insight to practical aims; submit good reports.
- **B:** In written examination: coherent organization and clear presentation, the discussion would be a complete and critical response to questions. In practical sessions: full understanding of the practical aims; submit accurate reports.
- **C:** In written examination and practical sessions: Good in parts, but important points omitted. Might also have defects in presentation or be not very well written. Reasonably competent, but might show misunderstanding of the material: significant inaccuracies or errors.
- **D:** In written examination and practical sessions: Some knowledge of the material is evident, but there are serious deficiencies in understanding, organization, clarity or accuracy. Write-ups that are unduly brief would fall into this category.
- **Fail:** In written examination and practical sessions: Poor knowledge and understanding of the subject, a lack of coherent and logical thinking, and answers are largely irrelevant.

Course Type: Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>70</td>
<td>CLO 1.2, 3</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>test & continual assessment</td>
<td>30</td>
<td>CLO 1.2, 3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- E. N. Marieb (2012), Essentials of Human Anatomy & Physiology, Benjamin Cummings.
- E. N. Marieb (2012), Essentials of Human Anatomy & Physiology, Benjamin Cummings.
- E. N. Marieb (2012), Essentials of Human Anatomy & Physiology, Benjamin Cummings.

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3108

Course Title: Microbial physiology (6 credits)
Academic Year: 2018

Offering Department: Biological Sciences
Quota: 30

Course Co-ordinator: Dr W K Yip, Biological Sciences (wkhyip@hku.hk)
Teachers Involved: (Dr W K Yip, Biological Sciences)

Course Objectives: To give an understanding of the study of plant biology using mutants in model plant Arabidopsis

Course Contents & Topics: Discovery, assay, chemical nature, mechanism, structure-activity relationships, physiological effects, and signal transduction of plant hormones. Hormonal transport. Selected topics on plant growth and development including photo-morphogenesis, seed germination, dormancy, apical dominance, fruit ripening, leaf abscission, and plant defense.

Course Learning Outcomes: On successful completion of this course, students should be able to:
- Understand the study of plant biology using mutants in model plant Arabidopsis
- Understand biotechnological opportunities by manipulating plant gene expression
- Understand the regulation of plant growth and development by various plant hormones

Pre-requisites: Pass in BIOL2103

Offer in 2018 - 2019: Y (1st sem) Offer in 2019 - 2020: Y
Exam Grade: Examination
No. of Hours: 501
Externally Assessed: Academic Year
Internal Assessment: Academic Year

Grade Descriptors (A to F):
- **A:** In written examination: Exceptionally good organization and presentation, the discussion would be very clearly written and show evidence of originality. In practical sessions: excellent insight to practical aims; submit good reports.
- **B:** In written examination: coherent organization and clear presentation, the discussion would be a complete and critical response to questions. In practical sessions: full understanding of the practical aims; submit accurate reports.
- **C:** In written examination and practical sessions: Good in parts, but important points omitted. Might also have defects in presentation or be not very well written. Reasonably competent, but might show misunderstanding of the material: significant inaccuracies or errors.
- **D:** In written examination and practical sessions: Some knowledge of the material is evident, but there are serious deficiencies in understanding, organization, clarity or accuracy. Write-ups that are unduly brief would fall into this category.
- **Fail:** In written examination and practical sessions: Poor knowledge and understanding of the subject, a lack of coherent and logical thinking, and answers are largely irrelevant.

Course Type: Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>75</td>
<td>CLO 1.2, 3</td>
<td></td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>25</td>
<td>CLO 3</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- Lecture materials and journal articles will be posted on HKU Moodle.

Course Website: http://moodle.hku.hk/

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.
Course Objectives

Microbes are amazing and important entities on earth. Knowledge of microbes is widely applied in food, pharmaceutics, biotechnologies, diseases control, and biogeochemical processes. Microbial Physiology provides molecular basis for understanding of these important processes and applications, and to serve as essential foundations for sub-disciplines of Microbiology, such as environmental, industrial, and medicinal Microbiology. Upon completion, students will acquire fundamental knowledge and methodologies for microbial studies and be able to relate knowledge to various microbial applications.

Course Contents & Topics

Serving as a fundamental course for the understanding of the world of microorganisms, Microbial Physiology is organized and presented in three themes: ‘Microbial Rules’, ‘Microbial Breath’, and ‘Microbial Adaption’. Under these three themes, a broad range of highly educational and interesting topics are presented including: ‘Microorganisms and their position in the living world’, ‘Fundamental methodologies for the study of microorganisms’, ‘Microbial structures and functions’, ‘Microbial growth and control’, ‘Energy Generation’, ‘Central metabolism’, and ‘Regulation and control of metabolic Activities’. Topics are taught in a coherent manner with highly interactive tutorial session following each of the topics such that students will achieve a high quality, stimulating, and problem-based learning experiences.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 appreciate the diversity of microbial metabolisms and the strategies for their adaptive responses
- CLO 2 comprehend the principles underlying the dynamic nature of microbial physiology
- CLO 3 relate knowledge to practical application of microbes in industry and medicine
- CLO 4 develop abilities to read and assess scientific literature in microbiology area

Grade Descriptors (A to F)

- A: Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational skills.
- B: Demonstrate substantial command of a broad range of knowledge required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational skills.
- C: Demonstrate general but incomplete command of knowledge required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational skills.
- D: Demonstrate partial but limited command of knowledge required for attaining some of the course learning outcomes. Show evidence of some coherent and logical abilities, and limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational skills.
- Fail: Demonstrate little or no evidence of command of knowledge required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organizational skills are minimally effective or ineffective.

Course Type

Lecture-based course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Test</td>
<td>mid-term</td>
<td>30</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- Supplementary Reading:
 - On-line textbook of Bacteriology: Kenneth Tobar, U. of Wisconsin-Madison, Department of Bacteriology. URL (http://www{textbookofbacteriology.net/}

Course Website

http://moodle.hku.hk/

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.
Pre-requisites (and Co-requisites and Impermissible combinations) Pass in BIOL2103

Grade Descriptors (A+ to F)
A Thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Thorough grasp of the subject matter. Show very strong analytical and critical abilities and high logical thinking, with evidence of original thought. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.

B Substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Substantial grasp of the subject. Show evidence of analytical and critical abilities and logical thinking. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.

C General but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. General but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.

D Partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.

Fail Little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Outcomes

Course Learning & Topics
1. Environmental chemistry of pollutants and their toxicity and factors governing toxic effects, bioaccumulation and biomagnification
2. Partitioning and transformation of environmental pollutants
3. Quantitative toxicology using dose-response approaches
4. Emerging endocrine-disrupting chemicals and carcinogens at molecular levels
5. Elimination of pollutants from the environments
6. Laboratory testing of toxicity and review various adsorption isotherm models

Course Contents & Topics
- Chemical and physical forms of pollutants in the atmosphere, hydrosphere, lithosphere, and biosphere
- Mechanisms of toxicity as dose-response will be analyzed through adsorption, metabolism, and elimination, and transformation
- Major metabolic processes and enzymes involved will be highlighted
- Specific cases of toxicity will be presented and discussed

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>10</td>
<td>LECT 1.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>50</td>
<td>LECT 1.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>25</td>
<td>LECT 1.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>10</td>
<td>LECT 1.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>5</td>
<td>LECT 1.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>24</td>
<td>LECT 1.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>24</td>
<td>LECT 1.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project work</td>
<td>2</td>
<td>LECT 1.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>4</td>
<td>LECT 1.2.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
- M.T. Madigan, J. M. Martinko, P.V. Dunlap and D.P. Clark: Brock Biology of Microorganisms (Pearson/Benjamin Cummings, 2009, 12th ed.)

References

Course Website
- http://moodle.hku.hk/
Course Type

Lecture with laboratory component course

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>student-based assessment</td>
<td>laboratory report, assignment, presentations or other forms</td>
<td>60</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>student-based assessment</td>
<td>laboratory report, assignment, presentations or other forms</td>
<td>40</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
- http://moodle.hku.hk/

Additional Course Information
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3201

Offering Department
Biological Sciences

Course Co-ordinator
Dr J C Y Lee, Biological Sciences (jetailee@hku.hk)

Teachers Involved
(Dr J C Y Lee,School of Biological Sciences)
(TBC,School of Biological Sciences)

Course Objectives
To provide a basic understanding of chemistry in food systems, and to provide practical training in chemistry related to food science and nutrition.

Course Contents & Topics
The course will cover the components of food, including water, proteins, carbohydrates and lipids, and minor components such as enzymes, vitamins, minerals, colorants, flavorants and additives. The physical and chemical properties of these important constituents of foods are covered in detail, and form the basis for understanding the reactions which occur during the production, processing, storage and handling of foods, and in understanding the methods used in analyzing foods.

A series of laboratory sessions will cover analysis of food components, protein chemistry, lipid oxidation, properties of sugars and starches, enzymatic and non-enzymatic browning reactions, and sensory analysis of foods.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 understand the functions and properties of major and minor food components
- CLO 2 understand the basic chemistry behind food processing
- CLO 3 have integrated their knowledge of biological and chemical principles into a food science and nutrition context

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOC2600 or BIOL2103 or BIOL2220 or MEDE2301; and NOT for students who have passed in BIOL2101.
This course is only for students admitted in 2016-2017 or before.

Offer in 2018 - 2019
Y 1st sem Off in 2019 - 2020 : Y Examination Dec

Grade Descriptors
- A: Substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Substantial grasp of the subject. Show evidence of analytical and critical abilities and logical thinking. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentional skills.
- B: General but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. General but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentional skills.
- C: Partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentional skills.
- D: Little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentional skills are minimally effective or ineffective.

Course Type
Lecture with laboratory component course

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td>Assessment</td>
</tr>
</tbody>
</table>
BIOL3202 Nutritional biochemistry (6 credits) Academic Year 2018

Course Objectives
On successful completion of this course, students should be able to:

- CLO 1 understand the theoretical constructs of nitrogen requirement and the importance of the urea cycle
- CLO 2 understand the biochemical roles of micronutrient in human health
- CLO 3 explain the biochemical outcomes of nutrient deficiency/excess

Course Contents & Topics
Essential nutrients and their requirement;
Metabolic control of macronutrient utilization;
Microbial interactions with diet;
Metabolism of micronutrients
Nutritional impacts of hexoses, long chain polyunsaturated fatty acid, cholesterol, amino acids, vitamins and minerals

Learning Activities
Examination 60
Test 20
Reading / Self study 100
Tutorials 12
Lectures 36
Activities Details No. of Hours
Assessment Methods and Weighting
Examination 60 CLO 1,2,3,4,5
Test 40 CLO 1,2,3,4,5

Assessment Methods Details Weighting in final course grade (%) Methods to CLO Mapping

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOC2600 or BIOL2220 or MEDE2301

Additional Course Information
This course will be offered subject to a minimum enrollment number and availability of teachers

BIOL3203 Food microbiology (6 credits) Academic Year 2018

Course Objectives
This course provides the key concepts and principles of food microbiology with special emphasis on the interactions between microorganisms and food, microbial food spoilage and foodborne diseases will be discussed in detail.

Course Contents & Topics
Detection and enumeration of microbes in foods, Factors that influence microbes in foods, Spores and their significance, Physical methods of food preservation, Chemical preservation and natural antimicrobials, Foodborne pathogens

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 describe methods for evaluating microorganisms and their products in foods
- CLO 2 demonstrate an understanding of the causes of food spoilage, and predict response of a microorganism
that can spoil a given food

CLO 3 demonstrate the ability to work in a team to investigate and solve problems in food microbiology

Pre-requisites (and Co-requisites and Impossimis combinations)
Pass in BIOL2600 or BIOL2220 or MEDE2301

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y Examination May

Grade Descriptors
(A+ to F)

A Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.

B Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.

C Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.

D Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness.

Fail Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills.

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities
Lectures
Lab 24
Lab 24
Tutorials 12
Reading / Self study 100

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments
Lab reports
Seminars & continuous assessment
Examination

CLO 1 be able to critically assess and identify the specific needs at different stages of the life cycle
CLO 2 relate the concept of requirement to physiological needs
CLO 3 understand the impact of socio-cultural factors on nutritional status

Required/recommended reading and online materials
Food Microbiology: An Introduction, 2005, Thomas J. Montville and Karl Matthews, American Society for Microbiology (ASM) Press, Washington, DC

Course Website
http://moodle.hku.hk/

Additional Course Information
This course will be offered subject to a minimum enrollment number and availability of teachers

BIOL3204 Nutrition and the life cycle (6 credits)
Offering Department Biological Sciences
Academic Year 2018

Course Co-ordinator Dr J C Y Louie, Biological Sciences (jimmyl@hku.hk)

Course Objectives
Nutritional needs vary throughout different stages of the life cycle. This course aims to cover the functional roles of essential macro- and micro-nutrients and highlight the nutritional concerns during specific times of growth, development, and aging.

Course Contents & Topics
Teaching and learning will take place through an evidence-based approach and will be organized around key issues: needs of macro- and micronutrients, as well as the physiological and psychological determinants that influence nutrient requirements at different stages of the human life cycle. Socio-economic factors that influence dietary habit and nutritional status will also be covered.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 be able to critically assess and identify the specific needs at different stages of the life cycle
CLO 2 relate the concept of requirement to physiological needs
CLO 3 understand the impact of socio-cultural factors on nutritional status

Pre-requisites (and Co-requisites and Impossimis combinations)
Pass in BIOL3202

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y Examination May

Grade Descriptors

A Demonstrate thorough grasp of the subject matter covered. Show exceptional ability on knowledge integration, problem identification and solving. Show outstanding ability to critically analyze and interpret scientific data and draw appropriate conclusions. Demonstrate highly effective team-based organization and presentation skills.

B Demonstrate substantial grasp of the subject matter covered. Show full ability on knowledge integration, problem identification and solving. Show reasonable ability to critically analyze and interpret scientific data and draw appropriate conclusions. Demonstrate effective team-based organization and presentation skills.

C Demonstrate general but incomplete grasp of the subject matter covered. Might show misunderstanding of the materials. Show some knowledge on nutrition integration, problem identification and solving. Show some ability to analyze and interpret scientific data and draw proper conclusions. Demonstrate adequately effective team-based organization and presentation skills.

D Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Misunderstanding of the materials is not uncommon. Show limited ability on knowledge integration, problem identification and solving. Use elementary approaches to analyze and interpret scientific data and draw sometimes erroneous conclusions. Demonstrate team-based organization and presentation skills of limited effectiveness.

Fail Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in problem solving. Fail to integrate information and identify problems. Seriously deficient in ability to analyze and interpret scientific data and draw conclusions. Demonstrate poor organization and presentation skills.

506
BIOL3205 Human physiology (6 credits) Academic Year 2018

Offering Department
Biological Sciences

Course Co-ordinator
Dr W Y Lui, Biological Sciences (wylui@hku.hk)

Teachers Involved
- (Dr C B Chan, Biological Sciences)
- (Dr W Y Lui, Biological Sciences)
- (Prof A O L Wong, Biological Sciences)

Course Objectives
The course covers major aspects of the physiology of the human body using an integrated approach. After completing this course, students will have acquired fundamental principles of how the body works. Students interested in nutrition and human biology will find this course most useful.

Course Contents & Topics
Overview of the physiological systems and homeostasis; Neural and hormonal communication; Nervous system physiology; The digestive system; Cardiac physiology, the blood vessels and blood pressure; The respiratory system; The urinary system; The skeletal & muscular system; Sensory mechanisms; Biological rhythms; Central-peripheral communication in energy homeostasis.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 comprehend the essence of how the body meets changing conditions while maintaining a relatively constant internal environment
- CLO 2 understand the functions of various body systems
- CLO 3 explain normal body functions through integration of basic physiologic concepts

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOC2600 or BIOL2103 or BIOL2220 or MEDE2301

Offer in 2018 - 2019
- Grade Descriptors (A+ to F)
- Y 1st sem Offer in 2019 - 2020 : Y
- Examination Dec

Course Type
Lecture-based course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Group project</td>
<td>20</td>
<td>CLO 1,2</td>
</tr>
<tr>
<td>Essay</td>
<td>Critical appraisal</td>
<td>20</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>60</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Additional Course Information
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3206 Clinical nutrition (6 credits) Academic Year 2018

Offering Department
Biological Sciences

Course Co-ordinator
Dr J M F Wan, Biological Sciences (jmfwan@hku.hk)

Teachers Involved
- (Dr J M F Wan, Biological Sciences)
Course Objectives

This course aims to provide understanding and insight into diseases associated with diet and basic dietetics, specifically to:

1. Explain the relationships between diet and disease.
2. Describe the role of diet in the development and prevention of common chronic diseases such as diabetes, obesity and anorexia, cardiovascular disease, cancer, immune deficiency and renal failure.
3. Differentiate risk factors that influence dietary choice.
4. Describe the rationales for postoperative nutritional support for hospitalized patients.

Course Contents & Topics

The basics of nutrition for health and fitness and medical nutrition therapy. The role of diet in the development and prevention of chronic diseases such as cancer, diabetes, obesity and anorexia, cardiovascular diseases, renal failure, etc. Malnutrition. Nutrition and immune function. Medical nutrition therapy for food allergy and food intolerance. Nutrition in pregnancy and lactation.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 discuss the different relationships between diet and disease
CLO 2 describe the role of diet in the development and prevention of diabetes, obesity and anorexia, cardiovascular disease, cancer, immune deficiency, and renal failure
CLO 3 clearly differentiate and interpret risk factors that influence dietary choice
CLO 4 describe the rationales for postoperative nutritional support for hospitalized patients

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL3202 or BIOL3203 or BIOL3204 or BIOL3205

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y Examination May

Grade Descriptors (A to F)

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective laboratory/fieldwork skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Substantial grasp of the subject. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply laboratory/fieldwork skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presnetational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. General but incomplete grasp of the subject. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective laboratory/ fieldwork skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Partial but limited grasp of the subject, retention of some relevant information of the subject. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presenational skills. Apply partially effective lab/fieldwork skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presenational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Little or no grasp of the knowledge and understanding of the subject. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective laboratory/ fieldwork skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Course Type

Lecture-based course

Course Teaching & Learning Activities

Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 100

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments 20 CLO 1,2
Examination 60 CLO 1,2,3,4
Presentation 20 CLO 1,2,3,4

Required/recommended reading and online materials

Selected readings will also be available on the class website. S. Rodwell Williams: Nutrition and Diet Therapy (7th ed.) Suiitor & Hunter: Nutrition: Principles and Application in Health Promotion Wardlaw Gordon: Perspectives in Nutrition (2nd ed.)

Course Website

http://moodle.hku.hk/

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3207 Food and nutritional toxicology (6 credits)

Academic Year 2018

Offering Department Biological Sciences

Course Co-ordinator Dr H S El-Nezami, Biological Sciences (elnezami@hku.hk)

Teachers Involved (Dr H S El-Nezami,Biological Sciences)

Course Objectives

To introduce students to methods used in assessing the toxicity of food contaminants, and to develop their confidence in the handling and interpretation of toxicological data. Students will also be introduced to the basic concepts behind toxicological evaluation, and the criteria for setting guidance values for dietary and nondietary exposure to chemicals. Students will understand the role of biochemical, metabolic and toxicokinetic studies in toxicological evaluation. This course aims to equip students with basic skills in conducting food toxicological studies.

Course Contents & Topics

Topics include a discussion on exposure and entry routes, fates of toxic substances in the body (toxicokinetics), concepts in experimental toxicology, the dose response relationship, actions of toxic substances, target organ effects, the actions and types of carcinogens. A survey of the health effects of common classes of toxic substances is also presented.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 demonstrate an understanding of the processes involved in absorption, distribution, metabolism and excretion of toxicants, including an understanding of the toxicokinetic behavior of toxicants in mammals
CLO 2 demonstrate an understanding of the various effects induced after exposure to toxicants

508
CLO 3: Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Demonstrate highly effective team-based organizational and presentational skills.

CLO 4: Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL2600 or BIOL2220 or BIOL3205 or MEDE2301

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

A: Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.

B: Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate but often erroneous conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.

C: Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.

D: Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness.

Fail: Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills.

Course Type: Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>seminars & continuous assessment</td>
<td>40</td>
<td>CLO 2.4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>40</td>
<td>CLO 1.2,3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>20</td>
<td>CLO 2</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

S. S. Deshpande: Handbook of Food Toxicology (Marcel Dekker Inc., NY, 2002)

Course Website

http://moodle.hku.hk/

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3208

Food safety and quality management (6 credits)

Offering Department: Biological Sciences

Quota: 45

Course Co-ordinator: Dr O Habimana, Biological Sciences (ohabim@hku.hk)

Course Objectives

To provide exposure to some key management concepts used to produce safe high-quality food products that will succeed in the marketplace. To introduce students to analysis and problem-solving of realistic business situations in food safety management.

Course Contents & Topics

- The regulatory, social and business imperative for food safety.
- Basic concepts in TQM
- Statistical Process Control
- Quality Function Deployment
- Quality management standards (ISO 9000)
- Development and implementation of a Hazard Analysis Critical Control Point (HACCP) plan (within an ISO 22000 food safety management system/ supply chain approach)
- Role of environmental management systems (ISO 14000) in the food industry
- Intellectual Property issues in the food industry
- Religious, ethical, and cultural food choices
- Illustrative business case studies on food safety management will be discussed

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1: Understand the historical development of government regulation of food safety

CLO 2: Be familiar with a set of management techniques applicable in the food industry

CLO 3: Be able to analyze food production problems and make recommendations for action to improve quality and safety

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL201 or BIOL303

Offer in 2018 - 2019

N Offer in 2019 - 2020 : N

Grade Descriptors (A+ to F)

A: Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.

B: Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.
Course Type	Lecture-based course
Course Teaching & Learning Activities
Activities | Details | No. of Hours
--- | --- | ---
Lectures | 36
Tutorials | including presentation 12
Group work | 30
Reading / Self study | 100
Assessment Methods and Weighting
Methods | Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping
--- | --- | --- | ---
Assignments | 10 | CLO 2
Examination | 60 | CLO 1,2,3
Project reports | including presentation 30 | CLO 2,3
Required/recommended reading and online materials
Course Website | http://moodle.hku.hk/
Additional Course Information
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3209

Academic Year: 2018

Offering Department: Biological Sciences

Course Co-ordinator: Dr J C Y Lee, Biological Sciences (jtylee@hku.hk)

Teachers Involved: (Dr J C Y Lee, Biological Sciences) (Dr M F Wang, Biological Sciences)

Course Objectives
To introduce basic principles and provide practical training in food and nutrient analysis. To help students to understand the principles behind analytical instruments used in food analysis. To train students to analyze major and minor food components as well as some food adulterants.

Course Contents & Topics
The key concepts in professional food analysis in an industry context will be introduced. Basic analytical techniques for macronutrients (e.g., protein, carbohydrate and fats), micronutrients (vitamins and minerals) and adulterants in food will be covered. A variety of classical and instrumental techniques used in food analysis will be discussed: rheology and texture measurement, thermal analysis, color, spectroscopy, chromatography and electrophoresis.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 understand the basic principles of food and nutrient analysis
CLO 2 be familiar with a variety of classical and instrumental analytical techniques
CLO 3 understand the principles behind analytical instruments associated with food
CLO 4 be able apply their knowledge and laboratory skills in novel situations to measure and analyze the macronutrient and micronutrient of food products
CLO 5 be able to select and justify an appropriate analytical technique to solve practical food analysis problems

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL2101 or BIOL3201

Offer in 2018 - 2019

Grade Descriptors (A+ to F)	1st sem	Offer in 2019 - 2020: Y	Examination	Dec
A | Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills. |
B | Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills. |
C | Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. |
D | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness. |

Fail

Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw data sometimes inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills.
BIOL3210

Grain production and utilization (6 credits)

Offering Department Biological Sciences
Course Co-ordinator Prof H Corke, Biological Sciences (harold@hku.hk)

Course Objectives
To provide a broad understanding of the utilization and significance of the major grains in the food industry and in human health and nutrition.

Course Contents & Topics
- Global grain production and consumption
- The Green Revolution and its aftermath
- International grain trade
- Wheat: flour milling, dough rheology, the baking process, baking quality
- Wheat: quality of Asian products including steamed bread and noodles
- Rice: nutritional quality, consumer preferences, milling, quality, quality testing, products
- Maize: products of wet milling, animal feed development
- Biofuels focusing on bioethanol
- Illustrative business case studies on the grain processing industry will be discussed

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 understand the major production, import, and export patterns that support the global utilization of grain
- CLO 2 understand the technology behind the production of grain-based foods
- CLO 3 understand the scope and nature of professional level quality testing for grain products
- CLO 4 appreciate the constraints to global food sufficiency
- CLO 5 appreciate the ethical issues behind the diversion of grain into meat and biofuel production

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in any level 2 BIOL course

Offer in 2018 - 2019
N Offer in 2019 - 2020 : N

Grade Descriptors (A to F)

A Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presenntational skills.

B Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presenntational skills.

C Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presenntational skills.

D Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presenntational skills of limited effectiveness.

Fail Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results inappropriately, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffective team-based organizational and presenntational skills.

Course Type Lecture-based course

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Examination 70 CLO 1,2,3,4,5

Required/recommended reading and online materials
Other readings to be provided

Additional Course Information
This course will be offered subject to a minimum enrolment number and availability of teachers.
Regulation of gene expression; Single Nucleotide Polymorphisms and relation to diseases.
Overview of lipid metabolism; cholesterol metabolic pathway; hyperlipidaemia, LDL, receptor mutations.
Relevance of folate, vitamin B12; hyperhomocysteinemia and gene polymorphisms in diseases.
Epigenetics, Barker’s hypothesis, influence of maternal nutrition in fetal gene expression. Obesity, genetic predisposition, candidate genes like leptin, FTO and other hormones involved in the control of appetite
Polyunsaturated fatty acid and their roles in the control of gene expression example lipogenesis and lipid oxidation pathways.
Inborn errors of metabolism in the context of genetic mutations and personalized diet therapy

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 explain the principles of the control of gene expression
CLO 2 demonstrate understanding of the role of metabolic pathways in relationship to diet, gene expression and disease
CLO 3 discuss how genetic variations are used to study the role of genes in nutrient-related cellular processes
CLO 4 explain the relationship between genotype, epigenetics and diet-related diseases
CLO 5 critically evaluate current theories of personalized nutrition based on individual genetic variation

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOC2600 or BIOIL2220 or MEDE2301

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y Examination Dec

Grade Descriptors (A+ to F)
A Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use practical skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly
B Demonstrate effective or substantial ability to critically analyze and interpret complex scientific data and draw proper conclusions. Demonstrate substantial and consistent ability in knowledge integration and problem solving skills. Show limited ability to analyze and interpret scientific data and draw proper conclusions. Demonstrate moderate organization and writing skills.
C Demonstrate marginal grasp of the subject matter covered. Show limited ability on knowledge integration and problem solving skills. Show little or no grasp, with little retention of information of the subject matter covered. Show lack of coherent and logical thinking, and minimal evidence in problem solving. Fail to integrate information and identify problems. Show little or minimal ability to analyze and interpret scientific data and draw conclusions. Demonstrate poor organization and writing skills.
D Demonstrate little or no grasp, with little retention of information of the subject matter covered. Show lack of coherent and logical thinking, and minimal evidence in problem solving. Fail to integrate information and identify problems. Show little or minimal ability to analyze and interpret scientific data and draw conclusions. Demonstrate poor organization and writing skills.

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td>student-centered learning</td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>60</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>20</td>
<td>CLO 1</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Lehninger Principles of Biochemistry
Ondovas: Nutrigenetics and Nutrigenomics, Wiley, 2004
Rimbach, Fuchs, Packer: Nutrigenomics, CRC Press. 2005
Journals in Nutrition, Molecular Biology and Genetics

Course Website
http://moodle.hku.hk/

Additional Course Information
This course will be offered subject to a minimum enrollment number and availability of teachers.
With our current global population estimated to reach 9.1 billion in 2050, food production will be expected to increase by 70% to meet food demand. However, our current world food supply is instead declining, with 1/4 to 1/3 of all food produced for human consumption lost or wasted. This amounts to a staggering 1 to 2 billion metric tons per year! Clearly we should be worried about food wastage.

In this course, the social, economic, and environmental implications associated with food waste will be identified, by presenting relevant facts and figures. Case studies showing the impact of waste on agricultural, industrial and consumer waste types. Basic waste management concepts will also be covered, including current waste management in Hong Kong compared to other countries in Asia, while providing the basis for examining our own personal waste footprint. This course will address current applications and limitations of food waste treatment technologies.

- Background, Definitions, Social & Environmental implications of food waste
- Facts and figures related to food Waste
- Basic Waste Management concepts (3 Rs)
- Case studies: Agricultural waste
- Case studies: Food Industrial waste
- Case studies: Food consumer waste
- Waste Management in Hong Kong vs other countries in Asia
- Individual waste footprint: from awareness to legislation in Hong Kong
- Current Technological applications & limitations in food waste treatment

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand and define the various types of waste as well as create an awareness of individual waste footprint.
- CLO 2 be able to define the 3 Rs in waste management (reduce, reuse, recycle), and be familiarized with waste polices in Hong Kong compared to other countries in Asia/Worldwide.
- CLO 3 be able to describe current and novel technologies for treating waste, as well as transforming waste into value added resources.
- CLO 4 to develop written and oral presentation skills necessary to effectively convey technical, economic, and social information related to waste management.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL2101 or BIOL3201

Grade Descriptors (A+ to F)

A - Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use quality management skills and techniques and analysis of data and results to draw generally appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.

B - Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use quality management skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.
Food, environment and health (6 credits)

To demonstrate skills to become effective environmental educators to communicate the issues of food and environment and their impacts on human health. The holistic approach used will help the students to navigate complex real-world problems. The course will consist of three blocks: 1) The influence of food consumption on the environment; 2) The impact of environment on food and human health, and 3) What actions can improve these interactions, through evidence-based case examples. A Problem Based Learning (PBL) approach will be used with emphasis on 'real-life' cases connecting human nutrition, well-being and environmental health. Topics will include impacts of certain dietary habits and demands on food systems (e.g. demand for cheap and chemical-intensive farming) and its consequences on the environment (e.g. pollution, soil and water quality, climate change), food resources (growth, production, consumption, processing, distribution and disposal) and health.

Course Objectives

CLO 1	To understand multifactorial and interdisciplinary relations in sustainable environment and nutrition
CLO 2	To address today’s national and global challenges in the environmental and food sectors
CLO 3	To understand historical and current aspects (agricultural production, policy initiatives) locally, in Asia and worldwide
CLO 4	To address and analyze food/environment issues including food production, consumption, and the fulfillment of the right to adequate food; strengths and weaknesses of political, social, and economic policies and other interventions
CLO 5	To demonstrate skills to become effective environmental educators to communicate the issues of food and environment to a variety of audiences and to apply theoretical knowledge while designing an applicable intervention in public setting

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>10</td>
<td>CLO 1.2.3</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>60</td>
<td>CLO 1.2.3.4</td>
<td></td>
</tr>
<tr>
<td>Project reports</td>
<td>30</td>
<td>CLO 2.3.4</td>
<td></td>
</tr>
</tbody>
</table>

Additional Course Information

This course will be offered subject to a minimum enrolment number and availability of teachers.

Course Website

http://moodle.hku.hk

BIOL3217

Food, environment and health (6 credits)

Offering Department

Biological Sciences

Course Coordinator

Dr T. Sobko, Biological Sciences (tosbko@hku.hk)

Teachers Involved

Dr T Sobko, School of Biological Sciences

Pre-requisites

Pass in BIOL 2101 or ENV S2001 or ENV S2002 or BIOL3201

Offer in 2018 - 2019

Y 2nd sem

Grade Descriptors (A+ to F)

A | Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use quality management skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills |
B	Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking, with some evidence of competence in proficient skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills
C	Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills
D	Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate basic team-based organizational and presentational skills
Fail	Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills

School of Biological Sciences
School of Biological Sciences

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>with practicals</td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Project work</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Tutorial assessment (40%); Group project and presentation (50%) and Critical review (10%)</td>
<td>100</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

There is no course textbook. Most of the reading material will be provided on Moodle or distributed during lectures.

Course Website
http://moodle.hku.hk

BIOL3218

Food hygiene and quality control (6 credits)

Offering Department
Biological Sciences

Quota
30

Course Co-ordinator
Dr O Habimana, Biological Sciences (ohabim@hku.hk)

Teachers Involved
(Dr L Zhang, School of Biological Sciences) (Dr Q Habimana, School of Biological Sciences)

Course Objectives
To provide exposure to some key management, microbiology and food processing concepts used to produce safe high-quality food products. To introduce students to analysis and problem-solving of realistic business situations in food safety management.

Course Contents & Topics
- The regulatory, social and business imperative for food safety.
- Basic concepts in TQM
- Statistical Process Control
- Quality Function Deployment
- Quality management standards (ISO 9000)
- Development and implementation of a Hazard Analysis Critical Control Point (HACCP) plan (within an ISO 22000 food safety management system/ supply chain approach)
- Role of environmental management systems (ISO 14000) in the food industry
- A review of microbiology in a food safety context
- Religious, ethical, and cultural food choices
- Illustrative business case studies on food safety management will be discussed

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 understand the basic microbiological and food processing concepts in food safety
- CLO 2 be familiar with a set of management techniques applicable in the food industry for promoting food safety
- CLO 3 be able to analyze food production problems and make recommendations for action to improve quality and safety

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL3101 or BIOL3201 or BIOL3203
Not for students who have passed in BIOL3208

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020: Y

Grade Descriptors (A to F)

- **A** Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use quality management skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.

- **B** Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.

- **C** Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.

- **D** Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate limited effectiveness team-based organizational and presentational skills.

- **Fail** Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills.

Assessment Methods
Lecture-based course

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Group work</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Project work</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Tutorial assessment (40%); Group project and presentation (50%) and Critical review (10%)</td>
<td>100</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Course Website
http://moodle.hku.hk
BIOL3301 Marine biology (6 credits)
Offering Department Biological Sciences
Academic Year 2018
Quota 40

Course Co-ordinator Dr M Yasuhara, Biological Sciences (yasuhara@hku.hk)
Teachers Involved (Dr B Russell, Biological Sciences)
(Dr M Yasuhara, Biological Sciences)
(Dr S Cannici, Biological Sciences)

Course Objectives
To develop a basic understanding and appreciation of the field of marine biology, including the fascinating diversity of marine life, their function, ecology and inter-rerelationships. Contemporary issues including the benefits we derive from marine biological resources and threats to their long-term sustainability will also be discussed with case studies highlighting key issues.

Course Contents & Topics
The topics cover:
1. The physical and chemical environments (e.g., light, current, atmospheric-ocean interactions, salinity, temperature, pH, dissolved oxygen, nutrients) and how these may affect the marine biota
2. Important groups of marine organisms (e.g., phytoplankton, zooplankton, benthos, nekton, marine mammals) and marine food web
3. Major marine habitats and ecosystems (e.g., intertidal, benthic, pelagic, deep sea, coral reefs, mangroves)
4. Exploitation of marine biological resources (e.g., fisheries and bioactive compounds)
5. Contemporary issues (e.g., climate change, marine pollution, sustainable use of marine living resources, invasive species)

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 demonstrate a basic understanding of the diversity and function of marine biota
CLO 2 recognize the interactions of marine biota and their environments
CLO 3 appreciate the importance of marine ecosystems and the threats of human activities on their long-term sustainability as well as possible solutions

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL2306 or ENV2002

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020: Y
Examination Dec

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type Lecture with laboratory component course

Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures 24
Field work 30
Reading / Self study 100

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%)
Assignments 20
Examination 80
CLO 1 20
CLO 2 40
CLO 3 40

Required/recommended reading and online materials
H. V. Thurman and E. A. Burton: Introductory Oceanography (Prentice Hall, 2001, 9th ed.)
J. W. Nybakken: Marine Biology: An Ecological View (Benjamin Cummings, 2000)
TBC

Course Website http://www.biosch.hku.hk/ecology/lsc/

BIOL3302 Systematics and phylogenetics (6 credits)
Offering Department Biological Sciences
Academic Year 2018
Quota 60

Course Co-ordinator Prof R M K Saunders, Biological Sciences (saunders@hku.hk)
Teachers Involved (Prof R M K Saunders, Biological Sciences)

Course Objectives
To give students an understanding of the principles of systematics and phylogenetics and an appreciation of current trends and controversies. Systematics forms an invaluable grounding for many fields of biology (including anatomy, ecology, population biology and evolutionary biology), and enables the integration of a wide range of techniques (including anatomy, biochemistry, chemistry, molecular biology, cytology, palaeontology and ethology).

Course Contents & Topics
Current classificatory theories: phenetic systematics (classifications based on overall resemblances) and cladistics (evolutionary reconstruction). The species concept. Sources of taxonomic data: morphology & anatomy, biochemistry, chemistry, molecular biology, cytology, and ethology. Causes of taxonomies complexity: environmental factors; hybridization; breeding systems. Principles of nomenclature. Laboratory sessions will be aimed at illustrating taxonomic procedures and problems; students will not be expected to memorize large numbers of scientific names.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 demonstrate a basic understanding of the diversity and function of marine biota
CLO 2 recognize the interactions of marine biota and their environments
CLO 3 appreciate the importance of marine ecosystems and the threats of human activities on their long-term sustainability as well as possible solutions

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL2306 or ENV2002

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020: Y
Examination Dec

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type Lecture with laboratory component course

Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures 24
Field work 30
Reading / Self study 100

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%)
Assignments 20
Examination 80
CLO 1 20
CLO 2 40
CLO 3 40

Required/recommended reading and online materials
H. V. Thurman and E. A. Burton: Introductory Oceanography (Prentice Hall, 2001, 9th ed.)
J. W. Nybakken: Marine Biology: An Ecological View (Benjamin Cummings, 2000)
TBC

Course Website http://www.biosch.hku.hk/ecology/lsc/
CLO 1 explain taxon concepts (with particular reference to species) and show how multivariate statistical methods can be applied below the species level

CLO 2 describe the principles behind maximum parsimony methods of phylogenetic reconstruction (including sister-group relationships, out-group comparison, homoplasy and the assessment of clade stability)

CLO 3 evaluate the diversity of sources of taxonomic data, and explain the importance of specific data sources

CLO 4 recognise the main causes of taxonomic complexity, and identify appropriate solutions

CLO 5 understand the principles of nomenclature in order to interpret the previous application of scientific names are validly published names

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL1309; and Any level 2 BIOL course

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y Examination Dec

Grade Descriptors (A to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining most or all of the course learning outcomes, with evidence of extensive background reading and use of named examples. Show evidence of significant critical abilities and logical thinking. Apply highly effective presentation skills. Demonstrate effective use of data and results to draw appropriate and insightful conclusions. Show evidence of general integration of appropriate theories, principles, evidence and techniques.

B Demonstrate substantial command of knowledge required for attaining most of the course learning outcomes, with evidence of some background reading and use of named examples. Show evidence of critical abilities and logical thinking. Apply effective presentation skills. Demonstrate use of data and results to draw appropriate and insightful conclusions. Show evidence of general integration of appropriate theories, principles, evidence and techniques.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes, with evidence of some critical abilities and logical thinking. Apply moderately effective presentation skills. Demonstrate mostly correct use of data and results to draw appropriate and insightful conclusions. Show evidence of partial integration of appropriate theories, principles, evidence and techniques.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes, with evidence of limited critical abilities and logical thinking. Apply limited presentation skills. Demonstrate limited ability to use data and results to draw appropriate and insightful conclusions. Show evidence of limited integration of appropriate theories, principles, evidence and techniques.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes, with no evidence of background reading or use of named examples. Show little or no evidence of critical abilities and logical thinking. Presentational skills are minimally effective or ineffective. Misuse of data and results to draw appropriate conclusions. Show little or no evidence of integration of appropriate theories, principles, evidence and techniques.

Course Type Lecture with laboratory component course

Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures 24
Laboratory 24
Project work 12
Reading / Self study 100

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments 15 CLO 1,3,4,5
Examination 70 CLO 1,2,3,4,5
Laboratory reports 15 CLO 1,3

Required/recommended reading and online materials
TBC

Course Website http://www.biosch.hku.hk/ecology/lsc/

BIOL3303 Conservation biology (6 credits) Academic Year 2018
Offering Department Biological Sciences Quota 60
Course Co-ordinator Dr T C Bonebrake, Biological Sciences (tbone@hku.hk)
Teachers Involved (Dr L G Gibson,Biological Sciences)
(Dr T C Bonebrake,Biological Sciences)
(Prof Y Sadovy,Biological Sciences)

Course Objectives
To introduce students to the theory and practice of conservation and to provide students with a thorough understanding of practical, economic and management skills required for proficiency in conservation biology. Our ultimate aim is to promote an understanding of the natural biodiversity, the threats to it, and the best ways to manage them. We hope these will be your aims too, and that you will be able to use the skills and knowledge you learn from the course to reduce the local, regional and global loss of biodiversity.

Course Contents & Topics
Among the many environmental issues, the most serious is the increasingly rapid loss of biodiversity. This loss is irreversible on a human timescale and will reduce the options available to all future human generations. Conservation Biology/Ecology is the science of preserving biological diversity. This course also provides insights to the many benefits and services that nature offers and explores strategies for management options to sustain ecological integrity and production. It is an inexact, applied, mission-orientated, multidisciplinary science which, like medicine, has built-in values: to a conservation biologist, as to a doctor, it matters whether the patient lives or dies.

The course is designed to provide the knowledge, theories, and research related to biodiversity conservation. Our teaching focuses on biodiversity conservation, conservation issues associated with climate change, the key theoretical underpinning of biodiversity conservation and an introduction to conservation legislation and economics. We emphasis on the integration of knowledge, skills and abilities that are required to practice conservation. Our problem based learning approach will require students to actively participate in their group project/class room debate by researching.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 develop a framework for critical thinking about biodiversity, environment and human interaction
- CLO 2 understand why species are becoming extinct and predict which ones will be most vulnerable
- CLO 3 understand the importance of the threat of tropical deforestation, marine and coastal degradation, and habitat fragmentation in species extinction, and explain the main forces behind habitat and biodiversity loss
- CLO 4 understand the principles of population viability analysis, the basis of single-species conservation
management and the role of the ex situ conservation, ecological restoration and reintroduction in conservation.

CLO 5 outline the legal and administrative basis for conservation in Hong Kong and the world.

CLO 6 appreciate the roles and relationships of economic, social and environmental sciences in the conservation of biodiversity.

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL2306

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y Examination May

Grade Descriptors
(A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, ability to integrate and synthesize information, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective presentational skills. Strong evidence of clear attention to thoughtful and reflective thinking.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, integration of materials and ability to apply knowledge to familiar and some unfamiliar situations. Demonstrate effective presentational skills. Evidence of clear attention to thoughtful and reflective thinking.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective presentational skills. Little evidence of clear attention to thoughtful and reflective thinking.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities and little attempt at integration. Show limited ability to apply knowledge to solve problems. Apply limited effectiveness in presentational skills. Lack of attention to thoughtful and reflective thinking.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities
Activity Details No. of Hours
Lectures
Field work
Group work
Tutorials
Reading / Self study

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments
Examination
Presentation
Test

Required/recommended reading and online materials
NIL

Course Website
http://www.biosch.hku.hk/ecology/lsc/

BIOL3305 Tropical and temperate marine ecology field course (6 credits) Academic Year 2018

Offering Department Biological Sciences
Quota 15

Course Co-ordinator (Dr B Russell, Biological Sciences (brussell@hku.hk))
Teachers Involved (Dr B Russell,Biological Sciences)

(Dr S Cannicci,Biological Sciences)

Course Objectives
This course uses a field-based approach to provide students with an advanced understanding of marine and estuarine ecology in both tropical and temperate regions. Students will learn scientific techniques in Hong Kong and then apply them to compare these ecosystems in Australia, experiencing their similarities and differences. The course culminates with students developing field-based research projects to answer ecological questions, using creative and innovative thinking to overcome problems for successful outcomes.

Course Contents & Topics
The course will cover the structure and function of mangrove forests, reefs (coral and rocky), and algal forests in both tropical and temperate regions. Students will be introduced to the concepts in the course through a series of lectures and field trips in Hong Kong before travelling to northern and southern Australia to experience the ecosystems in the field. The lectures will provide students with background knowledge about the ecosystems which they will encounter, the structure and function of the systems and how human activities degrade them, sampling techniques, logical experimental design, and good report writing practices. These concepts will be drawn together in the field with students quantifying species richness, observing system structure and testing hypotheses with experiments that they design themselves.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 demonstrate an understanding of the complexity and function of marine ecosystems.

CLO 2 explain the role of physical and biological processes in shaping the similarities and differences among marine ecosystems in tropical and temperate regions.

CLO 3 demonstrate skills for field sampling in marine and estuarine habitats.

CLO 4 demonstrate knowledge in hypothesis testing and experimental design.

CLO 5 identify a range of marine species and their role in ecosystems.

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in "C" or above in BIOL2306 or BIOL3301 or BIOL3303 or ENVS2001

Offer in 2018 - 2019
Y Summer Offer in 2019 - 2020 : Y Examination No Exam

Grade Descriptors
(A+ to F)
A Evidence of a thorough grasp of the subject and relevant research techniques. Eagerness and enthusiasm to learn and excellent familiarity with relevant background reading and case studies. Exemplary handling of field data collection and excellent analytical skills. Ample evidence of independent critical thought with excellent use of a broad range of fundamental concepts and broader
A CLO 1,2,3,4,5
Field report (20%) + Project
40
Prof D Dudgeon, Biological Sciences

Outcomes & Topics
Course Contents and Topics
The amount of water on Earth is fixed. Less than 0.01% of the world's water is in lakes and rivers, yet this water hosts 10% of the Earth's species. Global water use has increased 300% since 1950 and is growing faster than the Earth's population; many people in Asia already face water stress. This course introduces the principles of river science and human use of drainage basins. Emphasis will be placed upon conservation of freshwater biodiversity in Asia in the context of increasing human modification of ecosystems, habitat degradation and water scarcity.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 describe the global water cycle, the main sources and pathways of energy in freshwaters, and the influence of land-water interactions on aquatic productivity
CLO 2 describe the composition of the freshwater biota (major groups) and their functional roles in aquatic ecosystems, and identify some of the common animals that occur in Hong Kong fresh waters
CLO 3 describe the results of modification of freshwater ecosystems by humans, list the main threats to human impacts on freshwater ecosystems and maintain water quality is introduced.

Additional Course Information
This course involves a two-week field course to Australia, one week in the Sydney (temperate region) and one week on Orpheus Island (tropical region). Students will be exposed to some harsh environmental conditions including working in contact with seawater, potentially cold and rainy weather. Orpheus Island can have an abundance of biting insects (mosquitoes and sand flies).

There will be extra costs involved in the course, including but not limited to airfares, accommodation and meal costs.

Enrollment Procedure:
Enrollment for this course will close at the end of the add/drop period of the second semester because airfares and accommodation for the trip need to be booked in advance.

Students will be directed to relevant scientific literature and websites

http://www.biosch.hku.hk/ecology/lsc

Course Website

BIOL3313
Freshwater ecology (6 credits) Academic Year 2018

Offering Department Biological Sciences

Course Co-ordinator Prof D Dudgeon, Biological Sciences (ddudgeon@hku.hk)

Teachers Involved (Prof D Dudgeon, School of Biological Sciences)

Course Objectives
This course introduces freshwater science by integrating the physical and biological components of rivers and their drainage basins in the context of sustaining human livelihoods and biodiversity. Conservation and management of lakes and maintenance of water quality are considered also. Case studies are used to illustrate the principles of river science and human use of drainage basins. Emphasis will be placed upon conservation of freshwater biodiversity in Asia in the context of increasing human modification of ecosystems, habitat degradation and water scarcity.

Required/recommended reading and online materials

Students will be directed to relevant scientific literature and websites

Assessment Methods and Weighting

Assignments
Methods
Presentation
Details
20
Weighting in final course grade (%)
Assessment Methods to CLO Mapping
CLO 1,2,3,4,5
No. of Hours
Field work
Field course: 80 hrs + travel time
80
Reading / Self study
40
Lectures
Pre-course lectures and field trips
20
Activities
Details
No. of Hours
Test
Pre-trip quiz
5
CLO 1
Report
Field report (20%) + Project report (55%)
75
CLO 1,2,3,4,5

Course Type
Field camps

Academic Year
2018

Quota
30

Quota

School of Biological Sciences
To survey the form and function of the vascular plant body, with particular emphasis on the evolutionary significance of structures. This course forms a basis for understanding plant physiology, ecology, systematics and phylogenetics.

Course Contents & Topics

The course will investigate various cell, tissue and organ types in the vascular plant body, with functional explanations for their diversity and discussions of the value of such knowledge in understanding plant phylogeny. Information on plant structure will be integrated with our current understanding of developmental genetics and explanations for their diversity and discussions of the value of such knowledge in understanding plant phylogeny.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1: Recognise the main plant cell types and explain how cells are integrated to form specific primary tissues (such as the xylem and phloem).
- CLO 2: Describe the developmental changes that occur in primary tissues with the onset of secondary growth.
- CLO 3: Describe the structure, function and development of secondary vegetative structures (wood and bark).
- CLO 4: Integrate knowledge of the genetic control of floral development with the evolution of organ diversity.
- CLO 5: Describe the structure of fruits from a functional perspective and recognise how these structures are derived from the flower.
- CLO 6: Explain how seeds develop after fertilization of the ovule, and how differences in seed structure influence germination patterns.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>30</td>
<td>CLO 2</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>60</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>10</td>
<td>CLO 3</td>
</tr>
</tbody>
</table>

Laboratory reports 10 CLO 3

Laboratory reports 10 CLO 3

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Laboratory</td>
<td>project and laboratory work; field trips to local streams and wetlands</td>
<td>40</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

An online training tool developed by an international team (including the course coordinator) that contains information on the physical and biological features of rivers, and shows how human livelihoods depend on river health.

A list of references available in HKU library will be provided for each lecture on the course website.

Additional Course Information

Offer in alternate year from 2017-2018

This course will be offered subject to a minimum enrollment number and availability of teachers.
Experimental intertidal ecology (6 credits)

Offering Department
Biological Sciences

Course Co-ordinator
Prof G A Williams, Biological Sciences (hrbwa@hku.hk)

Teachers Involved
(Prof G A Williams, School of Biological Sciences)

Course Objectives
To examine the communities of coastal systems: their distribution, composition and the factors which regulate them. This course will examine, using an experimental approach, patterns exhibited by a range of shores and the deterministic and stochastic processes that create and sustain them. Hong Kong shores will be used as examples but comparisons will be drawn from the coastlines of the world.

Course Contents & Topics
The first part of this course describes shores of the marine to brackish water continuum and the communities found on them. Lectures will cover the physical environment of the intertidal (e.g. tides; waves; geological and hydrological processes) the resultant variations in exposure and shore types and consequent distribution of animals and algae on these shores (vertical and horizontal zonation patterns) with specific Hong Kong examples. The second part of the course uses an experimental approach (e.g. sampling methodology; manipulative techniques; experimental design and data analysis) to investigate the factors (e.g. predation; herbivory; competition; disturbance; succession; patchiness and recruitment; supply side ecology) that structure these shores, with particular focus on rocky intertidal shores.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- **CLO 1** Describe the physical environmental factors (e.g., waves, tides) shaping the intertidal environment and how they interact with geographic features to produce different kinds of shores (e.g., sandy shores, mangroves)
- **CLO 2** Understand the factors limiting species distribution patterns on the vertical intertidal gradient and appreciate methods to measure and investigate these patterns
- **CLO 3** Identify and quantify the distribution of a variety of local species on different Hong Kong shores
- **CLO 4** Review, critique and design experimental studies to investigate patterns (e.g., zonation) and processes (e.g., herbivory, competition) in intertidal areas
- **CLO 5** Explain the role of biological processes (e.g., predation, succession) and their interaction with the physical environment in shaping intertidal communities
- **CLO 6** Plan, design, execute, analyse and present a simple experimental study on intertidal ecology

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL2102 or BIOL3301

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020: N

Grade Descriptors (A to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>CLO</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence of original, logical (or coherent) thought, strong analytical and critical abilities and a thorough grasp of the subject as demonstrated by background reading and excellent use of named (organism) examples. Strong presentation, analytical skills and/or lab/field skills, and demonstrate knowledge of general intertidal ecology and good experimental design and analysis skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Evidence of analytical (or critical) abilities and logical (or coherent), but not necessarily original, thinking, a good grasp of the subject as demonstrated by background reading and use of named (organism) examples. Show good presentation, analytical and/or lab/field skills, and demonstrate knowledge of general intertidal ecology and good experimental design and analysis skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Evidence of some analytical (or critical) abilities and logical (or coherent) thinking with an adequate (but incomplete) grasp of the subject, but little or no evidence of original thinking, limited background reading and use of named (organism) examples. Show fair presentation, analytical and/or lab/field skills, and demonstrates some knowledge of general intertidal ecology and adequate abilities of experimental design and analysis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Evidence of retention of a minimum of relevant information of the subject (i.e. knowledge is very incomplete), with limited organizational, analytical or presentational skills. Show insufficient evidence of background reading, and limited lab/field techniques. Poor knowledge of general intertidal ecology and misunderstanding of experimental design and analysis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Evidence of poor or inadequate knowledge and understanding of the subject, and a lack of coherence, poor presentation and/or excessive irrelevancy. Limited or no evidence of familiarity with relevant reading material and lab/field techniques, or knowledge of general intertidal ecology, and misuse of experimental design and analysis skills.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>70</td>
<td>CLO 1,2,3,4,5,6</td>
<td></td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>30</td>
<td>CLO 1,2,3,4,5,6</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- A list of additional reading material will be provided during the course.

Course Website
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3318
Experimental intertidal ecology (6 credits)

Required/recommended reading and online materials

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Field work</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Project work</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>40</td>
<td>CLO 1,2,3,4,5,6</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>60</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
</tbody>
</table>

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>70</td>
<td>CLO 1,2,3,4,5,6</td>
<td></td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>30</td>
<td>CLO 1,2,3,4,5,6</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

BIOL3319

Tropical terrestrial ecology (6 credits)
Academic Year: 2018

Offering Department
Biological Sciences

Course Co-ordinator
Dr B Guenard, Biological Sciences (bguenard@hku.hk)

Teachers Involved
Dr B Guenard, Biological Sciences

Course Objectives
To enable motivated students to acquire the knowledge and skills needed to solve real problems in terrestrial ecology.

Course Contents & Topics
This course focuses on the ecology of terrestrial habitats providing an overview of patterns and processes at global and regional scale. Students will learn about the evolution of climate and topography over geological times and their roles in shaping current biodiversity and ecosystems distribution. The course also focuses on the taxonomic, functional and ecological composition of organisms within terrestrial ecosystems of Tropical East Asia with emphasis on the major processes regulating communities. An introduction to several global major threats on terrestrial ecosystems and their mechanisms is provided. Finally, the study of habitats recovery through ecological succession using particular examples in Hong Kong is provided.

The practical component of the course will introduce students to basic field techniques used in ecology. Students will participate to a group project, collecting and analysing their own data involving both field and laboratory work, and write a short scientific paper. Particular emphasis will be given on how to efficiently read and write scientific literature and present data efficiently. Attendance and participation in class are encouraged through series of discussions to stimulate critical thinking on chosen topics in terrestrial ecology. Assessment includes problem-based learning exercise, group presentation, a final term paper and a final examination covering the content of the course.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 understand evolution of biodiversity patterns and shaping processes within terrestrial ecosystems at different geographic and time scales
- CLO 2 understand the current patterns that sustain biodiversity in their pristine form and disturbed state
- CLO 3 understand the various threats to terrestrial ecosystems and some of the methods to evaluate and reduce the impacts of those threats
- CLO 4 plan and conduct baseline study of terrestrial biodiversity
- CLO 5 develop the skill to be an active learner through the problem-based learning exercises

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL1309 and BIOL2306

Offer in 2018 - 2019
Y 2nd sem
Offer in 2019 - 2020 : Y
Examination May

Grade Descriptors

- **A**: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, ability to integrate and synthesize information, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective presentional skills. Strong evidence of clear attention to thoughtful and reflective thinking.

- **B**: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, integration of materials and ability to apply knowledge to familiar and some unfamiliar situations. Demonstrate effective presentation skills. Evidence of clear attention to thoughtful and reflective thinking.

- **C**: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective presentional skills. Little evidence of clear attention to thoughtful and reflective thinking.

- **D**: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to some familiar situations. Apply limited presentional skills. Show some evidence of clear attention to thoughtful and reflective thinking.

- **Fail**: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentional skills are minimally effective or ineffective.

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td>laboratory & field work</td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>10</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>40</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td>25</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Project report</td>
<td></td>
<td>25</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Dudgeon D. and Corlett R. T.: *Ecology and Biodiversity of Hong Kong* (Friends of the Country Parks, Hong Kong)
To be provided in classes

Course Website
http://www.biosch.hku.hk/ ecology/lsc/

Additional Course Information
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3320

The biology of marine mammals (6 credits)
Academic Year: 2018

Offering Department
Biological Sciences

Course Co-ordinator
- Biological Sciences

Teachers Involved

This course will be offered subject to a minimum enrollment number and availability of teachers.
Course Objectives

Few other groups of animals have captured the public’s imagination the way marine mammals, especially whales and dolphins, have. This course covers the evolutionary biology, ecology, behaviour, and conservation of marine mammals: whales, dolphins and porpoises (cetaceans), seals and walruses (pinnipeds), manatees and dugongs (sireniants) and sea otters. Students will learn to understand the ecology of mammalian life in the aquatic environment, their role in the marine ecosystem, their behavioural complexity and socio-ecology, and the current threats to these animals in the human-dominated world.

Course Contents & Topics

The course begins with an overview of marine mammal species and their global distribution, followed by a review of the various adaptations that have evolved to meet the challenges of the marine environment. Next, the course discusses the life history, reproductive strategies, ecology and population dynamics of marine mammals, highlighting the similarities and differences between species in this taxonomically diverse group of animals. This is followed by sessions on behaviour and behavioural ecology; here we discuss animal movement, diving and ranging behaviour, foraging strategies, ecology of group living and social behaviour, behavioural complexity, cognition, and social strategies that guide the daily lives of these animals. The course concludes with a discussion of human influences on the fate of marine mammals, examples of critically endangered species and populations, and a review of conservation and management strategies; our emphasis is on the importance of applying the knowledge of population ecology, behaviour and behavioural ecology in ensuring long-term effective conservation of marine mammal populations. This course is designed for 3rd and 4th year students; it includes field trips, discussions of current scientific research, innovative research techniques and recent discoveries. Students will undertake independent literature-searches and will discuss their projects during classroom debates, training their skills in conceptual and analytical approaches to science.

Course Learning Outcomes

On successful completion of this course, students should be able to:
CLO 1 appreciate marine mammal diversity and biogeography
CLO 2 understand how mammals adapt and function in an aquatic environment and their role in the marine ecosystem
CLO 3 understand and appreciate the complexity of interactions between environmental selective pressures and marine mammal behaviour, population structure and demography
CLO 4 appreciate the socio-ecological diversity and behavioural complexity of marine mammals
CLO 5 think analytically in terms of marine mammal ecology and anthropogenic impacts in the rapidly changing world

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL2306

Offer in 2018 - 2019

Not Offered in 2019 - 2020

Examination

Grade Descriptors (A+ to F)

A Evidence of a thorough grasp of the subject in a broader comparative perspective as demonstrated by background reading and excellent use of named examples and case studies. Evidence of independent critical thought with excellent use of a broad range of fundamental concepts to draw insightful and logical conclusions. Show eagerness to learn, great abilities of independent work, effective presentation skills with excellent analytical argumentation. Excellent or outstanding work relative to what is required at degree level.

B Evidence of a good grasp of the subject as demonstrated by some background reading and appropriate use of named examples and some case studies. Evidence of good critical thought, although not necessarily original. Good and very good (but not outstanding) abilities of independent work, effective presentation skills with good analytical and logical argumentation. Good general command of acquired knowledge to draw meaningful and logical conclusions. Work more than sufficient for what is required at degree level.

C Demonstrate an adequate, but not coherent and incomplete grasp of the subject, with limited background reading and limited use of named examples and case studies. Some abilities of logical critical thinking, but not insightful and/or independent; only partial abilities to use acquired knowledge and work independently to draw meaningful conclusions. Fair presentation skills, with mostly correct argumentation, but limited (or no) abilities to integrate broader concepts. Work sufficient for what is required for degree level.

D Demonstrate some grasp of the subject, but partial and limited to the most basic concepts, examples, and limited (or none) case studies. Insufficient evidence of background reading, limited abilities of critical independent thinking, and not particularly effective presentation skills with generally weak logical argumentation and restricted ability of drawing appropriate conclusions. Work barely meets what is required at degree level.

Fail No evidence of basic minimum knowledge and understanding of the subject. No evidence of background reading and no familiarity with any relevant examples and case studies. Inadequate evidence of coherent logical thought; ineffective presentation skills with poor argumentation and no abilities to draw meaningful conclusions. Work fails to reach degree level.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

Activities

Lectures

Details

No. of Hours

24

Laboratory

including field trips, research site visits, demonstration of research techniques, interactive classroom debates

32

Project work

project work review

8

Reading / Self study

Assessment Methods and Weighting

Methods

Details

Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments

including active participation/continuous assessment/presentation

55

CLO 1,2,3,4,5

Examination

45

CLO 1,2,3,4,5

Required/recommended reading and online materials

Reynolds JE & Rommel SA (eds). Biology of marine mammals (Smithsonian Institution Press 1999)

Course Website

http://www.biosch.uke.de/ecology/csci/

Additional Course Information

This course is offered in alternate year. This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3322

Marine invertebrate zoology (6 credits)

Academic Year

2018

Offering Department

Biological Sciences

Quota

30

Course Co-ordinator

Dr S Cannici, Biological Sciences (cannici@bku.hk)

Teachers Involved

Dr S Cannici, Biological Sciences

Course Objectives

This course introduces the students to the diversity, biology and ecology of marine invertebrates. Students will be
introduced to various aspects of the systematics, anatomy, physiology and functional ecology of the major phyla of marine invertebrates to appreciate the diversity of body plans and ecological roles these animals play in coastal, benthic and pelagic ecosystems. The course will particularly focus on the South East Asian seas, which are the most diverse marine systems in the world.

Course Contents & Topics
Invertebrates make up 95% of all animal species. While insects dominate the terrestrial landscapes, marine environments have a much broader phyletic diversity, with taxa such as Porifera (sponges), Polychaetes (marine worms), Coelenterata (corals and sea anemones) and Echinoderms (sea urchins and starfish) entirely confined to the seas. Together with marine molluscs and crustaceans, these groups play fundamental roles in the functioning of all marine ecosystems, and are a fundamental focus of evolutionary studies of extant taxa and their fossil relatives.

This course will lead the students through the discovery of the amazing variety of body plans, adaptations, structure and function of marine invertebrates. In the first part of the course, the study of the phylogenetic relationships and the body plans of marine invertebrates groups, together with the associated evolutionary pathways, will be described to provide students with an evolutionary grand tour of life on Earth. In the second part, students will learn the mechanisms underpinning the ecological functions of marine ecosystems, through the study of the functional biology and ecology of the dominant groups. The diversity of invertebrates present in South East Asian seas will be introduced, and students will become familiar the commonest Hong Kong taxa and species in field trips and laboratory sessions.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 identify major taxa of marine invertebrates
CLO 2 describe the evolutionary history of the different taxa, understanding their relationships
CLO 3 describe the composition of the invertebrates communities and their roles in marine ecosystems, and learn to identify common species and taxa typical of Hong Kong coastal waters
CLO 4 understand the functional biology of marine invertebrates and their contribution to ecological functioning of marine ecosystems

Grade Descriptors (A+ to F)
A Evidence of a thorough grasp of the subject and relevant research techniques. Eagerness and enthusiasm to learn and excellent familiarity with relevant background reading and case studies. Exemplary handling of field data collection and excellent analytical skills. Ample evidence of independent critical thought with excellent use of a broad range of fundamental concepts and broader comparative perspective to draw insightful and logical conclusions. Show outstanding abilities of independent work, effective presentation skills with excellent analytical argumentation. Excellent or outstanding work relative to what is required at degree level.
B Evidence of a good grasp of the subject and relevant research techniques. Interest in learning and good-to-moderate familiarity with relevant background reading and case studies. Good handling of field data collection and commendable analytical skills. Good evidence of critical thought (although not always independent), with an appreciable use of fundamental concepts and consideration of broader comparative perspective in drawing logical conclusions. Good abilities of independent work, effective presentation skills with logical and analytical argumentation. Work more than sufficient for what is required at degree level.
C Demonstrate an adequate, but incomplete grasp of the subject and relevant research techniques. Moderate familiarity with relevant background reading and case studies, but no interest in learning beyond the adequate average level. Evidence of logical critical thinking (although not always independent), with mostly good use of fundamental concepts to draw logical conclusions. Fair presentation skills, with mostly correct argumentation, but limited (or no) abilities to integrate broader concepts. Work sufficient for what is required for degree level.
D Demonstrate some grasp of the subject, but only partial and with limited understanding of relevant research concepts and research techniques. Some familiarity with relevant case studies, but insufficient evidence of background reading and limited abilities of independent thinking. Ineffective presentation skills with generally weak logical argumentation with restricted ability of drawing appropriate conclusions. Work barely meets what is required at degree level.
Fail No evidence of basic a minimum grasp of the subject and the minimum relevant research techniques. No evidence of background reading and no familiarity with any relevant examples and case studies. Inadequate evidence of coherent logical thought; ineffective presentation skills with poor argumentation and no abilities to draw meaningful conclusions. Work fails to reach degree level.

Course Type
Lecture with laboratory component course

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments 30 CLO 2.4
Examination 50 CLO 1, 2.4
Laboratory reports 20 CLO 1.3

Required/recommended reading and online materials

Additional Course Information
Offer in alternate year from 2017-2004

Academic Year 2018

Nearshore marine and estuarine ecology (6 credits)
Course Contents & Topics
Students will learn the abiotic and biotic factors that structure intertidal communities in Hong Kong and, during a residential field camp, different South African intertidal communities. In South Africa, specific topics will focus on:
1. Intertidal biodiversity and species interactions
2. Species distribution patterns on intertidal shores
3. Species interactions and behaviour
4. Trophic interactions and connectivity between local terrestrial and marine communities.
5. Larger-scale connectivity from freshwaters to marine systems

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 compare the contrast the shallow water coastal environments of Hong Kong and the Eastern Cape Province of South Africa
CLO 2 identify a range of species and their roles and relationships in the intertidal zone
CLO 3 understand the abiotic conditions defining the intertidal environment and quantify and interpret the distribution of species over relevant environmental gradients
CLO 4 design, execute and analyse experiments to investigate species interactions
CLO 5 integrate abiotic and biotic interactions to determine patterns of connectivity between intertidal habitats

Pre-requisites (and Co-requisites and impermissible combinations)
Pass in BIOL2306 or BIOL3301

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y Examination No Exam

Grade Descriptors (A+ to F)
A Thorough and complete grasp of the subject. Strong analytical and critical abilities and logical thinking, with evidence of original thought. Excellent lab / fieldwork skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Excellent organizational and presentational skills.
B Good and near-complete grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Competent lab / fieldwork skills and techniques. Correct use of data of results to draw appropriate conclusions. Good organizational and presentational skills.
C Adequate (but incomplete) grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Adequate lab / fieldwork skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Fair organizational and presentational skills.
D Limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Barely adequate lab / fieldwork skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Barely satisfactory organizational and presentational skills.

Fail Poor or inadequate knowledge and understanding of the subject. Lack of analytical and critical abilities, logical and coherent thinking. Inadequate lab / fieldwork skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Incoherent organization and poor presentational skills.

Course Type
Field camps

Course Co-ordinator
Dr K W Y Yuen, Biological Sciences (kwyyuen@hku.hk)
(Dr C B Chan, Biological Sciences)
(Prof B K C Chow, Biological Sciences)

Course Objectives
To provide students with recent knowledge in molecular biology with special emphasis on the study of gene structure and function at the molecular level.

Course Contents & Topics
The course includes a detailed account of the molecular processes in eukaryotic and prokaryotic cells, from DNA replication, RNA transcription, protein translation, to post-translational modifications with special emphasis on the regulation of prokaryotic and eukaryotic gene expression. Recently developed biochemical techniques including oligonucleotide synthesis, DNA sequencing, complementary screening, DNA cloning, site-directed mutagenesis, polymerase chain reaction and transgenic technology will also be discussed.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 know the basic structures of DNA, RNA and protein, and how DNA is package in the nucleus of eukaryotic cells

Additional Course Information
Students who have taken BIOL3318 will be at an advantage.

Required/recommended reading and online materials
Students will be directed to relevant scientific literature, websites and appropriate teaching materials.

Course Website
http://www.biosch.hku.hk/ecology/lsc/

BIOL3401 Offering Department
Molecular biology (6 credits)
Biological Sciences
Quota
2018
130

Course Co-ordinator
Dr K W Y Yuen, Biological Sciences (kwyyuen@hku.hk)
(Dr C B Chan, Biological Sciences)
(Prof B K C Chow, Biological Sciences)

Course Objectives
To provide students with recent knowledge in molecular biology with special emphasis on the study of gene structure and function at the molecular level.

Course Contents & Topics
The course includes a detailed account of the molecular processes in eukaryotic and prokaryotic cells, from DNA replication, RNA transcription, protein translation, to post-translational modifications with special emphasis on the regulation of prokaryotic and eukaryotic gene expression. Recently developed biochemical techniques including oligonucleotide synthesis, DNA sequencing, complementary screening, DNA cloning, site-directed mutagenesis, polymerase chain reaction and transgenic technology will also be discussed.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 know the basic structures of DNA, RNA and protein, and how DNA is package in the nucleus of eukaryotic cells
BIOL3402 Cell biology and cell technology (6 credits) Academic Year 2018

Offering Department Biological Sciences Quota 120

Course Co-ordinator Prof A S T Wong, Biological Sciences (awong1@hku.hk)

Teachers Involved Prof J S H Tsang, Biological Sciences (jtsang@hku.hk)
Dr W Y Lui, Biological Sciences (wylui@hku.hk)

Course Objectives To provide a coherent understanding of the structure and function of cells, and the principles and applications of cell culture and instrumentation in biology and biotechnology

II. Techniques in animal cell culture Mammalian cells in culture. Primary and continuous cell lines. Cell types and cell growth parameters. Media formulation, growth factors and design of serum-free media. Culture lab facilities and sterilization. Mechanism of cryopreservation.

Course Learning Outcomes On successful completion of this course, students should be able to:

- CLO 1 acquire fundamental knowledge on cell biology and cell technology
- CLO 2 demonstrate basic laboratory techniques on cell culture
- CLO 3 gain insight into real-life applications in cell biology and cell technology

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in BIOC2600 or BIOL2103 or BIOL2220 or MEDE2301

Grade Descriptors (A+ to F) A Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.

B Demonstrate substantial command of a broad range of knowledge required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete command of knowledge required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited command of knowledge required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.

Fail Demonstrate little or no evidence of command of knowledge required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assignments assessment of practical work 20 CLO 1,2,4
Examination 80 CLO 1,2,3,4

Required/recommended reading and online materials
R. Weaver: Molecular Biology (McGraw-Hill, 2005 or 2008)
B. Lewin: Gene IX (Jones and Bartlett, 2008)
Selected journal articles and web learning materials. TBC

Course Website http://moodle.hku.hk/
engagement with broad range of relevant concepts.

C

Demonstrate general but incomplete command of knowledge required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational skills. Writings mostly indicate informed, intellectual engagement with concepts or theories but not always with sufficient depth, breadth or understanding.

D

Demonstrate partial but limited command of knowledge required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational skills. Writings indicate some intellectual engagement with concepts or theories but mostly at a superficial level.

Fail

Demonstrate little or no evidence of command of knowledge required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organizational skills are minimally effective or ineffective. Writings reveal an absence of intellectual engagement with concepts or theories. Writings are irrelevant or superficial.

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture with laboratory component course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td>Lectures</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
</tr>
<tr>
<td>Assignments</td>
<td>assessment of practical work</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

References:
TBC

Course Website
http://moodle.hku.hk/

BIOI3403 Immunology (6 credits) Academic Year 2018

Offering Department Biological Sciences
Quota 100

Course Co-ordinator Dr W B L Lim, Biological Sciences (bilim@hku.hk)

Course Objectives
To provide a broad understanding of the animal immune system. Topics will also include the application of a variety of immunological methods to research and disease diagnosis.

Course Contents & Topics

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 describe the structure and function of the immune molecules which are involved in the body defense mechanisms, including antibody, T-cell receptor, cytokines, MHC and complement proteins

CLO 2 describe the organization of the mammalian immune system in terms of genes, cells and tissues

CLO 3 explain the underlying mechanisms associated with transplant rejection, transfusion reaction and vaccination

CLO 4 explain how the immune system responds to infections by bacteria, viruses and parasites

CLO 5 understand antigen-antibody interaction and the principle of immunoassays

Pre-requisites (and Co-requisites and impermissible combinations)
Pass in BIQC2600 or BIOI2103 or BIOI2220 or MEDE2301

Grade Descriptors (A+ to F)

A 1. Exceptionally good performance demonstrating comprehensive understanding of the subject matter. 2. Critical insight and analysis into the scientific literatures. 3. Superior writing, presentation and group communication skills.

B 1. Good performance demonstrating full understanding of the subject matter. 2. Coherent insight and analysis into the scientific literatures. 3. Good writing, presentation and group communication skills.

C 1. Satisfactory performance demonstrating adequate understanding of the subject matter. 2. Some insight into the scientific literatures. 3. Adequate writing and communication skills.

D 1. Limited performance demonstrating some understanding of basic subject matter. 2. Some ability to use the scientific literatures. 3. Limited writing and communication skills.

Fail 1. Poor understanding of subject matter. 2. Little to no insight into use of the scientific literatures. 3. Unable to write or communicate.

Course Type Lecture with laboratory component course

Course Teaching & Learning Activities Activities | Details | No. of Hours |
Lectures			30
Laboratory			16
Tutorials			6
Reading / Self study			100

Assessment Methods and Weighting Methods | Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping |
| Examination | | | CLO 1,2,3,4,5 |
| Laboratory reports | | | CLO 1,2,3,4,5 |

Required/recommended reading and online materials

I. Roitt, J. Brostoff and D. Male: Immunology (Mosby, latest 2 editions)

Course Website http://moodle.hku.hk/
BIOL3404

Protein structure and function (6 credits)

Offering Department: Biological Sciences
Quota: 70

Course Co-ordinator: Prof W K Yip, Biological Sciences (wkyip@hku.hk)
(Prof C M Qian, Biomedical Sciences)
(Dr W K Yip, Biological Sciences)
(Dr Y L Zhai, Biological Sciences)

Teachers Involved:

- Prof W K Yip, Biological Sciences (wkyip@hku.hk)
- Dr C M Qian, Biomedical Sciences
- Dr W K Yip, Biological Sciences
- Dr Y L Zhai, Biological Sciences

Course Objectives:

To provide students with a good understanding of protein structure, how structure subserves function, and the methods for study of both. This course provides a strong foundation for advanced courses in biochemistry and biotechnology.

Course Contents & Topics:

Elements of macromolecular structure: sequencing, prediction and determination of secondary, tertiary and quaternary structures;
The relationship of protein structure and function; molecular motifs, binding and recognition, enzyme catalysis and specificity;
Methods for protein structure determination; X-ray crystallography and nuclear magnetic resonance;
Enzymology; enzyme nomenclature, enzyme assay, kinetics and energetics of binding, transition state and molecular mechanisms of catalysis;
Protein purification and characterization; various liquid chromatographical methods and their uses in combination, separation techniques, methods of determination of molecular mass, activity and purity, optical methods in protein determination, ultracentrifugation, protein polishing, stability and storage, methods and devices for protein delivery.

Course Learning Outcomes:

On successful completion of this course, students should be able to:

- CLO 1: demonstrate a basic understanding of the relationship between protein structure and function
- CLO 2: demonstrate a basic understanding of the relationship between protein structure and function
- CLO 3: design assaying methods for enzymes
- CLO 4: find out kinetic parameters of proteins or enzymes by graphical techniques
- CLO 5: learn about the ways to purify protein and the many industrial uses of proteins

Pre-requisites (and Co-requisites and Impermissible combinations):

Pass in BIOL2600 or BIOL2220 or MEDE2301

Offer in 2018 - 2019

- 2nd sem
- Offer in 2019 - 2020: Y
- Examination: May

Grade Descriptors (A+ to F)

- A: Exceptionally good performance demonstrating comprehensive understanding of the subject matter. 1. Critical insight into the scientific literature. 2. Superior writing and group communication skills.
- B: Good performance demonstrating fundamental understanding of the subject matter. 1. Good performance demonstrating full understanding of the subject matter. 2. Coherent insight into the scientific literature. 3. Good writing and group collaboration skills.
- C: Satisfactory performance demonstrating adequate understanding of the subject matter. 1. Satisfactory performance demonstrating adequate understanding of the subject matter. 2. Some insight into the scientific literature. 3. Adequate writing and group collaboration skills.
- D: Limited performance demonstrating some understanding of basic subject matter. 1. Limited performance demonstrating some understanding of basic subject matter. 2. Some ability to use the scientific literature. 3. Limited writing and group collaboration skills.
- Fail: Poor understanding of subject matter. 1. Little to no insight into use of the scientific literature. 2. Unable to write or collaborate.

Course Type: Lecture-based course

Course Teaching & Learning Activities:

- Activities: Details
 - Lectures: 36
 - Tutorials: 12
 - Reading / Self study: 100

Assessment Methods and Weighting:

- Methods: Details
 - Assignments: 30%
 - Examination: 70%

Assessment to CLO Mapping:

- CLO 1, 2, 3, 4, 5

Required/recommended reading and online materials:

- None prescribed
- To be announced.

Additional Course Information:

This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3405

Molecular microbiology (6 credits)

Offering Department: Biological Sciences
Quota: 30

Course Co-ordinator: ---, Biological Sciences (---)
(- ---, Biological Sciences)

Teachers Involved:

- ---, Biological Sciences (---)

Course Objectives:

This course is intended for biology, biotechnology and biochemistry students who would like to understand the modern fundamentals of microbiology. At the end of the course the students are expected to know the physiological, biochemical and molecular aspects of microbiology.

Course Contents & Topics:

The basic biochemistry of microorganisms will be described. The intrinsic factors that affect the growth of microbes in the environment will be examined. The adaptation of the microbes to the environment by means of physiological changes and genetical alterations will be illustrated. The molecular biology of bacteria and viruses will be considered. The molecular biology of plasmids and transposable elements and their association with medical aspect will be discussed. The use of modern technology in studying microorganisms will be explored.

Course Learning Outcomes:

On successful completion of this course, students should be able to:

- CLO 1: understand the intrinsic reorganization of microbes in response to the changing environments
- CLO 2: comprehend the major modes of regulation in the microbe
- CLO 3: explain the biology of bacteriophages and plasmids
- CLO 4: realize the importance of transposable elements in the survival of the microbes
- CLO 5: appreciate the development of modern techniques in studying microorganisms

Pre-requisites (and Co-requisites):

Pass in BIOL2103

School of Biological Sciences
<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Demonstrate substantial grasp of the subject. Show evidence of analytical and critical abilities and logical thinking. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture with laboratory component course</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course Teaching & Learning Activities</th>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination</td>
<td>70</td>
<td>CLO 1, 2, 3, 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory reports</td>
<td>20</td>
<td>CLO 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presentation</td>
<td>10</td>
<td>CLO 1, 2, 5</td>
<td></td>
</tr>
</tbody>
</table>

| Course Website | http://moodle.hku.hk/ |

| Additional Course Information | This course will be offered subject to a minimum enrollment number and availability of teachers. |

<table>
<thead>
<tr>
<th>BIOL3406</th>
<th>Reproduction and rebiotechnology (6 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Prof A O L Wong, Biological Sciences (owong@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Prof A O L Wong,Biological Sciences)</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>To provide a comprehensive overview on modern concepts and recent advances in reproductive biology & reproductive biotechnology in human and animal models.</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>-Basic concepts of reproduction, evolution of sex, human & animal reproductive strategies and sexual behavior. -Molecular mechanisms for sex determination, developmental aspects of gametogenesis and reproductive systems. -Neuroendocrinology of reproductive system and recent advances in kisspeptin & GnrH system and steroid feedback via KNDy neuronal circuit. -Environmental endocrine disruptors and recent advances in biotechnology for fertility control & assisted reproduction in human. -Recent advances in embryonic stem cells & induced pluripotent stem cells and their applications in regenerative medicine/therapeutic cloning. -New technology for genome editing by TALEN & CRISPR/Cas9 systems and gene therapy, animal cloning and primordial germ cell transplantation in animal models.</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
</tr>
<tr>
<td></td>
<td>CLO 1 Have a broad understanding of reproductive biology ranging from evolution of sex, different reproductive strategies & sexual behaviors in animals to the regulatory mechanisms for sex determination & development of reproductive systems.</td>
</tr>
<tr>
<td></td>
<td>CLO 2 Have an appreciation of the recent advances on neuroendocrine control of reproductive functions & reproductive cycle, sexual behavior, parental care, and pregnancy & parturition in human & mammalian models.</td>
</tr>
<tr>
<td></td>
<td>CLO 3 Have a basic understanding on the adverse effects of environmental endocrine disruptors on reproduction, possible causes of human infertility & treatment with assisted reproduction.</td>
</tr>
<tr>
<td></td>
<td>CLO 4 Comprehend a wide range of modern technologies for genome editing, animal cloning & primordial germ cell transplantation and the applications of embryonic stem cells/induced pluripotent stem cells in regenerative medicine/therapeutic cloning.</td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
<td>Pass in BIOL2103 or BIOL2220 or BIOC2600 or MEDE2301</td>
</tr>
<tr>
<td>Offer in 2018 - 2019 Grade Descriptors (A+ to F)</td>
<td>Details</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
</tbody>
</table>
| B | Demonstrate substantial command of a broad range of knowledge required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and
This course aims to provide students with fundamental knowledge of classical, molecular and population genetics. On successful completion of this course, students should be able to:

- CLO 1: Appreciate the beauty of genetic organizations in nature.
- CLO 2: Use different genetic principles to explain hereditary traits observed in nature and laboratories.
- CLO 3: Apply qualitative and quantitative experimental methodologies for genetic analysis at individual and population levels.
- CLO 4: Demonstrate general but incomplete command of knowledge required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Limited integration of theories, principles, evidence and techniques.

Course Contents & Topics

Topics will include classical, molecular and population genetics. This course will be offered subject to a minimum enrollment number and availability of teachers.

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>15</td>
<td>CLO 2, 3</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>15</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website & Additional Course Information

Refer to the Website of School of Biological Sciences

http://moodle.hku.hk/
BIOL3409

Business aspects of biotechnology (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Biological Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quota</td>
<td>40</td>
</tr>
</tbody>
</table>

Course Co-ordinator

Dr W B L Lim, Biological Sciences
(billim@hku.hk)

Teachers Involved

(Dr W B L Lim, Biological Sciences)

Course Objectives

The course will provide a thoughtful, practical guide to the process of successfully launching an entrepreneurial venture. We place a special emphasis on the decision to become a biotech entrepreneur and how to develop successful business ideas, however we will also discuss the process of moving from an idea to a biotech firm. Topics on intellectual properties, patent laws, patent application process, licensing and fundraising will be covered as well. Throughout the course, guest entrepreneurs, managers and directors of the biotech industry will be presenting case studies and explain their involvement in various biotech and pharmaceutical companies.

Topics:

1. Introduction to Biotechnology Industry: 4 P in Biotechnology Business (3 hours)
2. IP rights: Patent application, Patent system, USPTO, SIPO, PCT (6 hours)
3. Licensing of IP rights (3 hours)
4. Technology Transfer Office and HKSTP (3 hours)
5. How to raise fund for startup companies (3 hours)?
6. Agrobiotechnology and Green Tech (Monsanto, Novozymes, etc) (4.5 hours)
7. Drug development and clinical trials (Gilead Sciences, Wuxi PharmaTech, etc). (6 hours)
8. Diagnostics business (BDI, Diagcor, etc) (4.5 hours)
9. Company analysis (3 hours)
10. Company Visit
11. Company analysis

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in any level 3 BIOL or BIOC or BBMS course; NOT for students who have passed in BIOL2409.

This course is only for students admitted in 2017-2018 or before.

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Y</th>
<th>2nd sem</th>
<th>Offer in 2019 - 2020</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>No Exam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grade Descriptors (A+ to F)

- **A**: Students acquire exceptional skills and knowledge from the course and are capable of independently analyzing the business and technological developments of various biotechnology ventures.
- **B**: Students demonstrate a broad and in-depth understanding of the current developments in biotechnology industry and are capable of analyzing the business and technological developments of various biotechnology ventures under guidance.
- **C**: Students demonstrate a broad and in-depth understanding of the current developments in biotechnology industry.
- **D**: Students demonstrate a moderate understanding of the current developments in biotechnology industry.
- **F**: Students fail to demonstrate a moderate understanding of the current developments in biotechnology industry.

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Field work</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Group work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>60</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>20</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>20</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

McGraw Hill
Company annual reports
Online materials

Course Website

http://moodle.hku.hk/

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers. Priority will be given to students majoring or minoring in MBB

BIOL3419

Insect ecology: the little things that run the world (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Biological Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quota</td>
<td>25</td>
</tr>
</tbody>
</table>

Course Co-ordinator

Dr B Guenard, Biological Sciences (bguenard@hku.hk)

Teachers Involved

(Dr B Guenard, School of Biological Sciences)

Course Objectives

This course will focus particularly on the diversity and importance of insects in South East Asia.

Course Contents & Topics

With about 1.1 million and 110,000 species described respectively, insects and arachnids represent nearly 80% of all species known on the planet. A diversity also reflected in the diversity of behaviours, evolutionary adaptations or ecological interactions played at all trophic levels within ecosystems. As herbivores, pollinators, seed-dispersal...
Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 identify major groups of insects and arthropods
CLO 2 understand and use the main collecting methods to sample arthropod diversity
CLO 3 understand the ecological diversity of arthropod groups and their importance in ecosystems
CLO 4 understand the biotic and abiotic factors that drive terrestrial arthropod species richness and abundance
CLO 5 understand how human activities modify insect diversity
CLO 6 describe the multiple roles played by insects on human activities

Pre-requisites and Co-requisites

Pass in BIOL1309 and BIOL2306

Offer in alternate year from 2017-2018

Grading System

Grade Descriptors (A+ to F)

A Demonstration of an excellent understanding of the biological concepts and theories developed during the course. Master the identification skills and use of taxonomic keys of the different groups of arthropods studied. Present an active and participative attitude in class. Curation and identification of the collection reaching international scientific standard as presented during the course.

B Demonstration of a good understanding of the biological concepts and theories developed during the course. Master most of the identification skills and use of taxonomic keys of the different groups of arthropods. Participation in class more limited. Curation and identification of the collection satisfactory for the course.

C Demonstration of a general but incomplete understanding of the biological concepts and theories developed during the course. Identification skills and use of taxonomic keys of the different groups of arthropods insufficient to provide reliable identification. Participation in class very limited or irrelevant. Curation and identification of the collection not reaching academic level.

D Demonstration of a limited understanding of the biological concepts and theories developed during the course. Identification skills and use of taxonomic keys of the different groups of arthropods inadequate and mostly inaccurate. No participation in class orunsettling. Poor curation and identification of the collection. Participation in class and identification skills and use of taxonomic keys of the different groups of arthropods studied. Present an active and participative attitude in class. Curation and identification of the collection satisfactorily.

Fail

Fail to provide evidence of knowledge on the biological concepts and theories developed during the course. No identification skills and lack of knowledge on how to use taxonomic keys. No participation in class or unsettling. Curation and identification skills and use of taxonomic keys of the different groups of arthropods inadequately and mostly inaccurate. No participation in class or unsettling. Poor curation and identification of the collection.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td>This part includes 4 hours of lectures about identification and curation of arthropod collection.</td>
<td>28</td>
</tr>
<tr>
<td>Project work</td>
<td>Students will collect independently their own insect collection, curate and identify the specimen collected</td>
<td>48</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>30</td>
<td>CLO 1,2,3,5,6</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>40</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>30</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website

http://www.biosch.hku.hk/ecology/lsc/

Additional Course Information

Offer in alternate year from 2017-2018

This course will be offered subject to a minimum enrollment number and availability of teachers

<table>
<thead>
<tr>
<th>BIOL3501</th>
<th>Evolution (6 credits)</th>
<th>Academic Year</th>
<th>Quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
<td>Biological Sciences</td>
<td>2018</td>
<td>50</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Dr M Sun, Biological Sciences (meisun@hku.hk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Objectives</td>
<td>Evolution is the cornerstone of modern biology. The course aims to introduce students to the major themes of contemporary evolutionary biology, including the history of evolutionary biology, evolutionary processes, adaptation, speciation, and evolution as an explanatory framework at all levels of biological organization. The course emphasizes the interplay between theory and empirical tests of hypotheses, thus acquainting students with the process of science.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

532
Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 familiar with the facts and theory of evolution
CLO 2 describe Darwin's theory of evolution by natural selection and how the process of natural selection can lead to speciation
CLO 3 have an advanced understanding of the modern evolutionary theory
CLO 4 apply evolutionary thinking to real world problems in agriculture, medicine, and biodiversity conservation

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL2306

Offer in 2018 - 2019

N Offer in 2019 - 2020 : N

Examination ---

Grade Descriptors (A+ to F)

A Exceptionally good performance demonstrating excellent understanding of the subject matter, extensive knowledge over a wide range of topics covered by the course, and skillful applications of concepts/theories in solving new or unfamiliar problems, showing strong abilities in critical thinking and logical reasoning, with evidence of significant insight and original thought in dealing with the critical issues in the field.

B Good performance demonstrating capacity to use the appropriate concepts, a good understanding of the subject matter, and an ability to handle the problems and materials encountered in the subject, showing evidence of attaining most of the course learning outcomes.

C Adequate performance demonstrating some understanding of the subject matter, an ability to handle relatively simple problems, but showing incomplete command of knowledge required for attaining most of the expected course learning outcomes.

D Minimally acceptable performance demonstrating at least partial familiarity with the subject matter and some capacity to deal with relatively simple problems, but also demonstrating serious deficiencies in knowledge required for attaining most of the expected course learning outcomes.

Fail Poor performance in all aspects of the course, showing little evidence of learning, lacking real understanding of the subject matter, demonstrating deficiencies serious enough to make it inadvisable to proceed further without additional course work.

Course Type Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Project work</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>10</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Essay</td>
<td></td>
<td>5</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td>10</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Project reports</td>
<td>including computer lab</td>
<td>15</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>10</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

J.C. Herron and S. Freeman: Evolutionary Analysis (5th ed. Pearson, 2013)
eBooks available.

Course Website http://moodle.hku.hk/

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3502 Conservation genetics (6 credits) Academic Year 2018

Offering Department Biological Sciences Quota 50

Course Co-ordinator Dr M Sun, Biological Sciences (meisun@hku.hk)

Teachers Involved

Teaching assistants to be appointed.

Course Objectives

The course aims to familiarize students with fundamental principles and recent advances in conservation genetics. The theories and methods will be taught with a balanced range of examples - mammals, birds, reptiles, amphibians, fish, invertebrates, as well as plants - to demonstrate how genetic data can be used to answer a range of important questions in real world conservation practice.

Course Contents & Topics

Introduction to conservation genetics.

Part I. Evolutionary Genetics of Natural Populations:
- genetic diversity
- characterizing genetic diversity: single loci and quantitative variation;
- evolutionary impacts of natural selection, mutation, migration and their interactions in large populations;
- genetic consequences of small population sizes;
- maintenance of genetic diversity;
- population genomics.

Part II. Effects of Population Size Reduction:
- loss of genetic diversity in small populations;
- inbreeding;
- inbreeding depression;
- population fragmentation;
- genetically viable populations.

Part III. From Theory to Practice:
Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 demonstrate an advanced understanding of the concepts of conservation genetics
CLO 2 understand the criteria for determining the conservation status of endangered, vulnerable, or threatened species
CLO 3 know the methods for characterizing genetic diversity at population and species levels
CLO 4 comprehend the relationships between genetic diversity, inbreeding, reproductive fitness, and evolutionary potential in wild populations
CLO 5 describe the effects of habitat fragmentation and population size reduction on genetic diversity and the implications in managing nature reserves
CLO 6 gain ability to integrate genetic information in resolving taxonomic uncertainties, in understanding species biology, in setting conservation priorities, and in developing management strategies for wild and captive populations

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL2306 or BIOL3303 or BIOL3408

Offer in 2018 - 2019

N Offer in 2019 - 2020 : N

Grade Descriptors (A+ to F)

A Exceptionally good performance demonstrating excellent understanding of the subject matter, extensive knowledge over a wide range of topics covered by the course, and skillful applications of concepts/theories in solving new or unfamiliar problems, showing strong abilities in critical thinking and logical reasoning, with evidence of significant insight and original thought in dealing with the critical issues in the field.

B Good performance demonstrating capacity to use the appropriate concepts, a good understanding of the subject matter, and an ability to handle the problems and materials encountered in the subject, showing evidence of attaining most of the course learning outcomes.

C Adequate performance demonstrating some understanding of the subject matter, an ability to handle relatively simple problems, but showing incomplete command of knowledge required for attaining most of the expected course learning outcomes.

D Minimally acceptable performance demonstrating at least partial familiarity with the subject matter and some capacity to deal with relatively simple problems, but also demonstrating serious deficiencies in knowledge required for attaining most of the expected course learning outcomes.

Fail Poor performance in all aspects of the course, showing little evidence of learning, lacking real understanding of the subject matter, demonstrating deficiencies serious enough to make it inadvisable to proceed further without additional course work.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Project work</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Tutorials / Self study</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>10</td>
<td>CLO 1, 3, 4, 5, 6</td>
<td></td>
</tr>
<tr>
<td>Essay</td>
<td>5</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>50</td>
<td>CLO 1, 4, 5, 6</td>
<td></td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>10</td>
<td>CLO 3</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>10</td>
<td>CLO 1, 4, 5, 6</td>
<td></td>
</tr>
<tr>
<td>Project report</td>
<td>5</td>
<td>CLO 1, 4, 6</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>10</td>
<td>CLO 1, 4, 5, 6</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

e-book available

Course Website

http://moodle.hku.hk/

Additional Course Information

Website - to be listed
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3503

Endocrinology: human physiology II (6 credits)

Academic Year 2018

Offering Department

Biological Sciences

Quota 60

Course Co-ordinator

Dr C B Chan, Biological Sciences (chancb@hku.hk)

Teachers Involved

(Dr C B Chan, Biological Sciences)
(Prof A S T Wong, Biological Sciences)
(Prof B K C Chow, Biological Sciences)

Course Objectives

To provide an advanced course on hormones and how they regulate metabolism/growth, reproduction and water/salt homeostasis in our body.

Course Contents & Topics

The hypothalamic pituitary axis

Catecholamine effects and their pathways.

The gastrointestinal system

The enteric nervous system. The cephalic phase, stomach phase and intestinal phase of food digestion. Regulation of acid secretion. Regulation of pancreatic exocrine and endocrine secretion. Gut hormones: gastrin, GIP, CCK, secretin, GLP-1, GLP-2 and motilin. Regulation of feeding, energy balance and food intake.

Insulin and glucagon.

Reproduction

The GnRH-gonadotropin-sex hormone axis. Regulation of LH and FSH release. Male reproductive system. Interaction of hormones produced by various cells in the testis to regulate spermatogenesis. Biological actions of
Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 understand the definition and natures of hormones
CLO 2 explain and describe secondary messenger pathways for hormones
CLO 3 describe the connection between pituitary the master gland with higher brain centers and peripheral organs
CLO 4 explain and describe hormones involved in the regulation of 3 most important body functions including metabolism/growth, reproduction and water/salt homeostasis

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL2103

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

A Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational skills.

B Demonstrate substantial command of a broad range of knowledge required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and the ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational skills.

C Demonstrate general but incomplete command of knowledge required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and the ability to apply knowledge to most familiar situations. Apply moderately effective organizational skills.

D Demonstrate partial but limited command of knowledge required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational skills.

Fail Demonstrate little or no evidence of command of knowledge required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organizational skills are minimally effective or ineffective.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>80</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>20</td>
<td>CLO 1,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website

http://moodle.hku.hk/

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOI3505 Oyster aquaculture and restoration (6 credits)

Offering Department

Biological Sciences

Quota

20

Course Co-ordinator

Dr T Vengatesen, Biological Sciences (rajan@hku.hk)

Teachers Involved

Introduce larval biology and hatchery technology;
Provide scientific basis for coastal aquaculture through field demonstrations and laboratory exercises;
Enable students to design, construct and maintain larval hatchery for production of seeds for aquaculture and restoration of wild oysters;
Understand the reasons for restoration of marine, estuarine and coastal ecosystems;
Facilitate transfer of academic knowledge to aquaculture for sustainable food production.

Course Contents & Topics

This experiential learning course is to enhance students’ knowledge in applied larval biology techniques and advanced coastal aquaculture production systems that will enable them to design, construct, operate and maintain oyster aquaculture facilities for food production and restoration of wild population. This is an interdisciplinary endeavor encompassing larval hatchery technology and aquaculture. After reading about basic oyster biology and coastal aquaculture, we will focus on hatchery technology and aquaculture. Environmental issues, legislation pertaining to coastal aquaculture will also be covered using oyster farming in Hong Kong as an example. Students will learn why oyster habitat is declining in HK and would also explore scientific and management ways to restore oyster habitat. Students will be exposed to few aquaculture facilities in Hong Kong & will be taken to Penang (Malaysia) to learn practical skills of oyster farming. This course is designed to meet the needs of an expanding sustainable aquaculture in Hong Kong. Students will be exposed to a unique learning environment involving not only HKU but also teachers from Universiti Sains Malaysia (USM), bringing with them diverse range of expertise, culture, and learning opportunities. Career and small scale business opportunities in aquaculture industry will be discussed. Thus, students will be provided adequate knowledge & analytical capabilities for a successful career in larval biology research and aquaculture.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 examine the influence of environmental variables on larval development and recruitment, and consider the potential effects of these variables on hatchery and farming
CLO 2 acquire skills and experiential learning opportunities (e.g. hands-on experiences at laboratories and farms) in oyster hatchery and farming
CLO 3 explain the importance of oyster farming in coastal habitat restoration
CLO 4 plan and execute a commercially important research project in larval biology and aquaculture

Pre-requisites

Pass in BIOL2103 or BIOL2306 or BIOL3301 or BIOL3303
Microbial physiology and biotechnology (6 credits)

Offering Department: Biological Sciences
Course Co-ordinator: Dr A Yan (ayan8@hku.hk)
Teacher Involved: Dr A Yan, Biological Sciences

Course Objectives
Microbes are amazing and important entities on earth. Knowledge of microbes is widely applied in food, pharmaceutics, biotechnologies, diseases control, and biogeochemical processes. Microbial Physiology and Biotechnology provides both molecular basis for understanding of these important processes and up-to-date applications in modern Biotechnology, and to serve as essential foundations for sub-disciplines of Microbiology, such as environmental, food, and medicinal Microbiology. Upon completion, students will acquire fundamental knowledge about microorganisms, gain laboratory skills on methodologies for microbial studies, and be able to apply the knowledge in Microbial Biotechnologies.

Course Contents & Topics
Serving as a course which blends fundamental knowledge about the world of microorganisms with applied Microbial Biotechnology. This course is organized and presented in three themes: 'Microbial Rules', 'Microbial Breath', and 'Microbial Biotechnology'. Under these three themes, a broad range of highly educational and interesting topics are presented including: Microorganisms and their position in the living world, 'Fundamental methodologies for the study of microbes', 'Microbial structures and functions', 'Microbial growth and control', 'Energy Generation', 'Central metabolism', and 'Microbial biotechnological applications in biodegradation, biofuels and synthetic biology'. Topics are taught in a coherent manner with a highly interactive tutorial session following each of the topics such that students will achieve a high quality, stimulating, and problem-based learning experiences.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 appreciate the diversity of microbial metabolisms and applications in biotechnology
- CLO 2 comprehend the principles underlying the dynamic nature of microbial physiology
- CLO 3 gain laboratory skills on methodologies for microbial studies
- CLO 4 relate knowledge to practical application of microbes in industry and medicine

Pre-requisites
Pass in BIOL2103 or BIOL2220 or BIOC2600 or BIOC3604

Course Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Descriptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence of original thought during the analysis of larval biology issues. Show evidence of analytical, critical and multidimensional thinking about the study subject. Extensive knowledge and skills required for attaining all the course learning outcomes. Demonstrate excellent ability to apply what you have learned in the class room to critically analyze the larval biology project data. Show highly effective organizational, presentational and field trip skills.</td>
</tr>
<tr>
<td>B</td>
<td>Show substantial knowledge and thought during the analysis of marine life science issues. Show some evidence of some analytical, critical and multidimensional thinking about the study subject. Good knowledge and skills required for attaining all the course learning outcomes. Demonstrate good ability to apply what you have learned in the class room to critically analyze the real marine life science issues. Show effective organizational, presentational and field trip skills.</td>
</tr>
<tr>
<td>C</td>
<td>Show general but incomplete knowledge and original thought during the analysis of marine life science issues. Fair knowledge and skills required for attaining all the course learning outcomes. Demonstrate fair ability to apply what you have learned in the class room to critically analyze the real marine life science issues. Show considerable organizational, presentational and field trip skills.</td>
</tr>
<tr>
<td>D</td>
<td>Evidence to show a minimum knowledge (i.e. knowledge is very incomplete) and thought during the analysis of marine life science issues. Show insufficient knowledge and skills required for attaining all the course learning outcomes. Demonstrate poor ability to apply what you have learned in the class room to critically analyze the real marine life science issues. Show very little organizational, presentational and field trip skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Evidence of meager or inadequate knowledge and understanding of marine life science issues. Show no evidence of knowledge and skills required for attaining all the course learning outcomes. Demonstrate no ability to apply what you have learned in the class room to critically analyze the real marine life science issues. Show no evidence of familiarity with relevant reading material and field trip demonstrations, or any knowledge of organizational and presentational skills.</td>
</tr>
</tbody>
</table>

Course Type
Field camps

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Field work</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Laboratory work</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Assessment</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>25</td>
<td>CLO 3.4</td>
</tr>
<tr>
<td>Report</td>
<td>Presentation: developing innovative ideas for sustainable and economically viable aquaculture in Hong Kong</td>
<td>50</td>
<td>CLO 4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>25</td>
<td>CLO 1.2</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Ecology of Marine Invertebrate Larvae (Larry McEdward, CRC Press)
Shellfish Aquaculture and the Environment (S.E. Shumway, John Wiley & Sons)
Molluscan Shellfish Farming (Brian Spencer, John Wiley & Sons)

Course Website
http://www.biosch.hku.hk/ecology/lisc/

Additional Course Information
Taught and trained by several teachers, guest lecturers from government and aquaculture business sector; This course is offered in close collaboration with USM (Penang, Malaysia); Tentative duration: 1-15 June, 2016; In Part 1 - First 5 days at HKU for lectures, practicals and field visits - then flight to Penang to visit various oyster aquaculture facilities; Few USM (Malaysia) students may join the course; Fund for the Penang visit will be collected from students (about 6000 HKD including airfare, accommodation and selective meals for 7 days). This course will be offered subject to a minimum enrollment number and availability of teachers. This course will be offered in alternative year.
Course Website: http://moodle.hku.hk/

Additional Course Information: This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL3951

Ecology & biodiversity field course (6 credits)

Academic Year: 2018

Offering Department: Biological Sciences

Quota: 20

Teachers Involved:

Dr L Karczmarski, Biological Sciences (leszek@hku.hk)

Course Objectives:

This course is offered as a capstone experience and will require intense study of a topic relevant to the Ecology & Biodiversity Major during a field course, inside or outside Hong Kong.

Course Contents & Topics:

Every year a number of different potential courses may be offered. The precise contents will be tailored to best suit the topic and locality involved and will therefore vary according to the specific course being held. The basic contents will involve lectures, seminars and extensive field and follow-up laboratory work. It is essential that students contact the course coordinator for further information on the courses available.

Course Learning Outcomes:

On successful completion of this course, students should be able to:

CLO 1 understand the basic skills needed to identify target species associated with the field course

CLO 2 be knowledgeable about and able to implement sampling techniques for organisms in the particular ecosystems studied

CLO 3 be knowledgeable about and able to implement sampling techniques for organisms in the particular ecosystems studied

CLO 4 understand the basic ecology of target species and how biotic and abiotic factors shape focal communities

Pre-requisites (and Co-requisites and Impermissible combinations):

Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Ecology & Biodiversity Major.

This capstone course is for Ecology & Biodiversity Major students only.

The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019:

N

Offer in 2019 - 2020: N

Grade Descriptors (A to F):

A Evidence of a thorough grasp of the subject and relevant research techniques. Knowledge and enthusiasm to learn and excellent familiarity with relevant background reading and case studies. Exemplary handling of field data collection and excellent analytical skills. Ample evidence of independent critical thought with excellent use of a broad range of fundamental concepts and broader comparative perspective to draw insightful and logical conclusions. Shows outstanding abilities of independent work, effective presentation skills with excellent analytical argumentation. Excellent or outstanding work relative to what is required at degree level.

B Evidence of a good grasp of the subject and relevant research techniques. Interest in learning and good-to-moderate familiarity with relevant background reading and case studies. Good handling of field data collection and commendable analytical skills. Good evidence of critical thought (although not always independent), with an appreciable use of fundamental concepts and consideration of broader comparative perspective in drawing logical conclusions. Good abilities of independent work, effective presentation skills with logical and analytical argumentation. Work more than sufficient for what is required at degree level.

C Every year a number of different potential courses may be offered. The precise contents will be tailored to best suit the topic and locality involved and will therefore vary according to the specific course being held. The basic contents will involve lectures, seminars and extensive field and follow-up laboratory work. It is essential that students contact the course coordinator for further information on the courses available.

D Demonstrate an adequate, but incomplete grasp of the subject and relevant research techniques. Moderate familiarity with relevant background reading and case studies, but no interest in learning beyond the adequate average level. Evidence of logical critical thinking (although not always independent), with mostly good use of fundamental concepts to draw logical conclusions. Fair presentation skills, with mostly correct argumentation, but limited (or no) abilities to integrate broader concepts. Work sufficient for what is required for degree level.

F Demonstrate little or no evidence of command of knowledge required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Apply limited or barely effective organizational skills.

Fail No evidence of basic a minimum grasp of the subject and the minimum relevant research techniques. No evidence of background reading and no familiarity with any relevant examples and case studies. Inadequate evidence of coherent logical thought; ineffective presentation skills with poor argumentation and no abilities to draw meaningful conclusions. Work fails to reach degree level.
Course Type
Field camps
Course Teaching & Learning Activities
Activities
Details
No. of Hours
Field work
Reading / Self study
42
Assessment Methods and Weighting
Methods
Details
Weighting in final course grade (%)
Assessment Methods to CLO Mapping
Assignments
Report
project report (35%), group investigation & presentation (30%)
35
65
CLO 1,2,3,4
CLO 1,2,3,4
Required/recommended reading and online materials
Course Website
http://www.biosch.hku.hk/ecology/lsc/
Additional Course Information
Students can choose either one of the following courses:
Subclass A: Marine Mammal Field Course
Subclass B: Animal Behaviour Field Course
Enrollment Procedure:
The course is open to enrollment only during the add/drop period of the 2nd semester. Students are required to submit a brief (maximum 1-page) application letter (PDF file) via e-mail to the Course Coordinator (leszek@hku.hk) not later than 11 January 2016. The application shall include the following:
1. Personal and academic details
2. ID photograph
3. Brief description of academic interests
4. GPA
5. Pre-requisite courses taken and grades received (if pre-requisites are not met, a reasoned request for waiver)
All applications will be reviewed prior to the commencement of the 2nd semester and results will be announced within the 1st week of the add/drop period of the 2nd semester.

BIOL3991 Directed studies in ecology & biodiversity (6 credits) Academic Year 2018
Offering Department Biological Sciences Quota ---
Course Co-ordinator Prof G A Williams, Biological Sciences (hrswga@hku.hk)
Teachers Involved (All academic staff in Ecology & Biodiversity Major,Biological Sciences)
Course Objectives Students will undertake a dissertation on a topic related to the field of ecology and biodiversity. The dissertation will not involve any practical research in terms of laboratory or fieldwork, but will take the form of a desk-top study. Conducting a dissertation is an independent learning experience and will enable students to develop skills including the use of library and Web-based resources; the logical development of scientific arguments; written presentation skills; and personal time management.
Course Contents & Topics An appropriate dissertation topic will be selected from a predeterminat list and following discussion with a member of Ecology & Biodiversity staff, who will act as the student's supervisor. Formal teaching will be limited and aimed at introducing students to the techniques necessary for successful completion of their dissertation.
Course Learning Outcomes On successful completion of this course, students should be able to:
CLO 1 identify a relevant scientific question or knowledge gap
CLO 2 establish a desk-top literature approach to test the question posed / address the knowledge gap
CLO 3 undertake the appropriate research to test the question / address the knowledge gap using sound scientific principles; including statistical analyses where appropriate
CLO 4 draw appropriate scientific conclusions from their research
CLO 5 present their research as a scientific paper
Pre-requisites (and Co-requisites and Impermissible combinations) Passes in at least 24 credits of advanced level disciplinary core / elective courses in the Ecology & Biodiversity Major.
The earliest that a student is allowed to take this capstone course is their year 3 study.
Grade Descriptors (A+ to F)
Y Year Long Offer in 2019 - 2020 Y Examination No Exam
A Evidence of complete or near-complete understanding and a thorough grasp of the subject matter as demonstrated by attainment of all learning outcomes. Excellent critique and knowledge of relevant literature and identification of research hypothesis. Well designed scientific approach to test research hypothesis. Show excellent organizational and/or analytical skills. Demonstrate comprehensive, critical, assessment of findings and professional presentation of research work.
B Evidence of near-complete understanding and a good grasp of the subject matter as demonstrated by attainment of the majority of learning outcomes. Good critique and knowledge of relevant literature and identification of research hypothesis. Appropriately designed scientific approach to test research hypothesis. Show good organizational and/or analytical skills. Demonstrate effective, critical, assessment of findings and good presentation of research work.
C Evidence of adequate understanding and grasp of the subject matter as demonstrated by general but incomplete attainment of most of the learning outcomes. Acceptable critique and knowledge of relevant literature and identification of research hypothesis. Adequately designed scientific approach to test research hypothesis. Show fair organizational and/or analytical skills. Demonstrate adequate but not necessarily critical, assessment of findings and presentation of research work.
D Evidence of limited understanding and grasp of the subject matter as demonstrated by incomplete attainment of many of the learning outcomes. Limited critique and knowledge of relevant literature and identification of research hypothesis. Poorly designed scientific approach to test research hypothesis. Show fair organizational and/or analytical skills. Display confused and poorly organized assessment of findings and limited presentation of research work.
Fail Evidence of poor or inadequate understanding and grasp of the subject matter such that most of the learning outcomes are not attained. Poor critique and knowledge of relevant literature and identification of research hypothesis. Badly designed scientific approach to test research hypothesis. Show little evidence of appropriate organizational and/or analytical skills. Demonstrate incorrect interpretation and assessment of findings and poor presentation of research work.
Course Type Project-based course
Course Teaching & Learning Activities Activities Details No. of Hours
Reading / Self study at least 120 hours on the dissertation or project 120
Assessment Methods and Weighting Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Mid-term written essay plan (20%),
BIOL3992

Directed studies in food & nutritional science (6 credits)

Offering Department
Biological Sciences

Course Co-ordinator
Dr O Habimana, Biological Sciences (ohabim@hku.hk)

Teachers Involved
(All academic staff in Food & Nutritional Science Major, Biological Sciences)

Course Objectives
This course aims to provide a stimulating capstone experience for all Food & Nutritional Science Major undergraduates to integrate and apply their knowledge and skills obtained from the Major.

Course Contents & Topics
The directed study can be a review of literature on a specific topic, or a lab or field study that enhances the student’s understanding of the topic in the field of food & nutritional science. The student should obtain the commitment of a supervisor in the area of the dissertation topic before submitting the registration form for the course (available from the General Office of School of Biological Sciences). Supervisor will introduce various methodologies/techniques and guide students to completion of the dissertation. Teaching will be informal and students will gain knowledge through discussion and feedback from their supervisors.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 acquaint with the process of scientific enquiry
CLO 2 have a better understanding of the nature of food & nutritional science
CLO 3 apply scientific methods to address important issues in various biological disciplines
CLO 4 develop the key intellectual skills that will be valuable for all scientific studies

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in at least 24 credits of advanced level discipline/core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Food & Nutritional Science Major.

Offer in 2018 - 2019
Y 1st sem 2nd sem Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)
A Work displaying a high level of scholarship and originality; virtually flawless presentation with excellent introduction to dissertation topic, showing a thorough grasp of the topic from background reading and analysis; clear statement of the objectives of the research; comprehensive exploration of the topic; personal synthesis of the issues with detailed support from the literature; comprehensive and up-to-date references integrated into argument or logical reasoning; critical evaluations of the main points or problems and their solutions and implications; thought-provoking discussions; accurate summary. All chapters/paragraphs are well-connected and presented logically with clarity of goals, demonstrating excellent organizational, rhetorical and presentational skills. The length of the dissertation meets the specified requirements. All other aspects of the dissertation conform to a high academic standard.
B Work showing some evidence of originality and insight in identifying, generating and communicating competing arguments, perspectives or problem solving approaches; demonstrating substantial understanding of fundamental concepts of the field of study; adequate grasp of the topic from background reading and analysis; a systematic exploration of the topic which may include an attempt at critical comment or appraisal; regular support provided from the literature; comprehensive and up-to-date references included; main points fully elaborated; summary given in the final chapter/paragraphs; communicating information and ideas clearly and fluently, demonstrating good organizational, rhetorical and presentational skills. The length of the dissertation meet the specified requirements. All other aspects of the dissertation conform to a high academic standard.
C Work showing no evidence of originality and insight, but the presentation demonstrated adequate understanding and comprehension of most aspects of the dissertation topic; essential topic materials have been read and acknowledged; the main points presented in logically sequential paragraphs; reasonably balanced discussion of the major issues; acceptable interpretation of the topic, some explanation, illustration and support provided from the literature; summary given in the final chapter/paragraphs; most presentation details met (front page, margin, legibility, citations correctly reported and tabulated, etc.); few typographical errors; Most aspects conform to an acceptable academic standard.
D Demonstrating superficial or partial or faulty understanding of the fundamental concepts for the field of study; showing the bare minimum of information, poorly digested and not very well organized in presentation; irrelevant material; showing no evidence of critical thinking; arguments undeveloped or inappropriate or unsupported; lack of clarity or structure in communicating information or ideas; dissertation topic not fully covered; discussion too brief or just repeating the data or findings; oversize quotations with little explanation; insufficient support from literature; reading not well incorporated into the text; limited acknowledgements and limited bibliography; some major points missed. Minimum conform to an acceptable academic standard.
Fail The dissertation topic was not covered acceptably, demonstrating evidence of poor knowledge, clear deficiencies in understanding fundamental concepts; materials largely irrelevant; incomplete or confusing communication of information or ideas; ineffective argument; incoherent argument; complete misinterpretation of the topic or data; no evidence of reading (no acknowledgements or bibliography); structure confused or not discernible; Fail to meet most or all of the basic requirements of the course. The written work is not of an academic standard.

Assessment Methods

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Oral presentation 15 minutes (Plus 5 minutes for questions and answers). 20 CLO 1,2,3,4
Research report Written report 6000-8000 words (excluding figures and references). 80 CLO 1,2,3,4

Additional Course Information
Regular meetings between the supervisor and student. Guidance from the supervisor on the scientific methods, and on how to think and write scientifically. Students should spend at least 120 hours on the dissertation or project. Recommended reading may be assigned.
Course Contents & Topics
The directed study can be a review of literature on a specific topic, or a lab or field study that enhances the student's understanding of the topic in the field of molecular biology & biotechnology. The student should obtain the commitment of a supervisor in the area of the dissertation topic before submitting the registration form for the course (available from the General Office of School of Biological Sciences). Supervisor will introduce various methodologies/techniques and guide students to completion of the dissertation. Teaching will be informal and students will gain knowledge through discussion and feedback from their supervisors.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1: Acquaint with the process of science
- CLO 2: Have a better understanding of the nature of molecular biology & biotechnology
- CLO 3: Apply scientific methods to address important issues in various biological disciplines
- CLO 4: Develop the key intellectual skills that will be valuable for all scientific studies

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Molecular Biology & Biotechnology Major. This capstone course is for Molecular Biology & Biotechnology Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019
Grades Descriptors (A+ to F)
Y 1st sem 2nd sem Offer in 2019 - 2020: Y Examination No Exam
A

Course Type
Project-based course

Course Teaching & Learning Activities
Activity Details No. of Hours
Reading / Self study at least 120 hours on the dissertation or project 120

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation 15 minutes (Plus 5 minutes for questions and answers).</td>
<td>20 CLO 1,2,3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research report Written report 6000-8000 words (excluding figures and references).</td>
<td>80 CLO 1,2,3,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Website
http://moodle.hku.hk/

Additional Course Information
Regular meetings between the supervisor and student. Guidance from the supervisor on the scientific methods, and on how to think and write scientifically. Students should spend at least 120 hours on the dissertation or project. Recommended reading may be assigned.

BIOL3994
Directed studies in biological sciences (6 credits)

Offering Department
Biological Sciences

Course Co-ordinator
Dr S Cannicci, Biological Sciences (cannicci@hku.hk)

Teachers Involved
(All academic staff in Biological Sciences Major, Biological Sciences)

Course Objectives
This course aims to provide a stimulating capstone experience for all Biological Sciences Major undergraduates to integrate and apply their knowledge and skills obtained from the Major, and to enhance the student's understanding of the topic in the field of biological sciences. The student should obtain the commitment of a supervisor in the area of the dissertation topic before submitting the registration form for the course (available from the General Office of School of Biological Sciences). Supervisor will introduce various methodologies/techniques and guide students to completion of the dissertation. Teaching will be informal and students will gain knowledge through discussion and feedback from their supervisors.

Course Contents & Topics
The directed study can be a review of literature on a specific topic, or a lab or field study that enhances the student's understanding of the topic in the field of biological sciences. The student should obtain the commitment of a supervisor in the area of the dissertation topic before submitting the registration form for the course (available from the General Office of School of Biological Sciences). Supervisor will introduce various methodologies/techniques and guide students to completion of the dissertation. Teaching will be informal and students will gain knowledge through discussion and feedback from their supervisors.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1: Acquaint with the process of science
- CLO 2: Have a better understanding of the nature of molecular biology & biotechnology
- CLO 3: Apply scientific methods to address important issues in various biological disciplines
- CLO 4: Develop the key intellectual skills that will be valuable for all scientific studies

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Biological Sciences Major. This capstone course is for Biological Sciences Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019
Grades Descriptors (A+ to F)
Y 1st sem 2nd sem Offer in 2019 - 2020: Y Examination No Exam
A

Work displaying a high level of scholarship and originality; virtually flawless presentation with excellent introduction to dissertation topic, showing a thorough grasp of the topic from background reading and analysis; clear statement of the objectives of the research; comprehensive exploration of the topic; personal synthesis of the issues with detailed support from the literature; comprehensive and up-to-date references integrated into argument or logical reasoning; critical evaluations of the main points or problems and their solutions and implications; thought-provoking discussions; accurate summary. All chapters/paragraphs are well-connected and presented logically with clarity of goals, demonstrating excellent organizational, rhetorical and presentational skills. The length of the dissertation meet the specified requirements. All other aspects of the dissertation conform to a high academic standard.

B

Work showing some evidence of originality and insight in identifying, generating and communicating competing arguments, perspectives or problem solving approaches; demonstrating substantial understanding of fundamental concepts of the field of study; adequate grasp of the topic from background reading and analysis; a systematic exploration of the topic which may include attempts at critical comment or appraisal; regular support provided from the literature; summary given in the final chapter/paragraphs; most presentation details met (front page, margin, legibility, citations correctly reported and tabulated, etc.); few typos or grammatical errors; Most aspects conform to an acceptable academic standard.

C

Work showing no evidence of originality and insight, but the presentation demonstrated adequate understanding and comprehension of most aspects of the dissertation topic; essential topics were covered but not expanded; the main points presented in logically sequential paragraphs; reasonably balanced discussion of the major issues; acceptable interpretation of the problem, some explanation, illustration and support provided from the literature; summary given in the final chapter/paragraphs; most presentation meets the specified requirements. Most aspects conform to a high academic standard

D

Demonstrating superficial or partial or faulty understanding of the fundamental concepts of the field of study; showing the bare minimum of information, poorly digested and not very well organized in presentation; irrelevant material; showing no evidence of critical thinking; arguments undeveloped or inappropriate or unsupported; lack of clarity or structure in communicating information or ideas; dissertation topic not fully covered; summary not given in the text; limited acknowledgements and light bibliography; some major points missed. Minimum conform to an acceptable academic standard.

E

The dissertation topic was not covered acceptably; demonstrating evidence of poor knowledge, clear deficiencies in understanding fundamental concepts, materials largely irrelevant; incomplete or confusing communication of information or ideas; unstructured; paper not well written and not well presented. Poorly organized structure and presentation. Shortcomings in the length of the dissertation met the specified requirements. All other aspects of the dissertation conform to a high academic standard.
Course Objectives

BIOL4201
Public health nutrition (6 credits)

Offering Department
Biological Sciences

Course Co-ordinator
Dr J M F Wan, Biological Sciences (jmfwan@hku.hk)

Teachers Involved
(Dr J M F Wan, Biological Sciences)

Course Objectives
Public health nutrition unites social sciences and biomedical sciences in preventing disease and improving human health through programs aimed at enhancing good nutritional practices. This course provides a broad overview of the professional practice and essential skills required of a public health nutritionist.

Course Content & Topics

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 have a broad knowledge of the scope and methodologies of public health nutrition
- CLO 2 have a clear technical understanding of a range of selected examples of public health nutrition cases in less-developed and developed countries
- CLO 3 be able to formulate recommendations for action for nutritional interventions at the community level
- CLO 4 understand the impact of socio-cultural factors on community food choices and consequently on health outcomes

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL3201 or BIOL3202

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020: Y

Examination
May

Graduate Attributes (A to F)

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective laboratory/fieldwork skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.

B Demonstrate substantial command of a broad range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Substantial grasp of the subject. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective laboratory/fieldwork skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. General but incomplete grasp of the subject. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective laboratory/fieldwork skills and techniques. Apply moderately effective laboratory/fieldwork skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Partial but limited grasp of the subject, retention of some relevant information of the subject. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective laboratory/fieldwork skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.
On successful completion of this course, students should be able to:

CLO 1 critically examine and describe the need of energy, nutrients and fluid before, during and after the physical exercise in relation to different sports, individual athletes and performance situations

CLO 2 describe the impact of dietary macronutrients, vitamins and minerals on physical performance

CLO 3 provide an overview of the position stands on major misconceptions in sports nutrition. Being able to evaluate, explain and communicate current, evidence based epidemiological knowledge behind these position stands.

CLO 4 access and analyze the importance of meal frequency, energy source and supplements on the performance in different sports.

CLO 5 demonstrate convincing argument for importance of balanced nutrition for sports performance and good health.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL4202

Grade Descriptors (A to F)

A Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use quality management skills and techniques in analysis of data and results to draw appropriately and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.

B Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.

C Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.

D Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness.

Fail Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use quality management skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills.

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments 30 CLO 1,2,3,4

Examination 70 CLO 1,2,3,4

Required/recommended reading and online materials

Course Website

http://moodle.hku.hk/

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL4202 Nutrition and sports performance (6 credits) Academic Year 2018

Offering Department Biological Sciences

Course Co-ordinator Dr T Sobko, Biological Sciences (tsobko@hku.hk)

Course Objectives

To demonstrate evidence-based links between nutrition, exercise and sport performance. More specifically, to gain in-depth understanding about how the metabolic demands of exercise influence physiological and cognitive functions and exercise performance. To focus on the role of major macronutrients, minerals, vitamins, antioxidants, supplements and hydration in sustaining and enhancing sports performance during short-duration, intermittent and endurance exercise.

Course Contents & Topics

Nutrition aims and requirements differ during habitual exercise and competitive sports: from endogenous adaptations to developing metabolic efficiency to competition nutrition. Professional athletes enhance their performance through appropriate nutrition, following the recommendations of the International Olympic Committee. "The amount, composition and timing of food intake can profoundly affect sports performance" (Maughan et al, 2004). The course will firstly examine the physiological needs pre-, during and post-competition and/or habitual exercise to perform at its best. Secondly, it will investigate how and why nutrient and energy intakes vary between different athlete groups, the difference between energy metabolism and requirements during aerobic and anaerobic exercise. Putting exercise and sports performance in focus, the topics will include: energy balance; macronutrients; selected micronutrients; fluid balance and hydration strategies; weight loss and weight gain in athletes, sport foods and supplements; position stands and new perspectives on sports nutrition, nutrient/energy requirements in exercise and sports, ergogenic aids and myths of sport nutrition.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 critically examine and describe the need of energy, nutrients and fluid before, during and after the physical exercise in relation to different sports, individual athletes and performance situations

CLO 2 describe the impact of dietary macronutrients, vitamins and minerals on physical performance

CLO 3 provide an overview of the position stands on major misconceptions in sports nutrition. Being able to evaluate, explain and communicate current, evidence based epidemiological knowledge behind these position stands.

CLO 4 access and analyze the importance of meal frequency, energy source and supplements on the performance in different sports.

CLO 5 demonstrate convincing argument for importance of balanced nutrition for sports performance and good health.
BIOL4204

Diet, brain function and behavior (6 credits)

Course Information

Offering Department: Biological Sciences
Course Co-ordinator: Dr E T S Li, Biological Sciences (etsli@hku.hk)
Teachers Involved: (Dr E T S Li, Biological Sciences) (Dr J C Y Lee, Biological Sciences)
Course Objectives: To highlight the impact of nutrient provision on brain structure and function, and to discuss various effects of nutrition and diet on mental function and behaviour.
Course Contents & Topics: Fundamentals of the central nervous system; Nutrition & brain development; Diet, learning & memory function; Physiological and socio-cultural determinants of dietary behaviour.

Course Learning Outcomes: On successful completion of this course, students should be able to:

- **CLO 1:** understand the basic structure and functions of the brain and how nutrition influences its development
- **CLO 2:** be able to explain the consequences of malnutrition on cognition
- **CLO 3:** appreciate appetite control as a function of food-gut-brain interaction
- **CLO 4:** understand the differences between bioactive food ingredients and drugs
- **CLO 5:** critically evaluate and interpret the internal and external cues that determine dietary behaviour

Pre-requisites (and Co-requisites and Impermissible combinations)

Offer in 2018 - 2019: N
Offer in 2019 - 2020: N
Examination: ---

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Details</th>
<th>Exam/Presentation</th>
<th>Project work/Group discussion/Seminars</th>
<th>Reading/Self study</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough grasp of the subject matter covered. Show exceptional ability on knowledge integration, problem identification and solving. Demonstrate highly effective presentation / writing skills.</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial grasp of the subject matter covered. Show full ability on knowledge integration, problem identification and solving. Show reasonable ability to critically analyze and interpret scientific data and draw appropriate conclusions. Demonstrate effective presentation / writing skills.</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but limited grasp of the subject matter covered. Might show misunderstanding of the materials. Show some ability on knowledge integration, problem identification and solving. Show some ability to analyze and interpret scientific data and draw proper conclusions. Demonstrate adequate organization / writing skills.</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Misunderstanding of the materials is not uncommon. Show limited ability on knowledge integration, problem identification and solving. Use elementary approaches to analyze and interpret scientific data and draw sometimes erroneous conclusions. Demonstrate basic organization / writing skills.</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in problem solving. Fail to integrate information and identify problems. Seriously deficient in ability to analyze and interpret scientific data and draw conclusions. Demonstrate poor organization / writing skills.</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

Course Type: Lecture-based course
Course Teaching & Learning Activities:

- **Activities:** Details
 - Lectures: 36
 - Tutorials: tutorials/group discussions/seminars: 12
 - Project work: oral presentation: 12
 - Reading / Self study: 100

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Tutorial assessment (40%); Group project and presentation (50%) and Critical review (10%)</td>
<td>100</td>
<td>CLO 1,2</td>
</tr>
<tr>
<td>Examination</td>
<td>60</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>20</td>
<td>CLO 2,4</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- Nutritional Neuroscience (Journal)
- Physiology and Behavior (Journal)
- Appetite (Journal)
- Journal of Nutritional Biochemistry (Journal)

Course Website: http://moodle.hku.hk/

Additional Course Information: This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL4205

Food processing and engineering (6 credits)

Offering Department: Biological Sciences
Quota: 15
Academic Year: 2018
Course Co-ordinator: Prof N P Shah, Biological Sciences (npshah@hku.hk)

Course Objectives: To provide students with basic principles and methodologies of food processing and preservation technology. To cover key engineering principles relevant to the food industry. Students will gain hands-on experience with selected food processing and preservation techniques.

Course Contents & Topics: Food processing is a multidisciplinary field combining applied physical sciences with knowledge of product properties and requirements. This course introduces the technical knowledge required to implement cost-effective production and commercialization of food products and services. The design and development of processes, equipment and machinery used to convert raw agricultural materials and ingredients into safe, convenient, and nutritious consumer food products are covered. We discuss the basic engineering principles and applications of methods in food processing and preservation. Techniques discussed will include those for high and low temperature processing, concentration, dehydration, baking and extrusion.

Course Learning Outcomes: On successful completion of this course, students should be able to:

- CLO 1 understand basic principles of food processing methods and preservation technology
- CLO 2 be able to apply their knowledge and practical skills to process and develop food products
- CLO 3 demonstrate in-depth understanding of selected methods and problems in food processing and preservation

Pre-requisites (and Co-requisites and Impermissible combinations): Pass in BIOL3201 or BIOL3209

Offer in 2018 - 2019: Y 2nd sem

Exam in 2019 - 2020: Y

Examination: May

Grade Descriptors (A to F):

- A: Demonstrate thorough grasp of the subject matter covered. Show strong evidence of analytical and critical abilities of the changes that take place in variety of food during preparation, processing and storage. Identifies and uses advanced techniques and equipment for a variety of food-specific purposes. Demonstrates advance skills in designing, producing and evaluating solutions of excellent quality for specific food purposes. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions.
- B: Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities of the changes that take place in variety of food during preparation, processing and storage. Identifies and uses techniques and equipment for a variety of food-specific purposes. Demonstrates high-level skills in designing, producing and evaluating solutions of high quality for specific food purposes. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions.
- C: Demonstrate general but incomplete grasp of the subject matter covered. Show adequate evidence of analytical and critical abilities and logical thinking of the changes that take place in variety of food during preparation, processing and storage. Identifies and uses appropriate techniques and equipment for a variety of food-specific purposes. Demonstrates adequate skills in designing, producing and evaluating solutions of sound quality for specific food purposes. Use lab skills and techniques and analysis of data and results to draw moderately appropriate conclusions.
- D: Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking of the changes that take place in variety of food during preparation, processing and storage. Identifies and uses basic techniques and equipment for a variety of food-specific purposes. Demonstrates basic skills in designing, producing and evaluating solutions for specific food purposes. Use lab skills and techniques and analysis of data and results to draw appropriate conclusions occasionally.
- Fail: Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking of the changes that take place in variety of food during preparation, processing and storage. Identifies with guidance factors and uses some appropriate techniques and equipment for a limited range of food-specific purposes. With guidance, demonstrates limited skills in designing, producing and evaluating solutions for specific food purposes. Use lab skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions.

Course Type: Lecture with laboratory component course

Course Teaching & Learning Activities:

- Activities: Details
- Lectures: 24
- Laboratory: 24
- Tutorials: 6
- Reading / Self study: 100

Assessment Methods and Weighting:

- Methods: Details
- Weighting in final course grade (%)
- Assessment Methods to CLO Mapping
- Examination: 70 CLO 1,2,3
- Laboratory reports: 30 CLO 1,2,3

Required/recommended reading and online materials:

- Food Processing Technology-Principles & Practice 3rd Ed P.J. Fellows
- Unit Operations in Food Processing - 2nd ed. R.L. Earle

Course Website: http://moodle.hku.hk/

Additional Course Information: This course will be offered subject to a minimum enrollment number and availability of teachers.
Course Information

School of Biological Sciences

Offer in 2018 - 2019

Grade Descriptors (A+ to F)

- **A**: Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.

- **B**: Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.

- **C**: Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw moderately appropriate conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.

- **D**: Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness.

- **Fail**: Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighing

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>80</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>20</td>
<td>CLO 1,2</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website

http://moodle.hku.hk/

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL4208

Meat, dairy and grain sciences (6 credits)

Offering Department Biological Sciences

Course Co-ordinator

Prof N P Shah, Biological Sciences (npshah@hku.hk)

Teachers Involved

(Prof N P Shah, School of Biological Science)

Course Objectives

To give students a broad understanding of modern practice and technologies used in agriculture products including meat, dairy and grain production, processing and marketing.

Course Contents & Topics

- Principles of animal nutrition and feed formulation; genetic selection and breeding of farm animals; slaughter and carcass inspection; meat preservation and safety; sensory quality of meat. Dairy processing emphasizing fermented products such as cheese and yogurt; probiotics and health effects. Grain production related to milling; dough rheology; the baking process and quality. Meat, dairy and grain product marketing.

Course Learning Outcomes

- On successful completion of this course, students should be able to:
 - CLO 1 understand modern practices in meat, dairy and grain production
 - CLO 2 demonstrate a knowledge and understanding of meat and dairy sensory quality, and the technologies used in processing, preservation or improvement of meat and dairy products
 - CLO 3 demonstrate knowledge of selected issues related to meat and dairy safety
 - CLO 4 understand the technology behind the production of grain-based foods

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL3201 or (BIOL2101 and any level 3 BIOL course); and Not for students who have passed in BIOL3210; and Not for students who have passed in BIOL4207

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

- **A**: Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.

- **B**: Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.

- **C**: Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw moderately appropriate conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.

- **D**: Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness.

- **Fail**: Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final assessment</th>
</tr>
</thead>
</table>
BIOL4209

Offering Department Biological Sciences
Academic Year 2018
Quota 40

Course Co-ordinator Dr M F Wang, Biological Sciences (mfwang@hku.hk)
Course Objectives
To provide a fundamental understanding of the rapidly emerging functional food/nutraceutical industry with an emphasis on the history, regulation, chemical basis and quality control of healthy ingredients/products and their effects on human health.

Course Contents & Topics
Concept, history and global regulation of functional foods and nutraceuticals; classification of functional foods and nutraceuticals based on their chemical structures; unsaturated fatty acids, proteins, food pigments and dietary fibers as healthy food ingredients; health benefits of dietary phenolics, terpenes, phytosterols and sulphur-containing compounds; probiotics and prebiotics; small berries, spices, teas and herbs for health; quality control and assurance of functional foods and nutraceuticals.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 understand the definition and global regulation of functional foods and nutraceuticals
- CLO 2 have substantial chemical knowledge of functional food and nutraceutical products
- CLO 3 be able to describe examples of functional foods and interpret critically their claimed health benefits
- CLO 4 demonstrate understanding of the current functional food and nutraceutical industry
- CLO 5 understand major techniques and technologies for quality control and manufacturing of healthy products

Pre-requisites
Pass in BIOL3201 or BIOL3202

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y

Grade Descriptors (A to F)

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in using knowledge to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use knowledge to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use knowledge to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use knowledge to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use knowledge ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills.</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>30</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>70</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk/

Additional Course Information
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL4210

Offering Department Biological Sciences
Academic Year 2018
Quota 40

Course Co-ordinator Dr M F Wang, Biological Sciences (mfwang@hku.hk)
Course Objectives
To introduce the key concepts and techniques used in food product development. To provide small group experience in the design, development and production of a new food product.

Course Contents & Topics
History and future of the food industry; industrial product development process; idea generation and prototype development for new food products; quality management and legal protection; marketing strategies; food labeling; food package design; new product development for different food industries.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 understand the food product development cycle

On successful completion of this course, students should be able to:

- to acquaint students with the principles governing interrelationships among fishes as well as with biotic and abiotic aspects of their environment for an understanding of population dynamics and multispecies interactions.
- to provide an understanding of how species diversity and selected aspects of their life history are relevant to fishery management challenges, sustainable supply of seafood, and the conservation of threatened species.
- to cover the theoretical and practical aspects of marine fisheries management, fish farming and fish conservation using local, regional and global examples.

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.

Grade Descriptors

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills.</td>
</tr>
</tbody>
</table>

Course Contents & Topics

- Introduction to course: phylogenetic, biological and ecological concepts and adaptation. Multispecies interactions in marine and freshwater fish assemblages. Fishery theory; how do fisheries work? Status of the world's capture fisheries; fish stock assessment and fishery management practices using local, regional and global examples. The roles of mariculture and capture fisheries for seafood supply and relationship to capture fisheries. Fishery management and fish conservation. Conclusion; fish biodiversity and fishery production; ethics of fish research and exploitation; climate change and the future of fish and fisheries.

Course Learning Outcomes

- CLO 1 understand the basis of fish species diversity in relation to phylogenetic, ecological and biological factors.
- CLO 2 appreciate the direct and indirect impacts and consequences of human activities on fish species and species assemblages and implications for seafood security.
- CLO 3 understand of the functioning of fisheries and standards of fisheries assessment, development and management.
- CLO 4 appreciate the mutual dependency of humans with fished populations in relation to their long-term sustainability.
- CLO 5 enhance the ability for critical and synthetic thinking and to consider innovative approaches to research and management.

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.

Grade Descriptors

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, ability to integrate and synthesize information, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial knowledge and understanding of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete knowledge of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited knowledge, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no knowledge, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills.</td>
</tr>
</tbody>
</table>
Course Type: Lecture-based course

Assessment Methods and Weighting:
- Assignments: 30% of final course grade
- Examination: 60% of final course grade
- Test: 10% of final course grade

Course Objectives:
- CLO 1: Understand the operation of EIA systems in Hong Kong and overseas
- CLO 2: Apply a variety of techniques in assessing environmental impact
- CLO 3: Evaluate different options and determine acceptability in environmental impact assessment
- CLO 4: Prepare EIA reports for small scale projects

Pre-requisites (and Co-requisites and Impermissible combinations):
- Pass in (BIOL2103 or BIOL2306); and (ENVS3004 or any BIOL3XXX course)

Grade Descriptors (A+ to F):
- A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, ability to integrate and synthesize information, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective presentialational skills. Strong evidence of clear attention to thoughtful and reflective thinking.

- B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, integration of material and ability to apply knowledge to familiar and some unfamiliar situations. Demonstrate effective presentialational skills. Evidence of clear attention to thoughtful and reflective thinking.

- C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to some familiar situations. Apply moderately effective presentialational skills. Little evidence of clear attention to thoughtful and reflective thinking.

- D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities and little attempt at integration. Show limited ability to apply knowledge to solve problems. Apply limited effectiveness in presentialational skills. Lack of attention to thoughtful and reflective thinking.

- F: Fail - Demonstrate little or no evidence of command of knowledge and skills and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentialational skills are minimally effective or ineffective.

School of Biological Sciences
School of Biological Sciences

Course: Animal Behaviour (6 credits)

Offering Department: Biological Sciences
Course Co-ordinator: Dr L Karczmarski, Biological Sciences (leszek@hku.hk)

Course Objectives:
This course teaches students the ways and means of exploring and understanding animal behaviour. It provides insights into a field of science that investigates everything animals do, including the underlying mechanisms and functions of specific behaviours; the ways in which animals interact with each other, with their physical environment and other organisms; how animals find and defend resources, avoid predators, choose mates, reproduce, and care for their young; how complex animal societies are formed and how behaviour of an individual affects the structure of a population.

Course Contents & Topics:
This course will introduce students to scientific reasoning and conceptual basis of an understanding of animal behaviour and behavioural ecology. What causes specific behaviour and what are the underlying mechanisms? How does behaviour develop within the individual’s lifetime and what functions does it serve? For example; why are some species monogamous while others are polygamous? What makes one organism the hunter and another the hunted? Several animal species, including humans, tend to live in groups; social life is among the most complex and effective survival strategy. However, how could, for instance, the birth of sterile castes, like in bees, be explained through an evolving mechanism which emphasizes the reproductive success of as many individuals as possible? Why, among animals living in small groups like squirrels, would an individual risk its own life to save the rest of the group? In this course, based upon ecological and evolutionary principles, students will learn to think within the paradigm of behavioural ecology and understand the causes, functions, development, and evolution of behaviour. We will discuss several classical studies that form the foundation of this field, as well as more recent research that represents the current concepts which have led to modern understanding of animal behaviour. We will also illustrate the links between the recent extraordinary advances in behavioural ecology and socio-ecology with their application in animal conservation.

Course Learning Outcomes:
On successful completion of this course, students should be able to:
- **CLO 1** learn to appreciate the causes, functions, development, and evolution of animal behaviour
- **CLO 2** appreciate the complexity of interactions between environmental selective pressures and animal behaviour
- **CLO 3** appreciate current theories that form basis for modern understanding of animal behaviour
- **CLO 4** learn the scientific reasoning and methodology in the field of Animal Behaviour
- **CLO 5** think analytically in terms of behavioural ecology, animal socio-behavioural complexity, and how the understanding of species’ behaviour contributes to its conservation

Pre-requisites (and Co-requisites and Impermissible combinations):
Pass in BIOL2306; and Pass in one of the following courses: BIOL3301, BIOL3313, BIOL3319, BIOL3320 or BIOL3419

Offer in 2018 - 2019:

<table>
<thead>
<tr>
<th>Grade Descriptors (A to F)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence of a thorough grasp of the subject in a broader comparative perspective as demonstrated by background reading and excellent use of named examples and case studies. Evidence of independent critical thought with excellent use of a broad range of fundamental concepts to draw insightful and logical conclusions. Show eagerness to learn, great abilities of independent work, effective presentation skills with excellent analytical argumentation. Excellent or outstanding work relative to what is required at degree level.</td>
</tr>
<tr>
<td>B</td>
<td>Evidence of a good grasp of the subject as demonstrated by some background reading and appropriate use of named examples and some case studies. Evidence of good critical thought, although not necessarily original. Good and very good (but not outstanding) abilities of independent work, effective presentation skills with good analytical and logical argumentation. Good general command of acquired knowledge to draw meaningful and logical conclusions. Work more than sufficient for what is required at degree level.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate an adequate, but not coherent and incomplete grasp of the subject, with limited background reading and limited use of named examples and case studies. Some abilities of logical critical thinking, but not insightful and/or independent; only partial abilities to use acquired knowledge and work independently to draw meaningful conclusions. Fair presentation skills, with mostly correct argumentation, but limited (or no) abilities to integrate broader concepts. Work sufficient for what is required at degree level.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate some grasp of the subject, but partial and limited to the most basic concepts, examples, and limited (or none) case studies. Insufficient evidence of background reading, limited abilities of critical independent thinking, and not particularly effective presentation skills with generally weak logical argumentation and restricted ability of drawing appropriate conclusions. Work barely meets what is required at degree level.</td>
</tr>
<tr>
<td>Fail</td>
<td>No evidence of basic minimum knowledge and understanding of the subject. No evidence of background reading and no familiarity with any relevant examples and case studies. Inadequate evidence of coherent logical thought; ineffective presentation skills with poor argumentation and no abilities to draw meaningful conclusions. Work fails to reach degree level.</td>
</tr>
</tbody>
</table>

Course Type: Lecture with laboratory component course

Assessment Methods and Weighting:

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>active participation/continuous assessment/presentation</td>
<td>55</td>
<td>CLO 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td></td>
<td>CLO 1, 2, 3, 4, 5</td>
</tr>
</tbody>
</table>

School of Biological Sciences
BIOL4304 Ecosystem functioning and services (6 credits)
Offering Department: Biological Sciences
Quota: 30
Course Co-ordinator: Dr B D Russell, Biological Sciences
Teachers Involved: (Dr B D Russell, Biological Sciences)
Course Objectives: This course will introduce the functioning of terrestrial, fresh water and marine ecosystems and the services which they provide and the inherent value of these services. The course will further develop the concept that ecosystem services are provided to humans. The concept of ecosystem services will be further explained to "value", including financial, cultural, social and, importantly, the intrinsic value that may be priceless. We will also explore how human activities degrade these ecosystem services and how protecting ecosystems and biodiversity can increase the services provided to humans. Natural ecosystems provide trillions of dollars' worth of ecosystem services to humans every year. Many of these services go unrecognized and undervalued. In fact, because humans rely on ecosystems many of these services may be priceless. This course will first cover the function of different ecosystems from terrestrial, fresh water and marine environments. Students will then be introduced to the concept of ecosystem services and what they provide to human populations. Finally, human activities which degrade ecosystems and reduce the extent that ecosystems can provide these services, and what that means for human populations, will be covered. Students will develop independent and creative thinking when proposing solutions to the question of how to value ecosystems for their inherent properties rather than perceived monetary value.

Course Contents & Topics: Natural ecosystems provide trillions of dollars' worth of ecosystem services to humans every year. Many of these services go unrecognized and undervalued. In fact, because humans rely on ecosystems many of these services may be priceless. This course will first cover the function of different ecosystems from terrestrial, fresh water and marine environments. Students will then be introduced to the concept of ecosystem services and what they provide to human populations. Finally, human activities which degrade ecosystems and reduce the extent that ecosystems can provide these services, and what that means for human populations, will be covered. Students will develop independent and creative thinking when proposing solutions to the question of how to value ecosystems for their inherent properties rather than perceived monetary value.

Pre-requisites: (and Co-requisites and Impermissible combinations)
Pass in one of the following courses: BIOL3301 or BIOL3303 or BIOL3313 or BIOL3319 or ENV5201 or ENV5202 or ENVS3004 or ENVS3020

Offer in 2018 - 2019: N
Offer in 2019 - 2020: Y
Examination: ---

Grade Descriptors (A to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence of a thorough grasp of the subject and relevant research techniques. Elegance and enthusiasm to learn and excellent familiarity with relevant background reading and case studies. Good handling of field data collection and commendable analytical skills. Good evidence of critical thought (although not always independent), with an appreciable use of fundamental concepts and consideration of broader comparative perspectives in drawing logical conclusions. Good abilities of independent work, effective presentation skills with excellent analytical argumentation. Excellent or outstanding work relative to what is required at degree level.</td>
</tr>
<tr>
<td>B</td>
<td>Evidence of a good grasp of the subject and relevant research techniques. Interest in learning and good-to-moderate familiarity with relevant background reading and case studies. Good handling of field data collection and commendable analytical skills. Good evidence of critical thought (although not always independent), with an appreciable use of fundamental concepts and consideration of broader comparative perspectives in drawing logical conclusions. Good abilities of independent work, effective presentation skills with logical and analytical argumentation. Work more than sufficient for what is required at degree level.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate an adequate, but incomplete grasp of the subject and relevant research techniques. Moderate familiarity with relevant background reading and case studies, but no interest in learning beyond the adequate average level. Evidence of logical critical thinking (although not always independent), with mostly good use of fundamental concepts to draw logical conclusions. Fair presentation skills, with mostly correct argumentation, but limited (or no) abilities to integrate broader concepts. Work sufficient for what is required for degree level.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate some grasp of the subject, but only partial and with limited understanding of relevant research concepts and research techniques. Some familiarity with relevant case studies, but insufficient evidence of background reading and limited abilities of critical independent thinking. Ineffective presentation skills with generally weak logical argumentation with restricted ability of drawing appropriate conclusions. Work barely meets what is required at degree level.</td>
</tr>
</tbody>
</table>

Assessment Methods

- **Examination**: 40 (CLO 1, 2, 3, 4, 5)
- **Presentations**: 70 (CLO 1, 2, 3, 4, 5)

Required/recommended reading and online materials

Students will be directed to relevant scientific literature and websites.

Course Website: http://www.biosch.hku.hk/ecology/lsc/

Course Information: Offer in alternate year from 2016-2017

This course will be offered subject to a minimum enrollment number and availability of teachers.
Course Objectives
The objective is to provide students the knowledge on the practical applications of immunology and microbiology in biological research, clinical analysis and disease diagnosis.

Course Contents & Topics
- Basic parameters affecting antigen-antibody interactions
- Application of antigen-antibody interaction in advanced research: CHIP assay, co-immunoprecipitation, immunohistochemistry and dual immunofluorescence
- Principles and application of flow cytometry
- Techniques in cellular immunology and tumor immunology
- Microbial pathogens and associated diseases, host immune response, antimicrobial agents and multidrug resistance, epidemiology and prevention of microbial infections
- Clinical laboratory analyses in serology, haematology, blood banking, microbiology and chemical pathology

Course Learning Outcomes
- On successful completion of this course, students should be able to:
 - CLO 1 apply the principles of antigen-antibody interaction in various advanced research techniques
 - CLO 2 demonstrate knowledge on microbial pathogens, mechanisms for their disease-causing, and principles of antibiotic development
 - CLO 3 understand the scientific principles of various clinical laboratory analyses
 - CLO 4 promote public attention on control of microbial infection and the spread of antibiotic resistance

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL3401 or BIOL3403

Offer in 2018 - 2019
Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)
- **A**: Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.
- **B**: Demonstrate substantial command of a broad range of knowledge required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.
- **C**: Demonstrate general but incomplete command of knowledge required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.
- **D**: Demonstrate partial but limited command of knowledge required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.
- **Fail**: Demonstrate little or no evidence of command of knowledge required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Method</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>70</td>
<td>CLO 1.2, 3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>30</td>
<td>CLO 1.2, 3</td>
</tr>
</tbody>
</table>

To be announced in class

Course Website
http://moodle.hku.hk/

Additional Course Information
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL4402
Microbial biotechnology (6 credits)

Offering Department: Biological Sciences

Course Co-ordinator: ---, Biological Sciences ()

Teachers Involved: (---, Biological Sciences)

Course Objectives
This course is intended for students who would like to understand the application of modern microbiology in biotechnology. The microbial systems being used include different types of viruses, bacteria, fungi and algae. At the end of the course the students are expected to know the parameters and conditions that affect the yield of production and the systems available for the expression of various types of biotechnology products.

Course Contents & Topics
Upstream and downstream processing will be briefly described to equip the students with the background for microbial biotechnology. The latest advances in microbial expression systems using viruses, bacteria, yeasts and algae will be reviewed. Specific examples on the use of these systems will be provided. These include but not limited to production of recombinant vaccines, secondary metabolites, food and food additives, industrial enzymes and bioprosthetics as well as bioremediation and medical diagnostics.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- **CLO 1**: Explain the fundamental biochemical concepts underlying the industrial production of selected microbial biotechnology products
- **CLO 2**: Understand the importance of the current recombinant technology for large-scale manufacturing of various protein products
- **CLO 3**: Describe the major expression systems, understand their purposes, advantages, and disadvantages

Academic Year: 2018

Quota: 30
Course Objectives

On successful completion of this course, students should be able to:

1. **CLO 1** be familiar with virus classification and the modes of replication and transmission of various viral families
2. **CLO 2** gain hand-on experiences on common virological techniques
3. **CLO 3** carry out researches on virology after taking this course

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Demonstrate deep understanding of the subject. Demonstrate integration of the full range of appropriate theories, principles, evidence and techniques. Demonstrate use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining most of the course learning outcomes. Demonstrate substantial grasp of the subject. Demonstrate general integration of theories, principles, evidence and techniques. Demonstrate use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete knowledge and skills required for attaining most of the course learning outcomes. Demonstrate general but incomplete grasp of the subject. Demonstrate partial integration of theories, principles, evidence and techniques. Demonstrate use of relevant information from sources, showing ability to make comparisons between different secondary interpretations and to quote/reference aptly. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate limited knowledge and skills required for attaining some of the course learning outcomes. Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Show limited integration of theories, principles, evidence and techniques. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no knowledge and skills required for attaining the course learning outcomes. Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Show little or no or inapt integration of theories, principles, evidence and techniques. Show limited use of secondary sources and no critical comparison of them. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>30</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1, 2</td>
</tr>
</tbody>
</table>

Course Contents & Topics

1. **Fundamental Virology**
 - Classification and Nomenclature of Viruses
 - Virus structure: Capsid symmetry, icosahedral symmetry
 - Virus structure: Genetic Materials, Nucleocapsid, Envelope
 - Virus entry: Receptors, uncoating and fusion
 - Virus-Cell interaction
 - RNA viruses: Genome replication and mRNA production
 - Baltimore Class IV (+) s.s. RNA viruses: Picornaviruses
 - Baltimore Class V (-) s.s. RNA viruses: Myxoviruses
 - Ambisense RNA viruses: Bunyaviruses and Arenaviruses
 - 10, 11. Baltimore Class VI (+) s.s. RNA viruses: Retroviruses
 - 12. Baltimore Class III d.s. RNA viruses: Reoviruses
 - 13, 14. Baltimore Class I d.s. DNA viruses: Adenoviruses, Herpesviruses
 - 15. Baltimore Class II s.s. (+) DNA viruses: Parvoviruses
 - 16. Mechanisms of Viral Oncogenesis
 - 17. Anti-viral treatments
 - 18. Viruses as Tools in Medicine and Biotechnology

Practical Virology

19. Specimen Collection, Transportation and Processing, Quality Assurance & Laboratory Safety
20. Virus isolation, propagation and titration
21, 22. Virus Identification: Immunocytological assays, ELISA, Complement Fixation Assay, Hemagglutination and HI assays
23, 24. Neutralization assay and Antiviral assay

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 be familiar with virus classification and the modes of replication and transmission of various viral families
- CLO 2 gain hand-on experiences on common virological techniques
- CLO 3 carry out researches on virology after taking this course

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL3401 or BIOL3403

<table>
<thead>
<tr>
<th>Offer in 2018 - 2019</th>
<th>Grade Descriptors (A+ to F)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>A</td>
<td>Demonstrates thorough mastery at an advanced level of knowledge required for attaining all the course learning outcomes. Show strong analytical skills and competent ability to acquire knowledge on new development of the subject. Apply highly effective lab</td>
</tr>
</tbody>
</table>
Course Objectives

This course covers the principles and key concepts of plant and food biotechnology and its applications in increasing global food supply. The significance of biotechnology in agriculture and food production, and the emerging importance of plant biotechnology in molecular farming for the production of biopharmaceuticals and other high-value proteins will be discussed. The course will also provide an insight on the real-life applications of plant and food biotechnology.

Course Contents & Topics

- Genetic improvements in agriculture.
- Transgenic crops in global food production.
- Tools in plant genetic engineering: promoters and marker genes.
- Techniques in plant gene transfer: Agrobacterium-mediated transformation, biolistics and microinjection.
- Nuclear and plastid transformation.
- Biotechnology in plant pest and disease management:
 - Producing crops resistant to phytopathogens and pests. Short-interfering RNAs in gene silencing to defend against plant viruses.
 - Protecting crops in the field using the Bt toxin. Pest-resistant genetically-transformed seeds using the alpha-amylase inhibitor
 - Herbicide-resistant crops.
- Genetically-modified crops and food products: regulation, testing and labelling.
- Status of GM food in North America, Europe and Hong Kong.
- Regulations on the production of plant-derived pharmaceuticals.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 acquire key concepts in plant and food biotechnology and basic laboratory techniques in plant biotechnology.
- CLO 2 gain insight into real-life applications in plant and food biotechnology.
- CLO 3 develop scientific inquiry and critical thinking skills.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL3211 or BIOL3401

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Offer in 2018 - 2019</th>
<th>Grade Descriptors (A to F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y 1st sem</td>
<td>A: Demonstrate thorough and complete mastery of extensive knowledge and skills required for attaining the learning outcomes in Plant and Food Biotechnology. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations in plant biotechnology. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td></td>
<td>B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining most of the course learning outcomes in plant biotechnology. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td></td>
<td>C: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Show moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td></td>
<td>D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Show moderately effective organizational and presentational skills.</td>
</tr>
</tbody>
</table>

Assessment Methods

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>80 CLO 1,2,3</td>
<td>CLO 1.2,3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>20 CLO 1,2,3</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Additional Course Information

Offer in alternate year from 2017-2018

This course will be offered subject to a minimum enrollment number and availability of teachers.
This course discusses the key concepts and principles involved in healthcare biotechnology, and their applications in molecular medicine.

Course Contents & Topics

Genetic biotechnology in animals (transgenics, knockouts and other related technologies): Transgenic animals as models in the study of human diseases, as bioreactors for the production of hormones, antibiotics and vaccines and organs for xenotransplantation.

Advanced molecular biology techniques related to human and animal science basic research, disease diagnosis and development of new therapies. These include but not limited to: applications of DNA technologies in diagnostic medicine and forensic science; tissue engineering.

An overview of the drug development process, with a focus on the early-stage, preclinical drug discovery, drug target identification, high-throughput assay development, and screening of chemical libraries (synthetic and natural products). The concept of individualized medicine will also be discussed.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 describe key concepts in genetic biotechnology and human health
- CLO 2 acquire and apply advanced laboratory techniques essential to biotechnology
- CLO 3 develop scientific inquiry and critical thinking skills to understand, analyze, and evaluate problems in order to develop solutions
- CLO 4 gain insight into real-world applications in healthcare biotechnology

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL4401

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

A

Demonstrate thorough mastery at an advanced level of extensive knowledge required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational skills. Writings consistently demonstrate informed, thoughtful intellectual engagement with broad range of relevant concepts.

B

Demonstrate substantial command of a broad range of knowledge required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational skills. Writings mostly demonstrate informed, thoughtful intellectual engagement with broad range of relevant concepts.

C

Demonstrate general but incomplete command of knowledge required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational skills. Writings mostly indicate informed, intellectual engagement with concepts or theories but not always with sufficient depth, breadth or understanding.

D

Demonstrate partial but limited command of knowledge required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational skills. Writings indicate some intellectual engagement with concepts or theories but mostly at a superficial level.

Fail

Demonstrate little or no evidence of command of knowledge required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking, show very little or no ability to apply knowledge to solve problems. Organizational skills are minimally effective or ineffective. Writings reveal an absence of intellectual engagement with concepts or theories. Writings are irrelevant or superficial.

Required/recommended reading and online materials

E-reserves (HKU Library)

Lecture notes on Moodle

Additional Course Information

Core in Molecular Biology & Biotechnology Major

An advanced elective course in FNS Major

An advanced elective course in Plant Science Minor

<table>
<thead>
<tr>
<th>BIOL4415</th>
<th>Healthcare biotechnology (6 credits)</th>
<th>Academic Year</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
<td>Biological Sciences</td>
<td>Quota</td>
<td>70</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Prof A S T Wong, Biological Sciences (awong1@hku.hk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr K W Y Yuen,Biological Sciences) (Prof A S T Wong,Biological Sciences)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Objectives</td>
<td>This course discusses the key concepts and principles involved in healthcare biotechnology, and their applications in molecular medicine.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture with laboratory component course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Methods and Weighing</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td></td>
<td>Laboratory reports</td>
<td></td>
<td>10</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td></td>
<td>Presentation</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

- Textbook of Drug Design and Discovery (Krogsgaard-Larsen, Liljefors, and Madsen, Taylor & Francis, 2002)
BIOL4416 Stem cells and regenerative biology (6 credits)

Offering Department Biological Sciences
Quota 40

Course Co-ordinator Dr K W Y Yuen, Biological Sciences (kwyyuen@hku.hk)

Teachers Involved (Dr J Zhang, Biological Sciences)
(Dr K W Y Yuen, Biological Sciences)

Course Objectives To introduce the current understanding in regenerative biology, aging and longevity at the cellular and molecular level, and to present the interconnection between these biological events.

Course Contents & Topics The course will discuss cutting-edge research in

(i) regenerative and stem cell biology:
- the basic characteristics of stem cells
- the molecular and genetic control of cell fate specification and differentiation
- embryonic and adult stem cells
- experimental inducible pluripotent stem cells and tissue engineering
- therapeutics potentials for stem cell technology
- ethical issues in stem cell research
(ii) aging and longevity:
- model systems used for aging and life-span studies
- cellular and molecular biology of aging
- telomeres and cellular senescence
- genomic stability, DNA mutations and repair
- mitochondrial defects and oxidative stress
- genetic aging diseases
- genetic, biochemical and metabolic pathways involved in longevity

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in BIOL3601 or BIOL3604 or BIOL3211 or BIOL3401 or BIOL3402 or BIOL3403 or BIOL3408 or BIOL3409

Grade Descriptors

A Demonstrate thorough and complete mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail Demonstrate little or no command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type Lecture with laboratory component course

Activities Details
Lectures 24
Laboratory 24
Tutorials 6
Reading / Self study 100

Assessment Methods and Weighting Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments assignment/discussion 10 CLO 1,2,3,4
Examination 60 CLO 1,2,3,4
Laboratory reports 20 CLO 1,2,3,4
Test 10 CLO 1,2,3,4

Required/recommended reading and online materials References:
- Essentials of stem cell biology edited by Robert Paul Lanza 2009
- Science in medicine; the JCI textbook of molecular medicine By Andrew R. Marks, American Society for Clinical Investigation, Ushma S. Neill

Course Website http://moodle.hku.hk/

Additional Course Information Offer in alternate year from 2017-2018
This course will be offered subject to a minimum enrollment number and availability of teachers.

School of Biological Sciences
BIOL4417
"Omics' and systems biology (6 credits)

Offering Department
Biological Sciences

Course Co-ordinator
Dr J W Zhang, Biological Sciences (jzhang1@hku.hk)

Teachers Involved
Dr J W Zhang, Biological Sciences

Course Objectives
Recent progress in high-throughput omics technology has revolutionized the biological research. Genome-wide profiling of various biomolecules simultaneously by omics technology generates huge amounts of data, providing the potential to obtain a global and holistic view of the system. This course aims to introduce the technologies of Omics and Systems Biology, and overview of various applications of omics technology in agricultural, biomedical, environmental, and nutritional sciences. This course will make the state-of-the-art knowledge of Systems Biology and know-how available to those working on an omics projects as well as those preparing their research proposal.

Course Contents & Topics
The course covers various OMICS techniques with special focus on sequence alignment, next generation sequencing, computational modeling, and statistic programming. This course will also provide students hands-on experience in large scale data analysis, and high-throughput methodologies involved in:
- Genomics - the study of all genes or DNA sequences in a genome
- Transcriptomics - the study of all mRNA transcripts
- Proteomics - the study of all proteins
- Interactomics - the study of all genetic or physical interactions among genes or proteins
- Systems biology and functional genomics - the study of the interactome/network between components of a biological system, and modeling to discover the integrated function and emergent properties of that system
- Metagenomics - all genetic materials found in an environment

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 explain the conceptual differences between 'Omics'/Systems Biology studies and traditional one-gene approach, and discuss the pros and cons of both approaches
- CLO 2 describe common methodologies used in major Omics studies
- CLO 3 describe basic analytical methods, and access database resources generated in major Omics studies
- CLO 4 describe how ‘Omics’ data are used in Systems Biology to understand the integrated functions of the system
- CLO 5 identify questions that can be addressed by ‘Omics’ and System Biology studies, appreciate and describe applications in 'Omics' studies

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BiOC3601 or BiOC3604 or BiOL3211 or BiOL3401 or BiOL3402 or BiOL3403 or BiOL3404 or BiOL3408

Offer in 2018 - 2019
N Offer in 2019 - 2020 : Y

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities
<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>40</td>
<td>CLO 2,3,4,5</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>60</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
TBA

Course Website
http://moodle.hku.hk/

Additional Course Information
Offer in alternate year from 2017-2018
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL4451
Cetacean behaviour, ecology and conservation: field research experience (6 credits)

Offering Department
Biological Sciences

Course Co-ordinator
. Biological Sciences ()

Teachers Involved
.

Course Objectives
This course offers an exciting experiential learning opportunity through hands-on experience in field research into behavioural ecology and conservation of free-ranging cetaceans (whales, dolphins and porpoises). It provides students with a fundamental knowledge, skills, and the appreciation of what it takes to design, implement, and effectively run field studies in cetacean ecology, behaviour and conservation, and similar studies of other large and mobile marine vertebrates.

Course Contents & Topics
Field-based studies of cetaceans have been rapidly evolving in recent years. There are many exciting new developments that allow researchers to tackle previously unexplored avenues of research. However, the primary component of cetacean studies, the direct contact with free-ranging animals out at sea, in their natural environment and on their terms remains unchanged; both challenging and fascinating. This course, conducted in a field

School of Biological Sciences

556
research site outside Hong Kong, will expose students to various aspects of cetacean field studies, from the definition of a research question to project design, and to various stages of data collection and analyses. Students will learn a suite of research techniques, and will exercise their skills in data processing and interpretation. The emphasis will be on delphinid behavioural ecology and conservation applications; students will be guided through the scientific reasoning and methodology, and will develop an understanding how individual projects can contribute to advancing science and benefiting broader conservation management efforts. The course includes lectures, informal discussions of current research and recent discoveries, review of innovative research techniques, and extensive field component with sea-based research surveys performed daily (weather permitting). Following the field-based activities, students are required to write an independent report describing the learning outcome of the course.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 understand the biodiversity and primary habitats in the ecosystem studied

CLO 2 establish the basic skills needed to identify target species associated with the field course

CLO 3 be knowledgeable about and able to implement sampling techniques for organisms in the particular ecosystems studied

CLO 4 understand the basic ecological targets of species and how biotic and abiotic factors shape focal communities

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in at least one of the following courses: BIOL3101, BIOL3301, BIOL3313 or BIOL3320. This experiential field course is primarily for Ecology & Biodiversity Major students.

The earliest that a student is allowed to take this experiential course is their year 3 study; and because it is conducted in early June, this course is best suited for year 3 students.

Offer in 2018 - 2019
N Offer in 2019 - 2020: N

Examination ---

Grade Descriptors (A+ to F)
A Evidence of a thorough grasp of the subject and relevant research techniques. Eagerness and enthusiasm to learn and excellent familiarity with relevant background reading and case studies. Exemplary handling of field data collection and excellent analytical skills. Ample evidence of independent critical thought with excellent use of a broad range of fundamental concepts and broader comparative perspective to draw insightful and logical conclusions. Show outstanding abilities of independent work, effective presentation skills with excellent analytical argumentation. Excellent or outstanding work relative to what is required at degree level.

B Evidence of a good grasp of the subject and relevant research techniques. Interest in learning and good-to-moderate familiarity with relevant background reading and case studies. Good handling of field data collection and commendable analytical skills. Good evidence of critical thought (although not always independent), with an appreciable use of fundamental concepts and consideration of broader comparative perspective in drawing logical conclusions. Good abilities of independent work, effective presentation skills with logical and analytical argumentation. Work more than sufficient for what is required at degree level.

C Demonstrate an adequate, but incomplete grasp of the subject and relevant research techniques. Moderate familiarity with relevant background reading and case studies, but no interest in learning beyond the adequate average level. Evidence of logical critical thinking (although not always independent), with mostly good use of fundamental concepts to draw logical conclusions. Fair presentation skills, with mostly correct argumentation, but limited (or no) abilities to integrate broader concepts. Work sufficient for what is required for degree level.

D Demonstrate some grasp of the subject, but only partial and with limited understanding of relevant research concepts and research techniques. Some familiarity with relevant case studies, but insufficient evidence of background reading and limited abilities of critical independent thinking. Ineffective presentation skills with generally weak logical argumentation with restricted ability of drawing appropriate conclusions. Work barely meets what is required at degree level.

Fail No evidence of basic a minimum grasp of the subject and the minimum relevant research techniques. No evidence of background reading and no familiarity with any relevant examples and case studies. Inadequate evidence of coherent logical thought; ineffective presentation skills with poor argumentation and no abilities to draw meaningful conclusions. Work fails to reach degree level.

Course Type
Field camps

Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures lectures and tutorials 12
Field work 80
Presentation interactive debates 10
Reading / Self study 100
Assessment group projects 12

Assessment Methods and Weighting
Methods Details Weighing in final course grade (%) Assessment Methods to CLO Mapping
Assignments 35 CLO 1,2,3,4
Report project report (35%), group investigation & presentation (30%) 65 CLO 1,2,3,4

Required/recommended reading and online materials

Course Website http://www.biosch.hku.hk/ecology/lsc/

Additional Course Information
Enrollment Procedure:
The course is open to enrollment only during the add/drop period of the 2nd semester. Students are required to submit a brief (maximum 1-page) application letter (PDF file) via e-mail to the Course Coordinator (leszek@hku.hk) not later than 10th January. The application shall include the following:
1. Personal and academic details
2. ID photograph
3. Brief description of academic interests
4. GPA
5. Pre-requisite courses taken and grades received (if pre-requisites are not met, a reasoned request for waiver)
All applications will be reviewed prior to the commencement of the 2nd semester and results will be announced within the 1st week of the add/drop period of the 2nd semester.

BIOL4501 Molecular phylogenetics and evolution (6 credits)

Academic Year 2018
Offering Department Biological Sciences
Quota 25

Course Co-ordinator TBC, Biological Sciences

Teachers Involved (TBC, Biological Sciences)

Course Objectives
The purpose of this course is to provide a comprehensive overview of state-of-the-art molecular systematics and phylogenetic research, focusing on in depth coverage of the latest techniques. The treatment of theoretical issues in formal lectures is coupled with practical workshops.
- acquisition of the sequences from the databases
- DNA and protein sequence assembly and alignment
- phylogeny reconstruction using parsimony, distance based, and maximum likelihood approaches
Oyster aquaculture (6 credits)

Course Objectives
- Introduction to relevant software for phylogenetics
- Methods for the evaluation of phylogeny trees

Course Contents & Topics

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 understand the fundamental principles of molecular phylogenetics
CLO 2 understand the purposes each method is used for and be able to choose the most appropriate method(s) for the analysis of given data
CLO 3 understand the advantages and disadvantages of the methods
CLO 4 acquire practical skills for the analysis of molecular data

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL3401 or BIOL3408

Offer in 2018 - 2019
Offer in 2019 - 2020 : N

Outcomes
Course Learning & Topics

Grade Descriptors
(A+ to F)

Offer in 2018 - 2019
Offer in 2019 - 2020 : N

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures
Laboratory
Reading / Self study
computer laboratory/tutorial/projects

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments
Examination

Required/recommended reading and online materials
TBC

Course Website
http://moodle.hku.hk/

Additional Course Information
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL4505
Oyster aquaculture (6 credits)

Offering Department
Biological Sciences

Course Co-ordinator
Dr V Thiyagarajan, Biological Sciences (rajan@hku.hk)

Teachers Involved
(Dr V Thiyagarajan, School of Biological Sciences)

Course Objectives
- Introduce oyster biology and hatchery technology and aquaculture business;
- Provide scientific basis for oyster aquaculture through field demonstrations and laboratory exercises;
- Enable students to design, construct and maintain oyster hatchery for production of seeds for sustainable aquaculture and restoration of wild oysters;
- Facilitate transfer of academic knowledge to oyster growers and aquaculture industry for sustainable, healthy and safe seafood production;

Course Contents & Topics
This experiential learning course is to enhance students’ knowledge in one of the applied marine biology fields, i.e. hatchery technology and coastal aquaculture business that will enable them to design, construct, operate and maintain coastal aquaculture facilities and small-scale ‘green and environmentally sustainable’ business for shellfish production and restoration of wild benthic biodiversity in coastal habitats. This is an interdisciplinary endeavor encompassing larval hatchery technology, seafood quality, and economic dimensions of coastal aquaculture business. After reading about basic oyster biology and aquaculture topics, we will focus on how marine larvae will be useful for human society through hatchery technology and aquaculture business. Environmental issues, legislation pertaining to coastal aquaculture business and community interaction will also be covered using oyster aquaculture in Hong Kong as an example. Students will be exposed to several aquaculture facilities in Hong Kong, Zhanjiang, and Qingdao to learn industrial and business skills of oyster aquaculture. This course is designed to meet the needs of an expanding sustainable aquaculture in Hong Kong and in mainland. Career and small scale business opportunities in aquaculture industry will be discussed.
Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** gain scientific knowledge required for setting up oyster hatchery, farming and small-scale business, beside understanding biology and ecology of larvae and shellfishes and consider potential environmental effects on hatchery and farming

- **CLO 2** acquire skills and experiential learning opportunities (e.g. hands-on experiences at laboratories and farms) in oyster hatchery and aquaculture business, farming and industry

- **CLO 3** explain the importance of oyster farming in coastal habitat restoration

- **CLO 4** plan and execute a commercially important research project in marine science and coastal aquaculture

- **CLO 5** develop novel ideas, and think creatively, about hatchery production in relation to the aquaculture industry

Pre-requisites (and Co-requisites and Impermissible combinations)

- Pass in BIOL3109 or BIOL3203 or BIOL3301 or BIOL3303 or ENVS3004 or ENVS3313;
- Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Ecology and Biodiversity Major or Environmental Science Major or Biological Science Major.

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence of original thought during the analysis of larval biology issues. Show evidence of analytical, critical and multidimensional thinking about the study subject. Extensive knowledge and skills required for attaining all the course learning outcomes. Demonstrate excellent ability to apply what you have learned in the class room to critically analyze the larval biology project data. Show highly effective organizational, presentational and field trip skills.</td>
</tr>
<tr>
<td>B</td>
<td>Show substantial knowledge and thought during the analysis of marine life science issues. Show some evidence of some analytical, critical and multidimensional thinking about the study subject. Good knowledge and skills required for attaining all the course learning outcomes. Demonstrate good ability to apply what you have learned in the class room to critically analyze the real marine life science issues. Show effective organizational, presentational and field trip skills.</td>
</tr>
<tr>
<td>C</td>
<td>Show general but incomplete knowledge and original thought during the analysis of marine life science issues. Fair knowledge and skills required for attaining all the course learning outcomes. Demonstrate fair ability to apply what you have learned in the class room to critically analyze the real marine life science issues. Show considerable organizational, presentational and field trip skills.</td>
</tr>
<tr>
<td>D</td>
<td>Evidence to show a minimum knowledge (i.e. knowledge is very incomplete) and thought during the analysis of marine life science issues. Show insufficient knowledge and skills required for attaining all the course learning outcomes. Demonstrate poor ability to apply what you have learned in the class room to critically analyze the real marine life science issues. Show very little organizational, presentational and field trip skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Evidence of meager or inadequate knowledge and understanding of marine life science issues. Show no evidence of knowledge and skills required for attaining all the course learning outcomes. Demonstrate no ability to apply what you have learned in the class room to critically analyze the real marine life science issues. Show no evidence of familiarity with relevant reading material and field trip demonstrations, or any knowledge of organizational and presentational skills.</td>
</tr>
</tbody>
</table>

Course Type

- **Field camps**

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>including tutorial</td>
<td>40</td>
</tr>
<tr>
<td>Field work</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Laboratory work</td>
<td>hands on training</td>
<td>30</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Practical</td>
</tr>
<tr>
<td>Report</td>
<td>Presentation: developing innovative ideas for sustainable and economically viable aquaculture in Hong Kong</td>
</tr>
<tr>
<td>Test</td>
<td>Written exam.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>CLO 3,4</td>
</tr>
<tr>
<td>50</td>
<td>CLO 4,5</td>
</tr>
<tr>
<td>25</td>
<td>CLO 1,2</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- Shellfish Aquaculture and the Environment (S.E. Shumway, John Wiley & Sons)
- Molluscan Shellfish Farming (Brian Spencer, John Wiley & Sons)

Course Website

Additional Course Information

Offer in alternate year from 2017–2018
- Tentative duration: May 24 to June, 2019
- Mainland field trips are compulsory
- Taught and trained by several teachers, guest lecturers from government and aquaculture business sector

1st week: Lectures, practical's and field trips in Hong Kong
2nd week: Lectures and field trips in Penang (Malaysia)
3rd week: Lecture and field trips in Qingdao (China). This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL4861

- **Ecology & biodiversity internship (6 credits)**
- **Academic Year**: 2018

Offering Department

- Biological Sciences

Course Co-ordinator

- Dr T Vengatesen, Biological Sciences (rajan@hku.hk)

Teachers Involved

- All academic staff in Ecology & Biodiversity Major, Biological Sciences

Course Objectives

To provide a stimulating experience for all Ecology & Biodiversity Major undergraduates to integrate and apply their knowledge and skills obtained from the Ecology & Biodiversity Major through gaining work experience in the field of Ecology & Biodiversity that are related to the major of study.

Course Contents & Topics

- Students taking this course will work as an intern for at least 160 hours within the University or outside the University in a company, government department or NGO. The internship may be arranged by the School or obtained by students themselves. In the latter case, the internship must be in a relevant field to the Ecology & Biodiversity Major that the students are taking and prior approval by the course coordinator is required.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** gain first hand work experience in a job placement related to their Ecology & Biodiversity Major
- **CLO 2** apply the knowledge in their Ecology & Biodiversity Major in solving practical problems in the work place
- **CLO 3** acquire an understanding and appreciation of the real work environment
- **CLO 4** extend their network in their field of study

Pre-requisites (and Co-requisites and Impermissible)

Pass in at least 24 credits of advanced level disciplinary core / elective courses in the Ecology and Biodiversity Major.

This course is for Ecology & Biodiversity Major students only.
Course Objectives

To build on the foundation acquired by students in the Biological Sciences in the fields of ecology, biodiversity and environmental science by using case studies that stimulate them to integrate the principles and concepts learned to produce and successfully debate a topic in conservation science. Case studies will specifically address the use of science in achieving meaningful conservation outcomes taking into account the need for considering social, economic, and political contexts. Students will be expected to present their cases orally using sound practical and scientific reasoning. This course is a capstone course for Ecology & Biodiversity major students.

Course Contents & Topics

This course will use directed case studies to give students the opportunity to consider and synthesize solutions to specific problems in conservation and the application of conservation science in the modern world, and within the wider context of economic development, political considerations and scientific uncertainty. Projects will be conducted through collaborations with local organizations, such as WWF-Hong Kong and Ocean Park, and address real-life questions and issues. Possible case studies range from ecosystem services, biological footprints, wildlife trade, to assessment of conservation risk, effectiveness of international conservation and biodiversity instruments, and the relationship between biodiversity and human livelihoods. Tutorials by the course coordinator will introduce practical conservation concepts, develop critical thinking and address specific issues of relevance across case studies.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 have an in-depth understanding of the topic studied, the major issues involved and the needs and prospects for further work in the area.
- CLO 2 have developed investigative skills associated with the case study selected which include synthesis, organization and presentation of information and innovative and creative thinking around problem solving
- CLO 3 understand the importance and complexities of conserving biodiversity
- CLO 4 be able to identify practical and scientifically defensible initiatives and measures for successful conservation intervention
- CLO 5 be able to competently present the case study and convincingly argue their case

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Ecology & Biodiversity Major including BIOL3303. This capstone course is for Ecology & Biodiversity Major students only.

The earliest that a student is allowed to take this capstone course is their Year 3 study.

Grade Descriptors (A+ to F)

A

Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Show strong analytical and critical abilities and logical thinking, with strong evidence of ability to integrate and synthesize information across subject areas, including from practical work undertaken, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations and showing consideration of practical and political dimensions for addressing conservation challenges. Apply highly effective presentational skills. Strong evidence of attention to thoughtful and reflective thinking and consideration of the wider issues of biodiversity conservation for Society.

B

Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, with some integration of materials and ability to apply knowledge to familiar and some unfamiliar situations. Demonstrate effective presentational skills. Some evidence of clear attention to thoughtful and reflective thinking and attention to detail. Consideration of practical components in conserving management must be demonstrated including the importance of biodiversity conservation in Society.

C

Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, ability to apply knowledge to most familiar situations and of relevance of biodiversity conservation for Society. Apply moderately effective presentational skills and understanding of the practical challenges of effective conservation initiatives. Little evidence of clear attention to thoughtful and reflective thinking.

D

Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities and little attempt at integration. Have basic understanding of importance of biodiversity for Society. Show limited ability to apply knowledge to solve problems or consider the practical challenges of biodiversity conservation. Apply limited effectiveness in presentational skills. Lack of attention to thoughtful and reflective thinking.

Fail

Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking or attention to detail. Show very little or no ability to apply knowledge or practical thinking to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type

Project-based course

Course Teaching & Learning Activities

Activities

Details

supervised practical work of at least 80 hours followed by

No. of Hours

BIOL4912
Sensory evaluation of food (6 credits)

Offering Department
Biological Sciences

Course Co-ordinator
Dr J C Y Lee, Biological Sciences (jettylee@hku.hk)

Course Objectives
To provide a broad understanding of the physiological and psychological basis of human sensory perception of food. To develop expertise in the choice and application of sensory techniques, and analysis of sensory data, in food science and consumer research.

Course Contents & Topics
This course will be offered in July in a 2-week intensive workshop format at a collaborating facility in mainland China, to enable close study of food products in the Chinese marketplace. Preliminary lectures will take place at the University of Hong Kong. Physiology and psychology of sensory perception, Objectives, planning and conduct of sensory testing. Discrimination testing, thresholds, descriptive analysis, affective testing. Instrument-sensory relationships, texture and aroma profiles, food oral processing, shelf-life studies, expert panels. Case studies of sensory applications in product development, quality management, and consumer research.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 understand the psychophysiological basis for human sensory perception of food
- CLO 2 understand the major techniques used in sensory testing
- CLO 3 interpret sensory evaluation reports, and to design and conduct sensory evaluation projects using appropriately chosen methods

Pre-requisites (and Co-requisites and Impermissible combinations)
- Pass in BIOL3201; and Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Food & Nutritional Science Major.

This capstone course is for Food & Nutritional Science Major students only.

The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019
N Offer in 2019 - 2020 : N Examination ---

Grade Descriptors (A+ to F)

A Demonstrate thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.

B Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.

C Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.

D Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness.

Fail Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results ineffectively, leading generally to inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills.

Course Type
Laboratory and workshop course

Course Teaching & Learning Activities
Activities Details No. of Hours
Laboratory 48
Project work 48
Tutorials lectures/tutorials 24
Reading / Self study 30

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Laboratory reports 20 CLO 2.3
Project reports 60 CLO 2.3
Test 20 CLO 1.2,3,4,5

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk/

Additional Course Information
This course will be offered subject to a minimum enrollment number and availability of teachers.

BIOL4913
Advanced practicum on food and nutrient analysis (6 credits)

Offering Department
Biological Sciences

Course Co-ordinator
Dr J C Y Lee, Biological Sciences (jettylee@hku.hk)

Teachers Involved
(Dr El-Nezami Hani,School of Biological Sciences)
(Dr J C Y Lee,School of Biological Sciences)

Course Objectives
Food products are analysed to follow the compliance with legal and labelling requirements, assessment of product quality, determination of nutritive value, research and development. The lectures and laboratory sessions will cover
the analytical procedures and techniques used to provide information about the food labelling and toxicology of the products. The purpose of the laboratory classes is to give students experience in direct performance of food analysis and toxicology experiments, analysing data and reporting their findings. The students are to work individually on food products where they will analytically assess components using advanced techniques necessary for basic labelling of food products.

Course Contents & Topics

Key lectures on specific techniques and case studies demonstrating the potential and pitfalls on analytical techniques and contaminant assessment for certain class of foods or food components will be discussed. Students will have hands-on experience in analysing food products and will utilise analytical techniques under AOAC or equivalent methods. The students will learn how mycotoxins assays, allergens and genetically modified raw materials are assessed in food products. In-depth learning in the use of different chromatography and mass spectrometry techniques, ELISA and procedures for sample preparations will be provided in the course.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** Be familiar with the food labeling system
- **CLO 2** Understand the use of appropriate analytical techniques for food analysis
- **CLO 3** Have knowledge of a variety of analytical techniques for evaluation of food products
- **CLO 4** Have a detailed knowledge of the state of the art of the most important analytical methods, their possibilities and their application in complex food systems

Pre-requisites and Co-requisites

This capstone course is for Food & Nutritional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019

- **N Offer in 2019 - 2020: Y**
- **Examination:**

Grade Descriptors (A to F)

- **A**
 - Demonstrate a thorough grasp of the subject matter covered. Show strong analytical and critical abilities and logical thinking, with evidence of creative ability and competence in professional-level problem solving. Critically use lab skills and techniques and analysis of data and results to draw appropriate and insightful conclusions to real-world problems. Demonstrate highly effective team-based organizational and presentational skills.
- **B**
 - Demonstrate substantial grasp of the subject matter covered. Show evidence of analytical and critical abilities and logical thinking with some evidence of competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw generally appropriate conclusions to real-world problems. Demonstrate effective team-based organizational and presentational skills.
- **C**
 - Demonstrate general but incomplete grasp of the subject matter covered. Show some evidence of analytical and critical abilities and logical thinking with limited competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw moderately appropriate but sometimes erroneous conclusions to real-world problems. Demonstrate moderately effective team-based organizational and presentational skills.
- **D**
 - Demonstrate partial but limited grasp, with retention of some relevant information, of the subject matter covered. Show some evidence of coherent and logical thinking, but lacking competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results to draw sometimes appropriate but often erroneous conclusions to real-world problems. Demonstrate team-based organizational and presentational skills of limited effectiveness.
- **Fail**
 - Demonstrate little or no grasp, with retention of little relevant information, of the subject matter covered. Show lack of coherent and logical thinking, and minimal competence in professional-level problem solving. Use lab skills and techniques and analysis of data and results ineffectively, leading generally inappropriate and usually erroneous conclusions to real-world problems. Demonstrate ineffectiveness team-based organizational and presentational skills.

Course Type

- **Lecture with laboratory component course**

Course Teaching & Learning Activities

Activities Details No. of Hours
- **Lectures**
 - 24
- **Laboratory**
 - 48
- **Reading / Self study**
 - 100

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project report</td>
<td>50</td>
<td>CLO 1, 2, 3, 4</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>50</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website

- **http://moodle.hku.hk**

Additional Course Information

The course will be offered subject to a minimum enrolment number and availability of teachers.

BIOL4921

Animal behaviour and behavioural ecology: field course (6 credits)

Academic Year: 2018

Offering Department

- **Biological Sciences**

Course Coordinator

- Biological Sciences

Teachers Involved

Course Objectives

- This course is offered as a capstone experience and unique experiential learning opportunity. It introduces students to scientific reasoning and conceptual basis of studying animal behaviour and behavioural ecology. It exposes students to 'research-in-making' and 'day-to-day logistics' of a field research, with all the excitement it generates and all demanding challenges it brings along, with hands-on experience in designing, conducting, analysing, and successfully completing field studies of animal behaviour and behavioural ecology.

Course Contents & Topics

- Conducted in a field research site outside Hong Kong, this course teaches students how to think analytically about animal behaviour, how to design a field research protocol, construct a conceptual framework of a research project and how to put this framework into a practice of collecting and analysing data. The course includes lectures, informal discussions, review of research techniques, and extensive field component with daily research activities. It provides experiential learning through (i) direct participation in an ongoing field-based research, (ii) hands-on experience in application of diverse research techniques, (iii) hands-on involvement in collecting and analysing data, and (iv) engagement in scientific debates with researchers and research teams directly in their field study location. Students will be guided through the scientific reasoning and methodology, will learn a suite of research techniques and data gathering and interpret their skills in data gathering and analysis, and will develop an understanding how individual research projects contribute to a greater understanding of behavioural and evolutionary processes and contribute to advancing science at large. The emphasis is placed on independent thinking and thoughtful application of the knowledge acquired previously during relevant classroom courses. Following the field-based component, students are required to give a seminar-type presentation on a selected topic and write a Course Report.**

562
Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 understand the biodiversity and primary habitats in the ecosystem studied

CLO 2 establish the basic skills needed to identify target species associated with the field course

CLO 3 be knowledgeable about and able to implement sampling techniques for organisms in the particular ecosystems studied

CLO 4 understand the basic ecology of target species and how biotic and abiotic factors shape focal communities

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL3101; and
Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Ecology & Biodiversity Major.

This capstone course is for Ecology & Biodiversity Major students only.
The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019
Offer in 2019 - 2020: N
Examination: ---

Grade Descriptors (A+ to F)
A Evidence of a thorough grasp of the subject and relevant research techniques. Eagerness and enthusiasm to learn and an excellent familiarity with relevant background reading and case studies. Exemplary handling of field data collection and excellent analytical skills. Ample evidence of independent critical thinking with excellent use of a broad range of fundamental concepts and a broader comparative perspective to draw insightful and logical conclusions. Show outstanding abilities of independent work, effective presentation skills with excellent analytical argumentation. Excellent or outstanding work relative to what is required at degree level.

B Evidence of a good grasp of the subject and relevant research techniques. Interest in learning and good-to-moderate familiarity with relevant background reading and case studies. Good handling of field data collection and commendable analytical skills. Good evidence of critical thought (although not always independent), with an appreciable use of fundamental concepts and consideration of a broader comparative perspective in drawing logical conclusions. Good abilities of independent work, effective presentation skills with logical and analytical argumentation. Work more than sufficient for what is required at degree level.

C Demonstrate an adequate, but incomplete grasp of the subject and relevant research techniques. Moderate familiarity with relevant background reading and case studies, but no interest in learning beyond the adequate average level. Evidence of logical critical thinking (although not always independent), with mostly good use of fundamental concepts to draw logical conclusions. Fair presentation skills, with mostly correct argumentation, but limited (or no) abilities to integrate broader concepts. Work sufficient for what is required for degree level.

D Demonstrate some grasp of the subject, but only partial and with limited understanding of relevant research concepts and research techniques. Some familiarity with relevant case studies, but insufficient evidence of background reading and limited abilities of critical independent thinking. Ineffective presentation skills with generally weak logical argumentation with restricted ability of drawing appropriate conclusions. Work barely meets what is required at degree level.

Fail No evidence of basic a minimum grasp of the subject and the minimum relevant research techniques. No evidence of background reading and no familiarity with any relevant examples and case studies. Inadequate evidence of coherent logical thought; ineffective presentation skills with poor argumentation and no abilities to draw meaningful conclusions. Work fails to reach degree level.

Course Type
Field camps

Course Teaching & Learning Activities
<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>lectures and tutorials</td>
<td>10</td>
</tr>
<tr>
<td>Field work</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Presentation</td>
<td>interactive debates</td>
<td>10</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Assessment</td>
<td>group project</td>
<td>15</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>35</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Report</td>
<td>project report (35%), group investigation & presentation (30%)</td>
<td>65</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Required/recommended reading and online materials (at most 400 characters)

Course Website
http://www.biosch.hku.hk/ecology/fgsci

Enrollment Procedure:
The course is open to enrollment only during the add/drop period of the 2nd semester. Students are required to submit a brief (maximum 1-page) application letter (PDF file) via e-mail to the Course Coordinator (leszek@hku.hk) not later than 10th January. The application shall include the following:
1. Personal and academic details
2. ID photograph
3. Brief description of academic interests
4. GPA
5. Pre-requisite courses taken and grades received (if pre-requisites are not met, a reasoned request for waiver).

All applications will be reviewed prior to the commencement of the 2nd semester and results will be announced within the 1st week of the add/drop period of the 2nd semester.

BIOL4922 Food product development and evaluation (6 credits)
Academic Year: 2018
Offering Department: Biological Sciences
Quota: 20

Course Co-ordinator: Dr M F Wang, Biological Sciences (mfwang@hku.hk)

Teaching Involved: (Dr M F Wang, Biological Sciences)

Course Objectives
To introduce the key concepts and techniques used in food product development. To provide small group experience in the design, development and production of a new food product.

Course Content & Topics
History and future of the food industry; industrial product development process; idea generation and prototype development for new food products; quality management and legal protection; marketing strategies; food labeling; food package design; new product development for different food industries.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 understand the food product development cycle
CLO 2 know the key steps in new product development
CLO 3 demonstrate enhanced insight and understanding of current and future trends in the food industry
CLO 4 have professional level practical experience in new product development
CLO 5 know the main characteristics of different sectors of the food industry
Course Contents & Topics

Students taking this course will work as an intern for at least 160 hours in at least 20 working days within the field of Food & Nutritional Science that are related to the major of study. The internship may be arranged by the School or obtained by students themselves. In the latter case, the internship must be in a relevant University or outside the University in a company, government department or NGO. The internship may be of academic Y year 3 study.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 gain first-hand work experience in a job placement related to their Food & Nutritional Science Major.
- CLO 2 apply the knowledge in their Food & Nutritional Science Major in solving practical problems in the workplace.
- CLO 3 acquire an understanding and appreciation of the real work environment.
- CLO 4 extend their network in their field of study.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Food & Nutritional Science Major.

This capstone course is for Food & Nutritional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Pass</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) included BIOL203 and / or BIOL205 in the Food & Nutritional Science Major.</td>
<td>No Exam</td>
<td>No Exam</td>
</tr>
<tr>
<td>Offer in 2018 - 2019</td>
<td>1st sem</td>
<td>Summer Offer in 2019 - 2020:</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Course Type

Internship

Course Teaching & Learning Activities

Activities

- Internship work

Details

- at least160 hours (lunch hour excluded) in at least 20 working days

No. of Hours

- 160

Assessment Methods and Weighting

Methods

- Assignments

Details

- Assignments assessment of group product development project including food product presentation

Weighting in final course grade (%)

- 100

Assessment Methods to CLO Mapping

- CLO 1,2,3,4,5

Course Website

http://moodle.hku.hk/

Additional Course Information

This course will be offered subject to a minimum enrollment number and availability of teachers.
BIOL4963
Molecular biology & biotechnology internship (6 credits)

<table>
<thead>
<tr>
<th>Offered Department</th>
<th>Quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences</td>
<td>---</td>
</tr>
</tbody>
</table>

Course Objectives

To provide a stimulating experience for all Molecular Biology & Biotechnology Major undergraduates to integrate and apply their knowledge and skills obtained from the Molecular Biology & Biotechnology Major through gaining work experience in the field of Molecular Biology & Biotechnology that are related to the major of study.

Course Contents & Topics

Students taking this course will work as an intern for at least 160 hours in at least 20 working days within the University or outside the University in a company, government department or NGO. The internship may be arranged by the School or obtained by students themselves. In the latter case, the internship must be in a relevant field to the Molecular Biology & Biotechnology Major that the students are taking and prior approval by the course coordinator is required.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1: gain first hand work experience in a job placement related to their Molecular Biology & Biotechnology Major
- CLO 2: apply the knowledge in their Molecular Biology & Biotechnology Major in solving practical problems in the workplace
- CLO 3: acquire an understanding and appreciation of the real work environment
- CLO 4: extend their network in their field of study

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in at least 24 credits of advanced level disciplinary core / elective courses in the Molecular Biology & Biotechnology Major.

Offer in 2018 - 2019

Y 1st sem 2nd sem Summer Offer in 2019 - 2020: Y

Grade Descriptors

<table>
<thead>
<tr>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to apply knowledge to solve problems in the workplace. Successfully handles and carries out the work required in the job or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, written and oral report, and evaluation by supervisor(s), etc. Students demonstrating excellent performance in the above would be awarded a grade of “Distinction”.</td>
<td>Very limited or no ability to solve problems in the workplace. Fails to handle or carry out the work required in the job or assigned by supervisor(s). Fails to establish effective collaboration or communication with supervisor(s), other colleagues, or clients in the job. Fails to satisfy the requirements set out in the Course Description regarding working hours, written and oral report, or evaluation by supervisor(s), etc.</td>
</tr>
</tbody>
</table>

Course Type

Internship

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship work</td>
<td>at least 160 hours (lunch hour excluded) in at least 20 working days</td>
<td>160</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written report</td>
<td>written report, supervisor's feedback and oral presentation</td>
<td>100</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Course Website

http://moodle.hku.hk

Additional Course Information

Students taking this course have to submit a written report of not less than 1,000 words and an oral presentation about their internships, which will be assessed by internal supervisors. Student's supervisor at work i.e. the institution offering the internship will also submit an assessment report to the University.

Satisfactory completion of this course can be counted towards the Capstone requirement. Details of internship will be recorded on the student's transcript. This course will be assessed on "Pass/Fail" basis. Students who are interested to enrol in this course should contact the Department to obtain the approval. Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.
Course Type: Internship
Course Teaching & Learning Activities:
<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship work</td>
<td>at least 160 hours (lunch hour excluded) in at least 20 working days</td>
<td>160</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting:
<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written report</td>
<td>written report, employer's feedback and oral presentation</td>
<td>100</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Course Website: http://moodle.hku.hk
Additional Course Information: Students taking this course have to submit a written report of not less than 1,000 words and an oral presentation about their internships, which will be assessed by internal supervisors. Student's supervisor at work i.e. the institution offering the internship will also submit an assessment report to the University. Satisfactory completion of this course can be counted towards the Capstone requirement. Details of internship will be recorded on the student's transcript. This course will be assessed on "Pass/Fail" basis. Students who are interested to enrol in this course should contact the Department to obtain the approval. Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.

BIOL4991
Ecology & biodiversity project (12 credits)
Offering Department: Biological Sciences
Course Co-ordinator: Prof G A Williams, Biological Sciences (hrsbgwa@hku.hk)
Teachers Involved: (All academic staff in Ecology & Biodiversity Major,Biological Sciences)
Course Objectives: To provide a stimulating capstone experience for Ecology & Biodiversity Major undergraduates to integrate and apply their knowledge and skills obtained from the Ecology & Biodiversity Major through planning and carrying out a research project under the supervision of a member of staff.
Course Contents & Topics: Students should seek approval from a prospective supervisor prior to selecting this course. After admission to the course is approved by the course coordinator, students will complete their project work under the guidance of their supervisor.
Course Learning Outcomes: On successful completion of this course, students should be able to:
- CLO 1 critique and review appropriate scientific literature
- CLO 2 use this information to generate a scientifically relevant research question
- CLO 3 develop and formulate innovative scientific hypotheses to test this question
- CLO 4 design and undertake practical research work to formally test the hypotheses proposed
- CLO 5 analyse and evaluate the data collected to test the hypotheses, present data in a professional manner to illustrate the outcomes
- CLO 6 draw an objective series of conclusions based on the experimental work
- CLO 7 highlight and critically discuss their research findings and place them into a holistic scientific context
- CLO 8 submit their work following a specified journal format, present their work as a scientific conference talk
Pre-requisites (and Co-requisites and Impermissible combinations):
- Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Ecology & Biodiversity Major;
- This capstone course is for Ecology & Biodiversity Major students only.
- The earliest that a student is allowed to take this capstone course is their year 3 study.
Offer in 2018 - 2019: Y Year long
Grade Descriptors (A to F):
<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence of complete or near-complete understanding and a thorough grasp of the subject matter as demonstrated by attainment of all learning outcomes. Excellent critique and knowledge of relevant literature and identification of research hypothesis. Good designed experimental approach to test research hypothesis. Show excellent organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate comprehensive, critical, assessment of results and professional presentation of research work.</td>
</tr>
<tr>
<td>B</td>
<td>Evidence of near-complete understanding and a good grasp of the subject matter as demonstrated by attainment of the majority of learning outcomes. Good critique and knowledge of relevant literature and identification of research hypothesis. Appropriately designed experimental approach to test research hypothesis. Show good organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate effective, critical, assessment of results and good presentation of research work.</td>
</tr>
<tr>
<td>C</td>
<td>Evidence of adequate understanding and grasp of the subject matter as demonstrated by general but incomplete attainment of most of the learning outcomes. Acceptable critique and knowledge of relevant literature and identification of research hypothesis. Adequately designed experimental approach to test research hypothesis. Show fair organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate adequate but not necessarily critical, assessment of results and presentation of research work.</td>
</tr>
<tr>
<td>D</td>
<td>Evidence of limited understanding and grasp of the subject matter as demonstrated by incomplete attainment of many of the learning outcomes. Limited critique and knowledge of relevant literature and identification of research hypothesis. Poorly designed experimental approach to test research hypothesis. Show fair organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate confused and poorly organized assessment of results and limited presentation of research work.</td>
</tr>
<tr>
<td>Fail</td>
<td>Evidence of poor or inadequate understanding and grasp of the subject matter such that most of the learning outcomes are not attained. Poor critique and knowledge of relevant literature and identification of research hypothesis. Badly designed experimental approach to test research hypothesis. Show little evidence of appropriate organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate incorrect interpretation and assessment of results and poor presentation of research work.</td>
</tr>
</tbody>
</table>
BIOL4992: Food & nutritional science project (12 credits)

Offering Department: Biological Sciences
Academic Year: 2018

Course Objectives:
To provide a stimulating capstone experience for Food & Nutritional Science Major undergraduates to integrate and apply their knowledge and skills obtained from the Food & Nutritional Science Major through planning and carrying out a research project under the supervision of a member of staff.

Pre-requisites:
- Cumulative GPA of 3.0 or above.
- Pass in at least 24 credits of advanced level disciplinary core/elective biological sciences courses (BIOL3XXX or BIOL4XXX) in the Food & Nutritional Science Major; and
- Students should seek approval from a prospective supervisor prior to selecting this course. After admission to the course is approved by the course coordinator, students will complete their project work under the guidance of their supervisor.

Teachers Involved:
Dr J C Y Louie, Biological Sciences (jimmy@hku.hk)
Dr W K Yip, Biological Sciences (wkyp@hku.hk)

Additional Course Information:
A dissertation of about 12,000 words (80% weighting) and a research seminar (20% weighting).

<table>
<thead>
<tr>
<th>Activity</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation</td>
<td>Oral presentation</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLO 1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>CLO</td>
</tr>
</tbody>
</table>

Course Website:
http://www.biosch.hku.hk/ecolo/lsc/

BIOL4993: Molecular biology & biotechnology project (12 credits)

Offering Department: Biological Sciences
Academic Year: 2018

Course Objectives:
To provide a stimulating capstone experience for all Molecular Biology & Biotechnology Major undergraduates to

<table>
<thead>
<tr>
<th>Activity</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>CLO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>CLO 1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>

Course Website:
http://moodle.hku.hk/

Additional Course Information:
A dissertation of about 9,000 - 12,000 words (80% weighting) and a research seminar (20% weighting).

Course Contents & Topics:
Students should seek approval from a prospective supervisor prior to selecting this course. After admission to the course is approved by the course coordinator, students will complete their project work under the guidance of their supervisor.

Course Learning Outcomes:
- Students should be able to:
 - CLO 1 critique and review appropriate scientific literature
 - CLO 2 use this information to generate a scientifically relevant research question
 - CLO 3 develop and formulate scientific hypotheses to test this question
 - CLO 4 design and undertake practical research work to formally test the hypotheses proposed
 - CLO 5 analyse and evaluate the data collected to test the hypotheses, present data in a professional manner to illustrate the outcomes
 - CLO 6 draw an objective series of conclusions based on the experimental work
 - CLO 7 highlight and discuss their research findings and place them into a holistic scientific context
 - CLO 8 submit their work following a specified journal format, present their work as a scientific conference talk
- This capstone course is for Food & Nutritional Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019:
- Y Year long
- Offer in 2019 - 2020 : Y

Grade Descriptors: (A to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence of complete or near-complete understanding and a thorough grasp of the subject matter as demonstrated by attainment of all learning outcomes. Excellent critique and knowledge of relevant literature and identification of research hypothesis. Well designed experimental approach to test research hypothesis. Show excellent organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate comprehensive, critical, assessment of results and professional presentation of research work.</td>
</tr>
<tr>
<td>B</td>
<td>Evidence of near-complete understanding and a good grasp of the subject matter as demonstrated by attainment of the majority of learning outcomes. Good critique and knowledge of relevant literature and identification of research hypothesis. Appropriately designed experimental approach to test research hypothesis. Show good organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate effective, critical, assessment of results and good presentation of research work.</td>
</tr>
<tr>
<td>C</td>
<td>Evidence of adequate understanding and grasp of the subject matter as demonstrated by general but incomplete attainment of most of the learning outcomes. Acceptable critique and knowledge of relevant literature and identification of research hypothesis. Adequately designed experimental approach to test research hypothesis. Show fair organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate adequate but not necessarily critical, assessment of results and presentation of research work.</td>
</tr>
<tr>
<td>D</td>
<td>Evidence of limited understanding and grasp of the subject matter as demonstrated by incomplete attainment of many of the learning outcomes. Limited critique and knowledge of relevant literature and identification of research hypothesis. Poorly designed experimental approach to test research hypothesis. Show fair organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate confused and poorly organized assessment of results and limited presentation of research work.</td>
</tr>
<tr>
<td>Fail</td>
<td>Evidence of poor or inadequate understanding and grasp of the subject matter such that most of the learning outcomes are not attained. Poor critique and knowledge of relevant literature and identification of research hypothesis. Badly designed experimental approach to test research hypothesis. Show little evidence of appropriate organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate incorrect interpretation and assessment of results and poor presentation of research work.</td>
</tr>
</tbody>
</table>
integrate and apply their knowledge and skills obtained from the Molecular Biology & Biotechnology Major through planning and carrying out a research project under the supervision of a member of staff.

On successful completion of this course, students should be able to:

- CLO 1: critique and review appropriate scientific literature
- CLO 2: use this information to generate a scientifically relevant research question
- CLO 3: develop and formulate scientific hypotheses to test this question
- CLO 4: design and undertake practical research work to formally test the hypotheses proposed
- CLO 5: analyse and evaluate the data collected to test the hypotheses
- CLO 6: present data in a professional manner to illustrate the outcomes
- CLO 7: draw an objective series of conclusions based on the experimental work
- CLO 8: highlight and discuss their research findings and place them into a holistic scientific context

This capstone course is for Molecular Biology & Biotechnology Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019
Grade Descriptors (A+ to F)

- A: Evidence of complete or near-complete understanding and a thorough grasp of the subject matter as demonstrated by attainment of all learning outcomes. Excellent critique and knowledge of relevant literature and identification of research hypothesis. Well designed experimental approach to test research hypothesis. Show excellent organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate comprehensive, critical, assessment of results and professional presentation of research work.
- B: Evidence of near-complete understanding and a good grasp of the subject matter as demonstrated by attainment of the majority of learning outcomes. Good critique and knowledge of relevant literature and identification of research hypothesis. Appropriately designed experimental approach to test research hypothesis. Show good organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate effective, critical, assessment of results and good presentation of research work.
- C: Evidence of adequate understanding and grasp of the subject matter as demonstrated by general but incomplete attainment of most of the learning outcomes. Acceptable critique and knowledge of relevant literature and identification of research hypothesis. Adequately designed experimental approach to test research hypothesis. Show fair organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate adequate but not necessarily critical, assessment of results and presentation of research work.
- D: Evidence of limited understanding and grasp of the subject matter as demonstrated by incomplete attainment of many of the learning outcomes. Limited critique and knowledge of relevant literature and identification of research hypothesis. Poorly designed experimental approach to test research hypothesis. Show fair organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate confused and poorly organized assessment of results and limited presentation of research work.
- Fail: Evidence of poor or inadequate understanding and grasp of the subject matter such that most of the learning outcomes are not attained. Poor critique and knowledge of relevant literature and identification of research hypothesis. Badly designed experimental approach to test research hypothesis. Show little evidence of appropriate organizational and/or analytical skills and laboratory/fieldwork techniques. Demonstrate incorrect interpretation and assessment of results and poor presentation of research work.

Course Type: Project-based course

Assessment Methods and Weighting:
- Dissertation: 80% weighting (CLO 1, 2, 3, 4, 5, 6, 7, 8)
- Oral presentation: research seminar 20% weighting

Course Website: http://moodle.hku.hk/

Additional Course Information:
A dissertation of about 9,000 - 12,000 words (80% weighting) and a research seminar (20% weighting).

BIOL4994 Biological sciences project (12 credits)

Offering Department: Biological Sciences

Course Co-ordinator: Dr S Cannacci, Biological Sciences cannacci@hku.hk

Teachers Involved: (All academic staff in Biological Sciences Major, Biological Sciences)

Course Objectives: To provide a stimulating capstone experience for all Biological Sciences Major undergraduates to integrate and apply their knowledge and skills obtained from the Biological Sciences Major through planning and carrying out a research project under the supervision of a member of staff.

Course Contents & Topics: Students should seek approval from a prospective supervisor prior to selecting this course. After admission to the course is approved by the course coordinator, students will complete their project work under the guidance of their supervisor.

Course Learning Outcomes: On successful completion of this course, students should be able to:

- CLO 1: critique and review appropriate scientific literature
- CLO 2: use this information to generate a scientifically relevant research question
- CLO 3: develop and formulate scientific hypotheses to test this question
- CLO 4: design and undertake practical research work to formally test the hypotheses proposed
- CLO 5: analyse and evaluate the data collected to test the hypotheses
- CLO 6: present data in a professional manner to illustrate the outcomes
- CLO 7: draw an objective series of conclusions based on the experimental work
- CLO 8: highlight and discuss their research findings and place them into a holistic scientific context

Pre-requisites and Impermissible combinations: Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Molecular Biology & Biotechnology Major; and Cumulative GPA of 3.0 or above. This capstone course is for Biological Sciences Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019
Grade Descriptors (A+ to F)

- A: Evidence of complete or near-complete understanding and a thorough grasp of the subject matter as demonstrated by attainment of all learning outcomes. Excellent critique and knowledge of relevant literature and identification of research
Course Type
- Project-based course

Course Teaching & Learning Activities
- Activities: Reading / Self study
- Details: formal lectures, seminars & practical work
- No. of Hours: 144

Assessment Methods and Weighting
- Methods: Dissertation, Oral presentation
- Details: research seminar
- Weighting in final course grade (%): 80, 20
- Assessment Methods to CLO Mapping
 - CLO: 1, 2, 3, 4, 5, 6, 7, 8
 - Weighting: 80, 20

Course Website
- http://moodle.hku.hk/

Additional Course Information
- A dissertation of about 9,000 - 12,000 words (80% weighting) and a research seminar (20% weighting).

ENVS1301
- Environmental life science (6 credits)
- Offering Department: Biological Sciences
- Teachers Involved: Dr T Vengatesen, Biological Sciences (rajan@hku.hk)
- Course Objectives
 - This course intended for students who wish to understand the fundamentals of environmental biology/life science and importantly the relationship (connection) between environment and life. Here you will learn about the various biological/ecological principles and concepts of environmental science which are needed for critical discussion and evaluation of current global environmental issues including human ecology, urbanization, ecological economics, and climate change.

Course Contents & Topics
- This course is a combination of lectures, group discussion/debate and field trips cum tutorials. We first explore the fundamental interactions between organisms and their environment. We then explore environmental constraints on life at various ecosystems (like marine, freshwater, and terrestrial). Students will also learn how factors such as urbanization, climate change, and anthropogenic impacts affect life at population and ecosystem levels. Similarly, students will be exposed to the incredible interrelationships that are basic to ecological principles and the impact that human development has upon these interrelationships. After learning basics of environmental life science, students will be stimulated to think about current life science issues such as biodiversity loss, organisms adaptation to climate change, tragedy of commons (human ecology) and applied life science topics such as biomaterial science.

Course Learning Outcomes
- On successful completion of this course, students should be able to:
 - CLO 1 understand life, environment and their interactions
 - CLO 2 appreciate species and ecosystem responses to human-induced environmental change
 - CLO 3 attain ability to critically think and discuss about current environ-life science issues
 - CLO 4 be motivated and equipped: to tackle biological environmental science questions and to choose advanced environmental science courses

Pre-requisites (and Co-requisites and impermissible combinations)
- NIL

Offer in 2018 - 2019
- Y 2nd sem
- Offer in 2019 - 2020: Y
- Examination: May

Grade Descriptors (A to F)
- A: Evidence of original thought during the analysis of environmental life science issues. Show evidence of analytical, critical and multidimensional thinking about the study subject. Extensive knowledge and skills required for attaining all the course learning outcomes. Demonstrate excellent ability to apply what you have learned in the class room to critically analyze the real environmental life science issues. Show highly effective organizational, presentational and field trip skills.
- B: Show substantial knowledge and thought during the analysis of environmental life science issues. Show some evidence of some analytical, critical and multidimensional thinking about the study subject. Good knowledge and skills required for attaining all the course learning outcomes. Demonstrate good ability to apply what you have learned in the class room to critically analyze the real environmental life science issues. Show effective organizational, presentational and field trip skills.
- C: Show general but incomplete knowledge and original thought during the analysis of environmental life science issues. Fair knowledge and skills required for attaining all the course learning outcomes. Demonstrate fair ability to apply what you have learned in the class room to critically analyze the real environmental life science issues. Show considerable organizational, presentational and field trip skills.
- D: Evidence to show a minimum knowledge (i.e. knowledge is very incomplete) and thought during the analysis of environmental life science issues. Show insufficient knowledge and skills required for attaining all the course learning outcomes. Demonstrate poor ability to apply what you have learned in the class room to critically analyze the real environmental life science issues. Show very little organizational, presentational and field trip skills.
- Fail: Evidence of meager or inadequate knowledge and understanding of environmental life science issues. Show no evidence of knowledge and skills and required for attaining all the course learning outcomes. Demonstrate ability to apply what you have learned in the class room to critically analyze the real environmental life science issues. Show no evidence of familiarity with relevant reading material and field trip demonstrations, or any knowledge of organizational and presentational skills.
Field work 3-12 hours field work 12
Tutorials 12
Reading / Self study 100

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>10</td>
<td>CLO 2.3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1.3</td>
</tr>
<tr>
<td>Presentation</td>
<td>group presentation</td>
<td>10</td>
<td>CLO 3.4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>10</td>
<td>CLO 1</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Appropriate reading materials/handouts will be provided during the course.

Course Website
http://www.biosch.hku.hk/ecology/lsc/

Additional Course Information
This course will be offered subject to a minimum enrollment number and availability of teachers.

ENVS2001
Methods in environmental science (6 credits)
Academic Year 2018
Quota 42

Offering Department
Biological Sciences

Course Co-ordinator
Dr D M Baker, Biological Sciences (dmbaker@hku.hk)

Teachers Involved
Dr D M Baker, Biological Sciences

Course Objectives
To introduce students to a broad spectrum of field and laboratory methods for data collection in environmental science. Through exposure to environmental data collection, experimental design, data analysis, interpretation and reporting, students will gain a deeper appreciation of the process that underlies environmental science research and it's relevancy to critical thinking and future careers in the sciences.

Course Contents & Topics
This course will involve environmental data collection in both field and laboratory settings. In-class lectures will cover basic principles of specific methodologies and relevant applications in preparation for laboratory and field-based experiential learning. Having an interdisciplinary focus, the course will cover topics relevant to the study of the biosphere, encompassing terrestrial, aquatic, and atmospheric systems. Students will gain hands-on experience with the operation of standard and advanced sampling and analytical equipment, quality control, basic data analysis and reporting.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 understand how scientific data is used to address environmental problems
CLO 2 have a basic understanding of the techniques and methodologies necessary for collecting environmental data
CLO 3 understand some of the problems inherent in data collection, and how this impacts data interpretation
CLO 4 understand how data collected in the lab and field can be used to critically evaluate ideas

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL1309 or EASC1401 or ENVS1301 or ENVS1401

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply highly effective lab / fieldwork skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Apply effective lab / fieldwork skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective lab / fieldwork skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply partially effective lab / fieldwork skills and techniques. Limited ability to use data and results to draw appropriate conclusions.</td>
</tr>
<tr>
<td>F</td>
<td>Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Apply minimally effective or ineffective lab / fieldwork skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>10</td>
<td>CLO 1.2.3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>20</td>
<td>CLO 1.2.3,4</td>
</tr>
<tr>
<td>Presentation</td>
<td>group presentation</td>
<td>20</td>
<td>CLO 2.3</td>
</tr>
<tr>
<td>Project reports</td>
<td></td>
<td>50</td>
<td>CLO 1.2.3,4</td>
</tr>
</tbody>
</table>

Course Type
Laboratory and workshop course

Course Website
http://www.biosch.hku.hk/ecology/lsc/

ENVS2002
Environmental data analysis (6 credits)
Academic Year 2018
Quota 65

Offering Department
Biological Sciences

Course Co-ordinator
Dr T C Bonebrake, Biological Sciences (tbon@hku.hk)

Teachers Involved
Dr M Yasuhara, School of Biological Sciences (Dr T C Bonebrake, School of Biological Sciences)

Course Objectives
To provide students with the ability to analyze data; especially data which are relevant to issues and questions in
environmental science. This course will enable students to accurately interpret, organize, display, test and analyze environmental data. The course will also introduce students to principles of a variety of important advanced approaches in analyzing environmental data including spatial analysis, geographic information systems, remote sensing, risk assessment, and time series analysis.

Course Contents & Topics
The course will feature lectures on aspects of sampling, distributions, uncertainty, probability, and hypothesis testing in addition to lectures on advanced analysis topics. Special emphasis will be placed on qualities inherent to most environmental datasets such as large size, multivariate, and spatial. All material will be applied and practiced in environmental science contexts (e.g. chemistry, ecology, geology and oceanography) using a variety of datasets in a computer laboratory setting using the ‘R’ Project for Statistical Computing’ software (a graphical user interface will be implemented such that prior knowledge of coding or computer science is not required).

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1: accurately interpret methods and approaches in the scientific literature
- CLO 2: evaluate critically data analyses in the environmental sciences
- CLO 3: perform standard and appropriate statistical analyses on a variety of data sources
- CLO 4: work comfortably with large datasets using applied software (e.g. R)
- CLO 5: present results of data analyses in a clear and transparent manner

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL3006 or EASC1401 or ENVS1301 or ENVS1401

Offer in 2018 - 2019
Y 2nd sem Offer in 2018 - 2020 : Y

Examination
May

Grade Descriptors (A+ to F)
A
Demonstrate thorough grasp of the subject and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply a highly effective computational skills and techniques for basic statistical analyses. Be able to critically use data and statistical results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.

B
Demonstrate substantial grasp of the subject and skills required for attaining at least most of the course learning outcomes. Present evidence of analytical and critical abilities and logical thinking. Apply moderately effective computational skills and techniques for basic statistical analyses. Be able to correctly use data and statistical results to draw appropriate conclusions. Apply effective organizational and presentational skills.

C
Demonstrate general but incomplete grasp of the subject and skills required for attaining some of the course learning outcomes. Present evidence of some analytical and critical abilities and logical thinking. Apply moderately effective computational skills and techniques for basic statistical analyses. Demonstrate mostly correct but some erroneous use of data and statistical results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.

D
Demonstrate partial and limited grasp of the subject and skills required for attaining some of the course learning outcomes. Present evidence of some analytical and critical abilities and logical thinking. Apply limited or barely effective computational skills and techniques for basic statistical analyses. Demonstrate limited ability to use data and statistical results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.

Fail
Demonstrate limited or no grasp of the subject and skills required for attaining any of the course learning outcomes. Present evidence of little or lack of analytical and critical abilities, logical or coherent thinking. Apply minimally effective or ineffective computational skills and techniques for basic statistical analyses. Demonstrate misuse of data and statistical results and/or unable to draw appropriate conclusions. Apply minimally effective or ineffective organizational and presentational skills.

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities
Activities
Details
No. of Hours

Lectures
24

Laboratory
problem-based learning/computer laboratory
24

Tutorials
Reading / Self study
6

100

Assessment Methods and Weighting
Methods
Details
Weighting in final course grade (%)
Assessment Methods to CLO Mapping

Examination
25
CLO 1,2,3

Project report
25
CLO 1,2,3,4,5

Test
problem-based exercises
50
CLO 1,2,3,4,5

Required/recommended reading and online materials
Textbooks:

References:

Course Website
http://www.biosch.hku.hk/ecology/lsc/

ENVS3019
Urban ecology (6 credits)

Offering Department
Biological Sciences

Academic Year
2018

Quota
75

Course Co-ordinator
Dr T C Bonebrake, Biological Sciences (tbone@hku.hk)

Teachers Involved

Course Objectives
This course will provide students with an understanding and knowledge of the ecology of urban ecosystems. The course will highlight the role of cities in a world under environmental change and rapid development.

Course Contents & Topics
Ecological systems within cities and cities as ecological systems will both be covered in this course. Ecological concepts unique to or specialized within cities will be covered including sustainability, conservation, health, development, globalization, and restoration. Specific topics will include climate change (e.g. urban heat island effects), invasive species, infectious diseases and pollution. Examples will be taken globally but special emphasis will be placed on Hong Kong.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1: describe and evaluate the processes and patterns that characterize urban ecological systems
- CLO 2: understand biodiversity and ecosystem responses to urbanization
- CLO 3: recognize energy flows within urban ecosystems and how energy use and waste improve or deteriorate environmental quality
- CLO 4: critically evaluate management and policy solutions to urban ecological problems

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL2306 or ENVS2001 or ENVS2002
Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** develop a basic understanding of climate change and other human-associated impacts, such as land use change, and how they are manifested on a global scale.
- **CLO 2** explain the ways that global change affects organisms' traits and distributions, and biodiversity at the ecosystem level.
- **CLO 3** understand the differences between climate change on a geologic time scale and recent climate change.
- **CLO 4** become aware of the relationships between humans and global change.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL2306 or ENVS2001 or ENV52002

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2018 - 2019</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>May</td>
</tr>
<tr>
<td>B</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>50 CLO 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Mid-term exam (20%), Final exam (30%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project reports</td>
<td></td>
<td>20 CLO 1,2,3,4</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Course Website</td>
<td>http://www.biosch.hku.hk/ecology/lsc/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Course Information</td>
<td>This course will be offered subject to a minimum enrollment number and availability of teachers. Offer in alternate year from 2013-2014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENVS3020 Global change ecology (6 credits) Academic Year 2018

Offering Department Biological Sciences Quota 75

Course Co-ordinator Dr C Dingle, Biological Sciences (cdingle@hku.hk)

Teachers Involved (Dr C Dingle, School of Biological Sciences)

Course Objectives

The main goal of this course is to introduce students to the ways in which global environmental change affects biodiversity from organisms to ecosystems. This course will explore the contributions that human population growth and globalization have made to increase greenhouse gases and associated climate change, biological invasions, land degradation, disease, and, ultimately, impacts on biological systems.

Course Contents & Topics

Environmental change is a natural phenomenon, with ecosystems continually shifting, rearranging, emerging, and disappearing through geologic time with changes in climatic conditions. The activities of humans have added to this natural variation, increasing the magnitude and speed with which environmental change occurs. This course will focus principally on the effects of climate change on organisms and ecosystems but will also investigate other topics registering on a global scale including land use change, biological invasions, and pollution, as well as synergistic interactions between all of the environmental stressors. We will explore (1) what climate change is and how it is manifested including climate warming, sea level rise, and ocean acidification; (2) types and extents of land use change; (3) how globalisation has contributed to the spread of alien species and disease. The course will investigate how these human-caused stressors affect the morphology, phenology, distribution, and evolution of organisms and their impacts on ecosystem functioning and biodiversity in freshwater, marine, and terrestrial ecosystems.

Course Learning Outcomes

- **CLO 1** develop a basic understanding of climate and other human-associated impacts, such as land use change, and how they are manifested on a global scale.
- **CLO 2** explain the ways that global change affects organisms' traits and distributions, and biodiversity at the ecosystem level.
- **CLO 3** understand the differences between climate change on a geologic time scale and recent climate change.
- **CLO 4** become aware of the relationships between humans and global change.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL2306 or ENVS2001 or ENV52002

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2018 - 2019</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>May</td>
</tr>
<tr>
<td>B</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grade Descriptors (A+ to F)

- **A** Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, ability to integrate and synthesize information, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective presentational skills. Strong evidence of clear attention to thoughtful and reflective thinking.
- **B** Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, integration of materials and ability to apply knowledge to familiar and some unfamiliar situations. Demonstrate effective presentational skills. Evidence of clear attention to thoughtful and reflective thinking.
- **C** Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective presentational skills. Little evidence of clear attention to thoughtful and reflective thinking.
Table: Course Information

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture-based course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
</tr>
<tr>
<td></td>
<td>Project work</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td>Assignments</td>
</tr>
<tr>
<td></td>
<td>Essay</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
</tr>
<tr>
<td></td>
<td>Test</td>
</tr>
</tbody>
</table>

Table: Course Objectives

- To provide students with experiential learning experience in the field of environmental science. The course is primarily based on an array of experiential studies covering essential areas of environmental science during a residential field trip.
- Students to attend a residential field trip outside Hong Kong to learn about environmental science in practice. The field trip may include marine environmental survey, sediment core sampling, practical learning of ecological, paleoecology and environmental problems, environmental geology/paleontology excursion, and other activities. Students are required to write an independent report on the learning outcome of the field trip.

Table: Course Outcomes

- On successful completion of this course, students should be able to:
 - CLO 1: recognize ways of environmental science in practice
 - CLO 2: gain knowledge of current environmental problems and solutions
 - CLO 3: present and communicate their field observations and findings

Table: Additional Course Information

- Required reading and online materials:

Table: Course Website

- Course Website: http://moodle.hku.hk/

Table: Grade Descriptors

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply highly effective lab / fieldwork skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Apply effective lab / fieldwork skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective lab / fieldwork skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited grasp, with retention of some relevant information of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply partially effective lab / fieldwork skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Apply minimally effective or ineffective lab / fieldwork skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Table: Course Type

- Course Teaching & Learning Activities: Laboratory and workshop course

Table: Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory reports</td>
<td>field reports</td>
<td>30</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Presentation</td>
<td>group presentations</td>
<td>30</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Project reports</td>
<td>individual report</td>
<td>40</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Table: Course Website

- Course Website: http://www.biosch.hku.hk/ecology/lso/
ENVS3028 Coastal Sustainability (6 credits) Academic Year 2018

Offering Department Biological Sciences
Course Co-ordinator Dr V Thiyagarajan, Biological Sciences (raj@hku.hk)
Teachers Involved (Dr V Thiyagarajan,School of Biological Sciences)
(Prof G A Williams,School of Biological Sciences)

Course Objectives
- Understand the primary drivers of biodiversity and ecosystem function in rocky intertidal, mangrove and coral reef ecosystems in USA and SE Asia.
- Gain an appreciation for how urban ecosystems in this region are being affected by climate change, development and stress from pollution.
- Better understand how history and governance structures of Hong Kong, Malaysia and New England constrain and/or facilitate coastal adaptation strategies.
- Appreciate how cultural practices such as seafood preferences and traditional medicine affect harvesting of marine species, and how this impacts coastal biodiversity.

Course Contents & Topics
The majority of the Earth’s population now lives in coastal cities, where people not only depend on ocean resources, but are also experiencing ever increasing threats from the ocean environment. This program will explore the mechanisms by which coastal communities in the US and SE Asia are facing these expanding challenges, including their impacts on coastal ecosystems. Using a comparative approach, students will explore the diverse challenges facing coastal societies, and will gain an in-depth understanding of coupled human-natural systems on the coasts of New England and Southeast Asia (Hong Kong and Malaysia).

By comparing and contrasting both ecosystems and societies, students will develop an appreciation for both the commonalities of challenges facing the world’s coasts, as well as differences that occur due to local ecology. A major emphasis of the program will be on solutions, and how by taking a global perspective we can accelerate methods for climate change adaptation that span traditional cultural barriers. We will blend studies of threats facing both human and natural systems in Hong Kong, Malaysia and the Gulf of Maine with an in-depth exploration of how those societies have (or have not) enacted solutions to those challenges.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 Articulating similarities and differences between how coupled human-natural systems operate in SE Asia and in comparable habitats in the U.S.A.
CLO 2 Reading and synthesizing review articles in the primary literature in marine science and social science literature, and explain the connections among these diverse approaches.
CLO 3 Articulating arguments about how traditional Chinese, Malaysian and American culture affect human impacts on the environment, and to develop potential solutions to these issues based on conversations with peers.
CLO 4 Becoming comfortable collaborating with peers from U.S.A, and gain a greater understanding of the culture of the region.

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL2306 or BIOL3301 or BIOL3305 or BIOL3318 or ENVS2001 or ENVS2002 or EASC3020

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a complex issue of sustainable coastal management in economically and socially developed and developing places.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to a complex issue of sustainable coastal management in economically and socially developed and developing places.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some coherent and logical thinking, and ability to apply knowledge to a complex issue of sustainable coastal management in economically and socially developed and developing places.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems.
Fail Demonstrate little or no command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve complex problems.

Course Type
Field camps

Course Teaching & Learning Activities
Assessment Methods and Weighting
Assignments Write ups form the field trips 20 CLO 1
Final lab notebook and associated materials (video diaries and photos) 50 CLO 2,3,4
Report

Laboratory work including hands on training 30

Field work 80

Activities Details No. of Hours
Lectures 40
Field work
Laboratory work

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

574
School of Biological Sciences

Course Website
http://moodle.hku.hk/

Additional Course Information
- Duration: July 9, 2019 to August 10, 2019
- All field trips, including the overseas trip to Malaysia and USA, are compulsory
- Course fee - please contact the course coordinator

1st week: Lectures, practicals and field trips in the University of Hong Kong, Hong Kong
2nd week: Lectures and field trips in University Sains Malaysia, Penang (Malaysia)
3rd and 4th weeks: Lectures and field trips in Northeastern University, New England (Boston, USA)

This is an introductory overseas experiential learning course designed for all science students as free elective. It is especially suitable for students aiming to major in environmental science, ecology & biodiversity or biological sciences.

Note: Field trips in New England (Boston, USA) will NOT be considered for assessment and, therefore, those field trips in USA are only exploratory in nature and are NOT part of any HKU's credit bearing course.

ENVS4110

<table>
<thead>
<tr>
<th>Biological remediation (6 credits)</th>
<th>Academic Year</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Dr J D Gu, Biological Sciences (jdg@hku.hk)</td>
<td></td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr J D Gu, Biological Sciences)</td>
<td></td>
</tr>
<tr>
<td>Course Objectives</td>
<td>To introduce students with the environmental fate information of different pollutants/contaminants in the environment</td>
<td></td>
</tr>
<tr>
<td>& Topics</td>
<td>Understanding the types of different pollutants and their fate in the environments including both terrestrial and aquatic; and relevant strategy of pollution control and treatment; advanced oxidation, microbiological treatment and phyto-remediation; mechanisms of biochemical transformation of polyaromatic hydrocarbon, polychlorinated biphenols, agrichemicals and phthalate esters as well as both metals and metalloids; biochemical pathways and the specific genes involved in detoxification; chemotaxis and engineering the degradation pathways in bacteria; transport of microorganisms and monitoring in subsurface environment; survival of introduced organisms; evolution of the degradative genes in bacteria; in situ and ex situ remediation techniques; green technologies.</td>
<td></td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
<td></td>
</tr>
<tr>
<td>& Topics</td>
<td>CLO 1 explain the remediation technologies available to the type of pollutants of concern in remediation practice</td>
<td></td>
</tr>
<tr>
<td>& Topics</td>
<td>CLO 2 propose remediation strategies for polluted sites with the best technologies available considering the type of pollutants and the cost involved</td>
<td></td>
</tr>
<tr>
<td>& Topics</td>
<td>CLO 3 differentiate the technologies available for the specific pollutants and the fundamental process involved in terms of the catalysts and the effectiveness</td>
<td></td>
</tr>
<tr>
<td>& Topics</td>
<td>CLO 4 describe several key chemical and biochemical processes used in environmental remediation with adequate background information on their history and development</td>
<td></td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Pass in BIOL3109 or BIOL3110 or BIOL3401 or ENVS3042</td>
<td></td>
</tr>
<tr>
<td>Grade Descriptors</td>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>(A+ to F)</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Thorough mastery at an advanced level of extensive knowledge and skills required for attaining any of the course learning outcomes. Thorough grasp of the subject matter. Show very strong analytical and critical abilities and high logical thinking, with evidence of original thought. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Substantial grasp of the subject. Show evidence of analytical and critical abilities and logical thinking. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>General but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. General but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.</td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td>Little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.</td>
<td></td>
</tr>
<tr>
<td>Course Type</td>
<td>Lecture with laboratory component course</td>
<td></td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
<td>Details</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Field work</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Project work</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
<td>100</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
<td>Details</td>
</tr>
<tr>
<td></td>
<td>Assignments</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Laboratory reports</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Presentation</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td>5</td>
</tr>
</tbody>
</table>
Required/recommended reading and online materials

Course Website
http://moodle.hku.hk/

Additional Course Information
The course will be offered subject to a minimum enrollment number and availability of teachers.
Offer in alternative year from 2011-2012
Course Objectives

The Core University English (CUE) course aims to enhance first-year students' academic English language proficiency in the university context. CUE focuses on developing students' academic English language skills for the Common Core Curriculum. These include the language skills needed to understand and produce spoken and written academic texts, express academic ideas and concepts clearly and in a well-structured manner and search for and use academic sources of information in their writing and speaking. Four online-learning modules through the Moodle platform on academic speaking, academic grammar, academic writing and academic referencing skills and avoiding plagiarism will be offered to students to support their English learning. This course will help students to participate more effectively in their first-year university studies in English, thereby enriching their first-year experience.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** identify and distinguish between main ideas and supporting details in lectures and written texts and demonstrate an understanding of the arguments / facts expressed
- **CLO 2** form and express personal opinions through critical reading and listening
- **CLO 3** argue for and defend a position in a clear and structured way using academic sources, through writing and speaking
- **CLO 4** demonstrate control of grammatical accuracy and lexical appropriacy in academic communication

Pre-requisites (and Co-requisites and Impermissible combinations)

NIL

Offer in 2018 - 2019

Offer in 2018 - 2019: Y

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Excellent to outstanding result. Students are able to produce spoken and written academic texts which are at all times appropriately structured. Students can clearly and concisely explain academic concepts and critically argue for a detailed position. Students always use appropriate academic sources to support their ideas in writing and speaking. They cite and reference correctly at all times. Students demonstrate an ability to fully comprehend and critically interpret spoken and written texts. Written language contains very few, if any, systematic errors in grammar and vocabulary. Spoken language is always comprehensible and fluent.</td>
</tr>
<tr>
<td>B</td>
<td>Good to very good result. Students are able to produce spoken and written academic texts which are appropriately structured with only minor errors. Students can almost always clearly and concisely explain academic concepts and almost always critically argue for a detailed position. Students almost always use appropriate academic sources to support their ideas in writing and speaking. They cite and reference correctly with only a few non-systematic errors. Students can comprehend and interpret texts with ease, although they may miss some implied meanings and opinions. Written language is mostly accurate but contains a few systematic errors in complex grammar and vocabulary. Spoken language is mostly comprehensible and fluent.</td>
</tr>
<tr>
<td>C</td>
<td>Satisfactory to reasonably good result. Spoken and written academic texts produced by students are sometimes not-well structured but there is some evidence of this ability. Students are sometimes unable to clearly and concisely explain academic concepts. While they can argue for a position, it is not very detailed and tend to be simplistic rather than critical. Students sometimes use sources which are nonacademic and/or not appropriate to support their ideas in writing and speaking. There are some systematic errors in citation and referencing but also evidence of correct systematic use. Students have some difficulty comprehending and critically interpreting texts. They can always understand the main ideas but may miss some of the writer’s views and attitudes. Written language is sometimes inaccurate, although errors, when they occur, are more often in complex grammar and vocabulary and there is some evidence of control of simple grammatical structures. Spoken language is generally comprehensible and fluent but at times places strain on the listener.</td>
</tr>
<tr>
<td>D</td>
<td>Barely satisfactory result. Spoken and written academic texts produced by students are often inappropriately structured but there may be some evidence of this ability. Students are often unable to clearly and concisely explain academic concepts and argue for a position. There is some evidence of an ability to explain academic concepts but not to critically argue for a position. Students often use sources which are nonacademic and/or not appropriate to support their ideas in writing and speaking. There are many systematic errors in citation and referencing however there is evidence of an understanding of some of the conventions of citation and referencing. Students often have difficulty comprehending and interpreting texts, sometimes failing to understand the main ideas and writer’s views and attitudes. Written language is often inaccurate containing errors in a range of simple and complex grammar and vocabulary. Spoken language is only sometimes comprehensible and fluent, and strain is frequently placed on the listener.</td>
</tr>
<tr>
<td>Fail</td>
<td>Un satisfactory result. Productive skills are too limited to be able to successfully carry out spoken and written assessments. Texts are unstructured and unclear. Students are unable to follow and interpret texts. There are language errors in almost every sentence. Spoken language is often incomprehensible. Assessments may not have been attempted or contain plagiarism.</td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>84</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course Objectives

This six credit English-in-the-Discipline course will be offered to second year students studying in the Science Faculty. This course will help students develop the necessary skills to use both written and spoken English within their studies. Students will learn to better communicate and spontaneously discuss general and scientific concepts within their division, with other scientists as well as to a larger audience. Particular emphasis will be placed on enabling students to identify their own language needs and develop appropriate self-learning strategies to improve their proficiency.

Course Contents & Topics

Topics covered in the course will be:

- Finding, evaluating and using appropriate academic source materials;
- Compiling an academic bibliography;
- Contrasting academic and popular genres of Science;
- Writing for a specific audience, including stance, shared knowledge, levels of formality; and
- Organizing and articulating ideas in an academically suitable format including appropriate vocabulary and grammar; and
- Critically examine their own language proficiency and analyze how that relates to their ability to perform successfully within their discipline. Developing self-directed learning strategies.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 identify and summarize disciplinary sources related to a specified topic
- CLO 2 produce texts (written and spoken) appropriate for a cross-disciplinary audience based on their disciplinary knowledge
- CLO 3 identify their own language learning needs and implement a plan to meet those needs

Pre-requisites (and Co-requisites and Impermissible combinations)

NIL

Offer in 2018 - 2019

| Offer in 2018 - 2019 | Y | 1st sem | 2nd sem | Offer in 2019 - 2020 | Y | Examination | No Exam |

Grade Descriptors (A+ to F)

- **A**: Excellent result. Consistently demonstrates ability to summarize salient points accurately from appropriate and reliable sources using original language. Text uses sources appropriately and demonstrates accurate and appropriate grammatical, lexical and organizational characteristics. Language learning needs are clearly identified and aligned with evidence of planning, self-study and reflection.

- **B**: Good to very good result. Usually demonstrates ability to summarize salient points accurately using mostly original language. Text mostly uses sources appropriately and demonstrates mostly accurate and appropriate grammatical, lexical and organizational characteristics. Language learning needs are stated with some reference to evidence of planning and reflection although there is some misalignment between goals and self-study completed.

- **C**: Satisfactory to reasonably good result. Demonstrates some ability to summarize salient points using mostly original language although some inaccuracies are present. Text uses some sources appropriately and demonstrates appropriate but simple grammatical and lexical characteristics with some organizational flaws. Language learning needs are stated with some limited evidence of planning and reflection but goals and self-study are misaligned.

- **D**: Barely satisfactory result. Demonstrates a limited ability to summarize salient points from sources with inaccuracies and little original language. Text uses sources inappropriately and demonstrates grammatical inaccuracies, inappropriate lexical choices and organizational flaws. There is a minimal statement of language learning needs, planning and reflection with little or no apparent alignment between goals and self-study.

- **Fail**: Unsatisfactory result. Does not demonstrate ability to summarize salient points identify, interpret or appropriately paraphrase reliable sources. Text uses no sources and demonstrates serious grammatical, lexical and/or organizational errors. Does not demonstrate any meaningful attempt to identify language learning needs or implement a plan.

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities & Learning Activities</th>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorials</td>
<td>seminars</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>independent learning work</td>
<td>84</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>independent learning work</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Essay</td>
<td>other genres of writing</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course materials to be provided electronically through course website.

Course Website

http://caes.hku.hk/caes9820/

Additional Course Information

This a compulsory course for all students studying undergraduate degrees in the Faculty of Science.
CHEM1041 Foundations of chemistry (6 credits) Academic Year 2018
Offering Department Chemistry Quota 156
Course Co-ordinator Dr A P L Tong, Chemistry (apltong@hku.hk)
Teachers Involved (Dr A P L Tong, Chemistry)
Course Objectives
The course aims to provide students who do not have HKDSE Chemistry or an equivalent background but are interested in exploring Chemistry further, with an understanding of the essential fundamental principles and concepts of chemistry.

Course Contents & Topics
Topic 1: Gases: Their Properties and Behaviour (6 hours) Gas pressure; the gas laws; the ideal gas law and reaction stoichiometry; the kinetic-molecular theory of gases.
Topic 2: Chemical Bonding and Structures (7 hours) Covalent, ionic and metallic bonds; bond energy and chemical change; electronegativity and bond polarity; Lewis structures of molecules and ions; YSEPR Theory and molecular shape.
Topic 3: Intermolecular Forces: Liquids, Solids, and Phase Changes (8 hours) Physical states and phase changes; types of intermolecular forces; properties of liquid state; the solid state: structure, properties, and bonding.
Topic 4: Chemical Equilibrium (5 hours) The equilibrium state and the equilibrium constant; the equilibrium law: calculation of equilibrium constants and reaction quotient; Le Chatelier's Principle.
Topic 5: Introductory Organic Chemistry (10 hours) Homologous series and nomenclature; isomerism; typical reactions of selected functional groups.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 demonstrate knowledge and understanding in relation to some chemical vocabulary, terminology and conventions
CLO 2 demonstrate knowledge and understanding of chemical stoichiometry, the properties of liquids and solids, the nature of gases, phase changes, chemical bonding and structures, and the nature of chemical equilibria
CLO 3 demonstrate a basic knowledge of nomenclature, isomerism, and typical reactions of various functional groups of organic compounds
CLO 4 apply the theories and concepts introduced in the course to solve problems, perform calculations, make predictions and rationalize trends
CLO 5 organize and present chemical ideas in a clear, logical and coherent way
CLO 6 demonstrate awareness and appreciation of the relevant applications of chemistry in society and in everyday life

Pre-requisites (and Co-requisites and Impermissible combinations)
Level 3 or above in HKDSE Combined Science with Chemistry component or Integrated Science, or equivalent. Students without such background but keen on taking this foundation chemistry course may approach the course coordinator for consideration. Not for students with Level 3 or above in HKDSE Chemistry or having taken any level 1 Chemistry course or above or any equivalent Chemistry course.

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y
Examination 6
Assignments 20 CLO 1,2,3,4,5
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments 20 CLO 1,2,3,4,5
Examination 65 CLO 1,2,3,4,5,6
Test 15 CLO 1,2,3,4,5,6

Assessment Methods and Weighting

Course Type Lecture-based course
Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 100

Course Objectives
The course aims to provide students with a solid foundation of the basic principles and concepts of chemistry. It

CHEM1042 General chemistry I (6 credits) Academic Year 2018
Offering Department Chemistry Quota 348
Course Co-ordinator Dr A P L Tong, Chemistry (apltong@hku.hk)
Teachers Involved (Dr A P L Tong, Chemistry)
Course Objectives
The course aims to provide students with a solid foundation of the basic principles and concepts of chemistry. It

Additional Course Information
Suggested follow-up course: CHEM1042 General Chemistry I
also provides students with hands-on training of basic laboratory skills and techniques including volumetric analysis, preparation, purification and characterization of chemical substances and some basic instrumental methods. Students will be equipped with a good foundation of theoretical and practical knowledge and skills for further studies in Chemistry.

Course Contents & Topics

1. Chemistry: its nature and method
 Physical properties; chemical changes and chemical properties; elements and compounds; measuring mass, length, volume and temperature; atomic structure and subatomic particles; the mole concept and stoichiometry; solutions and concentrations; uncertainty in measurement and significant figures.

2. Atoms; the quantum world
 Electromagnetic radiation and matter; Planck's quantum theory; the Bohr model of the hydrogen atom; the quantum mechanical model of the atom; quantum numbers, energy levels, and atomic orbitals; shapes of atomic orbitals; electron configurations; periodic trends: atomic radii, ionic radii, ionization energies, and electron affinities.

3. Chemical bonding and structures

4. Energetics and kinetics of reactions
 Heat and work; the first law of thermodynamics; heat of reactions; spontaneity of changes. Reaction rate; factors that influence reaction rate; rate laws; differential and integrated rate laws; temperature and reaction rate; reaction mechanisms.

5. Acid-Base equilibria
 Acid-base concepts; equilibria in solutions of weak acids and in weak bases; ionization constants; molecular properties and acid strength; acid-base properties of salt solutions; buffer solutions; acid-base titrations.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 demonstrate a basic knowledge and understanding of the microscopic nature of atomic structure and concepts of chemical bonding and their relationships with the bulk properties of matter

CLO 2 demonstrate knowledge and understanding in relation to thermodynamics and kinetics of reactions as well as aqueous equilibria including acid-base equilibria

CLO 3 apply the theories and concepts introduced in the course to solve problems, perform calculations, make predictions and rationalize trends

CLO 4 carry out chemical experiments with proper procedures, record experimental observations accurately, and interpret and evaluate the experimental data

CLO 5 organize and present chemical ideas in a clear, logical and coherent way

CLO 6 demonstrate awareness and appreciation of the relevant applications of chemistry in society and in everyday life

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>60</td>
<td>CLO 1,2,3,5,6</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>25</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>15</td>
<td>CLO 1,2,3,5,6</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

1) Petrucci; Herring; Madura; Bissonnette: General Chemistry: Principles and Modern Applications, latest edition, Pearson
3) Zumdahl; Zumdahl: Chemistry, latest edition, Brookes/Cole

Additional Course Information

Laboratory classes are mandatory. Students must complete all experiments and laboratory reports to pass this course.

CHEM1043

General chemistry II (6 credits)

Academic Year: 2018

Offering Department: Chemistry

Quota: 290

Course Co-ordinator: Dr A P L Tong, Chemistry (apltong@hku.hk)

Teachers Involved: (Dr A P L Tong, Chemistry)

(Prof D L Phillips, Chemistry)

Course Objectives

This course is a continuation of CHEM1042 General Chemistry I. It aims to further consolidate some of the
important fundamentals of chemistry that underlie many topics and principles across the physical sciences. The course prepares students to pursue a major in chemistry or in other aspects that require a good foundation in chemistry.

Course Contents & Topics

1. **Gases**
 - Simple gas laws; ideal gas equation; gases in chemical reactions; mixture of gases; kinetic-molecular theory of gases; diffusion and effusion; non-ideal gases.
 - Bonding in homonuclear and heteronuclear diatomic molecules of first and second period of elements; bonding in some simple polyatomic molecules; bonding in metals (band theory).

2. **Structure and Bonding: The Delocalized Approach: Molecular Orbital Theory**
 - Types of solutions; intermolecular forces and the solution process; solution formation and equilibrium; solubilities of gases; vapor pressures of solutions; osmotic pressure; freezing-point depression and boiling-point elevation of nonelectrolyte solutions; solutions of electrolytes; colloidal mixtures.

3. **Solubility and Complex-Ion Equilibria**
 - Solubility product constant; relationship between solubility and Ksp; common-ion effect in solubility equilibria; limitations of the Ksp concept; precipitation; solubility and pH; equilibria involving complex ions; qualitative cation analysis.

4. **Entropy & Gibbs Energy**
 - A quick review on entropy and the second & third laws of thermodynamics. Standard Gibbs energy change; Gibbs energy change and equilibrium; coupled reactions.

5. **Electrochemistry**
 - Electrode potentials and their measurement; standard electrode potentials; E_{cell}, delta G, and K; E_{cell} as a function of concentrations; batteries; corrosion; electrolysis; industrial electrolysis processes.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** demonstrate a knowledge and understanding of the properties and behavior of gases and apply gas laws and kinetic-molecular theory to processes involving gases.
- **CLO 2** demonstrate a knowledge and understanding in relation to solutions and their properties, solubility and complex-ion equilibria, and also electrochemistry.
- **CLO 3** apply molecular orbital theory to explain the formation and properties of diatomic molecules of first and second period of elements and of some simple polyatomic molecules.
- **CLO 4** demonstrate a knowledge and understanding of the relationship between free energy and spontaneity of reaction.
- **CLO 5** apply the theories and concepts introduced in the course to solve problems, perform calculations, make predictions and rationalize trends.
- **CLO 6** organize and present chemical ideas in a clear, logical and coherent way.
- **CLO 7** demonstrate awareness of the relevant applications of chemistry in society and in everyday life.

Pre-requisites (and Co-requisites and Impermissible combinations)

- Pass in CHEM1042; and Not for students in 2014-15 cohort or before having taken CHEM2541.

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Y 1st sem</th>
<th>2nd sem</th>
<th>Offer in 2019 - 2020 : Y</th>
<th>Examination</th>
<th>Dec</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show thorough grasp of the subject. Demonstrate strong analytical and critical abilities and logical thinking, with ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show substantial grasp of the subject. Demonstrate evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show general but incomplete grasp of the subject. Demonstrate evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show partial but limited grasp, with retention of some relevant information, of the subject. Demonstrate evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Show evidence of little or no grasp of the knowledge and understanding of the subject. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>15</td>
<td>CLO 1, 2, 3, 4, 5, 6, 7</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>70</td>
<td>CLO 1, 2, 3, 4, 5, 6, 7</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>15</td>
<td>CLO 1, 2, 3, 4, 5, 6, 7</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

1. Petrucci; Herring; Madura; Bissonnette: General Chemistry: Principles and Modern Applications, latest edition, Pearson

CHEM1044

Mathematics in chemistry (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Mathematics in chemistry (6 credits)</th>
<th>Academic Year</th>
<th>Quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>2018</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Course Co-ordinator

Prof C M Che, Chemistry (cmche@hku.hk)

Teachers Involved

(pending), Chemistry

Dr A M Y Yue, Chemistry

Dr J Yang, Chemistry

Course Objectives

Mathematical calculations are necessary to explore important concepts in chemistry. This course aims to equip...
Course Contents & Topics

Applying mathematical tools, such as Algebra, Trigonometry, Calculus, Complex number, Vector, Matrix, Linear equation, Differential equation, in solving chemistry problems.

Course Learning Outcomes

- **CLO 1**: Demonstrate knowledge and understanding of the essential mathematics used in chemistry
- **CLO 2**: Apply mathematical skills to solve basic problems in chemistry
- **CLO 3**: Be more capable of coping with a higher level of mathematics required in relevant courses for chemistry major, in particular, in physical chemistry courses

Pre-requisites (and Co-requisites and Impermissible combinations)

- Pass in CHEM1042 or already enrolled in this course; and Level 2 or above in Module 1 or Module 2 of HKDSE Mathematics or equivalent, or Pass in MATH1011

Offer in 2018 - 2019

- **Offer in 2019 - 2020**: Yes

Grade Descriptors (A+ to F)

- **A**: Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

- **B**: Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.

- **C**: Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.

- **D**: Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

- **F**: Fail

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>20 CLO 1,2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>60 CLO 1,2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>20 CLO 1,2,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- Graham Doggett, Martin Cockett: Maths for Chemists, 2nd Edition, RSC

CHEM2041

Principles of chemistry (6 credits)

Offering Department: Chemistry
Course Co-ordinator: Dr I K Chu, Chemistry (ivanchu@hku.hk)

Course Objectives

This course is designed for non-chemistry major students covering basic principles of chemistry.

Course Contents & Topics

- **Gas Laws and the Kinetic Theory of Gases**
- **Thermodynamics**: work, heat, the zeroth and first law of thermodynamics, internal energy, enthalpy, heat capacities, thermochromic, Hess’s Law, Kirchhoff’s Law, the second and third laws of thermodynamics, entropy, Gibbs free energy, spontaneity, equilibrium, coupled reaction;
- **Transport Phenomena**: diffusion, viscosity of gases, diffusion in liquids and viscosity of liquids, liquid/gas systems;
- **Chemical Kinetics**: rate of reactions, orders of reactions, rate laws, reaction mechanism, experimental measurement of reaction rates, enzyme kinetics, enzyme inhibition, temperature effect on rates;
- **Chemical Equilibrium**;
- **Equilibria in single-, and two component systems**: phase transitions, phase diagrams and the phase rule, chemical potential, liquid/liquid systems; introduction to acids and bases: calculation on concentration of different chemical species in a solution, diprotic and polyprotic acids, activity;
- **Introduction to Spectroscopy**: UV/Visible absorption spectroscopy, Beer-Lambert Law; IR Spectroscopy, identification of functional groups; NMR Spectroscopy, Larmor frequency & chemical shift, peak integral, spin-spin coupling multiplicities; Mass Spectrometry, isotopic distribution, determination of molecular formulae.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1**: Explain the principles of the thermochemistry, chemical kinetics, chemical equilibrium, physical properties of solutions and gases
- **CLO 2**: Explain the principles of the spectroscopy, and spectrometry

Pre-requisites (and Co-requisites and Impermissible combinations)

- Pass in CHEM1042; and
- Not for students who have passed in CHEM2341, or have already enrolled in this course; and
- Not for students who have passed in CHEM2441, or have already enrolled in this course; and
- Not for students who have passed in CHEM2541, or have already enrolled in this course; and
- Not for Chemistry major students.

Offer in 2018 - 2019

- **Offer in 2019 - 2020**: Yes

Grade Descriptors (A+ to F)

- **A**: Demonstrate thorough knowledge and understanding of essential facts, concepts, principles and theories relating to the modern chemistry, instrumentations and applications of spectrometry and spectropscopy for chemical analysis. Show strong ability to apply and integrate knowledge and theory, and strong ability to analyze problems related to general chemistry and spectropscopy.
- **B**: Demonstrate substantial command of knowledge and understanding of essential facts, concepts, principles and theories relating to the modern chemistry, instrumentations and applications of spectrometry and spectropscopy for chemical analysis. Show evidence to apply and integrate knowledge and theory, and ability to analyze problems related to general chemistry and spectropscopy.
- **C**: Demonstrate general but incomplete command of knowledge and understanding of essential facts, concepts, principles and theories relating to the modern chemistry, instrumentations and applications of spectrometry and spectropscopy for chemical analysis. Show some ability to apply the knowledge and theory, and some ability to analyze problems related to general chemistry and spectropscopy.
- **D**: Demonstrate only partial command of knowledge and understanding of essential facts, concepts, principles and theories relating to the modern chemistry, instrumentations and applications of spectrometry and spectropscopy for chemical analysis. Show limited ability to apply the knowledge and theory, and limited ability to analyze problems related to general chemistry and spectropscopy.
- **F**: Fail

Department of Chemistry
Department of Chemistry

Course Type | Lecture-based course
Course Teaching & Learning Activities | Activities | Details | No. of Hours
| Lectures | 36
| Tutorials | 12
| Reading / Self study | 100

Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping
| Assignments | 25 | CLO 1,2
| Examination | 75 | CLO 1,2

CHEM2241 | Analytical chemistry I (6 credits) | Academic Year | 2018
Offering Department | Chemistry | Quota | 120
Course Co-ordinator | Dr W T Chan (1st sem); Dr I K Chu (2nd sem), Chemistry (wtchan@hku.hk; ivankchu@hku.hk)
Teachers Involved | (Dr I K Chu,Chemistry) (Dr W T Chan,Chemistry)
Course Objectives | The course aims to introduce the basic principles of chemical analysis. The principles of chemical measurement, including error analysis, quality assurance and calibration, data acquisition and processing, will be discussed with reference to methods of chemical analysis that are based on chemical equilibrium and stoichiometric reactions.
The laboratory classes will include experiments demonstrating modern approaches of data acquisition and processing as well as chemical analysis based on chemical equilibrium.
Course Contents & Topics | Measurement: analog and digital measurement, accuracy and precision, comparing means and deviations, calibration curves and least square method for linear plots
Quality assurance: validation of analytical procedures
Chemical equilibrium and chemical analysis: aqueous solution and chemical equilibrium; analysis by acid-base reactivity, complexation reactivity, precipitation reactivity.
Course Learning Outcomes | On successful completion of this course, students should be able to:
CLO 1 explain the basic principles of chemical measurements
CLO 2 explain the principles of classical methods of chemical analysis such as acid-base neutralization
CLO 3 use laboratory apparatus for chemical analysis
Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in CHEM1042 (for students admitted in 2014-15 or before);
Pass in CHEM1042; and Pass in CHEM1043, or already enrolled in this course (for students admitted in 2015-16 or thereafter)
Grade Descriptors (A* to F) | A | Demonstrate thorough grasp of the subject. Show evidence of strong analytical abilities, logical and independent thinking, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Demonstrate highly proficient lab skills and techniques and critical use of data and results to draw appropriate and insightful conclusions. Demonstrate highly effective organization and presentation skills.
B | Demonstrate substantial grasp of the subject. Show evidence of analytical abilities and logical thinking, some evidence of independent thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Demonstrate proficient lab skills and techniques and correct use of data and results to draw appropriate conclusions. Demonstrate effective organization and presentation skills.
C | Demonstrate general but incomplete grasp of the subject. Show evidence of some analytical abilities and logical thinking, little evidence of independent thinking, and ability to apply knowledge to most familiar situations. Demonstrate adequate lab skills and techniques and mostly correct but some erroneous use of data and results to draw appropriate conclusions. Demonstrate moderately effective organization and presentation skills.
D | Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Show evidence of limited analytical abilities, little or no evidence of independent thinking, and limited ability to apply knowledge to solve problems. Demonstrate partially effective lab skills and techniques and limited ability to use data and results to draw appropriate conclusions. Demonstrate limited or barely effective organization and presentation skills.
Fail | Demonstrate little or no grasp of the knowledge and understanding of the subject. Show little or no evidence of analytical abilities, logical and independent thinking, and very little or no ability and theory, and to analyze problems to most familiar situations to general chemistry and spectroscopy.

Course Type | Lecture with laboratory component course
Course Teaching & Learning Activities | Activities | Details | No. of Hours
| Lectures | 24
| Laboratory | 24
| Tutorials | 6
| Reading / Self study | 3

Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping
| Assignments | 5 | CLO 1,2
| Examination | 65 | CLO 1,2
| Laboratory reports | 20 | CLO 3
| Test | 10 | CLO 1,2

Inorganic chemistry I (6 credits)

Offering Department: Chemistry
Quota: 120

Course Co-ordinator: Prof V W W Y Lam (1st sem); Dr H Y Au Yeung (2nd sem), Chemistry
Prof V W W Y Lam / Dr H Y Au Yeung, Chemistry

Course Objectives: To provide students with the basic principles and knowledge of inorganic chemistry and to introduce their relevance to biological processes and materials science. This course provides the foundation for further studies in inorganic chemistry.

Course Contents & Topics: Acid-base concept; structure and bonding of transition metal complexes and main group compounds; electronic absorption and magnetic properties of metal complexes; chemical reactions of metal complexes: redox and substitution; chemistry of selected main group elements and transition metal complexes and their relevance to biology and materials.

Course Learning Outcomes: On successful completion of this course, students should be able to:

CLO 1 understand the basic principles and concepts of inorganic chemistry and appreciate their relevance to selected examples of biological processes and materials science
CLO 2 demonstrate knowledge and understanding of the acid-base concept and definition
CLO 3 demonstrate knowledge and understanding of the structure and bonding of main group compounds and transition metal complexes and their relevance to the electronic absorption and magnetic properties of transition metal complexes
CLO 4 demonstrate knowledge and understanding of the thermodynamic stability of metal complex formation and the thermodynamic and kinetic aspects of substitution
CLO 5 demonstrate knowledge and understanding of the role of main group elements and transition metal complexes in bioinorganic chemistry

Pre-requisites (and Co-requisites and Impermissible combinations): Pass in CHEM1042, and NOT for students who have passed in CHEM2041, or already enrolled in this course (for students admitted in 2014-15 or before); Pass in CHEM1042, and Pass in CHEM1043, or already enrolled in this course; and NOT for students who have passed in CHEM2041, or already enrolled in this course (for students admitted in 2015-16 or thereafter)

Offer in 2018 - 2019: Y
1st sem 2nd sem Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F):
A Demonstrate thorough knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of inorganic chemistry, especially those related to acid-base concept; structure and bonding of main group compounds and metal complexes; electronic absorption spectroscopy, magnetic properties as well as thermodynamic and kinetic aspects of metal complexes and their reactions; and their relevance to biological processes and materials science. Show strong ability to apply and integrate knowledge and theory relating to the basic foundation knowledge of inorganic chemistry. Show strong ability to analyze novel problems and critical use of data and experimental results to draw appropriate and insightful conclusions relating to the basic principles and knowledge of inorganic chemistry. Demonstrate highly effective basic laboratory skills and techniques, especially in the synthesis and characterization of inorganic compounds and metal complexes.
B Demonstrate substantial command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of inorganic chemistry, especially those related to acid-base concept; structure and bonding of main group compounds and metal complexes; electronic absorption spectroscopy, magnetic properties as well as thermodynamic and kinetic aspects of metal complexes and their reactions; and their relevance to biological processes and materials science. Show evidence to apply and integrate knowledge and theory relating to the basic foundation knowledge of inorganic chemistry. Show evidence to analyze novel problems and correct use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of inorganic chemistry. Demonstrate effective basic laboratory skills and techniques, especially in the synthesis and characterization of inorganic compounds and metal complexes.
C Demonstrate general but incomplete command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of inorganic chemistry, especially those related to acid-base concept; structure and bonding of main group compounds and metal complexes; electronic absorption spectroscopy, magnetic properties as well as thermodynamic and kinetic aspects of metal complexes and their reactions; and their relevance to biological processes and materials science. Show evidence of some abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of inorganic chemistry. Show ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of inorganic chemistry. Demonstrate moderately effective basic laboratory skills and techniques, especially in the synthesis and characterization of inorganic compounds and metal complexes.
D Demonstrate partial but limited command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of inorganic chemistry, especially those related to acid-base concept; structure and bonding of main group compounds and metal complexes; electronic absorption spectroscopy, magnetic properties as well as thermodynamic and kinetic aspects of metal complexes and their reactions; and their relevance to biological processes and materials science. Show evidence of limited abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of inorganic chemistry. Show limited ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of inorganic chemistry. Demonstrate partially effective basic laboratory skills and techniques, especially in the synthesis and characterization of inorganic compounds and metal complexes.
Fail Demonstrate little or no evidence of command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of inorganic chemistry, especially those related to acid-base concept; structure and bonding of main group compounds and metal complexes; electronic absorption spectroscopy, magnetic properties as well as thermodynamic and kinetic aspects of metal complexes and their reactions; and their relevance to biological processes and materials science. Show little or no evidence of abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of inorganic chemistry. Show little or no ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of inorganic chemistry. Demonstrate minimally effective basic laboratory skills and techniques, especially in the synthesis and characterization of inorganic compounds and metal complexes.

Course Type: Lecture with laboratory component course

Activities Details No. of Hours
Lectures 24
Laboratory 24
Tutorials 6
Reading / Self study 100

Assessment Methods and Weighting:
Methods Details Weighting in final course grade (%)
Assignments CLO 1,2,3,4,5
Examination CLO 1,2,3,4,5
Laboratory reports CLO 1,2,3,4,5

Academic Year: 2018
Department of Chemistry
CHEM2441 Organic chemistry I (6 credits) Academic Year 2018
Offering Department Chemistry
Course Co-ordinator Dr X Y Li (1st sem); Prof P Chiu (2nd sem), Chemistry (xiaoyuli@hku.hk; pchiu@hku.hk)
Teachers Involved Dr X Y Li; Chemistry (Prof P Chiu, Chemistry)
Course Objectives To provide students with the basic principles to understand the structure and reactivity of organic molecules, with examples illustrating the role of organic chemistry in daily life and industry. This course serves as the first part of the complete program on fundamental organic chemistry, to be followed up by CHEM3441 Organic Chemistry II.
Additional Course Information On successful completion of this course, students should be able to:

CLO 1 understand basic concepts and employ the vocabulary of organic chemistry
CLO 2 visualize and draw three-dimensional, stereochemically correct representations of organic molecules
CLO 3 recognize, discriminate and name chiral stereoisomers and diastereomers
CLO 4 understand the reactivity of the functional groups
CLO 5 understand reaction mechanisms and apply mechanistic knowledge to solve chemistry problems
CLO 6 apply reactions to the synthesis of target molecules
CLO 7 appreciate the relevance of organic chemistry in biological processes and daily life

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in CHEM1042; and NOT for students who have passed in CHEM2041, or already enrolled in this course (for students admitted in 2014-15 or before);
Pass in CHEM1042; and Pass in CHEM1043, or already enrolled in this course; and NOT for students who have passed CHEM2041, or already enrolled in this course (for students admitted in 2015-16 or thereafter)
Grade Descriptors (A to F) A Demonstrate a thorough mastery at an advanced level of knowledge and understanding of facts and concepts pertaining to the chemical properties, reactions and mechanisms of organic chemistry. Show a strong ability to integrate knowledge and theory, and a strong ability to analyze and solve novel organic chemistry problems. Demonstrate highly effective organization, understanding, and execution of lab skills and techniques in organic chemistry experiments.
B Demonstrate substantial command of knowledge and understanding of essential facts and concepts pertaining to the chemical properties, reactions and mechanisms of organic chemistry. Show evidence of ability to integrate knowledge and theory, and evidence of ability to analyze and solve novel organic chemistry problems. Demonstrate effective organization, understanding, and execution of lab skills and techniques in organic chemistry experiments.
C Demonstrate a general but incomplete command of knowledge and understanding of essential facts and concepts pertaining to the chemical properties, reactions and mechanisms of organic chemistry. Show evidence of some ability to analyze novel problems. Show a mostly correct use of knowledge to solve most familiar problems. Demonstrate adequately effective organization, understanding, and execution of lab skills and techniques in organic chemistry experiments.
D Demonstrate a partial but limited command of knowledge and understanding of essential facts and concepts pertaining to the chemical properties, reactions and mechanisms of organic chemistry. Show evidence of limited ability to integrate knowledge and theory, and evidence of some ability to analyze novel problems. Show some correct but also erroneous use of knowledge to solve most familiar problems. Demonstrate a partially effective organization, understanding and application of lab skills and techniques in organic chemistry experiments.
Fail Demonstrate little or no evidence of command of knowledge and understanding of essential facts and concepts pertaining to the chemical properties, reactions and mechanisms of organic chemistry. Show little or no evidence of ability to apply and integrate knowledge and theory, and little or no ability to analyze novel problems. Show little or no evidence of ability to solve most familiar problems. Demonstrate minimal or no organization, understanding and application of lab skills and techniques in organic chemistry experiments.

Course Type Lecture-based course
Course Teaching & Learning Activities Activities Details No. of Hours Lectures 36 Tutorials 12 Reading / Self study 100
Assessment Methods and Weighting Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments 15 CLO 1,2,3,4,6,7
Examination 65 CLO 1,2,3,4,5,6
Test 20 CLO 1,2,3,4,5,6
CHEM2442 Fundamentals of organic chemistry (6 credits) Academic Year 2018
Offering Department Chemistry
Course Co-ordinator Dr P H Toy, Chemistry (phtoy@hku.hk)
Teachers Involved Dr P H Toy, Chemistry
Course Objectives The major objective of this course is to give the students a basic understanding of organic chemistry, especially in the context of daily life. This will be achieved through the introduction of the chemistry of organic functional groups that form the basis of organic molecules. The concepts presented in the lectures will be reinforced by a series of laboratory experiments.
Course Contents The chemistry of organic functional groups such as alkenes, alkynes, alky halides, alcohols, aldehydes, ketones,
& Topics

Carboxylic acids and their derivatives, and amines will be discussed, as will the general concepts of molecular structure, conformation and stereochemistry.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 demonstrate basic understanding of the structure of organic molecules
- CLO 2 demonstrate basic understanding of the reactivity of organic molecules
- CLO 3 appreciate how organic chemistry plays an important role in everyday life

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in CHEM1042, and not for students who have passed CHEM2441, or have already enrolled in this course.

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2019 - 2020</th>
<th>Examination</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>1st sem</td>
<td>Offer in 2019 - 2020</td>
<td>Y</td>
</tr>
</tbody>
</table>

Grade Descriptors (A+ to F)

- A: Demonstrate thorough mastery at an advanced level of extensive organic chemistry knowledge, and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar problems.

- B: Demonstrate substantial command of organic chemistry with a broad range of knowledge, and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar problems.

- C: Demonstrate general but incomplete command of organic chemistry knowledge, and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar problems.

- D: Demonstrate partial but limited command of organic chemistry knowledge, and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems.

- Fail: Demonstrate little or no evidence of command of organic chemistry knowledge, and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>60</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>40</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Quiz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Bruce, P.Y.; Essential Organic Chemistry (Pearson, 2016, 3rd edition)

Additional Course Information

Students who are planning to take CHEM3441 should take CHEM2441. Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.

CHEM2443

Fundamentals of organic chemistry for pharmacy students (6 credits)

Offering Department

Chemistry

Course Co-ordinator

Dr P H Toy, Chemistry (phtoy@hku.hk)

Teachers Involved

(Dr P H Toy, Chemistry)

Course Objectives

The major objective of this course is to give pharmacy students a basic understanding of organic chemistry, especially in the context of daily life. This will be achieved through the introduction of the chemistry of organic functional groups that form the basis of organic molecules. The concepts presented in the lectures will be reinforced by a series of laboratory experiments.

Course Contents & Topics

The chemistry of organic functional groups such as alkenes, alkynes, alkyl halides, alcohols, aldehydes, ketones, carboxylic acids and their derivatives, and amines will be discussed, as will the general concepts of molecular structure, conformation and stereochemistry.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 demonstrate basic understanding of the structure of organic molecules
- CLO 2 demonstrate basic understanding of the reactivity of organic molecules
- CLO 3 appreciate how organic chemistry plays an important role in everyday life

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in CHEM1042, and not for students who have passed CHEM2442, or already enrolled in this course. (This course is for BPharm students only).

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2019 - 2020</th>
<th>Examination</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2018</td>
<td>Examination</td>
<td>---</td>
</tr>
</tbody>
</table>

Grade Descriptors (A+ to F)

- A: Demonstrate thorough mastery at an advanced level of extensive organic chemistry knowledge, and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar problems.

- B: Demonstrate substantial command of organic chemistry with a broad range of knowledge, and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar problems.

- C: Demonstrate general but incomplete command of organic chemistry knowledge, and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar problems.

- D: Demonstrate partial but limited command of organic chemistry knowledge, and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems.

- Fail: Demonstrate little or no evidence of command of organic chemistry knowledge, and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>Examination</td>
<td>Test/Quiz</td>
<td>60</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Test</td>
<td>Test</td>
<td>Test</td>
<td>40</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Course Contents & Topics

Properties of Gases
- States of gases and the gas laws with applications.

The First Law of Thermodynamics
- Basic concepts of work, heat, energy, expansion work, heat transactions, enthalpy and adiabatic changes and examples in relation to biochemistry and materials science.

The Second and Third Laws of Thermodynamics
- Direction of spontaneous change, entropy and the Third Law of Thermodynamics.

Simple Mixtures
- Thermodynamic description of mixtures, partial molar quantities, and chemical potentials of liquids. Activities of solvent, solute, regular solutions and ions in solution.

Chemical Equilibrium
- Spontaneous chemical reactions, the Gibbs energy minimum and equilibrium. Response of equilibria to pressure, temperature.

Electrochemistry
- Electrochemical cell, relationship of electrochemical potential to thermodynamic functions. Applications of electrochemistry in energy, material science, sensing.

Molecules in Motion
- Molecular motion in gases and liquids, kinetic model, collisions with surfaces, the rate of effusion and transport properties, conductivities of electrolyte solutions.

Rates of Chemical Reactions
- Empirical chemical kinetics including experimental methods, rates of reactions, integrated rate laws and temperature dependence of reactions and Reaction mechanism

Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** demonstrate knowledge and understanding of the properties of gases, molecules in motion and the rates of chemical reactions.
- **CLO 2** understand and demonstrate knowledge of the three laws of thermodynamics.
- **CLO 3** understand and apply the concepts of chemical equilibrium and the response of chemical equilibria to temperature and pressure.
- **CLO 4** understand and demonstrate knowledge of electrochemistry and its relationship to thermodynamics, can build electrochemical cell and calculate thermodynamic functions from electrochemical reactions.
- **CLO 5** demonstrate knowledge and understanding of basic reaction dynamics including reaction mechanism and how mechanism determines reaction rate law.

Pre-requisites (and Co-requisites and Impermissible combinations)

- Pass in CHEM1042; and NOT for students who have passed CHEM2041, or already enrolled in this course (for students admitted in 2014-15 or before);
- Pass in CHEM1042 and CHEM1043; and NOT for students who have passed CHEM2041, or already enrolled in this course (for students admitted in 2015-16 or thereafter)

Grade Descriptors

- **A** Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show thorough grasp of the subject. Demonstrate strong analytical and critical abilities and logical thinking, with ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations.

- **B** Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show substantial grasp of the subject. Demonstrate evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations.

- **C** Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show general but incomplete grasp of the subject. Demonstrate evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations.

- **D** Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show partial but limited grasp, with retention of some relevant information, of the subject. Demonstrate evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems.

- **Fail** Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Show evidence of little or no grasp of the knowledge and understanding of the subject. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems.

Course Type

Lecture-based course
<table>
<thead>
<tr>
<th>Course Teaching & Learning Activities</th>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td>30</td>
<td>CLO 1.2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td></td>
<td>70</td>
<td>CLO 1.2,3,4</td>
</tr>
</tbody>
</table>

| Required/recommended reading and online materials | CLO 1 describe the practical processes of chemistry in atmosphere, water purification, waste treatment, and energy production. CLO 2 describe the practical processes of chemistry in atmosphere, water purification, waste treatment, and energy production. CLO 3 critically discuss local and global environmental issues based on scientific principles and data. CLO 4 apply knowledge to analyze chemical processes involved in various environmental problems. |

<table>
<thead>
<tr>
<th>CHEM3142</th>
<th>Chemical process industries and analysis (6 credits)</th>
<th>Academic Year</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
<td>Chemistry</td>
<td>Quota</td>
<td>60</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Prof G K Y Chan, Chemistry (hrscky@hku.hk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Prof G K Y Chan,Chemistry) (Visiting Professor,Chemistry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Objectives</td>
<td>To familiarize with typical chemical industries important in local and global economy. To understand the technology of chemicals manufacturing and chemical processes in general industry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>Process flow charts, units and conversions, materials and energy balances, unit operations. Selection of chemical processes to include variation in products, scale, and types of operation, e.g. for petrochemical industries, industrial gases, beverage processes, chloralkaline manufacturing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to: CLO 1 solve basic problems of energy and mass balances in chemical and environmental processes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermisssible combinations)</td>
<td>Pass in CHEM2041 or CHEM2341 or CHEM2441 or CHEM2442 or CHEM2541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A - Demonstrate thorough grasp of the subject. - Demonstrate integration of the full range of appropriate theories, principles, and evidence. - Show evidence of strong analytical abilities, logical and independent thinking, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. - Demonstrate highly effective organization and presentation skills. B - Demonstrate substantial grasp of the subject. - Demonstrate general integration of theories, principles, and evidence. - Show evidence of analytical abilities and logical thinking, some evidence of independent thinking, and ability to apply knowledge to familiar and some unfamiliar situations. - Demonstrate effective organization and presentation skills. C - Demonstrate general but incomplete grasp of the subject. - Demonstrate some partial integration of theories, principles, and evidence. - Show evidence of some analytical abilities and logical thinking, little evidence of independent thinking, and ability to apply knowledge to most familiar situations. - Demonstrate moderately effective organization and presentation skills. D - Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. - Demonstrate limited integration of theories, principles, and evidence. - Show evidence of limited analytical abilities, little or no evidence of independent thinking, and limited ability to apply knowledge to solve problems. - Demonstrate limited or barely effective organization and presentation skills. Fail - Demonstrate little or no grasp of the knowledge and understanding of the subject. - Demonstrate little or inapt integration of theories, principles, and evidence. - Show little or no evidence of analytical abilities, logical and independent thinking, and very little or no ability to apply knowledge to solve problems. - Demonstrate incoherent organization and poor presentation skills.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction to materials chemistry (6 credits)

Offer in 2018 - 2019

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in CHEM2041 or CHEM2341 or CHEM2441 or CHEM2541

Grade Descriptors (A+ to F)

A: Demonstrate thorough knowledge of industrial chemical processes and mastery of mass and energy balance skills required for attaining all of the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to solve problems in a wide range of complex, familiar and unfamiliar situations. Critical use of data and sourcing of references. Apply highly effective organizational and presentational skills.

B: Demonstrate substantial knowledge of industrial chemical processes and command of mass and energy balance skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to solve problems in familiar and some unfamiliar situations. Correct use of data and sourcing of references. Apply effective organizational and presentational skills.

C: Demonstrate general but incomplete knowledge of industrial chemical processes and command of mass and energy balance skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to solve problems to most familiar situations. Mostly correct but some erroneous use of data and references. Apply moderately effective organizational and presentational skills.

D: Demonstrate partial but limited knowledge of industrial chemical processes and command of mass and energy balance skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Limited ability to use data and source references. Apply limited or barely effective organizational and presentational skills.

F: Demonstrate little or no evidence of knowledge of industrial chemical processes and command of mass and energy balance skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Misuse of data and references. Organization and presentational skills are minimally effective or ineffective.

Outcomes

Course Learning Objectives

On successful completion of this course, students should be able to:

CLO 1 describe different materials classification and their composition, structures, and properties, and to apprehend the concept of structure/property relationship

CLO 2 explain different structures and phases, phase transformation in solid materials

CLO 3 understand defects in crystalline solid materials and relate them with mechanical properties

CLO 4 appreciate soft materials and some examples and characteristics

CLO 5 understand the concept of molecular weight distribution in polymers, and explain the effect of polymerization kinetics to their properties

CLO 6 identify examples of some important materials, and explain their structure-property relationship

CLO 7 demonstrate knowledge in materials characterizations

Course Contents & Topics

Classification of materials; structure of crystalline solids; phases and phase transformation; defects and mechanical properties; alloys and ceramics; introduction to soft matter; structure, synthesis, and properties of polymers; colloids; liquid crystals; viscoelasticity; applications of materials; characterization techniques.

Course Teaching & Learning Activities

Lecture with laboratory component course

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments continuous assessment 5 CLO 1.2

Examination 70 CLO 1.3, CLO 2.3, CLO 2, CLO 1.2

Test test/quizzes 25 CLO 1, 2

Required/recommended reading and online materials

Felder and Rousseau: Elementary Principles of Chemical Processes

Additional Course Information

Laboratory courses are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.

CHEM3143

Introduction to materials chemistry (6 credits)

Offering Department: Chemistry

Academic Year: 2018

Quota: 100

Course Co-ordinator: Dr Y F Wang, Chemistry (wangjlab@hku.hk)

Teachers Involved: (Dr Y F Wang, Chemistry)

(Prof W K Chan, Chemistry)

Course Objectives

This course provides an introduction to materials chemistry. The goal is to present the fundamental knowledge of various types of materials including their structure, synthesis, and properties. This course is essential for students who wish to take advanced materials course.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 describe different materials classification and their composition, structures, and properties, and to apprehend the concept of structure/property relationship

CLO 2 explain different structures and phases, phase transformation in solid materials

CLO 3 understand defects in crystalline solid materials and relate them with mechanical properties

CLO 4 appreciate soft materials and some examples and characteristics

CLO 5 understand the concept of molecular weight distribution in polymers, and explain the effect of polymerization kinetics to their properties

CLO 6 identify examples of some important materials, and explain their structure-property relationship

CLO 7 demonstrate knowledge in materials characterizations

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in CHEM2441, and Pass in CHEM2541 or CHEM2341

Grade Descriptors (A+ to F)

A: Demonstrate thorough knowledge of essential facts, concepts, principles, and theories related to classification of materials. Show deep understanding of materials structures at different length scales and the relationship with materials properties particularly for classical solid materials and soft materials. Show extensive knowledge in synthesis, characterization and applications of common polymers. Demonstrate strong ability to apply/integrate knowledge and theory related to the synthesis and applications of materials. Show strong ability to analyze novel problems and critical use of data/experimental results to draw appropriate and insightful conclusions related to materials synthesis/characterization.

B: Demonstrate thorough knowledge of essential facts, concepts, principles, and theories related to classification of materials. Show deep understanding of materials structures at different length scales and the relationship with materials properties particularly for classical solid materials and soft materials. Show extensive knowledge in synthesis, characterization and applications of common polymers. Demonstrate evidence to apply/integrate knowledge and theory related to the synthesis and applications of materials. Show evidence to analyze novel problems and critical use of data/experimental results to draw appropriate and insightful conclusions related to materials synthesis/characterization.

C: Demonstrate general but incomplete command of knowledge of essential facts, concepts, principles, and theories related to classification of materials. Show some but insufficient understanding of materials structures at different length scales and the relationship with materials properties particularly for classical solid materials and soft materials. Show some knowledge in
CHEM3146 Principles and applications of spectroscopic and analytical techniques (6 credits) Academic Year 2018
Offering Department Chemistry Quota 200
Course Co-ordinator Dr X Li, Chemistry (xiangli@hku.hk)
Course Objectives To cover the principles and applications of modern practical spectroscopic and analytical techniques. This course is a pre-requisite for the advanced chemistry courses.

Course Contents & Topics Course Learning Outcomes UV-Visible Absorption Spectroscopy, Nuclear Magnetic Resonance Spectroscopy, Mass Spectrometry, Infra-red Spectroscopy, Elemental Analysis, Molecular Formulas and analysis of data.

On successful completion of this course, students should be able to:
- CLO 1 understand the basic principles and applications of IR, UV/Vis, MS and NMR spectroscopic techniques
- CLO 2 describe and explain the terminology of IR, UV/Vis, MS and NMR spectroscopies
- CLO 3 perform chemical structure elucidation and analysis based on UV/Vis, MS and NMR spectroscopic data

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in any CHEM2XXX level course

Offer in 2018 - 2019 Grade Descriptors (A+ to F) Examination
N Offer in 2019 - 2020 : N ---
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations.
D Demonstrate partial but limited command of knowledge of essential facts, concepts, principles, and theories related to classification of materials. Show deep understanding of materials structures at different length scales and the relationship with materials properties particularly for classical solid materials and soft materials. Show little or no knowledge in synthesis, characterization and applications of common polymers. Demonstrate limited or no evidence of ability to apply/integrate knowledge and theory related to the synthesis and applications of materials. Show limited ability to apply knowledge to most familiar situations and mostly correct but erroneous use of data/experimental results to draw appropriate conclusions related to materials synthesis/characterization.
Fail Demonstrate little or no evidence of command of knowledge of essential facts, concepts, principles, and theories related to classification of materials. Show little or no understanding of materials structures at different length scales and the relationship with materials properties particularly for classical solid materials and soft materials. Show little or no knowledge in synthesis, characterization and applications of common polymers. Demonstrate limited or no evidence of ability to apply/integrate knowledge and theory related to the synthesis and applications of materials. Show little or no ability to analyze novel problems and use of data/experimental results to draw appropriate and insightful conclusions related to materials synthesis/characterization.

Course Type Lecture-based course

Course Teaching & Learning Activities Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 100

Assessment Methods and Weighting Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Examination 70 CLO 1,2,3,4,5,6,7
Test (continuous assessment) 30 CLO 1,2,3,4,5,6,7

Required/recommended reading and online materials
- W. D. Callister: Materials Science and Engineering: An Introduction (8th or 9th edition)
- M. P. Stevens: Polymer Chemistry: An Introduction (Oxford University Press, 1999)

Course Type Lecture-based course

Course Teaching & Learning Activities Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 100

Assessment Methods and Weighting Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments 15 CLO 1.2.3
Examination 70 CLO 1.2.3
Test (2 quizzes) 15 CLO 1.2.3

Required/recommended reading and online materials

Additional Course Information Suggested follow-up course: CHEM3241

CHEM3241 Analytical chemistry II: chemical instrumentation (6 credits) Academic Year 2018
Offering Department Chemistry Quota 80
Course Co-ordinator
Dr W T Chan, Chemistry (wtchan@hku.hk)

Teachers Involved
(Prof. I K Chu, Chemistry)
(Prof. W T T Chan, Chemistry)

Course Objectives
To cover the basic principles and applications of chemical instrumentation. This course aims to provide working knowledge, in addition to the principles, of instruments that are commonly used in chemical laboratories.

Course Contents & Topics
- Optical methods: Beer’s Law; UV-visible, infrared, and atomic spectrometry; fluorescence; atomic mass spectrometry; grating spectrometer; photon detectors and thermal detectors.
- Separation methods: partition; chromatography theories; high performance liquid chromatography (HPLC) and gas chromatography (GC); instrumental set up of HPLC and GC.
- Mass spectrometry: fundamental concept of mass spectrometry; electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI); time-of-flight (TOF) and quadrupole (Q) mass analyzers.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1
- Explain the principles of the optical methods, separation methods, and mass spectrometry
- CLO 2 describe the basic experimental set up and the properties of the basic components of the instruments used in the laboratory classes
- CLO 3 apply experimental skills in chemical analysis including sample preparation, standard solution preparation, instrument calibration, and matrix effects correction (standard additions)

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in CHEM2241

Offer in 2018 - 2019
Y
1st sem Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)*
A
- Demonstrate thorough grasp of the subject. - Show evidence of strong analytical abilities, logical and independent thinking, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. - Demonstrate highly proficient lab skills and techniques and critical use of data and results to draw appropriate and insightful conclusions. - Demonstrate highly effective organization and presentation skills

B
- Demonstrate substantial grasp of the subject. - Show evidence of analytical abilities and logical thinking, some evidence of independent thinking, and ability to apply knowledge to familiar and some unfamiliar situations. - Demonstrate proficient lab skills and techniques and correct use of data and results to draw appropriate conclusions. - Demonstrate effective organization and presentation skills.

C
- Demonstrate general but incomplete grasp of the subject. - Show evidence of some analytical abilities and logical thinking, little evidence of independent thinking, and ability to apply knowledge to most familiar situations. - Demonstrate adequate lab skills and techniques and mostly correct but some erroneous use of data and results to draw appropriate conclusions. - Demonstrate moderately effective organization and presentation skills.

D
- Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. - Show evidence of limited analytical abilities, little or no evidence of independent thinking, and limited ability to apply knowledge to solve problems. - Demonstrate partially effective lab skills and techniques and limited ability to use data and results to draw appropriate conclusions. - Demonstrate limited or barely effective organization and presentation skills.

Fail
- Demonstrate little or no grasp of the knowledge and understanding of the subject. - Show little or no evidence of analytical abilities, logical and independent thinking, and very little or no ability to apply knowledge to solve problems. - Demonstrate minimally effective or ineffective lab skills and techniques and misuse of data and results and/or unable to draw appropriate conclusions. - Demonstrate inept organization and poor presentation skills.

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities
Activities	**Details**	**No. of Hours**
Lectures | 24 | 8
Laboratory | 28 | 8
Tutorials | 6 | 8
Reading / Self study | 100 | 8

Assessment Methods and Weighting
Methods	**Details**	**Weighting in final course grade (%)**	**Assessment Methods to CLO Mapping**
Examination | 65 | CLO 1, 2, 3
Laboratory reports | including an oral examination | 25 | CLO 1, 2, 3
Test | 10 | CLO 1, 2, 3

Required/recommended reading and online materials

Additional Course Information
Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.

CHEM3242
Food and water analysis (6 credits)
Academic Year: 2018

Offering Department
Chemistry

Course Co-ordinator
Dr K M Ng, Chemistry (kwammg@hku.hk)

Teachers Involved
(Prof. K M M Ng, Chemistry)

Course Objectives
To cover areas in the application and new methodology development in analytical chemistry with focus on food and water analysis.

Course Contents & Topics
- Chemical Analysis in Practicing Laboratories: Use of standard methods, guidelines and standards for food and water analysis; good laboratory practice; reliability and quality issues in chemical analysis.
- Food Analysis: Requirement of nutritional labeling; determination of food nutritional value (e.g. total protein content, sodium content); detection of food adulteration and contamination (e.g. presence of banned additives, toxins, undeclared components); recent issues and case studies in food analysis.
- Water Analysis: Water quality standards; sampling, pretreatment, storage of water samples; theory and technologies for field, laboratory and automated analysis of selected types of water (e.g. drinking water, recreational water, waste water).
- Analytical Method Development: Selection, application and combination of analytical (e.g. sample digestion, solid phase extraction) and instrumental (e.g. GC, LC, MS) techniques for food and water analysis; method validation (e.g. recovery analysis, analysis of certified reference materials)

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1
- Identify and determine errors and uncertainty of analytical results
- CLO 2 apply measures taken to control quality and ensure reliability of analytical results
CLO 3: Demonstrate a general knowledge in food and water analysis
CLO 4: Understand issues in public health protection related to chemical analysis
CLO 5: Carry out analytical techniques used in practicing food and water laboratories

Pass in CHEM2041 or CHEM2241 or CHEM2341 or CHEM2441 or CHEM2541.

Grade Descriptors (A+ to F)

A: Demonstrate through a thorough grasp of the knowledge and skills required in theory and laboratory work in food and water analysis to acquire accurate results with full interpretation for analytical application as described in all the course learning outcomes. Show strong analytical and critical abilities, logical thinking and capability to apply knowledge learnt to solve a wide range of complex issues and problems related to the analysis of food and water. Apply highly effective organization and presentation skills as shown in class work.

B: Demonstrate a substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities, logical thinking, and capability to apply knowledge learnt to solve a wide range of complex issues and problems related to the analysis of food and water. Apply effective organization and presentation skills as shown in class work.

C: Demonstrate a general command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities, logical thinking, and ability to apply knowledge learnt to solve a wide range of complex issues and problems related to the analysis of food and water. Apply effective organization and presentation skills as shown in class work.

D: Demonstrate a partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show limited ability to apply knowledge to solve problems related to the analysis of food and water. Apply limited or barely effective organization and presentation skill as shown in class work.

Fail: Demonstrate little or no evidence for the command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems related to the analysis of food and water. Organization and presentation skills are minimally effective or ineffective as shown in class work.

Course Type: Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>5</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>Experiment & Lab report</td>
<td>15</td>
<td>CLO 2,5</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>10</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Additional Course Information

References to specialist texts and other published material will be made throughout the course. Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.

CHEM3243

Introductory instrumental chemical analysis (6 credits)

Offering Department: Chemistry

Offering Year: 2018

Quota: 65

Pre-requisites and (and Co-requisites and Impermissible combinations)

Pass in CHEM2041 or CHEM2241; and Not for students who have passed CHEM2341, or have already enrolled in this course.

Grade Descriptors (A+ to F)

A: Demonstrate thorough grasp of the subject. - Show evidence of strong analytical abilities, logical and independent thinking, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. - Demonstrate highly proficient lab skills and techniques and critical use of data and results to draw appropriate and insightful conclusions. - Demonstrate highly effective organization and presentation skills.

B: Demonstrate substantial grasp of the subject. - Show evidence of analytical abilities and logical thinking, some evidence of independent thinking, and ability to apply knowledge to familiar and some unfamiliar situations. - Demonstrate proficient lab skills and techniques and correct use of data and results to draw appropriate conclusions. - Demonstrate effective organization and presentation skills.

C: Demonstrate general but incomplete grasp of the subject. - Show evidence of some analytical abilities and logical thinking, little evidence of independent thinking, and ability to apply knowledge to most familiar situations. - Demonstrate adequate lab skills and techniques and mostly correct but some erroneous use of data and results to draw appropriate conclusions. - Demonstrate moderately effective organization and presentation skills.

D: Demonstrate partial but limited grasp of the subject. - Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. - Show limited ability to apply knowledge to solve problems related to the analysis of food and water. - Demonstrate limited or barely effective organization and presentation skills.

Fail: Demonstrate little or no evidence for the command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems related to the analysis of food and water. Organization and presentation skills are minimally effective or ineffective as shown in class work.

Course Objectives

This course is designed for non-chemistry major students covering basic principles of separation and spectroscopy for chemical analysis. This course provides a general foundation for further studies in pharmacology, life and environmental sciences.

Course Contents & Topics

Optical methods: Beer’s Law; UV-visible, infrared, and atomic spectrometry; fluorescence; atomic mass spectrometry; grating spectrometer; photon detectors and thermal detectors.

Separation methods: partition; chromatography theories; high performance liquid chromatography (HPLC) and gas chromatography (GC); instrumental set up of HPLC and GC.

Mass spectrometry: fundamental concept of mass spectrometry; electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI); time-of-flight (TOF) and quadrupole (Q) mass analyzers.

NMR: basic principle of nuclear magnetic resonance.

Analysis and quality assurance: statistical analysis of small sets of data, control chart.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1: Explain the principles of the optical methods, separation methods, mass spectrometry, and NMR.

CLO 2: Describe the basic experimental set up and the properties of the basic components of the instruments used in the laboratory classes.

References to specialist texts and other published material will be made throughout the course. Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.
CHEM3244 Analytical techniques for pharmacy students (6 credits)

Offering Department
Chemistry

Course Co-ordinator
Dr K C J Wong, Pharmacology and Pharmacy
Dr X Li, Chemistry

Course Objectives
The course covers theories and practicals on various analytical techniques used in pharmaceutical industry. Sampling and data analysis, method validation with respect to regulatory guidelines, ultraviolet/visible, infrared, fluorescence, atomic spectrophotometry, separation techniques such as gas chromatography and liquid chromatography, and modern mass spectrometry with its applications in protein sequencing will be covered in this course.

Course Contents & Topics
Principles and applications of different analytical and measurement techniques in pharmaceutical sciences. Analysis and quality assurance: method validation, sampling, statistics, hypothesis tests
Optical spectroscopy: Beer's law, UV/Vis, infrared, fluorescence, and atomic spectroscopy
Separation and purification: gas chromatography and liquid chromatography
Modern mass spectrometry: ionization techniques (ESI, MALDI), mass analysis techniques (TOF, quadrupole), protein sequencing.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 demonstrate knowledge and understanding of principles of data analysis, optical spectroscopic methods, separation techniques, and modern mass spectrometry
CLO 2 describe the basic experimental setup and the properties of the basic components of the instruments used in the laboratory classes
CLO 3 apply experimental skills in experiments including sample preparation, standard solution preparation, instrument calibration, and matrix effect correction

Pre-requisites and Co-requisites
Pass in BPHM2136 (This course is for BPharm students only)

Offer in 2018 - 2019
Y 2nd sem
Offer in 2019 - 2020: Y

Grade Descriptors (A to F)

A
- Demonstrate thorough grasp of the subject. - Show evidence of strong analytical abilities, logical and independent thinking, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. - Demonstrate highly proficient lab skills and techniques and critical use of data and results to draw appropriate and insightful conclusions. - Demonstrate highly effective organization and presentation skills.

B
- Demonstrate substantial grasp of the subject. - Show evidence of analytical abilities and logical thinking, some evidence of independent thinking, and ability to apply knowledge to familiar and some unfamiliar situations. - Demonstrate proficient lab skills and techniques and correct use of data and results to draw appropriate conclusions. - Demonstrate effective organization and presentation skills.

C
- Demonstrate general but incomplete grasp of the subject. - Show evidence of some analytical abilities and logical thinking, little evidence of independent thinking, and ability to apply knowledge to most familiar situations. - Demonstrate adequate lab skills and techniques and mostly correct but some erroneous use of data and results to draw appropriate conclusions. - Demonstrate moderately effective organization and presentation skills.

D
- Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. - Show evidence of limited analytical abilities, logical and independent thinking, and ability to apply knowledge to familiar situations. - Demonstrate partial effective lab skills and techniques and limited ability to use data and results to draw appropriate conclusions. - Demonstrate moderately effective organization and presentation skills.

Fail
- Demonstrate little or no grasp of the knowledge and understanding of the subject. - Show little or no evidence of analytical abilities, logical and independent thinking, and very little or no ability to apply knowledge to solve problems. - Demonstrate minimal effective or ineffective lab skills and techniques and misuse of data and results and/or unable to draw appropriate conclusions. - Demonstrate inconsistent organization and poor presentation skills.

Course Type
Lecture with laboratory component course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>70</td>
<td>CLO 1, 2</td>
<td></td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>15</td>
<td>CLO 1, 2</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>15</td>
<td>CLO 1, 2</td>
<td></td>
</tr>
</tbody>
</table>

Department of Chemistry
Inorganic chemistry II (6 credits)

This course is for Pharmacy students ONLY. Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.

Chemistry (6 credits)

Offering Department: Chemistry
Course Co-ordinator: Prof V W W Yam, Chemistry (wwym@hku.hk)

Pre-requisites
- CHEM2341 Inorganic Chemistry I, with a more detailed treatment of general inorganic chemistry, with examples relevance to biological processes and material science, suited to the needs of those intending to extend their studies in chemistry.

Course Contents & Topics
- Chemistry of selected classes of inorganic, coordination and organometallic compounds including mechanisms of their reaction where appropriate.
- Structure, bonding, magnetism and spectral properties of inorganic systems including examples in bioinorganic systems.

Course Objectives
- This course is a continuation from CHEM2341 Inorganic Chemistry I, with a more detailed treatment of general inorganic chemistry, with examples relevance to biological processes and material science, suited to the needs of those intending to extend their studies in chemistry.

Course Learning Outcomes
- On successful completion of this course, students should be able to:
 - CLO 1 demonstrate knowledge of chemistry of selected classes of inorganic, coordination and organometallic compounds
 - CLO 2 understand structure, bonding, magnetism and spectral properties of inorganic systems
 - CLO 3 understand mechanisms of selected chemical reactions that are essential to coordination and organometallic compounds.
 - CLO 4 gain appropriate knowledge of coordination compounds in biological systems

Course Teaching & Learning Activities
- Reading / Self study: 100
- Lectures: 24
- Laboratory: 24
- Tutorials: 6
- Assignments including lab report & test: 30
- Examination: 70

Grade Descriptors
- A: Demonstrate thorough knowledge and understanding of essential facts, concepts, principles, and theories relating to the more advanced foundation knowledge of inorganic chemistry, especially those related to structure and bonding of inorganic, coordination and organometallic compounds; mechanisms of reactions; and magnetic and spectral properties of inorganic systems including examples in bioinorganic systems. Show strong ability to apply and integrate knowledge and theory relating to the more advanced foundation knowledge of inorganic chemistry. Demonstrate highly effective laboratory skills and techniques, especially in the synthesis and reactivity study of inorganic compounds and metal complexes, and their characterization by various spectroscopic methods.
- B: Demonstrate substantial command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the more advanced foundation knowledge of inorganic chemistry, especially those related to structure and bonding of inorganic, coordination and organometallic compounds; mechanisms of reactions; and magnetic and spectral properties of inorganic systems including examples in bioinorganic systems. Show evidence to apply and integrate knowledge and theory relating to the more advanced foundation knowledge of inorganic chemistry. Show evidence to analyze novel problems and correct use of data and experimental results to draw appropriate and insightful conclusions relating to the essential and more advanced foundation principles and knowledge of inorganic chemistry. Demonstrate highly effective laboratory skills and techniques, especially in the synthesis and reactivity study of inorganic compounds and metal complexes, and their characterization by various spectroscopic methods.
- C: Demonstrate general but incomplete command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the more advanced foundation knowledge of inorganic chemistry, especially those related to structure and bonding of inorganic, coordination and organometallic compounds; mechanisms of reactions; and magnetic and spectral properties of inorganic systems including examples in bioinorganic systems. Show evidence of some abilities to apply and integrate knowledge and theory relating to the more advanced foundation knowledge of inorganic chemistry. Show ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the essential and more advanced foundation principles and knowledge of inorganic chemistry. Demonstrate moderately effective laboratory skills and techniques, especially in the synthesis and reactivity study of inorganic compounds and metal complexes, and their characterization by various spectroscopic methods.
- D: Demonstrate partial but limited command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the more advanced foundation knowledge of inorganic chemistry, especially those related to structure and bonding of inorganic, coordination and organometallic compounds; mechanisms of reactions; and magnetic and spectral properties of inorganic systems including examples in bioinorganic systems. Show evidence of limited abilities to apply and integrate knowledge and theory relating to the more advanced foundation knowledge of inorganic chemistry. Show limited ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the essential and more advanced foundation principles and knowledge of inorganic chemistry. Demonstrate basic laboratory skills and techniques, especially in the synthesis and reactivity study of inorganic compounds and metal complexes, and their characterization by various spectroscopic methods.
- Fail: Demonstrate little or no evidence of command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the more advanced foundation knowledge of inorganic chemistry, especially those related to structure and bonding of inorganic, coordination and organometallic compounds; mechanisms of reactions; and magnetic and spectral properties of inorganic systems including examples in bioinorganic systems. Show little or no evidence of abilities to apply and integrate knowledge and theory relating to the more advanced foundation knowledge of inorganic chemistry. Show little or no ability to analyze problems to most familiar situations and erroneous use of data and experimental results to draw appropriate conclusions relating to the essential and more advanced foundation principles and knowledge of inorganic chemistry. Demonstrate minimally effective laboratory skills and techniques, especially in the synthesis and reactivity study of inorganic compounds and metal complexes, and their characterization by various spectroscopic methods.

Assessment Methods and Weighting
- Assignments including lab report & test: 30
- Examination: 70

Assessment Methods to CLO Mapping
- CLO 1, 2, 3, 4

Required/recommended reading and online materials
CHEM3342 Bioinorganic chemistry (6 credits)

Offering Department Chemistry

Course Co-ordinator Prof H Z Sun, Chemistry (hsun@hku.hk)

Teachers Involved (Dr H Y Au Yeung,Chemistry) (Prof H Z Sun,Chemistry)

Course Objectives This course is a continuation from Basic Inorganic Chemistry and Basic Organic Chemistry, giving further and more details of inorganic chemistry in biological system, with examples relevance to biological processes and medical science, suited to the needs of those intending to extend their studies in (bio)chemistry and biomedical science.

Course Contents & Topics Bioinorganic Chemistry of selected topics of interest. Examples include the inorganic chemistry (and biochemistry) behind the requirement of biological cells for metals such as zinc, iron and copper; and metals in medicine such as mechanisms by which organisms obtain required metal ions from their environment, and use of metal-containing compounds in treating diseases such as cancer.

Course Learning Outcomes On successful completion of this course, students should be able to:

CLO 1 understand the principles and concepts of inorganic/organic chemistry in biological system

CLO 2 understand structure, bonding, and spectral properties of selected metals in proteins and nucleic acids

CLO 3 understand chemical mechanisms of selected metal homeostasis (i.e. uptake, transport and storage)

CLO 4 understand the role of metal complexes medicine

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in CHEM2341

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A to F)

A Demonstrate thorough knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of bioinorganic chemistry, especially those related to hard-soft acid-base theory; chelation; structure and bonding of metals in biological systems; thermodynamic and kinetic aspects of metal ions in biological processes and their relevance to metal homeostasis; metal-based drugs. Show strong ability to apply and integrate knowledge and theory relating to the basic foundation knowledge of bioinorganic chemistry. Show strong ability to analyze novel problems and correct use of data and experimental results to draw appropriate and insightful conclusions relating to the basic principles and knowledge of bioinorganic chemistry. Demonstrate highly effective basic techniques, especially in the characterization of inorganic active site and overall metallo-biomolecules.

B Demonstrate substantial command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of bioinorganic chemistry, especially those related to hard-soft acid-base theory; chelation; structure and bonding of metals in biological systems; thermodynamic and kinetic aspects of metal ions in biological processes and their relevance to metal homeostasis; metal-based drugs. Show evidence of some abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of bioinorganic chemistry. Show ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of bioinorganic chemistry. Demonstrate effective basic techniques, especially in the characterization of inorganic active site and overall metallo-biomolecules.

C Demonstrate general but incomplete command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of bioinorganic chemistry, especially those related to hard-soft acid-base theory; chelation; structure and bonding of metals in biological systems; thermodynamic and kinetic aspects of metal ions in biological processes and their relevance to metal homeostasis; metal-based drugs. Show evidence of some abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of bioinorganic chemistry. Show ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of bioinorganic chemistry. Demonstrate moderately effective basic techniques, especially in the characterization of inorganic active site and overall metallo-biomolecules.

D Demonstrate partial but limited command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of bioinorganic chemistry, especially those related to hard-soft acid-base theory; chelation; structure and bonding of metals in biological systems; thermodynamic and kinetic aspects of metal ions in biological processes and their relevance to metal homeostasis; metal-based drugs. Show evidence of limited abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of bioinorganic chemistry. Show ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of bioinorganic chemistry. Demonstrate partially effective basic techniques, especially in the characterization of inorganic active site and overall metallo-biomolecules.

Fail Demonstrate little or no evidence of command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the basic foundation knowledge of bioinorganic chemistry, especially those related to hard-soft acid-base theory; chelation; structure and bonding of metals in biological systems; thermodynamic and kinetic aspects of metal ions in biological processes and their relevance to metal homeostasis; metal-based drugs. Show little or no evidence of abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of bioinorganic chemistry. Show little or no ability to analyze problems to most familiar situations and erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of bioinorganic chemistry. Demonstrate minimally effective basic techniques, especially in the characterization of inorganic active site and overall metallo-biomolecules.

Course Type Lecture-based course

Course Teaching & Learning Activities

Activities Details No. of Hours

Lectures including literature survey & presentation 36

Tutorials 12

Reading / Self study 100

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments (continuous assessment of assignments and presentation) 25 CLO 1,2,3,4

Examination 75 CLO 1,2,3,4

Required/recommended reading and online materials

CHEM3441 Organic chemistry II (6 credits)

Offering Department Chemistry

Academic Year 2018

Quota 300
Course Co-ordinator: Dr X Y Li (1st sem); Prof D Yang (2nd sem), Chemistry (xiaoyuli@hku.hk; yangdan@hku.hk)

Course Objectives: As a continuation from CHEM2441 Organic Chemistry I, this course aims to provide a solid foundation of organic chemistry together with CHEM2441. It focuses primarily on the basic principles to understand the structure and reactivity of biomolecules, with examples illustrating the role of organic chemistry in daily life and industry.

Course Contents & Topics: Chemistry of common organic functional groups: ketones and aldehydes; carboxylic acids and their derivatives; amines; aromatic compounds. Principles of organic synthesis. Detailed considerations of reaction mechanisms. Spectroscopic tools (UV-Vis, IR, NMR, and MS) for characterization and identification of organic compounds.

Course Learning Outcomes: On successful completion of this course, students should be able to:
- CLO 1: draw and structural representations of organic molecules
- CLO 2: understand the basic principles of structure and reactivity of organic molecules
- CLO 3: determine structures of organic compounds based on spectroscopic data
- CLO 4: write reasonable mechanisms for transformations of common functional groups (alcohols, ethers, carboxylic compounds, aldehydes, ketones, carboxylic acids, acyl halides, anhydrides, esters, amides, nitriles, and amines)
- CLO 5: appreciate the importance of organic chemistry in daily life
- CLO 6: devise synthetic pathways to organic compounds using functional group chemistry

Pre-requisites (and Co-requisites and Impermissible combinations): Pass in CHEM2441

Grade Descriptors (A to F): A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations.

B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations.

C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations.

D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems.

Fail: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems.

Course Type: Lecture-based course

Course Teaching & Learning Activities: Activities Details No. of Hours
- Lectures 36
- Tutorials 12
- Reading / Self study 100

Assessment Methods and Weighting: Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
- Examination 1 x 3 hr written examination 70 CLO 1,2,3,4,5,6
- Test 30 CLO 1,2,3,4,5,6
- Test and assignments

CHEM3442: Organic chemistry of biomolecules (6 credits)

Offering Department: Chemistry

Quota: 50

Grade Descriptors (A to F): A: Demonstrate thorough mastery at an advanced level of extensive biomolecule organic chemistry knowledge, and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar problems. Apply highly effective organizational and presentational skills.

B: Demonstrate substantial command of biomolecule organic chemistry with a broad range of knowledge, and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar problems. Apply effective organizational and presentational skills.

C: Demonstrate general but incomplete command of biomolecule organic chemistry knowledge, and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar problems. Show moderate effective organizational and presentational skills.

D: Demonstrate partial but limited command of biomolecule organic chemistry knowledge, and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail: Demonstrate little or no evidence of command of biomolecule organic chemistry knowledge, and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems.
<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture-based course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
</tr>
<tr>
<td></td>
<td>Presentation</td>
</tr>
<tr>
<td></td>
<td>Test</td>
</tr>
<tr>
<td>CHEM3443</td>
<td>Organic chemistry laboratory (6 credits)</td>
</tr>
<tr>
<td>Offering Department</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Dr A M Y Yuen, Chemistry (mayian@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr A M Y Yuen, Chemistry)</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>To provide students with intensive hands-on training of experimental chemistry techniques on organic reactions; and the opportunity to develop analytical and critical thinking skills through scientific investigations in organic chemistry experiments. The course focuses on the practical aspects of a variety of organic reactions, including and multistep syntheses. Chromatographic, instrumental, and spectroscopic techniques are also discussed to give a holistic training of experimental organic chemistry.</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>The course will include the following laboratory skills and practices: laboratory safety practice; preparation, purification, and characterization of organic compounds; gas and liquid chromatography; ultraviolet-visible spectrophotometry; infrared spectroscopy; NMR spectroscopy and melting point determination</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
</tr>
<tr>
<td></td>
<td>CLO 1 demonstrate a good practice of laboratory safety and exercise proper procedures for safe handling and usage of chemicals</td>
</tr>
<tr>
<td></td>
<td>CLO 2 carry out, record and analyze the results of chemical experiments</td>
</tr>
<tr>
<td></td>
<td>CLO 3 apply modern instrumentation techniques to characterize organic compounds and draw conclusions from the results</td>
</tr>
<tr>
<td></td>
<td>CLO 4 communicate the results of their work to others</td>
</tr>
<tr>
<td></td>
<td>CLO 5 demonstrate problem-solving skills, critical thinking and analytical reasoning</td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
<td>Pass in CHEM2441; and pass in CHEM3441, or already enrolled in any of these two courses (for students admitted in 2015-16 or thereafter)</td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>Examination</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Fail</td>
</tr>
<tr>
<td>Course Type</td>
<td>Lecture with laboratory component course</td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
</tr>
<tr>
<td></td>
<td>Laboratory reports</td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td>John W. Lehman: Operational Organic Chemistry - A Problem-Solving Approach to the Laboratory Course (Pearson, latest edition)</td>
</tr>
<tr>
<td>Additional Course Information</td>
<td>Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.</td>
</tr>
</tbody>
</table>
CHEM3445

Integrated laboratory (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Dr A M Y Yuen, Chemistry (mayian@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>Dr A M Y Yuen, Chemistry</td>
</tr>
</tbody>
</table>

Course Objectives
This course aims to provide students with experience using techniques employed in synthetic organic and organometallic chemistry. This advanced synthesis course covering a variety of synthetic methods, including vacuum and inert atmosphere techniques to prepare organic and organometallic compounds; methods for separation of mixtures and isolation of products by use of column and thin-layer chromatography, sublimation and extraction techniques. Experiments on characterization and identification by chemical and spectroscopic methods form an important part of the course. The use of the chemical literature in molecular design and synthesis planning is also included.

Course Contents & Topics
The course will include the following laboratory skills and practices: laboratory safety practice; molecular design, synthesis planning, experimental set up, purification, and characterization of organic compounds using modern instrumentation techniques.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 Demonstrate a good practice of laboratory safety and exercise proper procedures for safe handling and usage of chemicals
- CLO 2 Demonstrate proficiency in synthetic chemical laboratory techniques
- CLO 3 Apply modern instrumentation techniques to characterize organic compounds and draw conclusions from the results
- CLO 4 Analyze the influence of chemical structure on the physical and chemical properties of organic molecules
- CLO 5 Demonstrate problem-solving skills, critical thinking and analytical reasoning

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in CHEM3443 or already enrolled in this course

Offer in 2018 - 2019
Y Summer Offer in 2019 - 2020 : Y Examination No Exam

Grade Descriptors (A to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate extensive knowledge and thorough command of concepts and principles which are required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Competently conduct experiment with efficient lab skills and techniques. Critically appraise data to draw appropriate and insightful conclusions. Apply highly effective organizational and presenational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show substantial grasp and mastery of the subject knowledge. Demonstrate evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Show effective lab skills and techniques and critical analysis of experimental data. Apply effective organizational and presenational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show general but incomplete grasp of the subject knowledge. Demonstrate evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Show moderately effective lab skills and techniques. Demonstrated some ability to analyze experimental data critically. Apply moderately effective organizational and presenational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining course learning outcomes. Ability to recall some of factual information of the subject. Show a partial comprehension of basic concepts and principles and weak ability to apply them. Demonstrate evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate partially effective lab skills and techniques. Apply limited or barely effective organizational and presenational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Show evidence of little or no grasp of the knowledge and understanding of the subject. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Demonstrate minimally effective or ineffective lab skills and techniques. Organization and presenational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type
Lecture with laboratory component course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory reports</td>
<td>(Practical Examination 25%; Lab report 10%, Lab performance 10%)</td>
<td>45</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Presentation</td>
<td>20</td>
<td>CLO 3,4,5</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>35</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
John W. Lehman: Operational Organic Chemistry - A Problem-Solving Approach to the Laboratory Course (Pearson, latest edition)

CHEM3541

Physical chemistry: Introduction to quantum chemistry (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Prof G H Chen, Chemistry (ghc@yangtze.hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>Prof G H Chen, Chemistry</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>The course presents fundamental principles and topics on quantum chemistry in order to provide a soiled foundation for students intending to further their studies in chemistry.</td>
</tr>
</tbody>
</table>

Course Contents & Topics

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 understand and use the terminology and nomenclature in quantum chemistry and topics discussed in the
Course Name: CHEM2541

Offering Department: Chemistry

Course Co-ordinator: Dr. J Yang, Chemistry (juny@hku.hk)

Course Objectives:
The course presents fundamental principles and topics on statistical thermodynamics and kinetic theory in order to provide a solid foundation for students intending to further their studies in physical chemistry and related fields.

Course Contents & Topics:
Principles of Statistical Thermodynamics
- Thermodynamic laws
- Ensembles and partition functions: microcanonical, canonical and grand-canonical
- Systems of independent molecules: ideal gas
- Molecular degrees of freedom: translation, rotation, vibration, and electronic
- Ideal gas mixture: chemical equilibrium, binding, and fission
- Quantum statistics

Chemical equilibrium and kinetics theory
- Rate theory: collision theory, transition state theory, electron transfer

Course Learning Outcomes:
On successful completion of this course, students should be able to:
CLO 1 understand and use the terminology and nomenclature in statistical thermodynamics and topics discussed in the course
CLO 2 demonstrate knowledge and understanding of basic concepts in statistical thermodynamics
CLO 3 understand correlation between macroscopic observables and microscopic statistical model systems

Pre-requisites (and Co-requisites and Impermissible combinations):
Pass in CHEM2541

Grade Descriptors:
A Thorough mastery at an advanced level of extensive knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of strong analytical / critical abilities and logical thinking. Can apply the knowledge to practical questions in Physical Chemistry.
B Substantial command of knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of analytical / critical abilities and logical thinking. Understand the scope of Physical Chemistry questions that can be applied with the knowledge.
C General but incomplete command of knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of analytical thinking. Can apply the knowledge to familiar situations.
D Partial but limited command of knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of limited command of knowledge, abilities and skills required for attaining some of the course learning outcomes.
E Limited ability to use data and results to draw appropriate conclusions.
F Limited ability to use data and results to draw appropriate conclusions.

Assessment Methods and Weighting:
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Examination 70 CLO 1,2,3
Laboratory reports Experiment & Lab report 20 CLO 1,2,3
Test Test/Quiz 10 CLO 1,2,3

Additional Course Information:
Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.

CHEM3542

Physical chemistry: statistical thermodynamics and kinetics theory (6 credits)
Offering Department: Chemistry
Course Co-ordinator: Dr. J Yang, Chemistry (juny@hku.hk)
Teachers Involved: (Dr J Yang, Chemistry)

Course Objectives:
The course presents fundamental principles and topics on statistical thermodynamics and kinetic theory in order to provide a solid foundation for students intending to further their studies in physical chemistry and related fields.

Course Contents & Topics:
Principles of Statistical Thermodynamics
- Thermodynamic laws
- Ensembles and partition functions: microcanonical, canonical and grand-canonical
- Systems of independent molecules: ideal gas
- Molecular degrees of freedom: translation, rotation, vibration, and electronic
- Ideal gas mixture: chemical equilibrium, binding, and fission
- Quantum statistics

Chemical equilibrium and kinetics theory
- Rate theory: collision theory, transition state theory, electron transfer

Course Learning Outcomes:
On successful completion of this course, students should be able to:
CLO 1 understand and use the terminology and nomenclature in statistical thermodynamics and topics discussed in the course
CLO 2 demonstrate knowledge and understanding of basic concepts in statistical thermodynamics
CLO 3 understand correlation between macroscopic observables and microscopic statistical model systems

Pre-requisites (and Co-requisites and Impermissible combinations):
Pass in CHEM2541

Grade Descriptors:
A Thorough mastery at an advanced level of extensive knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of strong analytical / critical abilities and logical thinking. Can apply the knowledge to practical questions in Physical Chemistry.
B Substantial command of knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of analytical / critical abilities and logical thinking. Understand the scope of Physical Chemistry questions that can be applied with the knowledge.
C General but incomplete command of knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of analytical thinking. Can apply the knowledge to familiar situations.
D Partial but limited command of knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of limited command of knowledge, abilities and skills required for attaining some of the course learning outcomes.
E Limited ability to use data and results to draw appropriate conclusions.
F Limited ability to use data and results to draw appropriate conclusions.

Assessment Methods and Weighting:
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Examination 70 CLO 1,2,3
Laboratory reports Experiment & Lab report 20 CLO 1,2,3
Test Test/Quiz 10 CLO 1,2,3

Additional Course Information:
Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.

CHEM3542

Physical chemistry: statistical thermodynamics and kinetics theory (6 credits)
Offering Department: Chemistry
Course Co-ordinator: Dr. J Yang, Chemistry (juny@hku.hk)
Teachers Involved: (Dr J Yang, Chemistry)

Course Objectives:
The course presents fundamental principles and topics on statistical thermodynamics and kinetic theory in order to provide a solid foundation for students intending to further their studies in physical chemistry and related fields.

Course Contents & Topics:
Principles of Statistical Thermodynamics
- Thermodynamic laws
- Ensembles and partition functions: microcanonical, canonical and grand-canonical
- Systems of independent molecules: ideal gas
- Molecular degrees of freedom: translation, rotation, vibration, and electronic
- Ideal gas mixture: chemical equilibrium, binding, and fission
- Quantum statistics

Chemical equilibrium and kinetics theory
- Rate theory: collision theory, transition state theory, electron transfer

Course Learning Outcomes:
On successful completion of this course, students should be able to:
CLO 1 understand and use the terminology and nomenclature in statistical thermodynamics and topics discussed in the course
CLO 2 demonstrate knowledge and understanding of basic concepts in statistical thermodynamics
CLO 3 understand correlation between macroscopic observables and microscopic statistical model systems

Pre-requisites (and Co-requisites and Impermissible combinations):
Pass in CHEM2541

Grade Descriptors:
A Thorough mastery at an advanced level of extensive knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of strong analytical / critical abilities and logical thinking. Can apply the knowledge to practical questions in Physical Chemistry.
B Substantial command of knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of analytical / critical abilities and logical thinking. Understand the scope of Physical Chemistry questions that can be applied with the knowledge.
C General but incomplete command of knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of analytical thinking. Can apply the knowledge to familiar situations.
D Partial but limited command of knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of limited command of knowledge, abilities and skills required for attaining some of the course learning outcomes.
E Limited ability to use data and results to draw appropriate conclusions.
F Limited ability to use data and results to draw appropriate conclusions.

Assessment Methods and Weighting:
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Examination 70 CLO 1,2,3
Laboratory reports Experiment & Lab report 20 CLO 1,2,3
Test Test/Quiz 10 CLO 1,2,3

Additional Course Information:
Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.
CHEM3999

Offering Department: Chemistry
Course Co-ordinator: Prof D L Phillips, Chemistry (phillips@hku.hk)
Teachers Involved: (Various teachers in the Department, Chemistry)

Course Objectives
This course is designed for third year students who would like to take an early experience on research. This capstone course is for Chemistry Major students only. Students interested in taking this course should contact their prospective supervisors in May to determine the contents and the nature of their project in the coming academic year. Prior approval from both the prospective supervisor and the course coordinator is required.

Course Contents & Topics
This capstone course is designed for third year students who would like to take an early experience on research. It offers students an opportunity to carry out small scale chemical projects by themselves.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 understand the terminology and nomenclature associated with the small scale chemical project they worked on in the course.
- CLO 2 demonstrate knowledge and understanding of basic concepts involved in their chemical project.
- CLO 3 understand the relationships of the their particular chemical project to the wider area of chemistry.

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major including a pass in CHEM3241 or CHEM2441 or CHEM2442 or CHEM2541 or CHEM3146.

This capstone course is for Chemistry Major students only. This course is designed for third year students who would like to take an early experience on research. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019
- **Offer in 2019 - 2020:** Y
- **Examination:** No Exam

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Show an extensive comprehension of the subject. Demonstrate very able analytical and critical thought with presence of some originality. Illuminating utilization and critical analysis / evaluation of information acquired from a wide range of high quality sources. Critical employment of data and results to synthesize appropriate and illuminating conclusions. Demonstrate integration of a wide range of appropriate theories, principles, data and methods. Employ very effective organizational and presentational skills. (Work of A+ should demonstrate substantial additional work beyond that is required in wider areas relevant to the topic.)</td>
</tr>
<tr>
<td>B</td>
<td>Show a substantial comprehension of the subject. Demonstrate able analytical and critical thinking with use of relevant information from sources. Demonstrate ability to compose meaningful comparisons between different secondary interpretations. Correct utilization of data and results to form appropriate conclusions. Compose general integration of theories, principles, data and methods. Perform effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Show a general but incomplete comprehension of the subject. Presence of some analytical and critical thinking with use of relevant information from sources. Demonstrate ability to compose comparisons between different interpretations. Mainly correct but some incorrect utilization of data and results to form appropriate conclusions. Demonstrate some partial integration of theories, principles, data and methods. Perform moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Show a partial but limited comprehension, with knowledge of some relevant information, of the subject. Presence of some coherent and logical thinking, but with limited analytical and critical abilities. Show utilization and reference of several sources, but mostly via summary instead of by analysis and comparison. Limited ability to employ data and results to form appropriate conclusions. Demonstrate limited integration of theories, principles, data and methods. Perform limited or marginally effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Show little or no comprehension of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited employment of secondary sources and no critical comparison of them. Incorrectly utilize data and results and/or unable to form appropriate conclusions. Demonstrate little or no integration of theories, principles, data and methods. Organization and presentational skills are of very limited use or ineffective.</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>continuous assessment of on class quizzes & assignments</td>
<td>40</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td>P. Atkins, Physical Chemistry (10th edition)</td>
<td>60</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Reading / Self study: Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course. Students are strongly recommended to take CHEM3541 Physical Chemistry: Introduction to Quantum Chemistry before taking this course.

References: KA Dill, Molecular driving forces: statistical thermodynamics in biology, chemistry, physics and nanoscience, T. L. Hill, An introduction to Statistical Thermodynamics

Course Information

- **Course Type:** Project-based course
- **Course Teaching & Learning Activities:** Activities Details No. of Hours
 - Lectures 24
 - Laboratory 24
 - Tutorials 4
 - Reading / Self study 100

- **Assessment Methods and Weighting:** Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
 - Reading / Self study 100
 - Tutorials 4
 - Lectures 24
 - Laboratory 24
 - Assignments continuous assessment of on class quizzes & assignments 40 CLO 1,2,3
 - Examination 60 CLO 1,2,3

- **Required/recommended reading and online materials:** Nil

- **Course Website:** Nil

- **Additional Course Information:** Exceptional academic strength of the students is required for taking this course. The course may involve Laboratory component as Course Teaching & Learning Activities.
CHEM4142: Symmetry, group theory and applications (6 credits)

Offering Department: Chemistry
Course Co-ordinator: Prof V W W Yam, Chemistry (wwyam@hku.hk)

Teachers Involved
- Prof C M Che, Chemistry
- (Prof V W W Yam, Chemistry)

Course Objectives
To introduce the concepts of symmetry and group theory and to apply them in solving chemical problems. This course also provides an introductory treatment of bonding in inorganic, electronic and vibrational spectroscopy. This course is essential for students who wish to take advanced courses in inorganic chemistry and all types of spectroscopy.

Course Contents & Topics
Symmetry elements and symmetry operations; symmetry point groups; reducible and irreducible representations; character tables; direct products; symmetry-adapted linear combinations; projection operators; hybrid orbitals; molecular orbital theory for organic, inorganic and organometallic systems; selected applications in electronic and vibrational spectroscopy.

Course Learning Outcomes
- **On successful completion of this course, students should be able to:**
 - **CLO 1** understand the basic principles and concepts of symmetry and group theory and to apply them in solving chemical problems.
 - **CLO 2** demonstrate knowledge and understanding in the use of character tables and projection operator techniques.
 - **CLO 3** demonstrate knowledge and understanding of bonding theories involving hybrid orbitals and molecular orbitals for organic, inorganic and organometallic systems.
 - **CLO 4** demonstrate knowledge and understanding in the application of symmetry and group theory in electronic and vibrational spectroscopy.

Pre-requisites (and Co-requisites and impermissible combinations)
Pass in CHEM3341

Offer in 2018 - 2019 Grade Descriptors
<table>
<thead>
<tr>
<th>Grade</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighting</td>
<td>Examination</td>
<td>Dec</td>
<td>100</td>
<td>12</td>
<td>36</td>
</tr>
</tbody>
</table>

Assessment Methods
- **Methods & Weighting**
 - Assignments (continuous assessment) 25 CLO 1, 2, 3, 4
 - Examination 75 CLO 1, 2, 3, 4

Required/recommended reading and online materials

CHEM4143: Interfacial science and technology (6 credits)

Offering Department: Chemistry
Academic Year: 2018
Quota: 50

Course Learning Activities
- Lecture-based course

Assessment Methods and Weighting
- Assignments
- Examination (continuous assessment)

Required/recommended reading and online materials
Course Co-ordinator: Prof G K Y Chan, Chemistry (hrsccky@hku.hk)
(Visiting Professor, Chemistry)

Course Objectives
To understand the science and technology of interfacial phenomena and processes often appeared in high value added products and modern technologies.

Course Contents & Topics
1. Physics and Chemistry of Interfaces: coatings and surfactants, colloids and interfaces, wetting, microemulsion, thin films, nanomaterials, porous materials.
2. Course Learning Outcomes
 - CLO 1 understand interfacial phenomena and their origin from molecular details
 - CLO 2 solve problems in interfacial science and technology by applying knowledge of general chemistry, thermodynamics, and kinetics
 - CLO 3 be familiarized with technologies that require application of interfacial science, including nanomaterials, nanotechnology, detergency, composite polymers, and porosimetry

Pre-requisites
Pass in CHEM3541

Offer in 2018 - 2019
Y 2nd sem

Offer in 2019 - 2020
N

Grade Descriptors (A+ to F)
A: Demonstrate thorough knowledge of interfacial science and technology, and mastery of skills required for attaining all of the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to solve problems in a wide range of complex, familiar and unfamiliar situations. Critical use of data and sourcing of references. Apply highly effective organizational and presentational skills.
B: Demonstrate substantial knowledge of interfacial science and technology and command of skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to solve problems in familiar and some unfamiliar situations. Correct use of data and sourcing of references. Apply effective organizational and presentational skills.
C: Demonstrate general but incomplete knowledge of interfacial science and technology and command of skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge solve problems to most familiar situations. Mostly correct but some erroneous use of data and references. Apply moderately effective organizational and presentational skills.
D: Demonstrate partial but limited knowledge of interfacial science and technology and command of skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Limited ability to use data and source references. Apply limited or barely effective organizational and presentational skills.
E: Demonstrate little or no evidence of knowledge of interfacial science and technology, and command of skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Misuse of data and references. Organization and presentational skills are minimally effective or ineffective.

Course Type: Lecture-based course

Assessment Methods and Weights
- Assignments (continuous assessment): 5 CLO 1,2,3
- Examination: 70 CLO 1,2,3
- Test/test/quiz: 25 CLO 1,2,3

Activities Details No. of Hours
- Lectures: 36
- Tutorials or discussion: 12
- Reading / Self study: 100

Activities Details No. of Hours
- Activities Details No. of Hours
- CLO 1 demonstrate knowledge in advanced materials characterization techniques
- CLO 2 identify examples of some engineering polymers for high temperature/high strength applications, and how are their properties affected by the molecular structures
- CLO 3 demonstrate knowledge in advanced materials characterization techniques
- CLO 4 understand the working principles of materials for information storage and opto-electronic applications

Required/recommended reading and online materials
Barnes and Gentle: Interfacial Science

Additional Course Information
This course is offered every other year.

CHEM4144 Advanced materials (6 credits)
Offering Department: Chemistry
Quota: 50

Course Co-ordinator: Dr J Y Tang, Chemistry (jinyao@hku.hk)
Teachers Involved: (Dr J Y Tang, Chemistry) (Dr Y F Wang, Chemistry)

Course Objectives
This course is a continuation from Introduction to Materials Chemistry. It provides a more comprehensive overview on materials chemistry and application of materials in advanced technology. The most recent development in materials chemistry will also be discussed.

Course Contents & Topics
Advanced polymerization methods: copolymerization and applications of copolymers, coordination polymerization, control of stereochemistry in polymers; ionic and radical living polymerization. Materials for specialty applications: high strength materials; high temperature polymers, polyelectrolytes, conducting polymers, optical information storage, sensors, photonic, electronics, nanotechnology. Advanced materials characterization techniques.

Course Learning Outcomes
- CLO 1 describe the mechanisms and kinetics of copolymerizations, coordination polymerizations, and living polymerizations
- CLO 2 identify examples of some engineering polymers for high temperature/high strength applications, and how are their properties affected by the molecular structures
- CLO 3 demonstrate knowledge in advanced materials characterization techniques
- CLO 4 understand the working principles of materials for information storage and opto-electronic applications

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in CHEM3143

Offer in 2018 - 2019
Y 2nd sem

Offer in 2019 - 2020
N

Grade Descriptors (A+ to F)
A: Demonstrate thorough knowledge and understanding of essential facts, concepts, principles, and theories relating to frontier approach in polymer synthesis, properties, application, and characterization of materials for advanced technology. Show strong ability to apply and integrate knowledge and theory relating to the synthesis and applications of advanced materials. Show strong ability to analyze novel problems and critical use of data and experimental results to draw appropriate and insightful conclusions relating to advanced materials synthesis and their properties.
Course Type: Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td>or discussion</td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>(continuous assessment)</td>
<td>20</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>80</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Course Type: Course Type: Lecture-based course

Pre-requisites and Co-requisites (and Impermissible combinations)

- Pass in CHEM3441 or CHEM3442

Course Objectives

On successful completion of this course, students should be able to:

- CLO 1: demonstrate knowledge of drug discovery, design and development
- CLO 2: understand drug-biomolecule interactions where appropriate
- CLO 3: gain appropriate knowledge of drug metabolism and drug delivery

Specialist references will be given throughout the course.

On successful completion of this course, students should be able to:

- CLO 1: demonstrate knowledge of drug discovery, design and development
- CLO 2: understand drug-biomolecule interactions where appropriate
- CLO 3: gain appropriate knowledge of drug metabolism and drug delivery

Specialist references will be given throughout the course.

On successful completion of this course, students should be able to:

- CLO 1: demonstrate knowledge of drug discovery, design and development
- CLO 2: understand drug-biomolecule interactions where appropriate
- CLO 3: gain appropriate knowledge of drug metabolism and drug delivery

Specialist references will be given throughout the course.

On successful completion of this course, students should be able to:

- CLO 1: demonstrate knowledge of drug discovery, design and development
- CLO 2: understand drug-biomolecule interactions where appropriate
- CLO 3: gain appropriate knowledge of drug metabolism and drug delivery

Specialist references will be given throughout the course.

On successful completion of this course, students should be able to:

- CLO 1: demonstrate knowledge of drug discovery, design and development
- CLO 2: understand drug-biomolecule interactions where appropriate
- CLO 3: gain appropriate knowledge of drug metabolism and drug delivery

Specialist references will be given throughout the course.

On successful completion of this course, students should be able to:

- CLO 1: demonstrate knowledge of drug discovery, design and development
- CLO 2: understand drug-biomolecule interactions where appropriate
- CLO 3: gain appropriate knowledge of drug metabolism and drug delivery

Specialist references will be given throughout the course.
Supramolecular chemistry concerns the chemistry beyond that of molecules. This course aims at introducing students to concepts and techniques in supramolecular chemistry, demonstrating how molecular assembly and supramolecular structures leads to functions and properties, and their relevance to material and biological science.

Basic concepts in molecular recognition and self-assembly; non-covalent interactions and common supramolecular building blocks; methods in supramolecular chemistry. Selected topics in modern supramolecular chemistry, such as macrocycles and cages, molecular capsule and container molecules, synthetic receptors, interlocked structures, supramolecular polymers and supramolecular chemistry of biomolecules and biomaterials, will also be discussed.

On successful completion of this course, students should be able to:

- CLO 1 Understand important principles and concepts in supramolecular chemistry
- CLO 2 Demonstrate knowledge and understanding in the nature of non-covalent interactions and to apply these concepts in the design and explanation of the structures, properties and functions of different supramolecular systems
- CLO 3 Interpret and analyse physical characterization data of supramolecular systems and extract relevant chemical information to explain the properties of the supramolecular systems

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in CHEM3341 and CHEM3441

Course Type Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td>or discussion</td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>(continuous assessment)</td>
<td>25</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>75</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials An Introduction to Medicinal Chemistry (3/e), G.L. Patrick, Oxford University Press, 2005

Additional Course Information This course is also offered to RPg students, and the course code for RPg students is CHEM6113.

CHEM4147

Offering Department Chemistry

Course Co-ordinator Dr H Y Au-Yeung, Chemistry (hoyuay@hku.hk)

Teachers Involved (Dr H Y Au-Yeung, Chemistry)

Course Objectives Supramolecular chemistry concerns the chemistry beyond that of molecules. This course aims at introducing students to concepts and techniques in supramolecular chemistry, demonstrating how molecular assembly and supramolecular structures leads to functions and properties, and their relevance to material and biological science.

Course Contents & Topics

Basic concepts in molecular recognition and self-assembly; non-covalent interactions and common supramolecular building blocks; methods in supramolecular chemistry. Selected topics in modern supramolecular chemistry, such as macrocycles and cages, molecular capsule and container molecules, synthetic receptors, interlocked structures, supramolecular polymers and supramolecular chemistry of biomolecules and biomaterials, will also be discussed.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 Understand important principles and concepts in supramolecular chemistry
- CLO 2 Demonstrate knowledge and understanding in the nature of non-covalent interactions and to apply these concepts in the design and explanation of the structures, properties and functions of different supramolecular systems
- CLO 3 Interpret and analyse physical characterization data of supramolecular systems and extract relevant chemical information to explain the properties of the supramolecular systems

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in CHEM3341 and CHEM3441

Offer in 2018 - 2019

Grade Descriptors (A+ to F)

- **A** Demonstrate thorough knowledge and understanding of essential facts, concepts and principles in supramolecular chemistry, especially those relating to non-covalent interactions, molecular recognition and self-assembly. Show strong ability to apply and integrate knowledge in supramolecular chemistry in explaining the formation and properties of, and in designing different supramolecular systems. Show strong ability to analyse and interpret experimental data to draw appropriate conclusions relating to the advanced principles and properties of supramolecular systems.

- **B** Demonstrate substantial knowledge and understanding of essential facts, concepts and principles in supramolecular chemistry, especially those relating to non-covalent interactions, molecular recognition and self-assembly. Show evidence to apply and integrate knowledge in supramolecular chemistry in explaining the formation and properties of, and in designing different supramolecular systems. Show evidence to analyse and interpret experimental data to draw appropriate conclusions relating to the advanced principles and properties of supramolecular systems.

- **C** Demonstrate general but incomplete amount of knowledge and understanding of essential facts, concepts and principles in supramolecular chemistry, especially those relating to non-covalent interactions, molecular recognition and self-assembly. Show some ability to apply and integrate knowledge in supramolecular chemistry in explaining the formation and properties of, and in designing different supramolecular systems. Show some ability to analyse and interpret experimental data to draw appropriate conclusions relating to the advanced principles and properties of supramolecular systems.

- **D** Demonstrate partial but incomplete command of knowledge and understanding of essential facts, concepts and principles in supramolecular chemistry, especially those relating to non-covalent interactions, molecular recognition and self-assembly. Show limited ability to apply and integrate knowledge in supramolecular chemistry in explaining the formation and properties of, and in designing different supramolecular systems. Show limited ability to analyse and interpret experimental data to draw appropriate conclusions relating to the advanced principles and properties of supramolecular systems.

- **Fail** Demonstrate little or no evidence of command of knowledge and understanding of essential facts, concepts, and theories relating to the basic foundation knowledge of medicinal chemistry; especially those related to drug discovery; design and development, drug targets; drug; lead optimization; structure activity relationship; pharmacokinetics; drug delivery and its relevance to toxicity. Show little or no evidence of abilities to apply and integrate knowledge and theory relating to the basic foundation knowledge of medicinal chemistry. Show little or no ability to analyze problems to most familiar situations and erroneous use of data and experimental results to draw appropriate conclusions relating to the basic principles and knowledge of medicinal chemistry. Demonstrate minimally effective basic techniques for medicinal chemistry, especially in drug discovery and metabolism.

Course Type Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td>or discussion</td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>65</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td>15</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Test</td>
<td>Tests/Assignments</td>
<td>20</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Modern chemical instrumentation and applications (6 credits)

Course Objectives
The aim of the course is to provide an understanding of modern instrumentation, covering both fundamental principles and practical aspects of instrument design. The course will be of particular benefit to those pursuing a higher research degree or a career in technical sales/service.

Course Contents & Topics
- Biological Mass spectrometry: Liquid Chromatography-Tandem Mass Spectrometry for Proteomics & Metabolomics.
- Laser Spectroscopy: Principle of laser; three-level and four-level lasers; laser instrumentation (Q-switching and frequency conversion); laser-induced fluorescence; laser atomic spectrometry; laser remote sensing; signal-to-noise enhancement by boxcar integration and photon counting.
- Atomic Plasma Spectrometry: Inductively couple plasma-atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS); signal-production processes in ICP spectrometry; Echelle grating spectrometer; array detectors; interferences in ICP-AES and ICP-MS.
- Atomic X-ray Spectrometry: x-ray fluorescence; wavelength-dispersive (WDXRF) and energy-dispersive (EDXRF) X-ray fluorescence spectrometers.

Assessment Methods and Weighting
- Examination: 65% to CLO 1-6
- Laboratory reports: (lab performance, reports, test, oral test): 35% to CLO 1-6
- Grading: A: 80% or above; B: 70-79%; C: 60-69%; D: 50-59%; F: Below 50%

Grade Descriptors
- A: Demonstrate thorough knowledge and understanding of essential facts, concepts, principles and theories relating to the modern chemical instrumentations and applications. Show strong ability to apply and integrate knowledge and theory, and strong ability to analyze problems related to fundamental principles and practical aspects of instrument design.
- B: Demonstrate substantial command of knowledge and understanding of essential facts, concepts, principles and theories relating to the modern chemical instrumentations and applications. Show evidence to apply and integrate knowledge and theory, and ability to analyze problems related to fundamental principles and practical aspects of instrument design.
- C: Demonstrate general but incomplete command of knowledge and understanding of essential facts, concepts, principles and theories relating to the modern chemical instrumentations and applications. Show evidence of some abilities to apply and integrate knowledge and theory, and ability to analyze problems to most familiar situations to fundamental principles and practical aspects of instrument design.
- D: Demonstrate partial but limited command of knowledge and understanding of essential facts, concepts, principles and theories relating to the modern chemical instrumentations and applications. Show evidence of limited abilities to apply and integrate knowledge and theory, and limited ability to analyze problems to most familiar situations related to fundamental principles and practical aspects of instrument design.
- F: Demonstrate little or no evidence of command of knowledge and understanding of essential facts, concepts, principles and theories relating to the modern chemical instrumentations and applications. Show little or no evidence of abilities to apply and integrate knowledge and theory, and little or no ability to analyze problems to most familiar situations related to fundamental principles and practical aspects of instrument design.

Additional Course Information
Reference to published material will be made throughout the course. Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.
Course Contents & Topics

Analytical measurement concepts: Statistical treatment & evaluation of chemical measurement data; Figures of merits of analytical methods; Validation of analytical methods; Quality assurance in chemical analysis and testing laboratories.

Theoretical background and practical techniques of sample preparation, separation and detection: Sample preparation and enrichment techniques for biomedical, pharmaceutical and forensic chemical analysis; Advanced separation technologies for complex mixture analysis (e.g. multidimensional LC); Derivatization methods for chromatographic analysis and spectroscopic detection; Analytes characterization and detection techniques based on mass spectrometry.

Problem-based design of analytical strategy for chemical & biochemical analysis: Expert sharing of practical knowledge and experience related to selected fields of research; Case study and review of analytical chemistry literature/ scenario.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 apply statistical methods to assess analytical measurement data quality and interpret their significance, validate analytical methods and results
- CLO 2 demonstrate understanding on the working principle of different analytical techniques and recognize their advantages and limitations
- CLO 3 integrate different analytical techniques to solve analytical and bioanalytical problems

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in CHEM3241 or CHEM3242

Offer in 2018 - 2019: Y

Grade Descriptors (A+ to F)

A
- Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities, logical thinking and capability to apply knowledge learnt to solve a wide range of complex issues and problems related to chemical analysis. Apply highly effective organization and presentation skills as shown in class work.

B
- Demonstrate a substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities, logical thinking, and capability to apply knowledge learnt to solve a wide range of complex issues and problems related to chemical analysis. Apply effective organization and presentation skills as shown in class work.

C
- Demonstrate a general command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities, logical thinking, and ability to apply knowledge learnt to solve a wide range of complex issues and problems related to chemical analysis. Apply effective organization and presentation skills as shown in class work.

D
- Demonstrate a partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems related to chemical analysis. Apply limited or barely effective organization and presentation skill as shown in class work.

Fail
- Demonstrate little or no evidence for the command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems related to chemical analysis. Organization and presentation skills are minimally effective or ineffective as shown in class work.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td>6 x 4-hour of laboratory practical</td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1.2,3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>Experiment & Lab report</td>
<td>10</td>
<td>CLO 1.2</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td>10</td>
<td>CLO 1.2,3</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>10</td>
<td>CLO 1.2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Additional Course Information

References to specialist texts and other published materials will be made throughout the course. Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.

CHEM4341

Advanced inorganic chemistry (6 credits)

Offering Department Chemistry

Course Co-ordinator Prof C M Che, Chemistry (cmche@hku.hk)

Teachers Involved

Prof C M Che, Chemistry
Prof H Z Sun, Chemistry
Prof V W W Yum, Chemistry

Course Objectives

This course is a continuation from Intermediate Inorganic Chemistry, giving further and more detailed treatment to topics in Inorganic Chemistry and new areas of interest. Problem based learning on selected advance topics will be introduced in the later part of the course. This course also aims to prepare students for graduate work.

Course Contents & Topics

Selected advanced topics of current interest. Examples include metal-metal bonds and metal-ligand multiple bonds, inorganic and supramolecular photochemistry, lanthanide chemistry, bio-inorganic and medicinal chemistry, and activation of small molecules by metal complexes.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand the principles and concepts of inorganic and supramolecular photochemistry
- CLO 2 understand the electronic structure and bondings of novel metal-metal and metal-ligand multiple bonded metal complexes
- CLO 3 understand and realize the activation of small molecules by transition metal complexes and realize the importance of such activation in chemical catalysis of global interest, green chemistry and energy saving
CHEM4342

Organometallic chemistry (6 credits)

Offering Department Chemistry

Academic Year 2018

Quota 40

Course Co-ordinator Prof V W W Yam, Chemistry (wwyam@hku.hk)

Teachers Involved Dr. H. Y. Au-Yeung, Chemistry (Chemistry)

Course Objectives To give further, more detailed, treatment to organometallic chemistry mentioned in CHEM3341 Inorganic Chemistry II. The course also aims to introduce and familiarize students with advanced laboratory techniques, and to prepare students for graduate work in inorganic and organometallic chemistry.

Course Contents & Topics Lectures: Main group and transition metal organometallics. Transition metal cluster chemistry. Bonding, structure, and reactivities of organometallics. Application of organometallics in synthetic reactions and manipulation.

Laboratory: To introduce and familiarize students with advanced laboratory techniques which include the synthesis and manipulation of air- and moisture-sensitive compounds, and their characterization by various spectroscopic methods.

Course Learning Outcomes On successful completion of this course, students should be able to:

CLO 1. Demonstrate thorough knowledge and understanding of essential facts, concepts, principles, and theories relating to the more detailed and advanced treatment of organometallic chemistry, especially those related to structure, bonding and reactivities of main group and transition metal organometallics; transition metal cluster chemistry; and application of organometallics in organic synthesis and catalysis. Show strong ability to analyze novel problems and critical use of data and experimental results to draw appropriate and insightful conclusions relating to the advanced principles and applications of organometallic chemistry. Demonstrate highly effective advanced laboratory skills and techniques, especially in the synthesis and manipulation of air- and moisture-sensitive compounds and their characterization by various spectroscopic methods.

CLO 2. Demonstrate knowledge and understanding in the bonding, structure and reactivities of main group and transition metal organometallics, especially in transition metal clusters, metal alkyls, metal alkylidenes and metal alkylidylenes.

CLO 3. Demonstrate knowledge and understanding in the application of organometallics in organic synthesis, polymerization, and catalysis.

CLO 4. Demonstrate ability in advanced laboratory techniques including the synthesis and manipulation of air- and moisture-sensitive compounds, and their characterization by various spectroscopic methods.

Pre-requisites and Co-requisites and Impermissible combinations) Pass in CHEM3341
Advanced organic chemistry (6 credits)

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>(continuous assessment)</td>
<td>30</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Additional Course Information
Reference to specialist texts and other published materials will be made throughout the course. Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.

Pre-requisites (and Co-prequisites and Impermissible combinations)
Pass in CHEM3441

Offer in 2018 - 2019 Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Y</th>
<th>1st sem</th>
<th>Offer in 2019 - 2020</th>
<th>Examination</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives
To provide students with knowledge in organic chemistry reaction mechanisms and organic compound structure determination.

Course Contents & Topics
The course covers chemical bonding, advanced stereochemistry, conformational analysis, techniques for investigating reaction mechanisms, reactive intermediates, rearrangement reactions, and pericyclic reactions.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 describe, analyze and interpret the structure and reactivity relationship of organic molecules
- CLO 2 identify and predict the selectivities (chemoselectivity, regioselectivity and stereoselectivity) in organic reactions
- CLO 3 describe the general approaches to study organic mechanisms
- CLO 4 have a general understanding and working knowledge of pericyclic reactions, reactive intermediates (radicals, carbenes and nitrenes), and polar rearrangements
- CLO 5 suggest reasonable mechanistic pathways for some types of organic reactions
- CLO 6 apply the knowledge of reaction mechanisms in design of synthetic routes for organic compounds

Grade Descriptors
A: Demonstrate general but incomplete command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the more detailed and advanced treatment of organometallic chemistry, especially those related to structure, bonding and reactivities of main group and transition metal organometallics; transition metal cluster chemistry; and application of organometallics in organic synthesis and catalysis. Show evidence of some abilities to apply and integrate knowledge and theory relating to the advanced principles and concepts of organometallic chemistry. Show ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the advanced principles and concepts of organometallic chemistry. Demonstrate effective advanced laboratory skills and techniques, especially in the synthesis and manipulation of air- and moisture-sensitive compounds and their characterization by various spectroscopic methods.

D: Demonstrate partial but limited command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the more detailed and advanced treatment of organometallic chemistry, especially those related to structure, bonding and reactivities of main group and transition metal organometallics; transition metal cluster chemistry; and application of organometallics in organic synthesis and catalysis. Show evidence of limited abilities to apply and integrate knowledge and theory relating to the advanced principles and concepts of organometallic chemistry. Show limited ability to analyze problems to most familiar situations and mostly correct but erroneous use of data and experimental results to draw appropriate conclusions relating to the advanced principles and concepts of organometallic chemistry. Demonstrate partially effective advanced laboratory skills and techniques, especially in the synthesis and manipulation of air- and moisture-sensitive compounds and their characterization by various spectroscopic methods.

Fail
Demonstrate little or no evidence of command of knowledge and understanding of essential facts, concepts, principles, and theories relating to the more detailed and advanced treatment of organometallic chemistry, especially those related to structure, bonding and reactivities of main group and transition metal organometallics; transition metal cluster chemistry; and application of organometallics in organic synthesis and catalysis. Show little or no evidence of abilities to apply and integrate knowledge and theory relating to the advanced principles and concepts of organometallic chemistry. Demonstrate little or no ability to analyze problems to most familiar situations and erroneous use of data and experimental results to draw appropriate conclusions relating to the advanced principles and concepts of organometallic chemistry. Demonstrate minimal effective advanced laboratory skills and techniques, especially in the synthesis and manipulation of air- and moisture-sensitive compounds and their characterization by various spectroscopic methods.
CHEM4444

Integrated organic synthesis (6 credits)

Offering Department

Chemistry

Course Co-ordinator

Prof P Chiu, Chemistry (pchiu@hku.hk)

Teachers Involved

(Prof P Chiu, Chemistry)

Course Objectives

To introduce aspects of modern organic reactions with relevance to and in the context of the synthesis of natural products, drugs and medicinal chemistry to provide an integrated approach to the subject, and to provide training in advanced organic laboratory skills, and further hands-on experience in synthesis and characterization, as preparation for graduate studies or research in organic chemistry.

Course Contents & Topics

Building on the organic chemistry covered in the foundational courses CHEM1003 and CHEM2402, this course will present modern synthetic methods and synthetic planning. The course is organized into units based on target drug molecules. In each unit, the chemical biology of these compounds are briefly presented and the syntheses of these molecules are introduced, accompanied by in-depth discussions of the reactions involved with emphasis on their mechanisms, selectivity, stereochemistry, scope and limitations. Concept of synthetic design including retrosynthetic analysis, stereoselectivity and enantioselective control elements will be emphasized. A laboratory section provides training in the practical skills of synthesis.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand the rationale, selectivities, and mechanisms of various reactions and reagents in organic chemistry
- CLO 2 able to solve mechanistic and synthetic chemistry problems
- CLO 3 perform organic synthesis experiments at an increased level of technical difficulty, using additional skills in experimental design and execution, spectroscopic analysis, and reporting of results
- CLO 4 integrate lecture material and literature search, to learn chemistry independently

Pre-requisites (and Co-requisites and Impermissible combinations)

- Pass in CHEM3441; or
- Pass in CHEM3441 (without lab component) and CHEM3443

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Details</th>
<th>Methods</th>
<th>Weighting in final course grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>70</td>
<td>CLO 1.2,3,4,5,6</td>
</tr>
<tr>
<td>Test</td>
<td>30</td>
<td>CLO 1.2,3,4,5,6</td>
</tr>
</tbody>
</table>

Grade Descriptors (A to F)

- **A** Demonstrate a thorough mastery at an advanced level of knowledge and understanding of concepts, principles, reactions and mechanisms related to synthetic organic chemistry. Show a strong ability to integrate knowledge and theory, and a strong ability to analyze novel synthetic organic chemistry problems and problems. Show a critical use of knowledge and data to apply to the solution of novel and complex synthetic problems. Demonstrate highly effective organization and application of lab skills and techniques in synthetic experiments.
- **B** Demonstrate a substantial command of knowledge and understanding of concepts, principles, reactions and mechanisms related to synthetic organic chemistry. Show evidence of ability to integrate knowledge and theory, and evidence of ability to analyze synthetic organic chemistry problems and problems. Show a correct use of knowledge and data to apply to the solution of some novel and most familiar synthetic problems. Demonstrate effective organization and application of lab skills and techniques in synthetic experiments.
- **C** Demonstrate a general but incomplete command of knowledge and understanding of concepts, principles, reactions and mechanisms related to synthetic organic chemistry. Show evidence of some ability to integrate knowledge and theory, and evidence of some ability to analyze synthetic organic chemistry situations and problems. Show a correct use of knowledge to apply to the solution of most familiar problems. Demonstrate moderately effective organization and application of lab skills and techniques in synthetic experiments.
- **D** Demonstrate a partial but limited command of knowledge and understanding of concepts, principles, reactions and mechanisms related to synthetic organic chemistry. Show evidence of a limited ability to integrate knowledge and theory, and a limited ability to analyze familiar situations and problems. Show some correct but erroneous use of knowledge to apply to the solution of most familiar problems. Demonstrate partially effective organization and application of lab skills and techniques in synthetic experiments.
- **Fail** Demonstrate little or no evidence of command of knowledge of concepts, principles, reactions and mechanisms related to synthetic organic chemistry. Show little or no evidence of ability to integrate knowledge and theory in synthetic organic chemistry, and little or no ability to analyze most familiar situations and problems. Show mostly erroneous use of knowledge to apply to the solution of familiar problems. Demonstrate minimal effective organization and application of lab skills and techniques in synthetic experiments.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

- Lectures 24
- Laboratory 25
- Reading / Self study 100

CHEM4444

Chemical biology (6 credits)

Offering Department

Chemistry

Course Co-ordinator

Prof X C Li, Chemistry (xuechenl@hku.hk)

Teachers Involved

(Prof X C Li, Chemistry)

Reference Books

- Organic synthesis, C. Willis, M. Wills, Oxford Science Publications
- Top drugs, top synthetic routes, J. Saunders, Oxford Science Publications
Course Objectives

To understand how to use chemical approaches to emulate biological systems to study natural molecules and generate new functional molecules. Useful as an introduction to research in areas of chemical biology, medicinal chemistry and biotechnology.

Course Contents & Topics

Chemical biology of nucleic acids, protein chemistry, protein posttranslational modifications, carbohydrate chemistry, chemical glycochemistry and tools and techniques in chemical biology.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1: understand chemical biology approaches in studying biology.
- CLO 2: demonstrate knowledge and understanding of basic concepts in statistical thermodynamics.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOC3601 or CHEM3441

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Grade Descriptors (A+ to F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>...</td>
</tr>
<tr>
<td>B</td>
<td>...</td>
</tr>
<tr>
<td>C</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>...</td>
</tr>
</tbody>
</table>

Offer in 2019 - 2020

Y 2nd sem Offer in 2019 - 2020: Y

Examination May

Examination Details

<table>
<thead>
<tr>
<th>No. of Hours</th>
<th>Activities</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lectures</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
<td>tutorials/discussion</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods & Weighting

<table>
<thead>
<tr>
<th>Weighting in final course grade (%)</th>
<th>Method</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Examination</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>40</td>
<td>Test</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>No. of Hours</th>
<th>Activities</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Contents

- Principles of Statistical Thermodynamics
 - Thermodynamic laws
 - Ensembles and partition functions: microcanonical, canonical and grand-canonical
 - Systems of independent molecules: ideal gas
 - Molecular degrees of freedom: translation, rotation, vibration, and electronic
 - Ideal gas mixture: chemical equilibrium, binding, and titration
 - Lattice statistics: Ising model and phase transition
 - Quantum statistics

- Chemical equilibrium and kinetics theory
 - Rate theory: collision theory, transition state theory

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1: understand and use the terminology and nomenclature in statistical thermodynamics and topics discussed in the course.
- CLO 2: demonstrate knowledge and understanding of basic concepts in statistical thermodynamics.
- CLO 3: understand correlation between macroscopic observables and microscopic statistical model systems.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in CHEM3541

Offer in 2018 - 2019

N 2nd sem Offer in 2019 - 2020: N

Examination ---

Grade Descriptors (A+ to F)

A

Thorough mastery at an advanced level of extensive knowledge of statistical thermodynamics and reaction dynamics. Demonstrate evidence of strong analytical / critical abilities and logical thinking. Can apply the knowledge to practical questions.
This course covers topics in computational chemistry including first-principles methods and molecular dynamics methods. It is offered to undergraduate and postgraduate students interested in computational chemistry, computational physics and computational biology.

Course Objectives

On successful completion of this course, students should be able to:

- **CLO 1** understand the basic concepts of density-functional theory, Kohn-Sham equation, time-dependent density-functional theory, open system, molecular dynamics, force field, and quantum mechanics/molecular mechanics.

- **CLO 2** understand the basic numerical techniques of molecular mechanics method and quantum mechanics/molecular mechanics method.

- **CLO 3** employ the existing computational software to calculate the chemical, physical properties of various molecular systems, organic molecules, inorganic materials, and biomolecules.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>continuous assessment of on class quizzes & assignments</td>
<td>40</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>60</td>
<td>CLO 1, 2, 3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- T. L. Hill, An introduction to Statistical Thermodynamics
- P. Atkins, Physical Chemistry
- J.M. Haile: Molecular Dynamics Simulation
- Andrew R. Leach: Molecular Modelling - Principles and Applications
- Attia Szabo & Neil S. Ostlund: Modern Quantum Chemistry (1st ed.)
- J.M. Haile: Molecular Dynamics Simulation
- Andrew R. Leach: Molecular Modelling - Principles and Applications

Additional Course Information

Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.

Grade Descriptors

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Mastery of advanced knowledge on following topics: density-functional theory, Kohn-Sham equation, time-dependent density-functional theory, open system, molecular dynamics, force field, and quantum mechanics/molecular mechanics. Strong analytical and critical abilities and logical thinking, with strong ability to apply knowledge to practical problems in physical chemistry.</td>
</tr>
<tr>
<td>B</td>
<td>Substantial command of a broad range of knowledge on following topics: density-functional theory, Kohn-Sham equation, time-dependent density-functional theory, open system, molecular dynamics, force field, and quantum mechanics/molecular mechanics. Evidence of analytical and critical abilities and logical thinking, with ability to apply knowledge to practical problems in physical chemistry.</td>
</tr>
<tr>
<td>C</td>
<td>Command of knowledge on following topics: density-functional theory, Kohn-Sham equation, time-dependent density-functional theory, open system, molecular dynamics, force field, and quantum mechanics/molecular mechanics. Evidence of some analytical and critical abilities and logical thinking, with ability to apply knowledge to familiar problems in physical chemistry.</td>
</tr>
<tr>
<td>D</td>
<td>Partial but limited command of knowledge on following topics: density-functional theory, Kohn-Sham equation, time-dependent density-functional theory, open system, molecular dynamics, force field, and quantum mechanics/molecular mechanics. Evidence of some coherent analytical and critical abilities and logical thinking, with limited ability to apply knowledge to practical problems in physical chemistry.</td>
</tr>
<tr>
<td>Fail</td>
<td>Little or no evidence of command of knowledge on following topics: density-functional theory, Kohn-Sham equation, time-dependent density-functional theory, open system, molecular dynamics, force field, and quantum mechanics/molecular mechanics. Lack of analytical and critical abilities and logical thinking, with very little or no ability to apply knowledge to practical problems in physical chemistry.</td>
</tr>
</tbody>
</table>

Offering Department

Department of Chemistry

Course Teaching & Learning Activities

- **Lecture with laboratory component course**
- **Activities**
 - Lectures: 24 hours
 - Laboratory: 24 hours
 - Tutorials: 6 hours
 - Reading / Self study: 100 hours

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>continuous assessment</td>
<td>40</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>60</td>
<td>CLO 1, 2, 3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- Attia Szabo & Neil S. Ostlund: Modern Quantum Chemistry (1st ed.)
- J.M. Haile: Molecular Dynamics Simulation
- Andrew R. Leach: Molecular Modelling - Principles and Applications

Additional Course Information

This course is equivalent to CHEM6109 Computational Chemistry. CHEM4542 is offered every other year. Laboratory classes are mandatory. Students must complete ALL experiments and laboratory reports to pass this course.
Advanced physical chemistry (6 credits)
Offering Department: Chemistry
Course Co-ordinator: Prof G H Chen, Chemistry (ghc@yangtze.hku.hk)
Teachers Involved: (Prof D L Phillips, Chemistry), (Prof G H Chen, Chemistry)
Course Objectives: This course covers advanced topics in physical chemistry. It is offered for students majoring in physical chemistry and for students who are interested in postgraduate studies.
Course Contents & Topics: Time-resolved spectroscopy methods, excited states and reactive intermediates, photophysics and photochemical processes, chemical reaction mechanisms, advanced quantum mechanical methods, reaction pathways and surface crossings.
Course Learning Outcomes: On successful completion of this course, students should be able to:
CLO 1 understand the basic concepts of quantum chemistry, statistical thermodynamics and molecular dynamics
CLO 2 understand Hartree-Fock method, statistical ensembles, quantum statistics, H-theorem, and reaction dynamics
CLO 3 understand the elementary numerical procedures in Hartree-Fock and molecular mechanics methods
Pre-requisites (and Co-requisites and Impermissible combinations): Pass in CHEM3541
Grade Descriptors (A to F):
A: Mastery of advanced knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Strong analytical and critical abilities and logical thinking, with strong ability to apply knowledge to practical problems in physical chemistry.
B: Substantial command of a broad range of knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Evidence of analytical and critical abilities and logical thinking, with ability to apply knowledge to practical problems in physical chemistry.
C: Command of knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Evidence of some analytical and critical abilities and logical thinking, with ability to apply knowledge to familiar problems in physical chemistry.
D: Partial but limited command of knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Evidence of some coherent analytical and critical abilities and logical thinking, with limited ability to apply knowledge to practical problems in physical chemistry.
Fail: Little or no evidence of command of knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Lack of analytical and critical abilities and logical thinking, with very little or no ability to apply knowledge to practical problems in physical chemistry.
Assessment Methods and Weighting:
Methods: Assignments (continuous assessment), Examination
Details: 20, 80
Weighting in final course grade (%): 20, 80
Assessment Methods to CLO Mapping:
CLO 1: Substantial command of a broad range of knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Evidence of analytical and critical abilities and logical thinking, with strong ability to apply knowledge to practical problems in physical chemistry.
CLO 2: Command of knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Evidence of some coherent analytical and critical abilities and logical thinking, with ability to apply knowledge to familiar problems in physical chemistry.
CLO 3: Partial but limited command of knowledge on following topics: variation method in quantum mechanics, Hartree-Fock method, perturbation theory, advanced statistical thermodynamics, reaction dynamics. Evidence of some analytical and critical abilities and logical thinking, with limited ability to apply knowledge to practical problems in physical chemistry.
Course Type: Lecture-based course
Course Teaching & Learning Activities:
Activities: Lectures
Details: 36
No. of Hours:
Tutorials: tutorials/discussion
Details: 12
Reading / Self study:
Details: 100
Course Website: Nil
Additional Course Information: Nil
CHEM4544
Electrochemical science and technology (6 credits)
of
Offering Department: Chemistry
Course Co-ordinator: Prof G K Y Chan, Chemistry (hrsccky@hku.hk)
Teachers Involved: (Prof G K Y Chan, Chemistry)
Course Objectives: To understand the science of electrochemistry, methods to characterise electrochemical cells, and factors affecting electrochemical applications and technologies.
Course Learning Outcomes: On successful completion of this course, students should be able to:
CLO 1 Understand the thermodynamic and kinetics of a charge transfer process at the electrode-electrolyte interface and transport of relevant species in molecular and macroscopic scales.
CLO 2 Apply voltammetry methods to characterize an electrochemical process.
CLO 3 Correlate performance of electrochemical cells to materials, design, and operation parameters.
Pre-requisites (and Co-requisites and Impermissible combinations): Pass in CHEM3542
Grade Descriptors (A to F):
A: Demonstrate thorough knowledge of electrochemical science and technology, and mastery of skills required for attaining all of the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to solve problems in a wide range of complex, familiar and unfamiliar situations. Critical use of data and sourcing of references. Apply highly effective organizational and presentational skills.
B: Demonstrate substantial knowledge of electrochemical science and technology and command of skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to...
CHEM4910
Chemistry literacy and research (6 credits)
Offering Department: Chemistry
Quota:
Teachers Involved: (Various teachers in the Department, Chemistry)
Course Objectives: This course is designed for final year students who would like to gain experience on research methods and techniques by working on small projects on literature research and chemistry research.
Course Contents & Topics: The course provides training on chemistry literature research techniques. Students will work on a small project on literature research and a short laboratory-based research project. The laboratory-based projects are provided by the students' supervisors who are assigned by the department.
Course Learning Outcomes: On successful completion of this course, students should be able to:
- CLO 1 demonstrate knowledge of academic databases and search engines of chemistry literature
- CLO 2 understand the terminology and nomenclature associated with their own research project
- CLO 3 demonstrate knowledge and understanding of the chemical techniques they used to do the research in their own research project
- CLO 4 demonstrate knowledge and understanding of the results of their own research project and its context in the broader research area
Pre-requisites (and Co-requisites and Impermissible combinations): Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major including CHEM3241, and CHEM3341, and CHEM3441, and CHEM3541. This capstone course is for Chemistry Major students only.
Offer in 2018 - 2019: Y
2nd sem Offer in 2019 - 2020: Y
Examination No Exam

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Show an extensive comprehension of the research project. Demonstrate very able analytical and critical thought with presence of some originality. Illustrating utilization and critical analysis / evaluation of information acquired from a wide range of high quality sources. Critical employment of data and results to synthesize appropriate and illuminating conclusions. Demonstrate integration of a wide range of appropriate theories, principles, data and methods. Employ very effective organizational and presentational skills. (Work of A+ should demonstrate substantial additional work beyond that is required in wider areas relevant to the topic.)</td>
</tr>
<tr>
<td>B</td>
<td>Show a substantial comprehension of the research project. Demonstrate able analytical and critical thinking with use of relevant information from sources. Demonstrate ability to compose meaningful comparisons between different secondary interpretations. Correct utilization of data and results to form appropriate conclusions. Compose general interpretation of theories, principles, data and methods. Perform effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Show a general but incomplete comprehension of the research project. Presence of some analytical and critical thinking with use of relevant information from sources. Demonstrate ability to compose comparisons between different interpretations. Mainly correct but some incorrect utilization of data and results to form appropriate conclusions. Demonstrate some partial integration of theories, principles, data and methods. Perform moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Show a partial but limited comprehension, with knowledge of some relevant information, of the research project. Presence of some coherent and logical thinking, but with limited analytical and critical abilities. Give utilization and reference of several sources, but mostly via summary instead of by analysis and comparison. Limited ability to employ data and results to form appropriate conclusions. Demonstrate limited integration of theories, principles, data and methods. Perform limited or marginally effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Show little or no comprehension of the research project. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited employment of secondary sources and no critical comparison of them. Incorrectly utilize data and results and/or unable to form appropriate conclusions. Demonstrate little or no integration of theories, principles, data and methods. Organization and presentational skills are of very limited use or ineffective.</td>
</tr>
</tbody>
</table>

Course Type: Project-based course
Course Teaching & Learning Activities:
Activities
- Reading / Self study
- Details: 12 hrs tutorials; 46 hrs of workshops and 100 hrs reading/self study
No. of Hours: 158

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation</td>
<td>50</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Research report</td>
<td>50</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
</tbody>
</table>
Chemistry internship (6 credits)

Offering Department: Chemistry
Quota: ---

Course Content & Topics:
- Required/recommended reading and online materials: Reading materials will be assigned depending on the project.
- Additional Course Information: Satisfactory completion of this course will be counted towards the Capstone requirement.

Course Objectives:
This project-based course with the theme of Chemistry for a Better Living in a Foreseeable Future aims to provide students with a capstone experience. It aims to enable students to think what are the key issues the world is facing with that have to be solved by chemistry and related technology. Students will need to apply what they have learnt in classroom and conduct literature search regarding advanced chemistry research and related technology under development to solve the problems identified in their project using various channels.

Course Learning Outcomes:
- **CLO 1**: Observe and evaluate the various issues we are facing with and determine ways in which chemistry can be used to solve the problems.
- **CLO 2**: Integrate theory and practice, and to understand limitations of their current knowledge.
- **CLO 3**: Work in a team and to collaborate with people with different background.
- **CLO 4**: Express scientific ideas effectively in both written and oral forms.
- **CLO 5**: Develop further logical, critical thinking and creativity.
- **CLO 6**: Advocate to others the appreciation for chemistry as to its relevance to our daily life.

Pre-requisites (and Co-requisites and Impermissible combinations):
Students are expected to have satisfactorily completed all introductory chemistry disciplinary core courses and at least 24 credits of advanced level disciplinary core/elective chemistry courses in the Chemistry Major.

Offer in 2018 - 2019:
- **Y** Summer
- **Offer in 2019 - 2020**: **Y**
- **Examination**
- **No Exam**

Grade Descriptors (A+ to F):
- **A**: Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical analysis / evaluation of information drawn from a full range of high quality sources and to quote/reference aptly. Critical use of data and results to draw appropriate and insightful conclusions. Show integration of the full range of theories, principles, evidence and techniques. Apply highly effective organizational and presentational skills.
- **B**: Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Correct use of data of results to draw appropriate conclusions. Show general integration of theories, principles, evidence and techniques. Apply effective organizational and presentational skills.
- **C**: Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/reference aptly. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Show some partial integration of theories, principles, evidence and techniques. Apply moderately effective organizational and presentational skills.
- **D**: Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited ability to use data and results to draw appropriate conclusions. Show limited integration of theories, principles, evidence and techniques. Apply limited or barely effective organizational and presentational skills.
- **F**: Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Show little or no or inapt integration of theories, principles, evidence and techniques. Organization and presentational skills are minimally effective or ineffective.

Course Type: Project-based course

Assessment Methods and Weighting:
- **Oral presentation**: 40% Presentation; 10% Participation; 10% Peer evaluation
- **Research report**: 40% CLO 1,2,3,4,5,6

Required/recommended reading and online materials:
No specific list of textbooks and references. Students are encouraged to obtain information via various channels (main library, e-journals, internet, and discussions with classmates and teachers, etc.).

Additional Course Information:
Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.

Department of Chemistry
Course Contents & Topics
either within the University or outside the University arranged by the School/Departments.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 understand the terminology and nomenclature associated with their own research chemistry project
- CLO 2 demonstrate knowledge and understanding of the chemical techniques they used to do the research in their own chemical project
- CLO 3 demonstrate critical thinking skill in their own research project and understanding the motivation and target of the research
- CLO 4 demonstrate knowledge and understanding of the results of their own chemistry project and its context in the broader research area
- CLO 5 demonstrate ability to integrate the knowledge acquired from previous courses and develop fundamental knowledge of designing research plan

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major.

Offer in 2018 - 2019
Y 1st sem 2nd sem Summer Offer in 2019 - 2020 : Y Exam No Exam

Grade Descriptors (Pass /Fail)
Pass Able to apply knowledge to solve problems in the workplace. Successfully handles and carries out the work required in the job or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, written and oral report, and evaluation by supervisor(s), etc. Students demonstrating excellent performance in the above would be awarded a grade "Distinction".

Fail Very limited or no ability to solve problems in the workplace. Fails to handle or carry out the work required in the job or assigned by supervisor(s). Fails to establish effective collaboration or communication with supervisor(s), other colleagues, or clients in the job. Fails to satisfy the requirements set out in the Course Description regarding working hours, written and oral report, or evaluation by supervisor(s), etc.

Course type
Internship

Assessment Methods and Weighting
Written report written report, employer's feedback and oral presentation 100 CLO 1,2

Additional Course Information
Satisfactory completion of this course can be counted towards the Capstone requirement. Details of internship will be recorded on the student's transcript. This course will be assessed on “Pass/Fail” basis. Students who are interested to enrol in this course should contact the Department to obtain the approval.
Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.

CHEM4999
Chemistry project (12 credits) Academic Year 2018
Offering Department Chemistry
Course Co-ordinator Dr J Y Tang, Chemistry (jinyao@hku.hk)
Teachers Involved (Various teachers in the Department, Chemistry)
Course Objectives A short research project provided by a member of staff (e.g. the students supervisor).
Course Contents & Topics
On successful completion of this course, students should be able to:
- CLO 1 understand the terminology and nomenclature associated with their own research chemistry project
- CLO 2 demonstrate knowledge and understanding of the chemical techniques they used to do the research in their own project
- CLO 3 demonstrate critical thinking skill in their own research project and understanding the motivation and target of the research
- CLO 4 demonstrate knowledge and understanding of the results of their own chemistry project and its context in the broader research area
- CLO 5 demonstrate ability to integrate the knowledge acquired from previous courses and develop fundamental knowledge of designing research plan

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in at least 24 credits of advanced level disciplinary core/elective chemistry courses (CHEM3XXX or CHEM4XXX) in the Chemistry Major including CHEM3241, and CHEM3341, and CHEM3441, and CHEM3541. This capstone course is for Chemistry Major students only.

Offer in 2018 - 2019
Y Year long Offer in 2019 - 2020 : Y Exam No Exam

Grade Descriptors (A to F)
A Show an extensive comprehension of the research project. Demonstrate very able analytical and critical thought with presence of some originality. Demonstrate very limited analytical and critical abilities. Show utilization and reference of several sources, but mostly via summary instead of by analysis and comparison. Limited ability to employ data and results to form appropriate conclusions. Demonstrate limited partial integration of theories, principles, data and methods. Performed moderately effective organizational and presentational skills.
B Show a partial but limited comprehension of the research project. Presence of some analytical and critical thought with use of relevant information from sources. Demonstrated ability to compare different interpretations. Mainly correct but some incorrect utilization of data and results to form appropriate conclusions. Demonstrate some partial integration of theories, principles, data and methods. Conducted moderately effective organizational and presentational skills.
C Show a general but incomplete comprehension of the research project. Presence of some analytical and critical thought with use of relevant information from sources. Demonstrated ability to compare different interpretations. Correct utilization of data and results to form appropriate conclusions. Compose general integration of theories, principles, data and methods. Perform effective organizational and presentational skills.
D Show a partial but limited comprehension, with knowledge of some relevant information, of the research project. Presence of some analytical and critical thought, but with limited analytical and critical abilities. Show utilization and reference of several sources, but mostly via summary instead of by analysis and comparison. Limited ability to employ data and results to form appropriate conclusions. Conducted limited integration of theories, principles, data and methods. Perform limited or marginally effective organizational and presentational skills.
Fail Show little or no comprehension of the research project. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited employment of secondary sources and no critical comparison of them. Incorrectly utilizes data and results and/or unable to form appropriate conclusions. Demonstrate little or no integration of theories, principles, data and methods. Organization and presentational skills are of very limited use or ineffective.

Course Type Project-based course
<table>
<thead>
<tr>
<th>Course Teaching & Learning Activities</th>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reading / Self study</td>
<td>8 hours per week for 24 weeks or longer discussions & meetings</td>
<td>192</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
<td>Details</td>
<td>Weighting in final course grade (%)</td>
</tr>
<tr>
<td></td>
<td>Dissertation</td>
<td>including a written report and an oral presentation</td>
<td>100</td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td>Specialist texts dependant on the selected topic.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Course Information</td>
<td>Third year students with exceptional academic achievement may also apply for this course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCI9001</td>
<td>Practical Chinese for science students (6 credits)</td>
<td>Academic Year</td>
<td>2018</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Offering Department</td>
<td>Chinese</td>
<td>Quota</td>
<td>---</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Mr K W Wong, Chinese (kw Wongb@hku.hk)</td>
<td>Offer in 2018 - 2019</td>
<td>Y 1st sem 2nd sem Offer in 2019 - 2020 : Y</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr C M Chan, Chinese)</td>
<td>Examination</td>
<td>Dec May</td>
</tr>
<tr>
<td></td>
<td>(Dr K T Lam, Chinese)</td>
<td>Grade Descriptors</td>
<td>(A+ to F)</td>
</tr>
<tr>
<td></td>
<td>(Dr S F Lee, Chinese)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Mr K W Wong, Chinese)</td>
<td>A</td>
<td>The student acquired a superb ability to achieve the intended learning outcomes of the course at all levels of learning: describe, apply, evaluate, and synthesize the language techniques for effective communication in all situations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>The student acquired the ability to achieve the intended learning outcomes of the course at all levels of learning: describe, apply, evaluate, and synthesize the language techniques for effective communication in most situations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>The student acquired adequate ability to achieve the intended learning outcomes of the course at low levels of learning (i.e. describe and apply the language techniques for effective communication) but not at high levels of learning (i.e. evaluate and synthesize the language techniques for effective communication).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>The student only has basic familiarity with the subject.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>The student has very limited familiarity with the subject.</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>This course aims to enhance the students’ competence using Chinese for professional communication. It helps the students to master the techniques of writing different types of documents such as memos, emails, letters, announcements, notice, brochures, leaflets, and reports. In addition, topics addressing presentation and discussion techniques, the style and rhetoric of reader-based writings are included to heighten the students’ linguistic sensitivity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>- Grammar & vocabulary of modern Chinese - The Chinese writing system - Techniques of writing short messages: good-news and goodwill messages, bad-news messages, and persuasive messages - Techniques of writing electronic documents: emails; presentations - Styles and rhetoric of reader-based reports, proposals and presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLO 1 develop a balanced competency in modern Chinese and write well-formed sentences</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLO 2 employ rhetorical devices and stylistics, as well as practical writing skills specific to their discipline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLO 3 explore new tactics of communication, initiate discussions and debates and address new challenges</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLO 4 apply their disciplinary knowledge and their Chinese writing skills and professional presentation techniques analytically, critically and creatively in different social or professional discourses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
<td>NIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Type</td>
<td>Lecture-based course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
<td>Details</td>
<td>No. of Hours</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
<td>Small group tutorials</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Group work</td>
<td>Workshops</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
<td>Reading/self study (20 hours) and preparation (12 hours)</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Assessment</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
<td>Details</td>
<td>Weighting in final course grade (%)</td>
</tr>
<tr>
<td></td>
<td>Assignments</td>
<td>Self-access & online exercises (40%) and Tutorial discussion (10%)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>
EASC1020

Introduction to climate science (6 credits)

Offering Department
Earth Sciences

Course Co-ordinator
Dr Z H Liu, Earth Sciences (zhliu@hku.hk)

Teachers Involved
(Dr S H Li,Earth Sciences) (Dr Z H Liu,Earth Sciences)

Course Objectives
This course provides an introduction to the study of global climate systems and climate change. We study the controls of temporal and spatial variations in earth’s climate and its histories of past climates preserved in the geological record. We look at modern research methods that are used in paleoclimatic and paleoenvironmental reconstructions.

Course Contents & Topics
Global climatic systems, climate classification, natural variability of climate, physical causes for changes through geologic time, external and internal forcing mechanisms, solar orbital variations, major climatic events of the past and their effects on how our planet has developed, glacial and interglacial oscillations, predicting future global change.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 identify major aspects of climatology and approaches to climatological study
- CLO 2 explain the factors and physical processes controlling climate system
- CLO 3 understand the driving forces of Earth’s climate change
- CLO 4 recognize the history of Earth’s climate change

Pre-requisites (and Co-requisites and Impermissible combinations)
NIL

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y

Examination
May

Assessment Methods & Weighting

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Project work</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Assessment Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments	25	CLO 2,3
Exam	50	CLO 1,2,3,4
Project	25	CLO 1,4

Required/recommended reading and online materials
Robert V. Rohli and Anthony J. Vega: Climatology (Jones and Bartlett Publishers, 2008)

EASC1401

Blue Planet (6 credits)

Offering Department
Earth Sciences

Course Co-ordinator
Dr P Bach, Earth Sciences (pabach@hku.hk)

Teachers Involved
(Dr P Bach,Earth Sciences)

Course Objectives
The aim is to provide those students who are taking a first course in Earth System Sciences with a fundamental knowledge of how our diverse and living planet Earth works with weaving together an understanding of the dynamic and interactive processes in the Earth’s lithosphere, hydrosphere, biosphere and atmosphere. In addition, students should become familiar with the way the study of Earth Sciences blends observation, information, hypothesis, communication and decision making for a better understanding of the future of our planet.

Course Contents & Topics
The course will introduce and discuss the following topics :
- Introduction to Earth Systems and Habitable Planet Earth
- Lithosphere (Earth Materials, Plate Tectonics, Volcanism, Earthquakes, Surface Processes and Rock Cycle)
- Hydrosphere (Surface- and Groundwater, Oceans and Water Cycle)
- Atmosphere (Composition, Weather, Climate, Green House Effect, Oxygen Cycle)

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 understand the terminology and nomenclature appropriate to the introductory study of Earth Sciences
- CLO 2 demonstrate knowledge and understanding of the underlying concepts associated with the study of the Earth Systems and their dynamic interactive processes
- CLO 3 understand the extent and nature of global change and environmental concerns around us

618
<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture with laboratory component course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-requisites</td>
<td>NIL</td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A Demonstrate thorough mastery of extensive knowledge / competencies/skills at an Earth Science introductory level required for attaining most or all of the course learning outcomes. Shows clear understanding of introductory terminology and concepts and strong abilities to apply and relate them in a range of complex interactive processes between Earth Systems. Demonstrates highly effective observational skills in field as well as organizational skills to present important observations made and uses them to draw appropriate and insightful conclusions with an impressive level of depth and original thoughts.</td>
</tr>
<tr>
<td></td>
<td>B Demonstrate substantial command of knowledge / competencies/skills at an Earth Science introductory level required for attaining most of the course learning outcomes. Shows evidence for understanding of introductory terminology and concepts and some abilities to apply and relate them in a range of complex interactive processes between Earth Systems. Demonstrates effective observational skills in field as well as organizational skills to present important observations made and uses them to draw appropriate and insightful conclusions with some level of depth.</td>
</tr>
<tr>
<td></td>
<td>C Demonstrate general but incomplete command of knowledge / competencies/skills at an Earth Science introductory level required for attaining most of the course learning outcomes. Shows evidence for some understanding of introductory terminology and concepts and some abilities to apply and relate them in a range of complex interactive processes between Earth Systems. Demonstrates moderately effective observational skills in field as well as organizational skills to present observations made mostly correct but with some erroneous use and results to draw appropriate conclusions.</td>
</tr>
<tr>
<td></td>
<td>D Demonstrate partial but limited command of knowledge / competencies/skills at an Earth Science introductory level required for attaining some of the course learning outcomes. Shows evidence of limited understanding of introductory terminology and concepts and limited abilities to apply and relate them in some interactive processes between Earth Systems. Demonstrates limited observational skills in field. Applies limited or barely effective organizational and presentational skills to present observed details and facts correctly. Limited ability to draw appropriate conclusions.</td>
</tr>
<tr>
<td></td>
<td>Fail Demonstrate little or no evidence of command of knowledge / competencies/skills at an Earth Science introductory level required for attaining the course learning outcomes. Shows little or no evidence of understanding of introductory terminology and concepts and little or no abilities to apply and relate them in interactive processes between Earth Systems. Demonstrates poor observational skills in field. Applies incoherent organizational and poor presentational skills. Ineffective presentation of observed details and facts and unable to draw appropriate conclusions.</td>
</tr>
</tbody>
</table>

EASC1402 Principles of geology (6 credits)

Offering Department Earth Sciences
Course Co-ordinator Prof M Sun, Earth Sciences (minsun@hku.hk)
Teachers Involved (Dr J A King,Earth Sciences)
(Dr J M Sun,Earth Sciences)

Course Objectives
This course is an introduction to fundamental principles and concepts in geology:
- Earth’s formation, history and geological time scale
- Rocks and rock cycle
- Plate tectonics: a unifying theory
- Earthquakes and Earth’s interior
- Igneous processes and igneous rocks
- Geomorphology and surficial processes
- Sedimentary rocks
- Folds, Faults and Metamorphism
- Metamorphic rocks
- Principles of stratigraphy; stratigraphic dating methods
- Biostratigraphic methods; fossils and index fossils
- Radiometric dating methods

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 recite the rock cycle and the rock material in the earth’s crust
CLO 2 describe the overview structure of the earth and the key external and internal processes
CLO 3 explain the major geological phenomena in the context of plate tectonics theory
CLO 4 describe the methods in geological dating
CLO 5 name the major events in earth’s history

Pre-requisites (and Co-requisites and Impermissible combinations) NIL

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presenational skills. |
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presenational skills. |
Course C

Course Type: Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>12 sessions x 2 hours</td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td>laboratory practical on rocks and minerals, earthquakes, fossil identification</td>
<td>16</td>
</tr>
<tr>
<td>Field work</td>
<td>1 field trip</td>
<td>8</td>
</tr>
<tr>
<td>Group work</td>
<td>1 group project with presentation</td>
<td>4</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>2-hour written exam</td>
<td>40</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>Practical/field reports</td>
<td>40</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Project report</td>
<td>Presentation and report</td>
<td>20</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

EASC1403

Geological heritage of Hong Kong (6 credits)

Offering Department: Earth Sciences

Course Co-ordinator: Prof M F Zhou, Earth Sciences (mfzhou@hku.hk)

Course Objectives

To give an overview of the geology of Hong Kong, potential geological resources for tourism and the role of geology in the development of Hong Kong's infrastructure.

Course Contents & Topics

6 Lectures on general geology of Hong Kong, geology of Hong Kong's Country Parks, and aspects of geological knowledge pertaining to large scale construction project plus at least 4 weekend field trips (equivalent to a total of 32 hours) guided by experts to localities of geological interest.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 acquire an appreciation of the processes leading to the formation of various landforms
- CLO 2 demonstrate understanding of the major morphological features in Hong Kong
- CLO 3 enhance the observation and analytical skills, and physical ability through participation in the field excursions
- CLO 4 understanding the different impacts on / importance of geological heritage of Hong Kong

Pre-requisites (and Co-requisites and Impermissible combinations)

NIL

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y

Assessment

- Examination: May
- Project report: 10 CLO 1,2,3,4
- Group project presentation: 10 CLO 1,2,3,4
- Individual essay: 15 CLO 1,2,3,4
- Field trips: 15 CLO 1,2,3,4
- 2-hour written examination: 50 CLO 1,2,4
- Group presentation: 10 CLO 1,2,3,4
- Group project: 10 CLO 1,2,3,4

EASC1404

Early life on earth (6 credits)

Offering Department: Earth Sciences

Course Co-ordinator: TBC, Earth Sciences ()

Teachers Involved: J. A. Rosemary and E. A. N. Rosemary.
Course Objectives
This course focuses on the origins of life. It provides an overview of Earth's early environments, how life is thought to have originated on Earth, and how the Earth's dynamic environment impacted the origin of life. This course will also provide a basic overview of habitable environments on Earth and elsewhere in the Solar system.

Course Contents & Topics
This course will cover the following topics: the composition and properties of the early Earth and Earth's first oceans; the central role of water in life; abundance of biological elements on the early Earth and elsewhere in the Solar system; possible conditions for the synthesis of life's first building blocks; the (geo)chemical roots of early life on Earth and the search for life's signatures in the solar system and beyond.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- **CLO 1**: Describe the basic physical and chemical conditions on the early Earth
- **CLO 2**: Explain and describe the role of water and extreme geochemical conditions in the synthesis of biological molecules
- **CLO 3**: Understand the role that different geological environments played during the origins of life
- **CLO 4**: Identify challenges associated with each step in the origins of life
- **CLO 5**: Investigate a current origins of life topic

Pre-requisites (and Co-requisites and Impermissible combinations)
NIL

Offer in 2018 - 2019
<table>
<thead>
<tr>
<th>Offer in 2018 - 2019</th>
<th>Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Examination</td>
</tr>
</tbody>
</table>

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Descriptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Student demonstrates thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Shows strong analytical and critical abilities and logical thinking, with evidence of original thought, and the ability to apply his/her knowledge to a wide range of problems that center around "origins of life" topics, and at the same, can combine knowledge from the natural sciences to better understand potential early life processes on Earth and elsewhere. Student shows the ability to apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Student demonstrates substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Shows evidence of analytical and critical abilities and logical thinking, and apply his/her knowledge to a range of problems in the field of the "origins of life", and at the same, is capable to combine knowledge from the natural sciences to better understand potential early life processes on Earth and elsewhere. Student shows the ability to apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Student demonstrates general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Shows evidence of some analytical and critical abilities and logical thinking, and ability to apply his/her knowledge to a range of problems in the field of the "origins of life", and at the same, is capable to combine knowledge from the natural sciences to better understand potential early life processes on Earth and elsewhere. Shows the ability to apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Student demonstrates partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability understand key topics in the "origins of life" field. Shows the ability to apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Student demonstrates little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Shows very little or no ability to apply knowledge to understand basic topics related to the origins of life. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>1 midterm, group presentations, short-essay</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour written examination</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Sections from: Mason, S.F.: Chemical Evolution (Oxford University Press, 1991)

EASC1405 Offering Department

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Academic Year</th>
<th>Quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Sciences</td>
<td>2018</td>
<td>---</td>
</tr>
</tbody>
</table>

Course Co-ordinator
Dr S H Li, Earth Sciences (shli@hku.hk)

Teachers Involved
Dr S H Li, Earth Sciences

Course Content & Topics
Man and radiation; principles of nuclear technology; case studies of nuclear techniques applied in arts, engineering, biological, physical and social sciences; radiation on earth and beyond; industrial application of nuclear techniques; nuclear techniques in medical study. Future development in nuclear technologies.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- **CLO 1**: Recognize the science fundamentals in nuclear technologies
- **CLO 2**: Explain and describe the principles of nuclear technologies applied
- **CLO 3**: Have the awareness of current applications of nuclear sciences
- **CLO 4**: Demonstrate the knowledge and understanding of the underlying concepts associated with nuclear technologies

Pre-requisites (and Co-requisites and Impermissible combinations)
NIL

Offer in 2018 - 2019
<table>
<thead>
<tr>
<th>Offer in 2018 - 2019</th>
<th>Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Examination</td>
</tr>
</tbody>
</table>

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Descriptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability understand key topics in the "origins of life" field. Shows the ability to apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Shows very little or no ability to apply knowledge to understand basic topics related to the origins of life. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>
Course: Fluid/solid interactions in earth processes (6 credits)

Course Information
- **Offering Department**: Earth Sciences
- **Course Co-ordinator**: Dr K H Lemke (kono@hku.hk)
- **Course Objectives**: This course provides students with an introduction to the biosphere, including physical, chemical, geological and biological interpretations on the co-evolution of the biosphere, atmosphere, hydrosphere and geosphere through deep geological time, the current Earth-Life interactions with the influence of human beings and the future of the Human-Earth system.

Course Contents & Topics
- A habitable planet, the carbon cycle; plate tectonics, climate and life; mountains and climate change; the emergence and persistence of life; life in the Phanerozoic; the Earth at extremes; the future of the Human-Earth system.

Course Outcomes
- On successful completion of this course, students should be able to:
 - CLO 1 understand the coevolution of the inanimate world and the living world on Earth through deep geological time.
 - CLO 2 explain why the Earth is a habitable planet.
 - CLO 3 understand the biological process as an agent of the modern and past Earth system.
 - CLO 4 demonstrate knowledge and understanding of the natural carbon cycle and the impacts of human activities.
 - CLO 5 analyse qualitatively questions related to systematic structure and evolution of the Earth-life system.

Pre-requisites (and Co-requisites and Impermissible combinations)
- Pass in EASC1401

Offer in 2018 - 2019
- **Y** 2nd sem. Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)
- **A**: Demonstrate thorough and complete grasp of the subject in order to fulfill most or all learning outcomes. Show clear understanding of the connections between the geosphere, hydrosphere and biosphere of the modern Earth and in the geological past. Able to understand the interactions between human beings and the nature only happens as the latest processes on Earth.
- **B**: Demonstrate understanding at an advanced level of extensive knowledge and skills with evidence for attaining all the course learning outcomes. Show understanding of the connections between the geosphere, hydrosphere and biosphere of the modern Earth and in the geological past. Can demonstrate the interactions between human beings and the nature only happen in the latest geological time.
- **C**: Demonstrate general but incomplete understanding required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking. Moderately effective organization and presentation skills.
- **D**: Demonstrate partial but limited understanding for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Limited or barely effective organizational and presentational skills.
- **Fail**: Get no or little knowledge about the subject. No evidence for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Very little or no ability to solve problems. Poor organization and presentational skills.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Group activities and reports</td>
<td>30</td>
<td>CLO 1.2,3</td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour</td>
<td>50</td>
<td>CLO 1.2,4</td>
</tr>
<tr>
<td>Project reports</td>
<td>Individual Report</td>
<td>20</td>
<td>CLO 1.3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
- C. Cockell, R. Corfield, N. Edwards and N. Harris: An Introduction to the Earth-Life System (Cambridge University Press, 2008)

Course: Introduction to the earth-life system (6 credits)

Course Information
- **Offering Department**: Earth Sciences
- **Course Co-ordinator**: Dr T Naka
- **Course Objectives**: This course provides students with an introduction to the biosphere, including physical, chemical, geological and biological interpretations on the co-evolution of the biosphere, atmosphere, hydrosphere and geosphere through deep geological time, the current Earth-Life interactions with the influence of human beings and the future of the Human-Earth system.

Course Contents & Topics
- A habitable planet, the carbon cycle; plate tectonics, climate and life; mountains and climate change; the emergence and persistence of life; life in the Phanerozoic; the Earth at extremes; the future of the Human-Earth system.

Course Outcomes
- On successful completion of this course, students should be able to:
 - CLO 1 understand the coevolution of the inanimate world and the living world on Earth through deep geological time.
 - CLO 2 explain why the Earth is a habitable planet.
 - CLO 3 understand the biological process as an agent of the modern and past Earth system.
 - CLO 4 demonstrate knowledge and understanding of the natural carbon cycle and the impacts of human activities.
 - CLO 5 analyse qualitatively questions related to systematic structure and evolution of the Earth-life system.

Pre-requisites (and Co-requisites and Impermissible combinations)
- Pass in EASC1401

Offer in 2018 - 2019
- **Y** 2nd sem. Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)
- **A**: Demonstrate thorough and complete grasp of the subject in order to fulfill most or all learning outcomes. Show clear understanding of the connections between the geosphere, hydrosphere and biosphere of the modern Earth and in the geological past. Able to understand the interactions between human beings and the nature only happens as the latest processes on Earth.
- **B**: Demonstrate understanding at an advanced level of extensive knowledge and skills with evidence for attaining all the course learning outcomes. Show understanding of the connections between the geosphere, hydrosphere and biosphere of the modern Earth and in the geological past. Can demonstrate the interactions between human beings and the nature only happen in the latest geological time.
- **C**: Demonstrate general but incomplete understanding required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking. Moderately effective organization and presentation skills.
- **D**: Demonstrate partial but limited understanding for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Limited or barely effective organizational and presentational skills.
- **Fail**: Get no or little knowledge about the subject. No evidence for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Very little or no ability to solve problems. Poor organization and presentational skills.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Group activities and reports</td>
<td>30</td>
<td>CLO 1.2,3</td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour</td>
<td>50</td>
<td>CLO 1.2,4</td>
</tr>
<tr>
<td>Project reports</td>
<td>Individual Report</td>
<td>20</td>
<td>CLO 1.3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
- C. Cockell, R. Corfield, N. Edwards and N. Harris: An Introduction to the Earth-Life System (Cambridge University Press, 2008)
Course Objectives

This course provides an overview of the physical and chemical principles that govern Earth processes

Course Contents & Topics

- Earth in the laboratory, scaling time and space (1)
- Introduction to thermodynamics, and the concept of equilibrium (2)
- States of matter, phase diagrams - sublimation, condensation, crystallisation and melting (2)
- Mineral-solution interfaces (1)
- Energy exchange in Earth environments: convection, conduction and radiation (2)
- Kinetics, reaction rates and isotope fractionation on geological time scales (1)
- Newtonian mechanics and basic laws of motion (1)
- Fluid flow and particle transport (1)
- Gravitational, geostrophic and centripetal forces (1)

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand basic principles of equilibrium thermodynamics as applied to the Earth Sciences
- CLO 2 use phase diagrams to explain processes of fluid/solid interactions, in particular systems containing melts and solids
- CLO 3 describe how energy is exchanged throughout the Earth System
- CLO 4 demonstrate an understanding of principles governing isotope exchange reactions in single phase systems and across fluid/solid and fluid/gas interfaces.
- CLO 5 comprehend the principles of motion and the basic forces affecting movement of gases, liquids and solids on Earth

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in EASC1401 or EASC1402

Offer in 2018 - 2019 Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>No Exam</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture with laboratory component course

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>12 sessions x 2 hour</td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td>paper exercises</td>
<td>24</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Assignments</td>
</tr>
<tr>
<td>Test</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLO 1</td>
</tr>
<tr>
<td>CLO 2</td>
</tr>
<tr>
<td>CLO 3</td>
</tr>
<tr>
<td>CLO 4</td>
</tr>
<tr>
<td>CLO 5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

EASC2402

Field and laboratory methods (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Earth Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Dr P Bach, Earth Sciences (pabach@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr P Bach,Earth Sciences) (Prof Y Q Zong,Earth Sciences)</td>
</tr>
</tbody>
</table>

Course Objectives

This course is hands-on field and laboratory-based that introduces basic geological and geomorphological field and mapping techniques and the use of geological equipment and air photographs, an overview of the geology and natural environment of Hong Kong.

Course Contents & Topics

- Maps and map reading, map reference system (lectures and class practice)
- Interpretation of geological and topographic maps: topographic and geological cross sections, geological structures from outcrop patterns and structural contour lines (horizontal, inclined strata, folded, and faulted strata, unconformities (lectures and class practice)
- Interpretation and use of air photographs (class practice)
- Field observation and description of rocks, outcrops (with fieldtrips in Hong Kong)
- Field observation and description of landscape units (with fieldtrips in Hong Kong)
- Laboratory equipment and techniques (lectures and lab sessions)

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 read geological maps and comprehend 3-D geological structures from 2-D geological maps
- CLO 2 construct a geological cross section showing interpreted subsurface rocks and structures, and natural landscape units
- CLO 3 demonstrate techniques for basic field observations, measurements and identifications
- CLO 4 create and interpret an internally consistent geological and landscape maps from a set of collected field observations and data
- CLO 5 develop skills in integrating geological field data in determining a geological and landscape history and writing a structured field report
- CLO 6 understand to the basics of a series of laboratory techniques for geological and environmental studies
EASC2404
Introduction to atmosphere and hydrosphere (6 credits)

Offering Department
Earth Sciences

Academic Year
2018

Course Co-ordinator
Dr J R Ali, Earth Sciences (jrali@hku.hk)

Teachers Involved
Dr J R Ali, Earth Sciences

Course Objectives
This course introduces the atmosphere and hydrosphere systems, and explains at a basic level how they interact with one another.

Course Contents & Topics
Introduction and course plan, Earth within a broader context (Solar System and other key features); Geological forces shaping the floor of the Oceans and Seas; Water Structure, Ocean Structure and Seawater Composition/Chemistry; Introduction to the Atmospheric; Heating Earth's surface and Atmosphere; Temperature; Moisture and Atmospheric Stability; Forms of condensation and precipitation; Hydrological Cycle - an overview; Air Pressure and Winds; Intro to Atmospheric Circulation and Weather Systems; Ocean Circulation; Waves; Tides; Coasts; Groundwater basics; Groundwater usage, contamination, caves and karst; Glaciers and glacial landscapes; Climate system, proxy data, causes of climate change; Effects of climate change.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 understand the important features which distinguish Earth from the other planets within our Solar System, particularly with regards to its outer fluid envelopes.
CLO 2 appreciate that on a geological timescale, the ocean basins and the seas are continually changing their location and morphology, and why this is the case.
CLO 3 understand the key features of water, and the critical role the compound plays in the Atmosphere-Hydrosphere system.
CLO 4 understand the basic physical phenomena associated with the Atmosphere and the Oceans/Seas and their important lower-order elements.
CLO 5 have an awareness of the scientifically "hot" Atmosphere and Hydrosphere topics.

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in EASC1401 or EASC1402

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

A Thorough grasp of the subject; evidence of strong critical abilities and logical thinking; highly effective organizational and presentialtal skills; insightful use and critical analysis / evaluation of information drawn from a full range of high quality sources and to quote/reference aptly; integration of the full range of appropriate theories, principles, evidence and techniques.
B Substantial grasp of the subject: evidence of critical abilities and logical thinking; effective organizational and presentialtal skills; critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly; general integration of theories, principles, evidence and techniques.
C General but incomplete grasp of the subject; evidence of some critical abilities and logical thinking; moderately effective organizational and presentialtal skills; use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/reference aptly; some partial integration of theories, principles, evidence and techniques.
D Limited grasp of the subject, retention of some relevant information of the subject; limited organizational and logical thinking; limited or barely effective organizational and presentialtal skills; use and reference of several sources, but mainly through summary rather than analysis and comparison; limited integration of theories, principles, evidence and techniques.
Fail Little or no grasp of the knowledge and understanding of the subject; little or no evidence of critical abilities and logical / coherent thinking; incoherent organization and poor presentialtal skills; limited use of secondary sources and no critical comparison of them; little or no inapt integration of theories, principles, evidence and techniques.

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments Lab Assignments 10 CLO 1,2
Report Field Work Assessment 70 CLO 2,3,4,5
Test 20 CLO 1,2

Laboratory work 5-day field camp & 2 day trips 56
Reading / Self study 12 hours paper exercises 12
100

Course Type
Field camps

Activities Details No. of Hours
Lectures 12 sessions x 1 hour 12
Field work
Laboratory work 12 hours paper exercises 12

Required/recommended reading and online materials

Grade Descriptors
(A+ to F)

A Pass in EASC1401 or EASC1402

Department of Earth Sciences
Course Learning & Topics

On successful completion of this course, students should be able to:

CLO 1 demonstrate an understanding of basic principles of geochemistry and their applications to geological studies.

CLO 2 describe element distribution in major rocks.

CLO 3 apply the principles of isotopes to dating and studies of petrogenesis and climate changes.

CLO 4 demonstrate knowledge of the chemical weathering processes.

Course Contents & Topics

- Physical and chemical state of the earth,
- Differentiation of and cosmic abundance of elements,
- Aqueous solutions and chemistry of natural water,
- Trace element,
- Chemistry of igneous rocks,
- Chemical controls on soil formation,
- Radioactive isotope geochemistry,
- Stable isotope geochemistry,
- Oxidation and reduction,
- Chemical weathering.

Course Objectives

This course provides an understanding of the fundamentals and approaches for geochemical analysis. It introduces students to the basic chemical principles, modern techniques and quantitative analysis for studying the earth.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>20</td>
<td>CLO 4, 5</td>
<td></td>
</tr>
<tr>
<td>Essay</td>
<td>25</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>50</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>5</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>including tutorials & discussion</td>
<td>24</td>
</tr>
<tr>
<td>Project work</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>20</td>
<td>CLO 4, 5</td>
<td></td>
</tr>
<tr>
<td>Essay</td>
<td>25</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>50</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>5</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in EASC1402

Course Grade (%)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate extensive knowledge and skills at an advanced level required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, and ability to apply highly effective lab skills and techniques to solve problems. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
<td>CLO 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply effective lab skills and techniques to solve problems. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.</td>
<td>CLO 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply moderately effective lab skills and techniques to solve problems. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.</td>
<td>CLO 1, 2, 3, 4, 5, 6, 7, 8</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities, and limited ability to apply partially effective lab skills and techniques to solve problems. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.</td>
<td>CLO 1, 2, 3, 4, 5, 6, 7, 8</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking, and ability to apply minimally effective or ineffective lab skills and techniques to solve problems. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.</td>
<td>CLO 1, 2, 3, 4, 5, 6, 7, 8</td>
</tr>
</tbody>
</table>

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>12 sessions x 2 hours</td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td>paper exercises</td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>40</td>
<td>CLO 1, 2, 3, 4</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>60</td>
<td>CLO 1, 2, 3, 4</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- Walther J.V.: Essentials of Geochemistry (Jones and Bartlett Publishers 2005)
Course Contents and Topics
- Mineral crystalization, mineral chemistry
- Mineral symmetry, Miller indices
- Physical properties of minerals
- Mineral composition, structure and classification
- Identification of rock forming minerals-hand specimens
- Use of petrographic microscope
- Optical properties under plane polarized light
- Optical properties under orthoscopic illumination
- Optical properties under conoscopic illumination
- Identification of rock forming minerals in thin sections
- Chemical variations of minerals

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 describe the methods and systems used in classification of minerals
- CLO 2 apply the physical properties to identify rock-forming minerals
- CLO 3 describe the principle of optical mineralogy
- CLO 4 identify the common rock-forming minerals in hand specimens and thin sections

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in EASC1402

Course Objectives
To provide essential knowledge of mineralogy, to familiarize students with common minerals that are basis for study of petrography of igneous, sedimentary and metamorphic rocks.

Course Type
Lecture with laboratory component course

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate extensive knowledge and skills at an advanced level required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, and ability to apply highly effective lab skills and techniques to solve problems. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply effective lab skills and techniques to solve problems. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply moderately effective lab skills and techniques to solve problems. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities, and limited ability to apply partially effective lab skills and techniques to solve problems. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking, and ability to apply minimally effective or ineffective lab skills and techniques to solve problems. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Assessment Methods

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>12 sessions x 2 hours</td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td>12 sessions x 2 hours</td>
<td>24</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Reading / Self Study

Examination

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td>60</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Assignments</td>
<td>40</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in EASC1401 or EASC1402 or PHY1650

EASC2408

Offering Department
Earth Sciences

Course Co-ordinator
Dr M H Lee, Earth Sciences (mhlee@hku.hk)

Teachers Involved
- Dr J Michalski,Earth Sciences
- Prof M Sun,Earth Sciences

Course Objectives
This course provides students with an introduction to the origin, evolution, structure, composition and distribution of matter in the Solar System condensed in the form of planets, satellites, comets, asteroids and rings, with particular emphasis on surface features, internal structures and histories from a geological point of view. The course incorporates the findings from recent space investigations, planetary imagery, remote sensing and Earth analogues to extraterrestrial features into a fascinating portrayal of the geological activities and histories in our Solar System.

Course Contents & Topics
Formation, evolution, internal structure and surface processes of planetary bodies; the terrestrial planets Mercury, Venus, the Earth-Moon system, and Mars; the giant planets Jupiter, Saturn, Uranus, and Neptune and their moons; Pluto, Charon and the Kuiper Belt; asteroids, meteorites, comets and the Oort cloud; Origin of our Solar System.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 describe the basic features of our Solar System and its constituents
- CLO 2 explain how this knowledge is acquired through observations and experiments
- CLO 3 demonstrate knowledge and understanding of the key geological, physical and chemical processes governing the structure, formation and evolution of planetary bodies
- CLO 4 compare and contrast our own planet Earth with other planetary bodies

Required/recommended reading and online materials

Planetary geology (6 credits)

Offering Department
Earth Sciences

Quota

Academic Year
2018
EASC2409 Regional field studies (6 credits)

<table>
<thead>
<tr>
<th>Offer in 2018 - 2019</th>
<th>Y</th>
<th>2nd sem</th>
<th>Offer in 2019 - 2020</th>
<th>Y</th>
<th>Examination</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A</td>
<td>Demonstrate thorough mastery of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
<td>C</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>No Exam</td>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textual Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Type</td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic Year</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
<td>Earth Sciences</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Dr J R Ali, Earth Sciences (jrali@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr J R Ali (Taiwan Field Trip),Earth Sciences) (Prof M Sun (Wuhan Field Trip),Earth Sciences)</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>This course is field-based and introduces geology of China, Taiwan and/or regions in the vicinity of Hong Kong through hands on studies and field excursions. The course is compulsory for majors in Geology (accredited pathway)</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>The course will introduce the following topics: Geological studies in Southern China and/or Taiwan - Geological history of S. China & Taiwan - Recognition of rock units and minerals in the field - Field recognition and description of geological structures - Stratigraphic measurements - Field geology of active and passive margins - Engineering geology - Management of geological hazards - Basic geological mapping techniques</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to: CLO 1 have acquired a broad understanding of the geological history of east Asia, in particular, Taiwan and South China CLO 2 be able to undertake basic field observations, stratigraphic measurements and identifications of rocks and minerals CLO 3 have acquired at least 3 days of experience in independent stratigraphic logging and geological mapping CLO 4 develop skills in integrating geological field data in determining a geological history and writing a structured field report</td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
<td>Pass in EASC1401 or EASC1402; and consent of course coordinator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textual Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer in 2018 - 2019</td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
</tr>
<tr>
<td>Fail</td>
</tr>
</tbody>
</table>

| **Required/recommended reading and course notes provided** | Comprehensive course notes provided |

<table>
<thead>
<tr>
<th>Textual Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
</tr>
<tr>
<td>No of Hours</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textual Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Type</td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textual Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
</tr>
<tr>
<td>Teachers Involved</td>
</tr>
<tr>
<td>Course Objectives</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textual Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer in 2018 - 2019</td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
</tr>
<tr>
<td>Fail</td>
</tr>
</tbody>
</table>

| **Required/recommended reading and course notes provided** | Comprehensive course notes provided |

<table>
<thead>
<tr>
<th>Textual Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
</tr>
<tr>
<td>No of Hours</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textual Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Type</td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
EASC2410

Data analysis and modeling in earth sciences (6 credits)

Offering Department: Earth Sciences
Course Co-ordinator: Dr B Zhang, Earth Sciences (binzh@hku.hk)

Course Objectives: This course uses a hands-on approach to introduce the basic principles of data analysis and modeling in earth sciences through practical examples.

Course Contents & Topics: Statistical description of data (sampling, errors, distributions and their moments, hypothesis testing); correlation, linear and nonlinear regression; time series analysis; spatial data visualization and analysis; basic numerical methods and numerical solutions of equations; use of computer software.

Course Learning Outcomes: On successful completion of this course, students should be able to:

- CLO 1: Explain basic statistical concepts and their applications to earth science data processing and modeling
- CLO 2: Demonstrate knowledge in basic numerical methods, their applications in earth sciences, and limitations
- CLO 3: Apply appropriate methods to analyze, process and visualize earth science data, with the help of computer software

Pre-requisites (and Co-requisites and Impermissible combinations): Pass in EASC1401

Offer in 2018 - 2019: Y
2nd sem
Offer in 2019 - 2020: Y

Grade Descriptors (A to F):

- **A:** Demonstrate thorough mastery of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- **B:** Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- **C:** Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- **D:** Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
- **Fail:** Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type: Lecture with laboratory component course

Course Teaching & Learning Activities:

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting:

- **Methods**
 - Assignments and project 60 CLO 1,2,3
 - Two in-class examinations (20% each) 40 CLO 1,2,3

Required/recommended reading and online materials:

EASC3020

Global change: anthropogenic impacts (6 credits)

Offering Department: Earth Sciences
Course Co-ordinator: Dr Z H Liu, Earth Sciences (zhihu@hku.hk)

Course Objectives: This course will explore the role of humans in global change and the environmental responses to such changes. Causes and impacts of climate change will be discussed.

Course Contents & Topics: Global warming, greenhouse gas emission, past climates, climatic and environmental changes vs. culture evolution, natural vs. anthropogenic climate change, model projections of future climate change, scientific uncertainty, impacts of climate change, including sea level, fresh water, food, ecosystems and human health

Course Learning Outcomes: On successful completion of this course, students should be able to:

- CLO 1: recognise the complexity of global climate systems
- CLO 2: recognise the controversy of anthropogenic global warming
- CLO 3: identify modern environmental issues
- CLO 4: assess the credibility of various scientific arguments

Pre-requisites (and Co-requisites and Impermissible combinations): Pass in EASC2404 or ENVS2001

Offer in 2018 - 2019: Y
1st sem
Offer in 2019 - 2020: N

Grade Descriptors (A to F):

- **A:** Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Demonstrate critical use of data and results to draw appropriate and insightful conclusions. Show insightful use and critical analysis / evaluation of information drawn from a full range of high quality sources and to quote/reference aptly.
- **B:** Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Demonstrate correct use of data and results to draw appropriate conclusions. Show critical use of relevant information from sources and ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly.

Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning
EASC3402 Petrology (6 credits) Academic Year 2018
Offering Department Earth Sciences
Teachers Involved (Dr M Pittman,Earth Sciences)
(Prof G Zhao,Earth Sciences)
(Prof M Sun,Earth Sciences)
Teachers Involved (Prof G Zhao,Earth Sciences)
Teachers Involved (Prof M Sun,Earth Sciences)

Course Objectives
To give students an understanding of the features in sedimentary, igneous and metamorphic rocks, as well as the ability to identify major rock types and their textures and structures in both hand specimens and under microscope.

Course Contents & Topics
- Magma and magmatism; textures and structures of igneous rocks, classification of igneous rocks, including volcanism and plutonism
- Basic igneous rocks
- Intermediate igneous rocks
- Acid igneous rocks
- Sedimentary diagenesis, classification of sedimentary rocks; textures and structures of sedimentary rocks.
- Clastic sedimentary rocks: conglomerate and sandstone, siltstone and mudstone
- Biochemical sedimentary rocks: limestone and dolostone
- Metamorphism; controlling factors of metamorphism; textures and structures of metamorphic rocks; classification of metamorphic rocks
- Meta-pelitic rocks
- Meta-basic rocks
- Meta-carbonate rocks and meta-felsic rocks

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 identify major igneous rocks and their textures and structures in both hand specimens and under microscope
CLO 2 identify major sedimentary rocks and their textures and structures in both hand specimens and under microscope
CLO 3 identify major metamorphic rocks and their textures and structures in both hand specimens and under microscope
CLO 4 make full description and write report on the above rock types

Pre-requisites
Pass in EASC2407

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems.

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities
<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>12 sessions x 2 hours</td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td>specimen descriptions & thin-section observations under microscope</td>
<td>24</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>40</td>
<td>CLO 1.2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>50</td>
<td>CLO 1.2,4</td>
</tr>
<tr>
<td>Essay</td>
<td>Coursework Assessment</td>
<td>25</td>
<td>CLO 1.2,4</td>
</tr>
<tr>
<td>Project report</td>
<td></td>
<td>25</td>
<td>CLO 2.3,4</td>
</tr>
</tbody>
</table>
EASC3403

Sedimentary environments (6 credits)

Offering Department
Earth Sciences

Course Co-ordinator
Dr N R McKenzie, Earth Sciences (ryan00@hku.hk)

Teachers Involved
(Dr J King, Earth Sciences)
(Dr N R McKenzie, Earth Sciences)

Course Objectives
This course discusses the origin, diagenesis, classification and economic importance of sedimentary rocks. Students will learn features and processes of sedimentary geology, paleontology and depositional processes.

Course Contents & Topics
- Overview of sedimentary geology
- Physics of erosion, transportation and sedimentation
- Sedimentary structures
- Depositional environments (non-marine)
- Depositional environments (marine)
- Sequence stratigraphy
- Basin analysis
- Sedimentary environment around Hong Kong
- Sedimentary environment on Mars

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 describe the nature and significance of sedimentary features and structures
CLO 2 identify carbonate and siliciclastic rocks in hand sample
CLO 3 describe the facies in a depositional environment
CLO 4 undertake detailed study of a stratigraphic section in the field
CLO 5 conduct basic observations and interpretations from outcrops

Pre-requisites
Pass in EASC2402 or EASC3402

Offer in 2018 - 2019
Y 2nd sem

Grade Descriptors (A+ to F)
A Demonstrate thorough grasp of the subject. Show strong analytical abilities and logical thinking, with evidence of original thought. Apply highly effective lab/fieldwork skills and techniques. Apply highly effective organizational and presentational skills.
B Demonstrate substantial grasp of the subject. Show strong analytical abilities and logical thinking. Apply effective lab/fieldwork skills and techniques. Apply highly effective organizational and presentational skills.
C Demonstrate general but incomplete grasp of the subject. Show some analytical abilities and logical thinking. Apply moderately effective lab/fieldwork skills and techniques. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited grasp of the subject. Show some analytical abilities and logical thinking. Apply partially effective lab/fieldwork skills and techniques. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no grasp of the subject. Evidence of little or lack of analytical abilities and logical thinking. Apply minimally effective lab/fieldwork skills and techniques. Organization and presentational skills are ineffective.

Examination
May

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>40</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td>10</td>
<td>CLO 3</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>30</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities Activities Details No. of Hours
Lectures 12 sessions x 2 hours 24
Laboratory 6 sessions x 2 hours 12
Field work 1 day trip with field project 8
Project work Examples for sedimentary environments 12
Reading / Self study

Required/recommended reading and online materials
Sedimentology and Stratigraphy (Second Edition), Gary Nichols

EASC3404

Structural geology (6 credits)

Offering Department
Earth Sciences

Course Co-ordinator
Dr J R Ali, Earth Sciences (jrali@hku.hk)

Teachers Involved
(Dr A A G Webb, Earth Sciences)
(Dr J R Ali, Earth Sciences)

Course Objectives
Structural Geology is the study of rock deformation. Participants in this course will learn about the geometries, kinematics, and mechanics of rock deformation, and how to answer structural geology questions. The course will involve heavy use and generation of geological maps and cross sections and explore their utility for interpreting structure.

Course Contents & Topics
Class-room based: lecture and laboratory
- Introduction: basics on stress, strain, stress-strain relation
- Stress
- Stereonets
- Deformation mechanisms
- Strain
- Joints
- Rheology
- Faults and fault systems
- Fault plane solutions

Department of Earth Sciences
Department of Earth Sciences

Course Learning Outcomes

On successful completion of this course, students should be able to:

- Understand the fundamentals of remote sensing
- Appreciate 3D rock and 4D rock-time relationships
- Use software for remote sensing
- Process, analyse and correct remote sensing data
- Apply remote sensing to modern problems in geoscience, climate science, planetary science, and your own interests
- Integrate remote sensing data with Geographic Information Systems (GIS)
- Relate your work to bigger career goals and how to be a professional scientist
- Integrate your new skills into your CV so that you have an advantage in the job market

Pre-requisites

Pass in EASC2402 and EASC3402

Offer in 2018 - 2019

Y 1st sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Thorough grasp of the subject; evidence of strong critical abilities and logical thinking; apply knowledge to a wide range of complex, familiar and unfamiliar situations; highly effective fieldwork skills and techniques; critical use of data and results to draw appropriate and insightful conclusions; integration of the full range of appropriate theories, principles, evidence and techniques.</td>
</tr>
<tr>
<td>B</td>
<td>Substantial grasp of the subject; evidence of critical abilities and logical thinking; apply knowledge to familiar and some unfamiliar situations; effective fieldwork skills and techniques; correct use of data and results to draw appropriate conclusions; general integration of theories, principles, evidence and techniques.</td>
</tr>
<tr>
<td>C</td>
<td>General but incomplete grasp of the subject; evidence of some critical abilities and logical thinking; apply knowledge to most familiar situations; moderately effective fieldwork skills and techniques; mostly correct but some erroneous use of data and results to draw appropriate conclusions; some partial integration of theories, principles, evidence and techniques.</td>
</tr>
<tr>
<td>D</td>
<td>Limited grasp of the subject, retention of some relevant information of the subject; evidence of limited critical abilities; limited ability to apply knowledge to solve problems; partially effective fieldwork skills and techniques; limited ability to use data and results to draw appropriate conclusions; limited integration of theories, principles, evidence and techniques.</td>
</tr>
<tr>
<td>Fail</td>
<td>Little or no grasp of the knowledge and understanding of the subject; little or no evidence of critical abilities and coherent thinking; very little or no ability to apply knowledge to solve problems; minimally effective or ineffective fieldwork skills and techniques; misuse of data and results and/or unable to draw appropriate conclusions; little or no or inapt integration of theories, principles, evidence and techniques.</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>60</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
<tr>
<td>Examination</td>
<td>40</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Offered Department

Earth Sciences

Course Co-ordinator

Dr J Michalski, Earth Sciences (jmichal@hku.hk)

Teachers Involved

(Prof J Michalski, Earth Sciences)

Course Objectives

- Familiarity with remote sensing data is an essential skill for the modern day geoscientist and environmental scientist. This course will teach you not only about the fundamentals of remote sensing, but also practical skills such as: 1) how to obtain remote sensing data, 2) how to process, correct and interpret images, 3) how to apply results to scientific problems, 4) how to report on your results, 5) how to use cutting edge software, and 6) how to represent your new skills on your CV.

Course Contents & Topics

1. Explanation of the fundamentals of remote sensing
2. Description of key remote sensing platforms, sensors and their purposes.
3. How to obtain data of sites on Earth and other planets.
4. How to process, analyse and correct remote sensing data.
5. How to interpret remote sensing data.
6. How to use software for remote sensing. You will be an expert in highly employable skills if you work hard.
7. How to integrate remote sensing data with Geographic Information Systems (GIS)
8. How to apply remote sensing to modern problems in geoscience, climate science, planetary science, and your science.
9. How to relate your work to bigger career goals and how to be a professional scientist.
10. How to integrate your new skills into your CV so that you have an advantage in the job market.

Course Learning

On successful completion of this course, students should be able to:

- Process, analyse and correct remote sensing data
- Use software for remote sensing
- Understand the fundamentals of remote sensing
- Appreciate 3D rock and 4D rock-time relationships
- Integrate remote sensing data with Geographic Information Systems (GIS)
- Relate your work to bigger career goals and how to be a professional scientist
- Integrate your new skills into your CV so that you have an advantage in the job market.
Course Objectives & Topics

Course Contents & Topics

- The Quaternary period (1)
- Climate changes in the last 2.6 million years (1)
- Driven forces of climate change (1)
- Quantitative reconstruction methods (1)
- Pollen analysis and biological proxies (2)
- Climate change in arid regions (1)
- Quaternary geochronology (1)
- Climate changes in East Asia (1)
- Climate change impacts on human evolution and society (1)
- Global warming and future climate change (1)
- Climate change in Asia and Europe

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1: understand the earth climate change during last 2.6 million years
- CLO 2: understand the driving forces of climate changes in different scales
- CLO 3: learn the methods for palaeo-environment reconstruction
- CLO 4: understand the impacts of climate changes
- CLO 5: synthesize and interpret data sets of climate change proxies

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in EASC2404 or EASC2406 or EASC2407 or ENVS2002

Outcomes

<table>
<thead>
<tr>
<th>CLO</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>demonstrate knowledge of how remotely sensed data are acquired</td>
</tr>
<tr>
<td>2</td>
<td>comprehend the basic techniques of image processing</td>
</tr>
<tr>
<td>3</td>
<td>handle remotely sensed data within geographic information systems</td>
</tr>
<tr>
<td>4</td>
<td>understand how remotely sensed be used for environmental assessment</td>
</tr>
<tr>
<td>5</td>
<td>evaluate and interpret remotely sensed data</td>
</tr>
<tr>
<td>6</td>
<td>present and discuss results</td>
</tr>
</tbody>
</table>

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in EASC2404 or EASC2406 or EASC2407 or ENVS2002

Grade Descriptors (A+ to F)

- **A**: Demonstrate thorough mastery of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.
- **B**: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Correct use of data and results to draw appropriate conclusions. Apply effective organizational and presentational skills.
- **C**: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.
- **D**: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities, and limited ability to apply knowledge to solve problems. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.
- **Fail**: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show little or no ability to apply knowledge to solve problems. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Course Type

Lecture with laboratory component course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Written assignments (weekly)</td>
<td>30</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Test</td>
<td>Two in-class examination (35% each)</td>
<td>70</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Author(s): Floyd F. Sabins
Publisher: Waveland Press
Edition: 3rd
Print ISBN: 9781577665076, 1577665074
eText ISBN: 9781478618171.0

If you sign up for the course, plan on buying the book. The e-version is inexpensive. You will be expected to know the material from the book.

Course Website

http://www.clays.space

Additional Course Information

You can learn more by visiting the website http://www.clays.space
---|---|---|---
Grade Descriptors (A+ to F) | A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. | --- | ---
B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. | --- | ---
C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. | --- | ---
D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. | --- | ---
Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. | --- | ---
Course Type | Lecture with laboratory component course | --- | ---
Course Teaching & Learning Activities	Activities	Details	No. of Hours
Lectures	12 sessions x 2 hours	24	
Laboratory	2 sessions	4	
Field work	1 half-day fieldtrip	5	
Tutorials	8 sessions	16	
Reading / Self study	---	90	
Assessment Methods and Weighting	Methods	Details	Weighting in final course grade (%)
---	---	---	---
Assignments	50	CLO 1,2,3,5	
Examination	50	CLO 1,2,3,4	
W.F. Ruddiman: Earth's climate: Past and future (Freeman, 2008, 2nd ed.)			
Additional Course Information	Previous course code & title: EASC2131 A Cool World: Ice Ages and Climate Change		
EASC3408	Geophysics (6 credits)	Academic Year	2018
Offering Department	Earth Sciences	Quota	---
Course Co-ordinator	Dr T Nakagawa, Earth Sciences (ntakashi@hku.hk)	---	---
Teachers Involved	(Dr B Zhang,Earth Sciences)		
(Dr T Nakagawa,Earth Sciences)	---	---	---
Course Objectives	An overview of the geophysical characteristics and processes of the solid earth and a survey of the various geophysical disciplines, including seismology, gravity, geothermometry, geomagnetism and paleomagnetism, as well as exploration geophysical methods for studying the earth's interior and near subsurface structure.		
Course Contents & Topics	- Earth's Dimension and Motion in Space		
- Gravity and gravity anomalies			
- Isostasy and Geodesy			
- Geomagnetism			
- Paleomagnetism and rock magnetism			
- Thermal Properties of the Earth			
- Earthquake Seismology			
- Seismic waves and free oscillations			
- Applied Geophysical Methods: seismic method			
- Applied Geophysical Methods: Electrical methods			
Course Learning Outcomes	On successful completion of this course, students should be able to:		
CLO 1	describe the approaches and methods geophysicists use to study the interior of the earth		
CLO 2	apply basic techniques in measurements of earthquakes and interpret a seismogram		
CLO 3	describe the procedure to determine gravity anomalies and their interpretation		
CLO 4	understand the methods of paleomagnetism and describe the processes of rock magnetisation		
CLO 5	describe how density, pressure and temperature of the earth's interior are determined		
Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in EASC2401 or EASC2402 or PHYS2250 |
Grade Descriptors (A+ to F) | A | Demonstrated an in-depth understanding of the subject well above the expected level of an university undergraduate and achieving over 80% of total marks and an ability to pursue advance-level study in some of the geophysics subdisciplines. | --- | ---
B | Demonstrate an understanding of the subject at the appropriate level of a university student and achieving 70% of the total course marks. A greater effort and further preparation are needed if student plans to pursue further study of geophysics. | --- | ---
C | Coursework and examination results reflect only a basic understanding of the subject without the ability to carry out in-depth analysis. Achieved 60-70% of total course marks. | --- | ---
D | Demonstrated an insufficient understanding of the subject at total course mark achieved is below 60%. The pass grade is reflective only of the time the student puts in on the subject. | --- | ---
Fail | A total lack of effort and insufficient ability to understand the subject and failure to achieve 50% of the available course marks. | --- | ---
Course Type | Lecture with laboratory component course | --- | ---
Course Teaching & Learning Activities | Activities | Details | No. of Hours |
--- | --- | --- | ---
Lectures | 12 sessions x 2 hours | 24 |
Laboratory | 8 paper exercises, 2 field exercises on exploration geophysical methods | 24 |
Reading / Self study | --- | 100 |
Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping |
Course Objectives
To provide a comprehensive coverage of the principles and techniques used in the study of petrogenesis of igneous and metamorphic rocks and their cause-and-effect relationships with tectonic settings and crustal evolution.

Course Contents & Topics
- Magma generation: physicochemical conditions and tectonic settings.
- Application of trace elements and isotopes to the study of magma genesis
- Basaltic magmatism and mantle characteristics
- Anatectic melt: process and metasomatism
- Granitic magma and crustal characteristics
- Magmatism at convergent boundaries
- Magmatism and crustal growth
- Types of metamorphism
- Chemical equilibrium/dis-equilibrium in metamorphism; metamorphic phase diagrams (ACF, AKF, AFM, etc)
- Metamorphic processes and reactions
- Metamorphic petrogenesis and evolution of pelitic rocks
- Metamorphic petrogenesis and evolution of mafic rocks
- Metamorphism in different tectonic settings; metamorphic pressure-temperature-time (P-T-t) paths and their tectonic implications.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 use rock associations, textures, structures and geochemical characteristics to infer the petrogenesis of major igneous rocks
CLO 2 use magmatic rocks to study the mantle and crustal characteristics
CLO 3 apply mineral assemblages, microtextures, mineral reaction relationships and metamorphic P-T paths to infer the tectonothermal evolution of metamorphic rocks
CLO 4 demonstrate knowledge and understanding of magmatic and metamorphic processes and their cause-and-effect relationships with tectonic settings and crustal evolution

Pre-requisites
Pass in EASC3402

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y Examination May

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate extensive knowledge and skills at an advanced level required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, and ability to apply highly effective lab skills and techniques to solve problems. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply effective lab skills and techniques to solve problems. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply moderately effective lab skills and techniques to solve problems. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities, and limited ability to apply partially effective lab skills and techniques to solve problems. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fall</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking, and ability to apply minimally effective or ineffective lab skills and techniques to solve problems. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Assessment Methods
- **Examination**: 60 (CLO 1,2,3,4)
- **Laboratory reports**: 40 (CLO 1,2,3,4,5)
- **Assignments Participations of discussion in the class**: 20 (CLO 1,2,3,4,5)

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td>60</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Assignments</td>
<td>40</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Additional Course Information
John D Winter: An Introduction to Igneous and Metamorphic Petrology (Prentice Hall, 2001)

Offer 2018-2019 Details

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Course Co-ordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Sciences</td>
<td>Prof J J Jiao, Earth Sciences (jiao@hku.hk)</td>
</tr>
</tbody>
</table>

This course aims to introduce some basic concepts and theories of groundwater flow with special reference to case studies in HK. It consists of three components: 1) fundamentals of groundwater physics; 2) well hydraulics and evaluation of groundwater as a resource; and 3) influence of groundwater on geotechnical and environmental aspects.
Course Contents & Topics

- Hydrologic Cycle And water Budgets, Introduction to Hydrogeology (1 Week)
- Properties Of Aquifers (2 Weeks)
- Hydraulic head and flow net(2 Weeks)
- Basic Equations of Groundwater Flow (1 Week)
- Groundwater Flow To Wells (1 Week)
- Analysis Of Aquifer Test(2 Weeks)
- Well installation & pumping test design(1 Week)
- Regional Groundwater Flow Systems (HK case study)(1 Week)
- Groundwater contamination (China case study)(Week 12)

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 appreciate the importance of hydrogeology in geotechnical and environmental engineering
- CLO 2 understand basic concepts of hydrological cycle and water balance, and interaction between groundwater and surface water
- CLO 3 appreciate the close relationship between groundwater system and geology and topography
- CLO 4 understand basic concepts of aquifer and aquifer properties, hydraulic head, flow net, and basic principles of groundwater flow
- CLO 5 use basic field aquifer tests to estimate some important aquifer parameters

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in EASC2402

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Fail</th>
</tr>
</thead>
</table>
| Pass in EASC2402 or EASC3402

Course Type

- Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>12 sessions x 2 hours</td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td>10 x 2 hours</td>
<td>20</td>
</tr>
<tr>
<td>Field work</td>
<td>Half day field trip</td>
<td>5</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>30</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

EASC3412 Earth resources (6 credits)

Offering Department

Earth Sciences

Course Co-ordinator

Prof M F Zhou, Earth Sciences (mfzhou@hku.hk)

Teachers Involved

(Prof G Zhao,Earth Sciences)

(Prof M F Zhou,Earth Sciences)

Course Objectives

To provide students with knowledge about the classification of mineral deposits and their basic features; to understand the processes that lead to their formation; to gain hand on experience with mining procedures. In addition, students should gain knowledge about the world wide distributions of mineral and industrial resources.

Course Contents & Topics

Concepts in mineral deposits and mining industrial; exploration and mining methods, classification of mineral deposit, mineral deposit models, magmatic oxide and sulfide deposits, skarn deposits, porphyre deposits, volcanicogen massive sulfide deposits, coal, oil and gas, resource evaluation.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand the terminology and nomenclature in the mining industrial and mineral deposits
- CLO 2 understand factors that are key to the formation of metallic and industrial resources
- CLO 3 control the controls of earth resources in a global scale
- CLO 4 understand methods of exploration and exploitation for mineral deposits

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>
| Pass in EASC2402 or EASC3402

635 Department of Earth Sciences
<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture with laboratory component course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Teaching & Learning Activities</td>
<td></td>
</tr>
<tr>
<td>Activities</td>
<td>Details</td>
</tr>
<tr>
<td>Lectures</td>
<td>2 hour lectures per week for 10 weeks</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td>Field work</td>
<td>Field work</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td>Details</td>
</tr>
<tr>
<td>Assignments</td>
<td>field trip (compulsory)</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td>TBC</td>
</tr>
</tbody>
</table>

EASC3413
Engineering geology (6 credits)
Academic Year: 2018
Offering Department: Earth Sciences
Quota: 35
Course Co-ordinator: Dr L N Y Wong, Earth Sciences (lnywong@hku.hk)
Teachers Involved: (Dr L N Y Wang, Earth Sciences) (Prof J J Jiao, Earth Sciences)
Course Objectives: To present some of the concepts and skills of importance in the profession of Engineering Geology and illustrate their use by case histories.
Course Contents & Topics: Introduction to engineering design and the role of the Engineering Geologist; site investigation concepts and skills (air photo interpretation, soil and rock description, engineering geological plans, reporting); slopes, foundations. Case histories from Hong Kong.
Course Learning Outcomes: On successful completion of this course, students should be able to:
- **CLO 1**: Appreciate how civil engineering design is carried out and understand the work of the geologist on engineering projects, particularly the economic- and safety-critical duties
- **CLO 2**: Make simple engineering-geological models and understand how desk study, site reconnaissance survey and ground investigation design should be carried out
- **CLO 3**: Carry out simple air photo interpretation tasks and elementary soil and rock description and classification for engineering purposes
- **CLO 4**: Understand major types of slope failures and basic methods to control and mitigate landslides
- **CLO 5**: Carry out stability analyses using methods such as the limit equilibrium and stereographic projection method
Pre-requisites (and Co-requisites and Impermissible combinations): Pass in EASC3410 and EASC3414, or already enrolled in these courses
Offer in 2018 - 2019:
Grade Descriptors (A+ to F):
- **A**: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge and skills to solve a wide range of complex, familiar and unfamiliar practical problems. Apply highly effective organizational and presentational skills.
- **B**: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical thinking, and ability to apply knowledge and skills to solve familiar and some unfamiliar practical problems. Apply effective organizational and presentational skills.
- **C**: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge and skills to solve most familiar, but not unfamiliar, practical problems. Apply moderately effective organizational and presentational skills.
- **D**: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge and skills to solve familiar practical problems. Apply limited or barely effective organizational and presentational skills.
- **Fail**: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking, Show very little or no ability to apply knowledge and skills to practical problems. Organization and presentational skills are minimally effective or ineffective.
Assessment Methods and Weighting:
- **Assignments**: 10%
- **Examination**: 70%

EASC3414
Soil and rock mechanics (6 credits)
Academic Year: 2018
Offering Department: Earth Sciences
Quota: 40
Course Co-ordinator: Prof J J Jiao, Earth Sciences (jiao@hku.hk)
Teachers Involved: (Dr L N Y Wong, Earth Sciences) (Prof J J Jiao, Earth Sciences)
Course Objectives
To provide a basic knowledge of soil and rock mechanics for those wishing to consider further studies on a career in engineering geology/geo-technics.

Course Contents & Topics
Stress and strain; properties and classifications of soil and rock; clay minerals; pore pressure and effective stress; strength and failure criteria, initial stresses and their measurement; deformation; consolidation; planes of weakness in rocks; ground treatment methods.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- **CLO 1** understand basic concepts of stress and strain, pore pressure and effective stress, strength and failure criteria
- **CLO 2** understand basic properties and classifications of soil and rock
- **CLO 3** appreciate the process of rock deformation and soil consolidation

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in EASC3410, or already enrolled in this course

Offer in 2018 - 2019 Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Demonstrate critical use of data and results to draw appropriate and insightful conclusions. Show insightful use and critical analysis / evaluation of information drawn from a full range of high quality sources and to quote/reference aptly.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>E</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>100</td>
<td>30</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Examination</td>
<td>70</td>
<td>70</td>
<td>CLO 1, 2, 3</td>
</tr>
</tbody>
</table>

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Course Contents

- **Course Objectives**: This course provides students with a modern understanding of weather by examining at an advanced level the processes that govern atmospheric structure and behavior, weather elements, and weather systems.

- **Course Contents & Topics**: Energy budget, radiative forcing, and greenhouse effect; stability, convection, and lapse rates; equation of state and pressure; thermodynamic diagrams; weather charts; Forces, winds, and general circulation; Monsoons, air masses, and fronts; thunderstorms, mid-latitude cyclones, and tropical cyclones; basic equations of the atmosphere, weather forecasting.

- **Pre-requisites (and Co-requisites and Impermissible combinations)**: Pass in EASC2404

Course Description

- **EASC3415 Meteorology (6 credits)**
- **Academic Year**: 2018
- **Offering Department**: Earth Sciences
- **Course Co-ordinator**: Dr Z H Liu, Earth Sciences (zhlui@hkbu.edu.hk)
- **Teachers Involved**: Dr M H Lee, Earth Sciences (Dr Z H Liu, Earth Sciences)

Learning Outcomes
On successful completion of this course, students should be able to:

- **CLO 1** describe key aspects of weather phenomena
- **CLO 2** explain essential elements of atmospheric processes governing weather
- **CLO 3** apply physical principles to construct models for some basic aspects of weather
- **CLO 4** explain synoptic charts (weather maps)
- **CLO 5** interpret Hong Kong weather (typhoons etc.)

Required/recommended reading and online materials

- R. F. Craig: Soil Mechanics (Chapman & Hall, 6th ed.)
of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Demonstrate misuse of data and results and/or unable to draw appropriate conclusions. Show limited use of secondary sources and no critical comparison of them.

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture-based course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Project work</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td>Assignments</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
</tr>
<tr>
<td></td>
<td>Project report</td>
</tr>
<tr>
<td></td>
<td>Roland B. Stull, Meteorology for Scientists and Engineers (Brooks/Cole, 2000).</td>
</tr>
</tbody>
</table>

Course Objectives	To present key concepts of modern geochemistry and geochronology and their application to environmental and Earth science problems.
Course Contents & Topics	1. Principles of radiogenic isotopic dating and modern instruments
	2. Zircon U-Pb isotopic dating and its application
	3. Principles and techniques for dating mineral deposits
	4. Introduction to Quaternary geochronology
	5. Principle, development and applications of Luminescence dating
Course Learning Outcomes	On successful completion of this course, students should be able to:
	CLO 1 demonstrate knowledge of concepts and ideas of modern geochemistry
	CLO 2 explain principles of radiogenic isotopic dating
	CLO 3 understand how modern analytical techniques are applied to dating earth materials
	CLO 4 understand how geochemical methods are applied to gain insight into process in environmental and Earth sciences
Pre-requisites (and Co-requisites and Impermissible combinations)	Pass in EASC2401 or EASC2406 or EASC2407
Offer in 2018 - 2019	N
Grade Descriptors (A+ to F)	Student demonstrates thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Shows strong analytical and critical abilities and logical thinking, with evidence of original thought, and the ability to apply his/her knowledge to a wide range of problems in geochemistry, and at the same, can combine fundamental knowledge in geochemistry to understand the interactions among minerals, fluids and gases over geological time periods and on a global scale. Student shows the ability to apply highly effective organizational and presentational skills.
	Student demonstrates substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and apply his/her knowledge to a range of problems in geochemistry, and at the same, can combine fundamental knowledge in geochemistry to understand the interactions among minerals, fluids and gases over geological time periods and on a global scale. Student shows the ability to apply moderately effective organizational and presentational skills.
	Student demonstrates general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply his/her knowledge to a range of problems in geochemistry and how interactions among minerals, fluids and gases impact material fluxes over geological time periods on a global scale. Student shows the ability to apply effective organizational and presentational skills.
	Student demonstrates partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to understand key topics in geochemistry. Student shows the ability to apply limited or barely effective organizational and presentational skills.
	Student demonstrates little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Shows very little or no ability to apply knowledge to understand basic topics related to the geochemistry and the application of these principles to geological problems. Organization and presentational skills are minimally effective or ineffective.

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture with laboratory component course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
</tr>
<tr>
<td></td>
<td>Group work</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
</tr>
<tr>
<td></td>
<td>Presentation</td>
</tr>
<tr>
<td></td>
<td>Project report</td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td>Geochemistry by William M. White (Wiley, Apr 1, 2013).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Earth through time (6 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Year</td>
<td>2018</td>
</tr>
</tbody>
</table>
To introduce the concept of geological time and basic geological principles. To provide an understanding of the fossil record and the integration of Earth Systems and plate tectonics. To gain an appreciation of our place in the Universe, an understanding of the evolution of Earth and life on Earth through time.

Geological time, the origin of life, fossils and diversification of life through time, Important events in Earth history such as Snowball Earth, the Cambrian explosion of life, the Permian/Triassic mass extinction, the Cretaceous Tertiary extinction event, the origins of humans

On successful completion of this course, students should be able to:

- CLO 1: Define basic geological principles
- CLO 2: Explain critical geological relationships
- CLO 3: Outline the history of the development of our planet
- CLO 4: Interpret the geological record of evolution through time
- CLO 5: Compare and contrast various hypotheses put forward to explain major events in Earth history
- CLO 6: Describe major fossil groups

Pass in EASC3403

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2018 - 2019</th>
<th>Examination</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>Examination</td>
<td>Dec</td>
</tr>
<tr>
<td>B</td>
<td>Pass</td>
<td>Examination</td>
<td>Dec</td>
</tr>
<tr>
<td>C</td>
<td>Incomplete</td>
<td>Examination</td>
<td>Dec</td>
</tr>
<tr>
<td>D</td>
<td>Fail</td>
<td>Examination</td>
<td>Dec</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>40</td>
<td>CLO 1,2,3,4,5,6</td>
<td></td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>20</td>
<td>CLO 1,2,3,4,5,6</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>20</td>
<td>CLO 2,6</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>20</td>
<td>CLO 2,4,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required/recommended reading and online materials</th>
<th>Activities</th>
<th>Details</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course Objectives</th>
<th>Teachers Involved</th>
<th>Course Contents & Topics</th>
<th>Course Learning Outcomes</th>
<th>Pre-requisites (and Co-requisites and Impermissible combinations)</th>
<th>Grade Descriptors (A+ to F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course will educate students on the integrative tectonic, climatic, and biogeochemical processes that shape Earth's landscape and surface environment.</td>
<td>Dr N R McKenzie, Earth Sciences</td>
<td>Geомorphology; surface deformation; landscape evolution; erosional processes; rock-water interactions and weathering; low-temperature geochemistry as it pertains to surface processes and elemental cycling (e.g., carbon, oxygen, nitrogen, phosphorus cycling).</td>
<td>On successful completion of this course, students should be able to:</td>
<td>Pass in EASC2401 and EASC2402</td>
<td>A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations.</td>
</tr>
</tbody>
</table>
Directed studies in earth sciences (6 credits)

Offering Department
Earth Sciences

Course Co-ordinator
Prof M Sun, Earth Sciences (minsun@hku.hk)

Course Type
Lecture with laboratory component course

Course Objectives
To enhance the student's knowledge of a particular topic and the student's self-directed learning and critical thinking skills.

Course Contents & Topics
The student undertakes a self-managed study on a topic in earth sciences under the supervision of a staff member. The topic is preferably one not sufficiently covered in the regular curriculum. The directed study can be a critical review or a synthesis of published work on the subject, or a laboratory or field study that would enhance the student's understanding of the subject. The project may not require an element of originality.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 enhance the ability in self-learning, data-collection and analysis, critical thinking, doing independent research in earth sciences
- CLO 2 write scientific dissertation, and conduct oral presentation of the research results

Pre-requisites
Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in the Geology or Earth System Science Majors; and Cumulative GPA of 2.5 or above.

Required/recommended reading and online materials

EASC3999

Course Type
Project-based course

Course Teaching & Learning Activities
- **Activities**
 - Lectures: 12 lectures @2 hours each (24 hours)
 - Laboratory: 8 labs @2 hours each (16 hours)
 - Field work: 1 day (8 hours)
 - Reading / Self study: 120 hours
- **Assessment Methods and Weighting**
 - Examination: 60% (CLO 1,2,3,4,5)
 - Laboratory reports: 40% (CLO 1,2,3,4,5)

Course Objectives
- **CLO 1**: Develop and enhance the abilit y in self-learning, data-collection and analysis, critical thinking, doing independent research in earth sciences
- **CLO 2**: Write a scientific dissertation, and conduct oral presentation of the research results

Outcomes
On successful completion of this course, students should be able to:
- Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations.
- Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems.
- Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems.

Course Content
1) Origin of elements, the Solar system and the Earth

Assessment Methods and Weighting
- **Methods**
 - Examination: 60%
 - Laboratory reports: 40%
- **Weighting in final course grade (%)**
 - Examination: 60%
 - Laboratory reports: 40%
- **Assessment Methods to CLO Mapping**
 - CLO 1: 100% (CLO 1,2,3,4,5)

Grade Descriptors
- **A**
 - Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical analysis/evaluation of information drawn from a full range of high quality sources and to quote/reference aptly. Critical use of data and results to draw insightful conclusions and solve problems. Apply highly effective organizational and presentational skills. (Work of A+ should show considerable creative thinking and additional work beyond that is required in wider areas relevant to the topic.)
- **B**
 - Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Correct use of data of results to draw appropriate conclusions to draw insightful conclusions and solve problems. Apply effective organizational and presentational skills.
- **C**
 - Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/reference aptly. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.
- **D**
 - Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.
- **Fail**
 - Demonstrate little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Offer in 2018 - 2019 Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Details</th>
<th>Requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical analysis/evaluation of information drawn from a full range of high quality sources and to quote/reference aptly. Critical use of data and results to draw insightful conclusions and solve problems. Apply highly effective organizational and presentational skills. (Work of A+ should show considerable creative thinking and additional work beyond that is required in wider areas relevant to the topic.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Correct use of data of results to draw appropriate conclusions to draw insightful conclusions and solve problems. Apply effective organizational and presentational skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/reference aptly. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting
- **Methods**
 - Examination: 60%
 - Laboratory reports: 40%
- **Weighting in final course grade (%)**
 - Examination: 60%
 - Laboratory reports: 40%
- **Assessment Methods to CLO Mapping**
 - CLO 1: 100% (CLO 1,2,3,4,5)

Course Type
Biogeochemical cycles (6 credits)

Offering Department
Earth Sciences

Course Co-ordinator
Dr Y Li, Earth Sciences (yiliang@hku.hk)

Course Objectives
This course presents how the basic geochemistries of the Earth system, from atmosphere to the geosphere and to hydrosphere, have been and are being affected by the origin, evolution and existence of life. Human activities in particular, from the rapid consumption of resources to the destruction of the rainforests and the expansion of cities, are leading to rapid changes in the geochemistry of the Earth systems.

Course Contents
1) Origin of elements, the Solar system and the Earth
Course Objectives

To review the concepts and processes that shape the configuration of the Earth, from core to crust. This course is intended to provide students with an understanding of the driving forces of Earth processes and the global outcome of these processes through an examination of direct and indirect observations, the evolution of hypotheses, and critical thinking.

Course Contents & Topics

- Plate tectonics; orogenesis; accretionary and collisional orogenesis.
- Mantle convection; hot spots and plumes.
- Methods of investigation of large scale structures and processes.
- Structure and physical properties of the planet.
- Sea floor spreading; ocean ridges; transform faults.
- Subduction zones; mountain belts and orogenesis.
- Formation of continental crust.
- Continental rifts and continental margins.
- Sedimentary basins.
- Mechanism, consequence and implication of plate tectonics.
- Hadean Earth: Accretion of the Earth from the solar nebula; differentiation of the Earth; formation of the initial atmosphere and oceans; the earliest felsic crust; Late Heavy Bombardment.
- Archean cratons: greenstones and TTG gneisses; origin of komatiites; role of mantle plumes in Archean crustal formation and evolution; when did plate tectonics start on Earth?
- Paleoproterozoic collision tectonics.
- Supercontinents in Earth history: the assembly, outgrowth and breakup of supercontinents Columbia (Nuna), Rodinia and Pangea.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1: appreciate the importance of a knowledge of the history of investigation of global scale tectonic processes.
- CLO 2: understand how energy release within the Earth is translated into geological processes.
- CLO 3: appreciate the importance of a knowledge of the history of investigation of global scale tectonic processes.
- CLO 4: distill of a wide range of data to differentiate competing geological theories.
- CLO 5: produce concise written and oral summaries of literature research on specific topics in global dynamics.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essay</td>
<td>60</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td>40</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in EASC3403 or EASC3416 or ENV3S313.
Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in EASC3403 or EASC3404 or EASC3408 or EASC3409

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2018 - 2019</th>
<th>Grade Descriptors (A+ to F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y 2nd sem Offer in 2019 - 2020</td>
<td>Examination May</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Contents & Topics

Students will advance their abilities to synthesize and communicate geological knowledge by various climate-tectonic interactions across mountain belts (Andes, Himalaya), the complex intraplate deformation in continental margins, and the evolution of tectonically complicated regions. Likely case studies include exploration of geological questions.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assignments</td>
<td>10</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Essay</td>
<td>Including essays and seminars</td>
<td>40</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
<td>50</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td>student seminars and exercises</td>
<td>20</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>essay, presentation plus additional reading</td>
<td>100</td>
</tr>
</tbody>
</table>

Course Objectives

On successful completion of this course, students should be able to:

- CLO 1: appreciate the influential (and commonly conflicting) models that have been proposed to explain a range of tectonic phenomena.
- CLO 2: understand the various "tools" that are commonly used by geo-scientists to test and develop models for the evolution of tectonically complicated regions.
- CLO 3: carry out an in-depth scientific literature review on a key regional geological issue and to present the findings via visual and written communication in an engaging, comprehensive online format.

Course Learning Outcomes

- Limited grasp of the subject, retention of some relevant information of the subject; evidence of limited critical abilities; limited (or barely effective organizational and presentation skills; use of reference of several sources, but mainly through summary rather than analysis and comparison.

Required/recommended reading and online materials

Turcotte, D and Schubert, G. Geodynamics (Cambridge Univ Press, 2002, 2nd ed.)

Davies, Geoffrey F., Mantle convection for geologists (Cambridge 2011)

EASC4407

Regional geology (6 credits)
Academic Year: 2018
Quota: 40

Course Co-ordinator

Earth Sciences
(aagwebb@hku.hk)

Teachers Involved

(Dec 2014; Earth Sciences)
(Dec 2015; Earth Sciences)

Course Contents & Topics

This course explores various geological processes as well as the approaches that geologists use to resolve regional geological questions.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in EASC3402; and (EASC3403 or EASC3404)

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2018 - 2019</th>
<th>Grade Descriptors (A+ to F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y 1st sem Offer in 2019 - 2020</td>
<td>Examination No Exam</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>
EASC4408

Special topics in earth sciences (6 credits)

Offering Department
Earth Sciences

Course Co-ordinator
Dr M H Lee, Earth Sciences (mhlee@hku.hk)

Course Objectives
Topic: Planetary science and Biogeochemistry
The overall aim of this special topic is to develop an advanced understanding of our planet's place within the wider universe, the origins of our planetary system, and geological processes in extreme extraterrestrial environments. Students will explore the concept of abiologic chemical evolution and learn about various important biomarkers targeted for life detection in modern space exploration missions. The course also provides opportunities to study meteorites and their relationship to the origin of the Earth, solar system & universe, and survey planetary topics, including impacts, differentiation, and volcanism on planetary objects.

Course Contents & Topics
The course will cover the following aspects of planetary science. The following topics will be covered in lectures:
1. The interstellar medium
2. Star formation and the accretion of planets
3. Meteorites and comets
4. Impacts and craters
5. Evolution of other terrestrial planets
6. Prebiotic chemistry and the origins of life
7. Biosynthetic isotopic fractionations
8. Biomarker and molecular signatures
9. Symmetry-breaking mechanisms
10. Mass spectrometry for organic geochemists
11. Planetary mission concepts
12. Life detection on habitable planet and moons

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 identify various planetary materials in the Solar System and understand how they formed and evolve
CLO 2 understand how planetary events shaped the history of the Earth and the structure of our solar system
CLO 3 recognise and differentiate between the organic signatures of biotic and abiotic materials, and appreciate the use of particular chemical structures as molecular fossils to interpret past life based on understandings of extant life
CLO 4 evaluate contemporary theories on the origin of life and the formation of complex organic molecules in space and their delivery to planetary surfaces
CLO 5 use modern analytical techniques to reconstruct organic constituents in samples and interpret data generated from the latest planetary missions
CLO 6 nurture their interests and curiosity in the field of planetary science

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in any EASC3XXX or EASC4XXX course

Grade Descriptors (A to F)
A - Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes, and evidence of productive reading supplementing lectures. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to synthesize and apply knowledge to a wide range of complex, familiar and unfamiliar situations. Demonstrate critical use of data, literature reviews, and other sources to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.
B - Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to synthesize and apply knowledge to familiar and some unfamiliar situations, but falling short on excellence in some of these aspects. Demonstrate correct use of data, literature reviews, and other sources to draw appropriate conclusions. Apply effective organizational and presentational skills.
C - Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to synthesize and apply knowledge to most familiar situations. Demonstrate mostly correct but some erroneous use of data, literature reviews, and other sources to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.
D - Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to synthesize and apply knowledge to solve problems. Demonstrate limited ability to use of data, literature reviews, and other sources to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.
Fail
- Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to synthesize and apply knowledge to solve problems. Demonstrate misuse of data, literature reviews, and other sources and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities
Activities	Details	No. of Hours
Lectures | 12 sessions x 2 hours | 24
Laboratory | 6 sessions x 2 hours | 12
Group work | preparation + presentation | 15
Tutorials | 6 sessions x 2 hours | 12
Reading / Self study | | 60
Assessment | | 15

Assessment Methods and Weighting
Methods	Details	Weighting in final course grade (%)	Assessment Methods to CLO Mapping
Assignments | assignments | 70 | CLO 1,2,3
Presentation | group presentation | 30 | CLO 1,2,3,4,5,6
Earth system: contemporary issues (6 credits)

Offering Department: Earth Sciences
Course Co-ordinator: Dr S C Chang, Earth Sciences
Teachers Involved: Dr S C Chang, Earth Sciences

Course Objectives:
This is a capstone course that provides students with an opportunity to synthesize and correlate the knowledge gained in previous courses in Earth System Science for them to gain a more in-depth appreciation and awareness of the Earth System, the interplay between its component parts, and some of the global issues. Students will also get some basic concepts on how to do strategic analysis on global trends of natural resources.

Course Contents & Topics:
The Earth as an integrated system.
The interactions between Earth's component parts.
The evolution of Earth's global climates in deep time.
The Earth as a fine-tuning system.
Natural resource and managements.
Natural hazards and managements.
Bio-resources and Bioethics.
Global trend in oil and natural gas.
Global trend in mineral resources (non-metals, ferrous metals and rare earth elements).

Course Learning Outcomes:
On successful completion of this course, students should be able to:
- CLO 1 comprehend in some depth the nature of the issues confronting humankind as part of the Earth System
- CLO 2 understand the basis of interrelationships through feedback loops within the Earth System
- CLO 3 synthesize scientific data available from a variety of sources and apply the data to problem solving, particularly in areas of contemporary concern
- CLO 4 understand how past and present activities on the planet will affect its future

Pre-requisites (and Co-requisites and Impermissible combinations):
Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in the Earth System Science Major including at least two of the following courses: EASC3410, EASC3415 or ENVS3313.

This capstone course is for Earth System Science Major students only.
The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019: Y 2nd sem
Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F):
- A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all of the course learning outcomes. Show strong analytical and critical abilities and logical thinking, and ability to synthesize and apply knowledge to a wide range of complex, familiar and unfamiliar situations. Demonstrate critical use of data, literature reviews, and other sources to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.
- B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to synthesize and apply knowledge to familiar and some unfamiliar situations. Demonstrate correct use of data, literature reviews, and other sources to draw appropriate conclusions. Apply effective organizational and presentational skills.
- C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to synthesize and apply knowledge to most familiar situations. Demonstrate mostly correct but some erroneous use of data, literature reviews, and other sources to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.
- D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to synthesize and apply knowledge to solve problems. Demonstrate limited ability to use of data, literature reviews, and other sources to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.
- Fail: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to synthesize and apply knowledge to solve problems. Demonstrate misuse of data, literature reviews, and other sources and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Course Type: Project-based course

Assessment Methods and Weighting:

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation</td>
<td>60</td>
<td></td>
<td>CLO 1, 2, 3, 4</td>
</tr>
<tr>
<td>Research report</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enrichment:
There are enormous opportunities to read further on the subjects presented - just ask for details.
Course Objectives

The aims of a geological field camp activities are to provide:
1) essential training and experience in geological mapping techniques.
2) the opportunity to gain confidence in independently applying these skills to areas of structural and stratigraphic complexity.
3) opportunities to study at first-hand areas of particular geological interest and importance of an overseas locality.
The course requires integration of geological knowledge from multiple geological disciplines.

Course Contents & Topics

Students will visit areas of geological interest and will undertake independent and group mapping and problem solving exercises in each area. The curriculum comprised 3 x 6-day long projects (based on an ~2x5km area of interest), where each week long project is typically scheduled as follows:
Day 1-2: Instructor-lead learning.
Day 3-5: Technique application/independent field mapping and site visit.
Day 6: Field examination.
Day 7: Write up/Rest.

For each project area students are required to produce:
A detailed geologic map of the area. (15% x 3 = 45%) A cross-section of the area. (5% x 3 = 15%)
To accompany these maps, the students must prepare ONE report (15%) - This field report should include the tectonic evolution of region, synthesized from the all three projects and site visits, complete with interpretations of depositional environments, magmatic events and structural data.
To assess field skills:
3 one-day field exam, where students, working INDEPENDENTLY of other students and faculty, construct a geologic map and cross sections in a small (~1km x ~1km) area that they have not previously visited. (5% for each one-day field exam).
10% will be awarded for professional conduct.

Course Learning Outcomes

On successful completion of this course, students should be able to:
CLO 1 Describe the petrography and petrogenesis of rocks and minerals.
CLO 2 Identify geological setting from lithologies and stratigraphy.
CLO 3 Measure, record and analyse structural data.
CLO 4 Construct geological maps and cross-sections.
CLO 5 Synthesize varied geological information pertaining to an area in order to derive a basic model of tectonic evolution.
CLO 6 Identify and basically evaluate areas of potential natural hazard/economic potential.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in the Geology Major. This must include either a PASS in, or student must be already enrolled in EASC3403, EASC3404 or EASC3409.
This capstone course is for Geology Major students only.
The earliest that a student is allowed to take this capstone course is their year 3 study.

Course Type

Field camps

Offer in 2018 - 2019

2nd sem Offer in 2019 - 2020 : Y Exam

Grade Descriptors (A+ to F)

A
Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply highly fieldwork skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.

B
Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Apply effective fieldwork skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.

C
Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective fieldwork skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.

D
Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply partially effective fieldwork skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.

Fail
Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Apply minimally effective or ineffective fieldwork skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Examinations

Methods Details No. of Hours
Lectures 18 sessions x 1 hour 18
Field work 18 field days x 5 hours/day 90
Reading / Self study
Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments Area Maps & Cross-sections (3 x 20% each) 60 CLO 1,2,3,4
Report 1 Final Report (15%) + 10% for professional conduct 25 CLO 1,2,3,4,5,6
Test 3 Field Test (5% each) 15 CLO 1,2,3,4

Additional Course Information

Course Coordinator reserve the right to withdraw any students with unsatisfactory performance in pre-requisite courses underway during the semester (semester 2) prior to leaving for field camp (May/June). This will be decided on satisfactory mid-term examination result or laboratory performance.

EASC4966 Earth sciences internship (6 credits)

Offering Department Earth Sciences

Academic Year 2018

Quota ---

Course Co-ordinator Dr M Pittman, Earth Sciences (mpittman@hku.hk)

Teachers Involved

(Dr M Pittman, Earth Sciences)

(Dr X R Zuo, Earth Sciences)

Course Objectives

This course aims to offer students the opportunities to gain work experience in the industry related to their major of study. The workplace learning experience would be of great benefits to the students to apply their knowledge gained in the study to the real work environments. Students have to take on at least 160 hours of internship work either within the University or outside the University arranged by the School / Departments.

Course Contents & Topics

(1) Within the university: The student will be supervised by a staff member (Supervisor), working on a project or various tasks as instructed by the Supervisor.
Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1: gain at least 4 weeks of work experience in a geosciences-related firm or the Government.

CLO 2: acquire understanding and appreciation of the real work environment.

CLO 3: have some experience with applying learned knowledge to solving real world problems.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary/core/elective courses in the Geology or Earth System Science Majors.

This course is not a capstone course and students cannot use this course to fulfill the capstone requirement of the Earth System Science and Geology Majors.

The earliest that a student is allowed to take this course is their year 3 study.

Offer in 2018 - 2019

Y 1st sem 2nd sem Summer Offer in 2019 - 2020: Y Examination No Exam

Grade Descriptors

Pass: Able to apply knowledge to solve problems in the workplace. Successfully handles and carries out the work required in the job or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, written and oral report, and evaluation by supervisor(s), etc. Students demonstrating excellent performance in the above would be awarded a grade of "Distinction".

Fail: Very limited or no ability to solve problems in the workplace. Fails to handle or carry out the work required in the job or assigned by supervisor(s). Fails to establish effective collaboration or communication with supervisor(s), other colleagues, or clients in the job. Fails to satisfy the requirements set out in the Course Description regarding working hours, written and oral report, or evaluation by supervisor(s), etc.

Course Type

Internship

Course Teaching & Learning Activities

Activities

Details

No. of Hours

Internship work

it is expected that students are to work at least 160 hours (or the equivalent of 4 weeks full-time)

160

Assessment Methods and Weighting

Methods

Details

Weighting in final course grade (%)

Assessment Methods to CLO Mapping

Written report

written report, employer's feedback and oral presentation

100

CLO 1, 2, 3

Additional Course Information

This course will be assessed on "Pass/Fail" basis. Students who are interested to enrol in this course should contact the Department to obtain the approval.

Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.

EASC4999 Earth sciences project (12 credits)

Offering Department

Earth Sciences

Course Co-ordinator

Prof. M Sun, Earth Sciences (minsun@hku.hk)

Teachers Involved

(Various teachers in the Department, Earth Sciences)

Course Objectives

To enhance the student’s knowledge, ability and interest in advanced studies in the Earth Sciences by providing the student with an opportunity to be engaged in an advanced research project.

Course Contents & Topics

The student undertakes a research project in the form of a senior thesis under the supervision of a staff member. The project could be based on a particular component of a staff member’s research or one proposed and designed by the student. The student must involve in the project in a non-trivial manner, and play a major role in the project formulation, data collection and analysis, and presentation. The project should contain an element of originality.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1: acquire first-hand research experience in earth sciences by doing an individual research project independently under the supervision of a supervisor.

CLO 2: select research topics, design research path, choose research technology, and more importantly use critical thinking.

CLO 3: enhance the ability in doing independent environmental research with field/laboratory components.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary/core/elective courses in the Geology or Earth System Science Majors; and Cumulative GPA of 2.7 or above.

This course is not a capstone course and students cannot use this course to fulfill the capstone requirement of the Earth System Science and Geology Majors.

The earliest that a student is allowed to take this course is their year 3 study.

Offer in 2018 - 2019

Y Year long Offer in 2019 - 2020: Y Examination No Exam

Grade Descriptors

A

Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and creative thinking, with evidence of original thought. Insightful use and critical analysis / evaluation of information drawn from a full range of high quality sources and to quote/reference aptly. Critical use of first-hand data and results to draw insightful conclusions and solve problems. Apply highly effective organizational and presentional skills. [Work of A+ should show considerable creative thinking and additional work beyond that is required in wider areas relevant to the topic.]

B

Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and creative thinking. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Correct use of first-hand data of results to draw appropriate conclusions to draw insightful conclusions and solve problems. Apply effective organizational and presentional skills.

C

Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and creative thinking. Use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/reference aptly. Mostly correct but some erroneous use of first-hand data and results to draw inappropriate conclusions. Apply moderately effective organizational and presentional skills.

D

Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Use of and reference of some sources, but mainly through summary rather than analysis and comparison. Limited ability to use first-hand data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentional skills.

Fail

Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of first-hand data and results and/or unable to draw appropriate conclusions. Organization and presentional skills are minimally effective or ineffective.

Course Type

Project-based course

Course Teaching & Learning Activities

Activities

Details

No. of Hours

Reading / Self study

The student is expected to spend at least 240 hours on the project

240
ENVS1401 Introduction to environmental science (6 credits)

Offering Department: Earth Sciences

Course Co-ordinator: Dr C Dingle, Biological Sciences (cdingle@hku.hk)

Teachers Involved: (Dr C A Not, Earth Sciences) (Dr C Dingle, School of Biological Sciences)

Course Objectives
To provide students with an inter-disciplinary introduction to Environmental Science highlighting the interconnections between biological, geological, and chemical processes.

To convey the basic science behind environmental interactions and place it within the context of human impacts and dependence on the natural world.

To better understand how humans interact, manage, and sustain the environment within the context of our economies, governments and individual choices.

Course Contents & Topics
The teaching and learning will be organized around key issues, and loosely divided into three sections.

Part I: The basics: application of science to solve environmental problems; key ecological, chemical, and earth science concepts essential to environmental science, understanding the underlying causes of environmental problems (human population growth and economics).

Part II: Using and conserving our resources: how we use and misuse key natural resources; the difficulty in assuring a sustainable supply of energy; waste management and air pollution issues.

Part III: Global issues: How do our actions change the face of the planet? Urban ecology and understanding our contribution to global climate change.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 Explain and describe connections between the physical and biological components of the environment.
- CLO 2 Discuss the impacts of human activities on the environment.
- CLO 3 Explain the concept of environmental sustainability and give examples of how society can adapt behavior to achieve sustainability.
- CLO 4 Understand how we are overusing our resources and compare different approaches to resolving specific problems presented in class.

Pre-requisites (and Co-requisites and Impermissible combinations)
NIL

Offer in 2018 - 2019

Y 1st sem Offer in 2019 - 2020: Y Examination Dec

Grade Descriptors (A+ to F)

A Demonstrate thorough understanding of the subject and an ability to apply knowledge gained in class to a wide range of complex, familiar and unfamiliar situations. Show evidence of logical thinking and some original thought. Coursework completed on time and to a high academic standard.

B Demonstrate a good understanding of the subject and an ability to apply knowledge to familiar and some unfamiliar situations. Show evidence of logical thinking abilities. Coursework completed on time and to a good academic standard.

C Demonstrate general but incomplete understanding of the subject and an ability to apply knowledge to most familiar situations. Show some evidence of logical thinking, but with some inconsistencies. Some coursework incomplete, but submitted on time and in an adequate academic standard.

D Demonstrate partial but limited grasp of the subject and a limited ability to apply knowledge to some familiar situations. Show only ability to apply knowledge to simple examples. Show little evidence of logical thinking. Coursework submitted late to a poor standard.

Fail Demonstrate little or no understanding of the subject and very little or no ability to apply knowledge to familiar situations. Show no evidence of logical or coherent thinking. Coursework missing or substandard.

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td>group discussion/case studies</td>
<td>24</td>
</tr>
<tr>
<td>Field work</td>
<td>two half day field trips</td>
<td>10</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>35</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Test</td>
<td>3 quizzes</td>
<td>15</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Keller and Botkin: Essential Environmental Science (Wiley, 2008)

ENVS3004 Environment, society and economics (6 credits)

Offering Department: Earth Sciences

Course Co-ordinator: Prof Y Q Zong, Earth Sciences (yazong@hku.hk)

Teachers Involved: (Prof Y Q Zong, Earth Sciences)

Course Objectives
This course follows up issues highlighted in the introductory course and provides in-depth studies about rural and urban environments for students to examine the problems of resource scarcity and pollutant accumulation in the natural environment, which are the problems human society is currently confronted. The course will focus on major environmental problems and explore how Environmental Economics can be applied for resource management and environmental restoration/protection. Students will analyze the nature of key natural resources such as land, air, water and biomass, and explore ways to improve resource management, protect the environment and develop sustainable economies.

Course Contents & Topics
Valuing the environment
Basic concepts of Environmental Economics
Resource management for land, air, water and biomass
Management of waste
Energy policies and economics
Planning and regulations for a sustainable future

Course Learning Outcomes
On successful completion of this course, students should be able to:

- **CLO 1** demonstrate knowledge and critical understanding of the complexity and interconnectedness between human society and the natural environment.
- **CLO 2** recognise appropriate use and misuse of natural resources.
- **CLO 3** assess economic solutions and policies for solving environmental problems.

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in one of the following courses: CHEM2041, EASC2404, ENVS2001 or ENVS2002

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2019 - 2020: Y</th>
<th>Examination</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery of the course material. Show strong ability for analytical, critical and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Demonstrate highly effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of the course material and an ability to apply knowledge to familiar and some unfamiliar situations. Show evidence of analytical, critical thought to some complex issues. Apply effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of the course material and an ability to apply knowledge to familiar and some unfamiliar situations. Show evidence of some critical and logical thinking abilities. Apply moderately effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of the course material and a limited ability to apply knowledge to solve problems. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of course material with very little or no ability to apply knowledge to solve problems. Lack of critical thinking abilities and incoherent thinking. Organization and presentational skills are minimally effective or ineffective.</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>12 sessions of 2 hrs</td>
<td>24</td>
</tr>
<tr>
<td>Project work</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Discussion</td>
<td>Interactive learning</td>
<td>24</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Project reports</td>
<td></td>
<td>50</td>
<td>CLO 1, 2, 3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
- Tietenberg and Lewis: Environmental economics and policy
- Keller and Botkin: Essential Environmental Science (John Wiley & Sons, 2008)
- Kaufmann and Cleveland: Environmental Science (Amazon, 2008)

Additional Course Information
- Previous course code: ENVS2004
- Compulsory to 4-year students

ENVS3007

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Course Co-ordinator</th>
<th>Teachers Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural hazards and mitigation (6 credits)</td>
<td>Earth Sciences</td>
<td>TBC, Earth Sciences ()</td>
</tr>
</tbody>
</table>

Course Objectives
This course introduces students the mechanisms of major natural hazards including earthquake, storm and flood, landslide and tsunami. The teaching emphasizes the fundamental concepts: natural hazards are not entirely natural, and understanding the frequency and processes of these hazards is essential in developing prevention, protection and mitigation measures. With case studies, the course will help students explore the political, economical and engineering means of dealing with natural hazards.

Course Contents & Topics
- Key characteristics of natural hazards
- Geological hazards and mitigation measures
- Climatic hazards and mitigation measures
- Preparedness and responses to large natural disasters
- Risk assessment and disaster management
- Financial (insurance) instruments for economic recovery

Course Learning Outcomes
On successful completion of this course, students should be able to:

- **CLO 1** demonstrate knowledge and critical understanding of the complexity and interconnectedness between human society and the natural environment.

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in EASC2404 or ENVS2001 or ENVS2002

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2019 - 2020: N</th>
<th>Examination</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery of the course material. Show strong ability for analytical, critical and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Demonstrate highly effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of the course material and an ability to apply knowledge to familiar and some unfamiliar situations. Show evidence of analytical, critical thought to some complex issues. Apply effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of the course material and an ability to apply knowledge to familiar and some unfamiliar situations. Show evidence of some critical and logical thinking abilities. Apply moderately effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of the course material and a limited ability to apply knowledge to solve problems. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of course material with very little or no ability to apply knowledge to solve problems. Lack of critical thinking abilities and incoherent thinking. Organization and presentational skills are minimally effective or ineffective.</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Grade Descriptors and Weighting

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Grade Descriptors (A+ to F)</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture-based course</td>
<td>A</td>
<td>Demonstrate thorough mastery of the course material. Show strong ability for analytical, critical and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Demonstrate highly effective organizational and presentational skills.</td>
<td>50</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Demonstrate substantial command of the course material and an ability to apply knowledge to familiar and some unfamiliar situations. Show evidence of analytical, critical thought to some complex issues. Apply effective organizational and presentational skills.</td>
<td>50</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Demonstrate general but incomplete command of the course material and an ability to apply knowledge to familiar and some unfamiliar situations. Show evidence of some critical and logical thinking abilities. Apply moderately effective organizational and presentational skills.</td>
<td>50</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Demonstrate partial but limited command of the course material and a limited ability to apply knowledge to solve problems. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective organizational and presentational skills.</td>
<td>50</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td></td>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of course material with very little or no ability to apply knowledge to solve problems. Lack of critical thinking abilities and incoherent thinking. Organization and presentational skills are minimally effective or ineffective.</td>
<td>50</td>
<td>CLO 1, 2, 3</td>
</tr>
</tbody>
</table>
ENVS3042
Course Objectives
This multi-disciplinary course will introduce students to the most important physical, chemical and biological contaminants that pollute the environment. The course will provide the basics of contaminant transport, toxicology, pollution monitoring and environmental risk assessment. The course will also explore in details different mechanisms and pathways for water, atmosphere, soil and land pollution. The student will also be invited to reflect on the socio-economic aspect of pollution and remediation.

Course Contents & Topics
- Overview of Global Pollution
- Physical, Chemical and Biological Contaminants
- Contaminants Transport Processes
- Environmental Toxicology
- Water Pollution
- Atmospheric Pollution
- Soil and Land Pollution
- Monitoring and Risk Assessment Strategy
- The Future Pollution

Offering Department
Earth Sciences

Required/recommended reading and online materials
- **Smith K.:** Environmental Hazards: Assessing Risk and Reducing Disaster (Routledge, 2004)
- **Bryant E.:** Natural Hazards (Cambridge University Press, 2005)
- **Hyndman and Hyndman:** Natural Hazards and Disasters (Amazon, 2009)

Additional Course Information
Previous course code: ENVS2007

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>Project reports</td>
<td>50</td>
<td>CLO 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details</td>
<td>Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities
- Lectures: 30
- Laboratory: 24
- Reading / Self study: 90

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in EASC2401 or CHEM2241 or BIOL2103 or ENVS2001

Offer in 2018 - 2019
Y 1st sem

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details</td>
<td>Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
- Environmental and Pollution Science, Second Edition, 2006 by Ian L. Pepper (Author), Charles P. Gerba (Author), Mark L. Brusseau (Author)

Additional Course Information
This class contains theoretical and case study-based laboratories

ENVS3313
Course Objectives
To provide students with a thorough introduction to coastal and ocean processes with key questions to highlight the importance of the (paleo)oceanographic processes to environmental and ecological conditions. To convey the basic science behind ocean-atmosphere and ocean-biosphere interactions and place it within the
Course Contents & Topics
To provide a solid foundation of knowledge about the physical processes dictating the oceans movements and their impacts on the environment and ecosystems. The oceans take up 71% of earth’s surface and contain 98% of the water. By looking at the structure of the atmosphere, thermodynamic principals and properties governing sea water, we will evaluate the critical roles the ocean plays in the environmental system including its influence on (paleo)climate, coastal resources, and nutrient cycling. Case studies specifically examining changes in sea level rise, El Nino, and (paleo)climate will be used to connect oceanographic principles to environmental problems.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 describe the major surface and deep currents of the ocean
- CLO 2 identify and describe important processes in the ocean controlling large scale circulation and nutrient transport
- CLO 3 describe sources and distribution of critical chemicals and sea water properties in the ocean
- CLO 4 illustrate connections between physical ocean processes, climate systems and biological activity

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL2306 or EASC2404 or ENV52001 or ENV52002

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrates thorough mastery at an advanced level of extensive knowledge, and skill required for attaining the entire course learning outcomes. Show ability to think logically and critically, with evidence of original thought. Effectively evaluate data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrates substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of logical and critical thought. Apply moderately effective organizational and presentational skills. Correctly use of data and results to draw appropriate conclusions.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrates general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some logical and critical thinking. Apply moderately effective organizational and presentational skills. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrates partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited critical abilities. Apply limited or barely effective organizational and presentational skills. Limited ability to use data and results to draw appropriate conclusions.</td>
</tr>
<tr>
<td>F</td>
<td>Demonstrates little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of critical, logical and/or coherent thinking. Organization and presentational skills are minimally effective or ineffective. Misuse of data and results and/or unable to draw appropriate conclusions.</td>
</tr>
</tbody>
</table>

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>12 sessions x 2 hours</td>
<td>24</td>
</tr>
<tr>
<td>Laboratory</td>
<td>10 labs x 2 hours</td>
<td>20</td>
</tr>
<tr>
<td>Field work</td>
<td>1 day field trip</td>
<td>8</td>
</tr>
<tr>
<td>Project work</td>
<td>group project</td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>90</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td>2 hour final exam</td>
<td>30</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Test</td>
<td>2 hour mid-term test</td>
<td>20</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Additional Course Information
Course will be offered every year starting from 2014-2015 and coordinated by DES.

ENVS3999
Directed studies in environmental science (6 credits)

Offering Department
Earth Sciences

Course Co-ordinator
Dr C Dingle, Biological Sciences (cdingle@hku.hk)

Teachers Involved
(Various teachers (ERS),Earth Sciences)
(Various teachers (SBS),Biological Sciences)

Course Objectives
To enhance students knowledge on a particular topic in environmental science and students self-directed learning and critical thinking skills.

Course Contents & Topics
Students undertake extensive reading on a selected topic guided by a staff member. Reading should cover material beyond textbooks. Students are required to analyze the material read, formulate their own scientific argument, and present it in written form.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 complete a research task independently in one or more topical areas of the major
- CLO 2 show competence in formulating their own scientific argument
- CLO 3 pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Environmental Science Major.
- CLO 4 Cumulative GPA of 2.5 or above in Environmental Science Major.

This capstone course is for Environmental Science Major students only.

Offer in 2018 - 2019
Y 1st sem 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrates excellent understanding of the topic, excellent development of argument, logical analysis and insight into the topic, with evidence of original thought. Insightful use and critical analysis of information drawn from a full range of high quality sources to draw appropriate and insightful conclusions. Presented in high academic standard. Work of A+ should show considerable additional work beyond that is required in wider areas relevant to the topic.</td>
</tr>
<tr>
<td>B</td>
<td>Most aspects of the chosen topic were addressed and researched adequately. Demonstrates understanding of most key concepts, evidence of elementary analysis and development of argument. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations. Presented in adequate standard.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrates general but incomplete grasp of the chosen topic. Most aspects of the chosen topic were addressed and researched at a very basic level. Mostly correct but some erroneous use of relevant information from sources, demonstrates mainly description, and shows basic understanding, but lacking depth.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrates partial but limited grasp of the chosen topic, with retention of some relevant information. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited to draw appropriate conclusions from the sources.</td>
</tr>
</tbody>
</table>
| F | Show little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical
ENVS4955
Environmental science in practice (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Earth Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Dr M Yasuhara, Biological Sciences (yasuhara@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr M Yasuhara, Biological Sciences)</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>To provide students experiential learning experience in the field of environmental science. The course is primarily based on an array of experiential studies covering essential areas of environmental science during a residential fieldtrip.</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>Students to attend a residential field trip outside Hong Kong to learn about environmental science in practice. The residential field trip will be, for example, to Japan and may include marine environmental survey, sediment core sampling, practical learning of ecological, paleoecology and environmental problems, environmental geology/paleontology excursion, and other activities. Students are required to write an independent report on an environmental science issue.</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
<td>Pass in at least 12 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Environmental Science Major.</td>
</tr>
</tbody>
</table>

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Apply highly effective lab / fieldwork skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Apply effective lab / fieldwork skills and techniques. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Apply moderately effective lab / fieldwork skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply partially effective lab / fieldwork skills and techniques. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>F</td>
<td>Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Apply minimally effective or ineffective lab / fieldwork skills and techniques. Minus evidence of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type

Laboratory and workshop course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentations</td>
<td>group presentations</td>
<td>30</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Project reports</td>
<td>individual report</td>
<td>40</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>field reports</td>
<td>30</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Website

ENVS4966
Environmental science internship (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Earth Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Dr C Dingle, Biological Sciences (ctdingle@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr C Dingle, Biological Sciences)</td>
</tr>
</tbody>
</table>

Additional Course Information

Enrollment Procedure: The actual capacity of this course is limited and will vary year by year, regardless of the quota set. Interested students must apply for the course with a short proposal (2 pages maximum) and CV via e-mail to Dr. Marisat Yasuhara (yasuhara@hku.hk) and Ms. Maria Lo (gylo@hku.hk) not later than 1st August (Note: this is 2nd semester course, but we need applications well in advance, on or before this date). Late applications will not be accepted. The proposal should include the following: (1) the specific reason(s)/motivation why you are interested in joining this course; (2) merit that you expect to receive from this course, especially regarding your future academic/career path; (3) brief description of academic interests; The CV should include: (1) Personal and academic details; (2) ID photograph; (4) GPA; (5) Pre-requisite courses taken and grades received.

The selection will be made based on the quality of proposal and the justification of academic merit, in considering other factors. Only accepted students through this application process will be able to register this course.

The residential field trip will be organized in the reading week. Students will need to pay for their own travel cost for the residential field trip (please contact us for details and financial difficulty).

This course will be offered subject to a minimum enrollment number and availability of teachers.
Course Objectives

This course offers students the opportunity to gain work experience related to their major of study. This work experience will allow students to apply knowledge gained in their studies to the real environmental issues.

Course Contents & Topics

Students will be supervised by a staff member (the Internal Supervisor) within the University of Hong Kong as instructed by the Internal Supervisor. In the case of the work being carried out in an external agency, students will be supervised by a staff member of the external agency (the External Supervisor) and a staff member of the University (the Internal Supervisor). The work to be performed by students will normally be instructed by the External Supervisor, with prior agreement of the Internal Supervisor.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1: gain at least 4 weeks of work experience environmental-related firm or the Government
- CLO 2: acquire an understanding and appreciation of the real work environment
- CLO 3: have some experience with applying learned knowledge to solving real world problems

This capstone course is for Environmental Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019

Y 1st sem 2nd sem Summer Offer in 2019 - 2020: Y

Grade Descriptors

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Environmental Science Major.

This capstone course is for Environmental Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019

Y 1st sem 2nd sem Summer Offer in 2019 - 2020: Y

Examination

No Exam

<table>
<thead>
<tr>
<th>Course Teaching & Learning Activities</th>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship work</td>
<td></td>
<td>it is expected that students are to work at least 160 hours (or the equivalent of 4 weeks full-time)</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation</td>
<td></td>
<td>CLO 3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Supervisor's feedback</td>
<td></td>
<td>CLO 1.2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Written report</td>
<td></td>
<td>CLO 1.2,3</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Course Website

http://moodle.hku.hk/

Additional Course Information

No formal lecture is to be given, but it is expected that students are to work for at least 160 hours (or the equivalent of 4 weeks full-time), supervised by a staff member.

Satisfactory completion of this course can be counted towards the Capstone requirement. Details of internship will be recorded on the student's transcript. This course will be assessed on "Pass/Fail" basis. Students who are interested to enrol in this course should contact the Department to obtain the approval.

Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.

ENVS4999

Environmental science project (12 credits)

Offering Department

Earth Sciences

Course Co-ordinator

Dr C Dingle, Biological Sciences (cdingle@hku.hk)

Teachers Involved

(Various teachers in the Department, Earth Sciences)

Course Objectives

To enhance students knowledge and research skills in advanced level of environmental science.

Course Contents & Topics

Students undertake a research project in the form of an undergraduate dissertation under the supervision of a staff member. The project could be based on one of the four areas covered by the major and must show elements of interdisciplinary nature. The dissertation should show an element of originality and the research in a non-trivial manner.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1: complete a dissertation project of undergraduate level in one of the four areas of the major
- CLO 2: show competence in formulation, data collection, analysis, and presentation of a research project

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in at least 24 credits of advanced level (level 3 or 4) disciplinary core/elective courses in Environmental Science Major, and Students must have a cumulative GPA of 3.0 or above in Environmental Science Major.

This capstone course is for Environmental Science Major students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019

Y Year long Offer in 2019 - 2020: Y

Grade Descriptors

A Demonstrates excellent understanding of the topic, excellent development of argument, logical analysis and insight into the topic, with evidence of original thought. Insightful use and critical analysis of information drawn from a full range of high quality sources to draw appropriate and insightful conclusions. Presented in high academic standard. [Work of A should show considerable additional work beyond that is required in wider areas relevant to the topic.]

B Most aspects of the chosen topic were addressed and researched adequately. Demonstrates understanding of most key concepts, evidence of elementary analysis and development of argument. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations. Presented in adequate standard.

C Demonstrates general but incomplete grasp of the chosen topic. Most aspects of the chosen topic were addressed and researched at a very basic level. Mostly correct but some erroneous use of relevant information from sources, demonstrates limited description, and shows basic understanding, but takes the problem seriously.

D Demonstrate partial but limited grasp of the chosen topic, with retention of some relevant information. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited to draw appropriate conclusions from the sources.

Fail Show little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Course Type

Project-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading / Self study</td>
<td>research work & report</td>
<td>240</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation</td>
<td>CLO 3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Supervisor's feedback</td>
<td>CLO 1.2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Written report</td>
<td>CLO 1.2,3</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Additional Course Information</td>
<td>Dissertation</td>
<td>80</td>
<td>CLO 1,2</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>----</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>Oral presentation</td>
<td>20</td>
<td>CLO 2</td>
</tr>
</tbody>
</table>

Previous course code: ENVS3015.
Consent from major coordinator is required.
MATH1009

Basic mathematics for business and economics (6 credits)

Offering Department: Mathematics

Course Co-ordinator: Dr Y M Chan (1st sem); Dr K H Law (2nd sem), Mathematics

Teachers Involved:

- Dr K H Law, Mathematics

- Dr M J Jang, Mathematics

- Dr Y M Chan, Mathematics

Course Objectives: This course aims at introducing important topics of mathematics for introductory or intermediate level courses in Business and Economics. Mathematical concepts and methods, as well as some Business and Economics applications, would be emphasized so that students could be furnished with the essential mathematical skills for the senior courses in these disciplines.

Course Learning Outcomes:

On successful completion of this course, students should be able to:

- CLO 1: demonstrate knowledge and understanding of the essential mathematics used in business and economics

- CLO 2: apply mathematical skills to model and solve basic problems in business and economics

- CLO 3: be more capable of coping with a higher level of mathematics required in various economic disciplines

Pre-requisites: NIL

The course has no pre-requisite, but students are expected to have already achieved Level 2 or above in HKDSE Mathematics or equivalent. Not for students who have passed MATH1011 or MATH1013, or have already enrolled in these courses.

This course is exclusively for non-Science and non-Engineering students (i.e. not for students from the Faculty of Science or Engineering).

Offer in 2018 - 2019: Y 1st sem 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F):

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.</td>
<td>36</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.</td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td>Fail to meet the course's minimum standards by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting:

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Tutorials and Assignments</td>
<td>10</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>40</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials:

Course Website: http://moodle.hku.hk/

Additional Course Information:
- Tutorial timetable: http://hkimath.hku.hk/~math/Timetable/timetable1819_S1.pdf

- http://hkimath.hku.hk/~math/Timetable/timetable1819_S2.pdf

MATH1011

University mathematics I (6 credits)

Offering Department: Mathematics

Course Co-ordinator: Dr H Y Zhang, Mathematics

Teachers Involved: Dr H Y Zhang, Mathematics

Course Objectives: This course aims at students with only HKDSE Mathematics (or equivalent) background and provides them with basic knowledge of mathematics that serves as essential foundation in various disciplines. It is expected to be followed by MATH1013.

Course Contents & Topics:

- Sets, Venn diagrams, and operations.

- Permutations, combinations and elementary probabilities.

- Mathematical induction.

- Exponential and logarithmic functions.

- Trigonometric functions, trigonometric formulae.

- Limits of algebraic, exponential and logarithmic functions.

- Derivatives of algebraic, exponential and logarithmic functions.
Course Learning Outcomes
On successful completion of this course, students should be able to:

- Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

- Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.

- Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, theorems or their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.

- Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.

- Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Pre-requisites
The course has no pre-require, but students are expected to have achieved Level 2 or above in HKDSE Mathematics or equivalent before enrolling the course; and Not for students with Level 2 or above in Module 1 or Module 2 of HKDSE Mathematics or equivalent.

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Offer in 2018 - 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1st sem 2nd sem Offer in 2019 - 2020 : Y</td>
<td>Examination Dec May</td>
</tr>
<tr>
<td>B</td>
<td>1st sem 2nd sem Offer in 2019 - 2020 : Y</td>
<td>Examination Dec May</td>
</tr>
<tr>
<td>C</td>
<td>1st sem 2nd sem Offer in 2019 - 2020 : Y</td>
<td>Examination Dec May</td>
</tr>
<tr>
<td>D</td>
<td>1st sem 2nd sem Offer in 2019 - 2020 : Y</td>
<td>Examination Dec May</td>
</tr>
<tr>
<td>Fail</td>
<td>1st sem 2nd sem Offer in 2019 - 2020 : Y</td>
<td>Examination Dec May</td>
</tr>
</tbody>
</table>

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>assignments, tutorials, participation, etc</td>
<td>5</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>45</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
(5 Custom textbook) MATH1011 (Pearson, 2014)

Additional Course Information
MATH1641

Course Type: Lecture-based course
Offering Department: Mathematics
Quota: 30

Course Objectives
This course introduces a powerful and free computer software Scilab for scientific research. The programming language will be taught via a number of mathematical models in Physics, Chemistry, Biology, Ecology, Statistics and Management. Some basic and important techniques in Calculus and Linear Algebra will also be covered.

Course Contents & Topics

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 recognize the importance of numerical methods in mathematical modeling
- CLO 2 demonstrate basic algebraic and arithmetic computations in the Scilab environment
- CLO 3 write and interpret programs in Scilab programming language
- CLO 4 solve simple numerical problems by using interactive Scilab commands
- CLO 5 solve moderately complicated numerical problems by writing Scilab programs

Pre-requisites
NIL

Offer in 2018 - 2019
N

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Pre-requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate an excellent understanding of key concepts and Scilab skills by being able to identify the appropriate Scilab environments and their applications through correctly analysing problems, clearly and efficiently presenting correct algorithms and being able to solve numerical problems by writing Scilab programs carefully and correctly, and with some innovative approaches to solving problems.</td>
<td>NIL</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate a good understanding of key concepts and Scilab skills by being able to identify the appropriate Scilab environments and their applications through correctly analysing problems, but with some minor inadequacies in identifying the appropriate Scilab components or presenting correct algorithms or with some minor programming/computational errors.</td>
<td>NIL</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate an acceptable understanding of key concepts and Scilab skills by being able to correctly identify appropriate Scilab environments, but with some inadequacies in solving numerical problems with Scilab through incorrectly analysing problems with inappropriate Scilab environments or with a number of minor programming/computational errors.</td>
<td>NIL</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate some understanding of key concepts and Scilab skills by being able to correctly identify appropriate Scilab environments, but with substantial inadequacies in solving numerical problems with Scilab through incorrectly analysing problems with inappropriate Scilab environments or with substantial programming/computational errors.</td>
<td>NIL</td>
</tr>
<tr>
<td>F</td>
<td>Demonstrate poor and inadequate understanding by not being able to identify appropriate Scilab environments or their applications, or not being able to complete the solution.</td>
<td>NIL</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment</td>
<td>10</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>50</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>40</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
</tbody>
</table>

Additional Course Information
Students who have passed MATH1013 are not allowed to take MATH1009.

Course Website
http://moodle.hku.hk/
http://hkumath.hku.hk/~math/Timetable/timetable1819_S1.pdf
http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf

Required/recommended reading and online materials
To be decided by the course instructor.

Course Objectives
This course is the first of the two mathematics courses designed to provide actuarial science students with a solid background of calculus of one and several variables and an introduction to linear algebra. The course focuses on single variable calculus and elementary matrix theory. It aims at students with Core Mathematics plus Module 1 or Core Mathematics plus Module 2 background.

Course Contents & Topics
- Functions; graphs; inverse functions.
- Limits, continuity and differentiability.
- Mean value theorem; implicit differentiation; L'Hôpital's rule.
- Bisection method and Newton's method.
- Higher order derivatives, maxima and minima, graph sketching.
- Taylor approximation and error estimation.
- Improper integrals, partial fractions, integration by parts.
- Numerical integration, Trapezoidal rule and Simpson's rule.
- Basic matrix and vector (of orders 2 and 3) operations, determinants.
- Simple differential equations.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 describe properties of a function and an inverse function
CLO 2 evaluate various kinds of limits, and determine continuity and differentiability of functions.
CLO 3 apply advanced rules/techniques of differentiation and integration to compute derivatives and integrals; sketch graphs of functions
CLO 4 approximate integrals by numerical methods
CLO 5 perform matrix and vector operations, compute determinants
CLO 6 solve simple first and second order ordinary differential equations

Pre-requisites (and Co-requisites and Impermissible combinations)
Level 4 or above in HKDSE Mathematics plus Module 1, or Level 4 or above in HKDSE Mathematics plus Module 2, or equivalent; and Not for students who have passed MATH1013 or (MATH1851 and MATH1853), or have already enrolled in these courses. For BSc(ActuarSc) students only.

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y Examination Dec

Grade Descriptors (A+ to F)
A Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

B Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.

C Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.

D Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

Fail Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Course Type
Lecture-based course

Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 100

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Examination Test 2 tests 50 CLO 1.2.3.4.5.6

Required/recommended reading and online materials
George B. Thomas; as revised by Maurice D. Weir and Joel Hass: Thomas’ Calculus (Addison Wesley, 12th edition)
Steven J. Leon: Linear Algebra with Applications (Pearson Prentice Hall)

Course Website
http://moodle.hku.hk/

Additional Course Information
Tutorial timetable:
http://hkumath.hku.hk/~math/TimeTable/timetable1819_S1.pdf
- Ordinary differential equations (first order equations, integrating factors and linear equations, Bernoulli equations, separable equations, homogeneous equations, exact differential equations, higher-order homogeneous linear equations with constant coefficients, characteristic polynomials, methods of undetermined coefficients and variation of parameters, higher-order inhomogeneous linear ordinary differential equations, choice of particular solutions and physical implication of resonance, Cauchy-Euler equations, and their applications)
- Laplace transforms [Laplace transforms of elementary functions, inverse Laplace transforms, transforms of derivatives and integrals, derivatives of Laplace transform, first and second shifting theorems, convolutions, partial fractions, solution of linear differential equations (initial value problems) using Laplace transforms]

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 demonstrate knowledge and understanding of basic calculus and ordinary differential equations as well as their relationship with some typical physical/engineering applications. This includes not only performing the calculation details for the solution, and accurately correlate the solution approach with the fundamental concepts involved

CLO 2 apply mathematical skills to model and solve some basic physical/engineering problems: analyze the given problem, identify the appropriate mathematical skills, articulate a convincing rationale for the approach used, clearly give the mathematical formulation, and correctly find the solution

CLO 3 understand well established methods to solve differential equations, and correlate qualitatively with potential applications in engineering topics like oscillations and electric circuits. Identify the occurrence of resonance where large amplitude displacements can be expected

CLO 4 explore the technique and usage of integral transform, using the Laplace transform as an illustrative example. Appreciate the power of these techniques in initial value problems and applications like vibrations and signal processing

CLO 5 be well prepared to cope with a higher level of engineering mathematics required in different engineering disciplines

Pre-requisites (and Co-requisites and Impermissible combinations)

Level 2 or above in Module 1, or Module 2 of HKDSE Mathematics or equivalent, or Pass in MATH1011.
(This course is exclusively for Engineering students.)

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>Fail</td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>10</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Test</td>
<td>2 tests</td>
<td>20</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

(Textbook) Introduction to Calculus and Differential Equations (Pearson)

Course Website

http://moodle.hku.hk/

Additional Course Information

There will be no 'make-up' for a missed test or assignment under normal circumstances. Students are advised not to take MATH1851 and MATH1853 together in the same semester. This course is offered by the Department of Mathematics and the Faculty of Engineering.

Course Website: http://moodle.hku.hk/~math/Timetable/timetable1819_S1.pdf
http://moodle.hku.hk/~math/Timetable/timetable1819_S2.pdf

MATH1853

Linear algebra, probability and statistics (6 credits) Academic Year 2018

Offering Department

Mathematics

Course Co-ordinator

Dr G Han, Mathematics (ghan@maths.hku.hk)

Teachers Involved

(Dr G Han, Mathematics)
(Dr N Wong, Electrical & Electronic Engineering)
(Prof S H Lo, Civil Engineering)
(Prof Z Q Yue, Civil Engineering)

Course Objectives

As the complementary course of MATH1851, students will be introduced to more topics of mathematics commonly applied in engineering so that students could be further enhanced with a concrete skill in mathematics underpinned for different engineering subjects. The course emphasizes mathematical concepts, principles, analysis, and their relationship to the modelling of engineering systems. Students could be furnished with the essential mathematical skills to analytically tackle some typical engineering problems to prepare for all the engineering subjects.

Course Contents & Topics

- Linear algebra [vectors and scalars, inner product, vector projection, linear dependence and independence, matrix, determinant, matrix inverse, system of linear equations, matrix equation, Gaussian elimination, Cramer's rule, matrix rank, eigenvalue, eigenvector, matrix diagonalization, positive, negative and semi-definiteness, and their applications]
Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 demonstrate knowledge and understanding of linear algebra, complex numbers, probability theory and statistics as well as their relationship with some typical physical/engineering applications: unerringly perform the calculation details for the solution, and accurately correlate the solution approach with the fundamental concepts involved

CLO 2 apply such knowledge and understanding to solve certain practical problems that are relevant to physical/engineering applications: analyze the given problem, identify the appropriate mathematical skills, articulate a convincing rationale for the approach used, and clearly give the mathematical formulation, and correctly find the solution

CLO 3 be well prepared to cope with a higher level of engineering mathematics required in different engineering disciplines

Pre-requisites

Level 2 or above in Module 1, or Module 2 of HKDSE Mathematics or equivalent, or Pass in MATH1011.

(Primary course is exclusively for Engineering students.)

Offer in 2018 - 2019

Y 1st sem 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors

(A+ to F)

A

Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and methods and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

B

Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and methods and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems and methods or their applications and presentation or with some minor computational errors.

C

Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems and methods, but with some inadequacies in applying them through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.

D

Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems and methods, but with substantial inadequacies in applying them through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

Fail

Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems and methods or their applications, or not being able to complete the solution.

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>80</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

D.C. Lay: Linear Algebra and its Applications (Addison-Wesley, 2012, 4th ed.)
S.J. Leon: Linear Algebra with Applications (Pearson Education, 2006, 7th ed.)
C. Ronre and H. Anton: Applications of Linear Algebra (Willey, 1984, 3rd ed.)

Course Website

http://moodle.hku.hk/

Additional Course Information

There will be no 'make-up' for a missed quiz or assignment under normal circumstances.

Students are advised not to take MATH1851 and MATH1853 together in the same semester.

This course is offered by the Department of Mathematics and the Faculty of Engineering.

Tutorial timetable:
http://hkumath.hku.hk/~math/Timetable/timetable1819_S1.pdf
http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf

MATH2012

Fundamental concepts of mathematics (6 credits)

Academic Year 2018

Offering Department Mathematics

Quota ---

Course Co-ordinator Dr Y M Chan (1st sem); Dr T W Ching (2nd sem), Mathematics (ymchan@maths.hku.hk; lmtching@maths.hku.hk)

Teachers Involved Dr T W Ching, Mathematics

Course Objectives

To provide students with solid background on fundamental concepts of mathematics and methods of mathematical proofs. Such concepts and methods are important for subsequent studies in all higher level courses in mathematics. This course can be taken concurrently with other Level 2 or above courses.

Course Contents & Topics

- Elementary set theory.
- Statement calculus.
- Mathematical proofs.
- Relations and functions.
- Finite and infinite sets.
- Natural numbers and mathematical induction.
- Real numbers and the limits of sequences.
- Examples of groups.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 understand the definition of a set and apply set theory in simple daily life problems

CLO 2 construct the truth table of a given statement
CLO 3 apply different proof strategies (e.g. proof by contradiction and mathematical induction) in proving a mathematical statement.

CLO 4 demonstrate the basic properties of equivalence relations.

CLO 5 understand the definition of limits of sequences of real numbers.

CLO 6 demonstrate the operational properties of groups.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in MATH1013 or MATH1821 or (MATH1851 and MATH1853).

Students with good grades in HKDSE Math Module 1 or Math Module 2 (or other equivalent qualifications) and have strong interests in math may also apply for taking this course concurrently with its prerequisites courses (subject to the approval from Course Selection Advisors).

Offer in 2018 - 2019

Grade Descriptors (A+ to F)

A Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

B Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.

C Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.

D Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

Fail Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Tutorials and Assignments</td>
<td>10</td>
<td>CLO 1,2,3,4,5,8</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>40</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk/

Additional Course Information
Tutorial timetable:
http://hkumath.hku.hk/~math/Timetable/timetable1819_S1.pdf
http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf

MATH2014

Multivariable calculus and linear algebra (6 credits)

Academic Year 2018

Offering Department Mathematics

Quota ---

Course Co-ordinator Dr H Y Zhang, Mathematics (hzyzhang@maths.hku.hk)

Course Objectives
To provide students with a solid foundation in calculus of several variables and linear algebra, which they will need in the study of mathematics related subjects.

Course Contents & Topics
- Vectors and Matrices: Vectors in space, dot product and cross product, determinants (with geometric interpretations).
- Partial Derivatives: Functions of several variables, partial derivatives, extreme values and Lagrange multipliers, Taylor's formula.
- Multiple Integrals: Double and triple integrals, substitution in multiple integrals.
- Matrix Algebra: Matrix addition and multiplication, system of linear equations as a matrix equation.
- Vector Spaces: The Euclidean spaces as vector spaces, its subspaces, span of vectors, linear independence, basis and dimension.
- Eigenvalues and Eigenvectors: Diagonalization and computing powers.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 understand the geometric meaning of partial and directional derivatives

CLO 2 optimize multivariate objective functions (with/without constraints)

CLO 3 evaluate integrals over curvilinear regions in space

CLO 4 understand the concept of vector spaces, basis, dimension

CLO 5 solve simple eigenvalue problems and apply the theory to practical problems

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in MATH1013 or (MATH1851 and MATH1853).

Not for students who have passed MATH2822 or [MATH2101 or MATH2102] and MATH2211, or have already enrolled in these courses.

Offer in 2018 - 2019

Grade Descriptors (A+ to F)

A Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analyzing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

B Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analyzing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.

C Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.

D Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

Fail Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.
Department of Mathematics

Course Type
- Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
- TBC

Course Website
- http://moodle.hku.hk/

Additional Course Information
- http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf

MATH2101 Linear algebra I (6 credits)

Offering Department
- Mathematics

Quota
- ---

Course Co-ordinator
- Dr K H Law, Mathematics (lawkaho@maths.hku.hk)

Course Objectives
- This is a first university level course on linear algebra, which aims at introducing to students the basic concept of linear structure through many concrete examples in the Euclidean spaces. The course also enriches students' exposure to mathematical rigor and prepares them for studying more advanced mathematical courses.

Course Contents & Topics
- Vector Geometry in R^2 and R^3: Revision of addition and scalar multiplication of vectors, dot product, lines and planes; and applications to geometry.
- Matrix Algebra: Matrix addition and multiplication, determinant and inverse of square matrices, system of linear equations as a matrix equation.
- Systems of Linear Equations: Gauss-Jordan elimination, elementary row operations, row echelon form, elementary matrices, matrix inversion.
- Vector Spaces: Coordinate system in R^n, the Euclidean spaces as vector spaces, its subspaces, span of vectors, linear independence, basis, dimension, applications.
- Linear Transformations: Definition and examples of linear transformations in R^2 and R^3, standard matrices of linear transformations.
- Eigenvalue Problem: Eigenvalues and eigenvectors, diagonalization of matrices (with distinct eigenvalues), applications.
- Inner Product: Gram-Schmidt process, least square problems.

Course Learning Outcomes
- On successful completion of this course, students should be able to:
 - CLO 1: solve some simple eigenvalue problems and apply the theory to some practical problems
 - CLO 2: handle matrix operations and use them in some practical problems
 - CLO 3: understand the concept of vector spaces, basis, dimension, and linear transformations and compute the matrix representations of some linear transformations
 - CLO 4: solve systems of linear equations by Gauss-Jordan elimination and also compute inverses of square matrices
 - CLO 5: solve some minimization problems by the least squares method

Pre-requisites (and Co-requisites and Impermissible combinations)
- Pass in MATH1013 or MATH1821 or (MATH1851 and MATH1853)

Offer in 2018 - 2019
- Y
- 1st sem
- 2nd sem

Offer in 2019 - 2020
- Y

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications or presentation or with some minor computational errors.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.</td>
</tr>
</tbody>
</table>

Course Type
- Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>assignments, tutorials, participation, etc</td>
<td>10</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>40</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
- http://moodle.hku.hk/
MATH2102

Linear algebra II (6 credits)

Offering Department Mathematics
Course Co-ordinator Dr T W Ching, Mathematics (lmtching@maths.hku.hk)

Teachers Involved (Dr T W Ching, Mathematics)

Course Objectives
- This is a follow-up of the course Linear Algebra I. It aims at introducing the general concept of vector spaces, subspaces, dimensions, inner product spaces, etc. The course prepares the foundation on linear algebra for students’ future study in mathematics and other disciplines. Many examples of applications will be drawn on different subject areas.

Course Contents & Topics
1. Vector spaces: definition of field, subspaces/quotient spaces, direct sum, existence of basis, dual space
2. Linear transformations: kernel and image, isomorphisms, matrix representations of linear transformations, determinant
3. Linear operator: eigenvalues and eigenspaces, algebraic/geometric multiplicity, diagonalizability, Cayley-Hamilton theorem, canonical form (optional)
4. Inner product space: inner product, orthonormal basis, orthogonal complement and projection
5. Linear operators on inner product space: adjoints of operators, orthogonal/unitary operators, orthogonal/unitary diagonalization of self-adjoint/normal operators, symmetric bilinear form and quadratic form
6. Additional selected topics up to the instructor

Course Learning Outcomes
- On successful completion of this course, students should be able to:
 - CLO 1 identify vector space structures and apply relevant knowledge to some practical problems
 - CLO 2 understand the notion of subspaces and compute basis, dimension, etc
 - CLO 3 understand the base-free nature of linear transformations/operators. Relate the calculations of linear transformations to that of matrices by choosing particular basis
 - CLO 4 be able to solve eigenvalue problem for linear operators and apply it to the problem of diagonalization
 - CLO 5 understand the notions of inner product space and adjoints of operators. Be able to do calculation involving properties of adjoints

Pre-requisites (and Co-requisites and Impermissible combinations)
- Pass in MATH2101 or (MATH1821 and MATH2822)

Offer in 2018 - 2019
- Y 2nd sem
- Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)
- A: Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.
- B: Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.
- C: Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.
- D: Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.
- F: Fail

Course Type
- Lecture-based course

Course Teaching & Learning Activities
- **Activities**
 - Lectures 36
 - Tutorials 12
 - Reading / Self study 100

Assessment Methods and Weighting
- **Methods**
 - Examination 50
 - Test 50

Weighting in final course grade (%)
- CLO 1,2,3,4,5

Assessment Methods to CLO Mapping
- CLO 1,2,3,4,5

Required/recommended reading and online materials
- S. Friedberg, A. Insel, L. Spence: Linear algebra (Pearson, 4th edition)

Course Website
- http://moodle.hku.hk/

Additional Course Information
- Tutorial timetable:
 http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf

MATH2211

Multivariable calculus (6 credits)

Offering Department Mathematics
Course Co-ordinator Dr Z Hua (1st sem); Prof W S Cheung (2nd sem), Mathematics (huazheng@maths.hku.hk; wscheung@hku.hk)

Teachers Involved (Dr Z Hua, Mathematics)
(Prof W S Cheung, Mathematics)

Course Objectives
- Students of this course will learn the theory of multivariable calculus and learn how to apply the theory to solve practical problems. This is a required course for Mathematics and Mathematics/Physics Majors, and is suitable for all students in Science, Engineering, Economics and Finance, and other students who will use multivariable calculus in their areas of study. This is also a required course for all Minors offered by the Department of Mathematics, and is a pre-requisite of many advanced level mathematics courses.

Course Contents & Topics
- Vectors: vectors in 2-, 3-, and n-dimensions; dot product and cross product; lines and planes; polar, cylindrical, and spherical coordinates.
- Differentiation in several variables: limits and derivatives; the chain rule; directional derivatives and gradients.
- Vector-valued functions: parametrized curves; arc-length; vector fields; gradient, divergence, curl, and the del operator.
- Maxima and minima: differentials and Taylor's Theorem of several variables; extrema of functions; Lagrange...
Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand and demonstrate the basic theory of calculus of functions in several real variables
- CLO 2 evaluate partial derivatives and multiple integrals; compute line integrals and surface integrals
- CLO 3 apply the knowledge to solve some practical problems, such as constrained optimization problems and other problems involving differentiation and integration of multivariable functions

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in MATH1013 or MATH1821 or (MATH1851 and MATH1853)

Offer in 2018 - 2019

Y 1st sem 2nd sem Offer in 2019 - 2020 : Y Examination Dec May

Grade Descriptors (A+ to F)

A Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analyzing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

B Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analyzing problems, but with some minor inaccuracies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.

C Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some major inaccuracies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.

D Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inaccuracies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

Fail Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>10</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>40</td>
<td>CLO 1, 2, 3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Students are assumed to have mastered calculus of one-variable prior to taking this course.

Additional Course Information

Students are assumed to have mastered calculus of one-variable prior to taking this course.

Tutorial timetable:
- http://hkumath.hk/~math/TimeTable/timetable1819_S1.pdf
- http://hkumath.hk/~math/TimeTable/timetable1819_S2.pdf

MATH2241

Introduction to mathematical analysis (6 credits)

Offering Department: Mathematics

Academic Year: 2018

Quota: ---

Course Co-ordinator: Dr Y M Chan, Mathematics (ymchan@maths.hku.hk)

Course Objectives

To introduce students to the basic ideas and techniques of mathematical analysis.

Course Contents & Topics

- The real number system: the real numbers as an ordered field, supremum and infimum, the completeness axiom, denseness of the rational numbers.
- Sequences and series of real numbers: limits of sequences, properties of convergent sequences, monotone sequences and Cauchy sequences, subsequences, series, tests of convergence for series.
- Continuity of real-valued functions: properties of continuous functions, the extreme value theorem, the intermediate value theorem, uniform continuity, limits of functions.
- Differentiation: properties of differentiable functions, the mean value theorem, Taylor's theorem and its applications.
- Integration: construction of the Riemann integral using Darboux sums and Riemann sums, the fundamental theorem of calculus.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 comprehend and use abstract mathematical arguments such as the epsilon-delta argument
- CLO 2 demonstrate convergence or non-convergence of a sequence/series using properties of convergent sequences/series
- CLO 3 elucidate important properties of continuous functions such as the extreme value theorem and the intermediate value theorem
- CLO 4 elucidate important properties of differentiable functions such as the mean value theorem, and to understand and apply Taylor's Theorem
- CLO 5 articulate the construction of the Riemann integral and its relation to differentiation

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in MATH1013 or (MATH1851 and MATH1853) or MATH2282.

Students are strongly recommended to have taken MATH2012 if they wish to take this course.

Offer in 2018 - 2019

Y 1st sem 2nd sem Offer in 2019 - 2020 : Y Examination Dec May

Grade Descriptors (A+ to F)

A Demonstrate a thorough mastery of the mathematical notions and proof techniques taught in the course by being able to handle abstract mathematical arguments, to apply appropriate theorems correctly, and to make use of those proof techniques in novel situations. Ability to present solutions clearly and logically, and the use of innovative ideas in solving problems are expected.

B Demonstrate a substantial command of the mathematical notions and proof techniques taught in the course by being able to handle abstract mathematical arguments, to apply appropriate theorems correctly, and, with guidance, to make use of those proof techniques in novel situations. Ability to present solutions clearly and logically, and evidence of innovative ideas in solving
MATH2822

Department of Mathematics

Course Type: Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Tutorials and Assignments</td>
<td>10</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>40</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website

http://moodle.hku.hk/

Additional Course Information

http://hkumath.hku.hk/~math/Timetable/timetable1819_S1.pdf
http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf

Course Objectives

This course is the second of the two mathematics courses designed to provide actuarial science students with a solid background of calculus of one and several variables and an introduction to linear algebra. The course focuses on multivariable calculus and linear algebra. It aims at students with MATH1821. It can be followed by other 2000 or 3000 level mathematics courses.

Course Contents & Topics

- Matrices, systems of linear equations, determinants.
- Eigenvalues and eigenvectors, diagonalization of matrices.
- Quadratic functions and their standard forms.
- Vector spaces and subspaces.
- Functions of several variables; partial differentiation.
- Gradients and directional derivatives.
- Taylor approximation, Newton’s method.
- Maxima and minima; Lagrange multipliers.
- Double and triple integrals, areas and volumes.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 understand and recognize various topics in linear algebra such as the basic arithmetic of matrices, determinants, systems of linear equations, eigenvalues and eigenvectors, diagonalizable matrices, basis and dimension, and the rank-nullity theorem

CLO 2 understand and recognize various topics in functions of several variables including partial differentiation, the Hessian test for local extrema, vector-valued functions, Jacobians, the method of Lagrange multipliers, double/triple integrals and the change of variable formula

Pre-requisites

Pass in MATH1821. For BSc(ActuarSc) students only.

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications or presentation or with some minor computational errors.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through correctly analysing problems with poor argument and presentation or a number of minor computational errors.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.</td>
</tr>
<tr>
<td>F</td>
<td>Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.</td>
</tr>
</tbody>
</table>

Course Type: Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>50</td>
<td>CLO 1,2</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

George B. Thomas; as revised by Maurice D. Weir and Joel Hass: Thomas’ Calculus (Addison Wesley, 12th edition)
Steven J. Leon: Linear Algebra with Applications (Pearson Prentice Hall)
MATH3001

Offering Department: Mathematics
Course Co-ordinator: TBC, Mathematics
Teachers Involved: (Dr C W Wong, Mathematics)

Course Objectives: To acquaint the students with the origin and growth of basic mathematical concepts. To assist the students to gain a deeper insight and broader view of mathematics as a discipline and human endeavour. To provide the students with an opportunity to write on and talk about mathematics, and to engage in independent study.

Course Contents & Topics: Selected topics in the development of mathematics from ancient to modern times depending on interest of the students and the lecturer, with attention paid to the evolvement of mathematical ideas and the process of mathematical thinking and problem solving.

Course Learning Outcomes: On successful completion of this course, students should be able to:
- CLO 1 understand and describe the origin and development of basic mathematical concepts
- CLO 2 recognize and demonstrate the intellectual and the socio-cultural aspects of mathematics, and appreciate mathematics as both an academic discipline and a human endeavour
- CLO 3 discuss, argue, and write about the development of various mathematical concepts and ideas
- CLO 4 engage in independent study on a topic about the history or development of mathematics

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in MATH2101, MATH2102, MATH2211 and MATH2241

Offer in 2018 - 2019
- N Offer in 2019 - 2020 : N
- Examination : ---

Graduate Descriptors (A+ to F)
- A Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Critical use of information from sources to draw appropriate and insightful conclusions. Actively engage in and contribute substantially and fruitfully to class discussions. Apply highly effective organizational and presentational skills.
- B Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Correct use of information from sources to draw appropriate conclusions. Good participation in class discussions with generally good contributions. Apply effective organizational and presentational skills.
- C Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Mostly correct but some erroneous use of information from sources to draw appropriate conclusions. Make some but not substantial fruitful contributions to class discussions. Apply moderately effective organizational and presentational skills.
- D Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Limited ability to use information from sources to draw appropriate conclusions. Contribute only in a limited way to fruitful and meaningful class discussions. Apply limited or barely effective organizational and presentational skills.
- Fail Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Misuse of information from sources and/or unable to draw appropriate conclusions. Make little or no meaningful contributions to class discussions. Organization and presentational skills are minimally effective or ineffective.

Course Type:
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>Examination</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- R. Laubenbacher and D. Pengelley: Mathematical Expeditions (Springer-Verlag, 1999)

MATH3002

Offering Department: Mathematics
Course Co-ordinator: Prof K M Tsang, Mathematics (kmtsan@maths.hku.hk)

Teachers Involved: (Dr C W Wong, Mathematics)
(Prof K M Tsang, Mathematics)

Course Objectives:
This is a seminar style course intended for those who have very strong interests and good ability in mathematics. Students will be given book chapters and elementary research articles for private study and then make presentations in front of the whole class. Individual meetings with the instructors will be arranged prior to their presentations. Active participation in all the discussions is expected. The aim of the course is to let students learn how to initiate self/independent study in mathematics.

Course Contents & Topics:
Topics chosen by the instructors, including chapters from books and elementary research articles.

Course Learning Outcomes: On successful completion of this course, students should be able to:
- CLO 1 Initiate private independent study on some interesting mathematical topics

Pre-requisites (and Co-requisites and Impermissible combinations)
- Pass in MATH2012, MATH2101, MATH2211 and MATH2241
- Subject to approval by the Department.

Offer in 2018 - 2019
- N Offer in 2019 - 2020 : Y
- Examination : ---

Graduate Descriptors
- A Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Actively engage in and contribute substantially and fruitfully to class discussions. Apply highly effective
Course Type: Project-based course

Assessment Methods and Weighting:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research report</td>
<td>written examination</td>
<td>(30%)</td>
<td>CLO 1</td>
</tr>
<tr>
<td></td>
<td>coursework</td>
<td>(70%)</td>
<td></td>
</tr>
</tbody>
</table>

Course Website:
http://moodle.hku.hk/

Additional Course Information:

(i) Senior students who are interested in taking a seminar course are recommended to take MATH4910.
(ii) This course is not a capstone course.

MATH3301

Algebra I (6 credits)

Offering Department: Mathematics

Course Co-ordinator: Dr Y K Lau, Mathematics (yklau@maths.hku.hk)

Course Objectives:
This course aims to present those fundamental topics and techniques of algebra that are finding wide applications in mathematics and the applied sciences. It is complete in itself, and may also be followed by MATH4302 Algebra II and MATH7502 Topics in Applied Discrete Mathematics.

Course Contents & Topics:
- Groups: examples of groups, subgroups, cosets, Lagrange theorem, quotient groups, normal subgroups, group homomorphisms, direct product of groups, group actions.
- Rings: examples of rings, integral domains, ideals, fields of fractions, principal ideal domains, unique factorization domains.
- Fields: definition and examples of fields.
- Polynomials: polynomial rings in one variable over fields and over the integers.

Course Learning Outcomes:
On successful completion of this course, students should be able to:

CLO 1: Write down the precise definitions of the basic concepts in the "Course Contents"

CLO 2: Give examples for each of the concepts in the "Course Contents"

CLO 3: Understand basic properties of groups, rings, and fields

Pre-requisites (and Co-requisites and Impermissible combinations):
Pass in MATH2101

Grade Descriptors (A+ to F):

A: Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

B: Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.

C: Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.

D: Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

Fail: Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Course Type: Lecture-based course

Assessment Methods and Weighting:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>10</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>40</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials:
To be decided by the course instructor.

Course Website:
http://moodle.hku.hk/

Additional Course Information:

Tutorial timetable:
http://hkumath.hku.hk/~math/ Timetable/timetable1819_S1.pdf
Department of Mathematics

Course Objectives
Matrix theory has a close connection with other mathematical subjects such as linear algebra, functional analysis, and combinatorics. It also plays an important role in the development of many subjects in science, engineering, and social sciences. In this course, students will be taught the fundamentals of matrix analysis and its application to various kinds of practical problems. Mathematical software may be used in the course, so that students can learn how to use the computer to solve matrix problems.

Course Contents & Topics
- Eigenvalues and eigenvectors: similarities, applications on difference equations and differential equations.
- Orthogonality: inner products and the induced norms, orthogonality of null spaces and column spaces, applications to over- or under-determined systems, least squares fit, Unitary, normal, and Hermitian matrices: Schur's triangularization theorem. Variational description of eigenvalues: applications in optimization and in eigenvalue estimation.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 have a good understanding on matrices, determinants, linear transformations, eigenvalues and eigenvectors
- CLO 2 understand the concept of similar matrices and the eigenvalue decomposition
- CLO 3 understand the concept of orthogonality
- CLO 4 understand the concept of unitary, normal, and Hermitian matrices
- CLO 5 find the singular value decomposition of a matrix and apply the theory of singular values to study polar decomposition, pseudo inverse and spectral norm of matrices
- CLO 6 understand the concept of the Jordan blocks, Jordan matrices and the Jordan canonical form of a matrix

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in MATH2101 and MATH2102

Offer in 2018 - 2019
N
Grade Descriptors
(A to F)

Course Learning & Teaching Activities

Course Type
Lecture-based course

Assessment Methods and Weighting

Methods	Details	Weighting in final course grade (%)	Assessment Methods to CLO Mapping
Examination | 50 | CLO 1, 2, 3, 4, 5, 6 |
Test | 50 | CLO 1, 2, 3, 4, 5, 6 |

Required/recommended reading and online materials
Jack L. Goldberg: Matrix Theory with Applications (McGraw-Hill, 1991)
Steven J. Leon: Linear Algebra with Applications (Macmillan, 1994, 4th edition)
Chris Rones & Howard Anton: Applications of Linear Algebra (Wiley, 1984, 3rd edition)

MATH3304
Introduction to number theory (6 credits)

Offering Department
Mathematics

Course Co-ordinator
Dr B Kane, Mathematics (bkane@maths.hku.hk)

Teachers Involved
(Dr B Kane, Mathematics)
(Dr S K Pujahari, Mathematics)

Course Objectives
To provide students with basic concepts about numbers, their properties and basic knowledge on the arithmetic of congruences. The prime numbers are the building blocks of all the natural numbers under multiplication. The interplay between the multiplicative and additive properties of prime numbers is particularly interesting. The course will study further properties and the distribution of the prime numbers, and some of the longstanding open problems concerning them. Important applications of number theory to modern cryptography will also be introduced.

Course Contents & Topics
- The course will begin with some basic notions in number theory, including divisibility, greatest common divisor, Euclidean algorithm, congruences, etc. It will then be followed by several fundamental theorems, such as Chinese remainder theorem, solutions of linear and polynomial congruences, Fermat's Little theorem, and the quadratic reciprocity law.
- Many well-known open problems will be introduced. Application of number theory to public key cryptography will be explained. Some current research on the prime numbers will be discussed.
- Depending on the time available, the course will cover a selection of further topics, such as the prime number theorem, sum of squares, Dirichlet's theorem on diophantine approximations, continued fractions, etc.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 solve a system of linear congruences
- CLO 2 solve polynomial congruences
- CLO 3 determine the solubility of quadratic congruences by computation of the Legendre symbol
Course Objectives

On successful completion of this course, students should be able to:

A Demonstrate a thorough understanding of all concepts and ideas by being able to draw complex connections among various concepts and apply the theorems through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation, and with some innovative approaches to solving problems.

B Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing number theoretic problems, but with some minor inaccuracies in arguments and being able to present coherent logical reasoning and carry out computations carefully without major errors.

C Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with weak and fragmentary argument and presentation, or with moderate computational errors.

D Demonstrate some superficial understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation, or with substantial computational errors.

Fail Demonstrate poor and inadequate understanding of the key concepts and ideas by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Tutorials and Assignments</td>
<td>10</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Text</td>
<td></td>
<td>40</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Additional Course Information

MATH3301 recommended but not required.

Tutorial timetable: http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf

Department of Mathematics

Analysis I (6 credits)

Offering Department Mathematics

Course Co-ordinator Prof W S Cheung, Mathematics (wscheung@hku.hk)

Teachers Involved Prof W S Cheung, Mathematics

Course Objectives This course extends to more general situations some basic results covered in Calculus and introduces some fundamental concepts which are essential for advanced studies in mathematical analysis.

Course Contents & Topics Basic properties of metric spaces; openness; closedness; interior; closure; derived set; boundary; compactness; completeness; continuity; connectedness; pathwise connectedness; uniform continuity; uniform convergence; Banach’s fixed point theorem.

Course Learning Outcomes On successful completion of this course, students should be able to:

CLO 1 Demonstrate knowledge and understanding of the basic features of mathematical analysis and point set topology (e.g., able to identify objects that are topological equivalent)

CLO 2 Apply knowledge and skills acquired in mathematical analysis to analyze and handle novel situations in a critical way (e.g., able to determine whether a specific function is uniformly continuous)

CLO 3 Think creatively and laterally to generate innovative examples and solutions to non-standard problems (e.g., able to provide counterexamples to inaccurate mathematical statements)

Pre-requisites Pass in MATH2101 and MATH2211

Offer in 2018 - 2019 Y 1st sem

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate a thorough understanding of all concepts and ideas by being able to draw complex connections among various concepts and apply the theorems through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation, and with some innovative approaches to solving problems.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing number theoretic problems, but with some minor inaccuracies in arguments, reasoning, identifying the appropriate theorems, applications, or presentation.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with weak and fragmentary argument and presentation.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate some superficial understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.</td>
</tr>
</tbody>
</table>

Reading / Self study

- J. H. Silverman: A friendly introduction to number theory (Prentice Hall, 2001)

Credit & Weighting

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading and online materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td></td>
<td>40</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
</tbody>
</table>

Additional Course Information

MATH3301 is recommended but not required.

Tutorial timetable: http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf
MATH3403

Offering Department: Mathematics
Course Co-ordinator: Prof N Mok, Mathematics
Teachers Involved: (Prof N Mok, Mathematics)

Course Objectives

This course is indispensable for studies in higher mathematical analysis and the more theoretical aspects of physics. In this course, the students are introduced to the fundamental concepts and properties of analytic functions and are shown how to look at analyticity from different points of view. At the same time, the techniques of solving problems without losing sight of the geometric picture are emphasized.

Course Contents & Topics

- Complex number system.
- Analytic functions and elementary functions.
- The Cauchy-Riemann equations.
- Cauchy's theorem and its applications.
- Taylor's series.
- Laurent's series.
- Zeros, singularities and poles.
- The Residue Theorem and its applications.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** recognize the theory of functions of a complex variable as a rigorous and foundational subject in mathematics
- **CLO 2** grasp the techniques from Cauchy-Riemann equations, power series expansion and Cauchy integral formulas to study analytic functions from different perspectives
- **CLO 3** compute contour integrals by calculating residues
- **CLO 4** apply such techniques to determine improper integrals such as those for certain rational functions on the real line

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in MATH2211 and MATH2241

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade</th>
<th>2018 - 2019</th>
<th>2019 - 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Grade Descriptors (A+ to F)

- **A** Demonstrate an excellent understanding of key concepts and ideas by being able to correctly identify appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.
- **B** Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.
- **C** Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.
- **D** Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.
- **Fail** Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>50 CLO 1,2,3,4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>50 CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- R.B. Ash and W.P. Novinger: Complex Variables (Dover, 2nd edition)
- J. Bak & D.J. Newman: Complex Analysis, Undergraduate Texts in Mathematics (Springer-Verlag)
- K. Kodaira: Introduction to Complex Analysis (Cambridge)
- J.P. Gilman, I. Kra and R.E. Rodriguez: Complex Analysis: In the spirit of Lipman Bers (Springer-Verlag)

Course Website

http://moodle.hku.hk/

Additional Course Information

MATH3405

Offering Department: Mathematics
Course Co-ordinator: Dr T K Wong, Mathematics
Teachers Involved: (Dr T K Wong, Mathematics)

Course Objectives

The standard topics in the wide field of ordinary differential equations (ODEs) included in this course are of importance to students of sciences and engineering. Our emphasis is on principles rather than routine calculations and our approach is a compromise between diversity and depth.

Course Contents & Topics

- Review of elementary differential equations.
- Existence and uniqueness theorems.
- Second order differential equations, Wronskian, variation of parameters.
- Power series method, Legendre polynomials, Bessel functions.
- Linear systems, autonomous systems.
- Qualitative properties of solutions.
- The Laplace transform.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1: solve simple first order and second order (linear or nonlinear) ODEs by various techniques, including auxiliary equations, variation of parameters, Laplace transform, and series method.

CLO 2: solve systems of first order linear ODEs with constant coefficients, of which the number of equations and the number of unknown functions are no more than three.

CLO 3: discuss qualitatively the solutions of nonlinear ODEs or systems of nonlinear ODEs by studying their linear approximations or their phase diagrams.

CLO 4: apply the theory of differential equations to study quantitatively/qualitatively problems arising from physical and life sciences.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in (MATH2101 and MATH2211) or MATH2014 or (MATH1821 and MATH2822).

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)

A: Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

B: Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.

C: Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through correctly analysing problems with poor argument and presentation or a number of minor computational errors.

D: Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

Fail: Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Course Type

Lecture-based course

Course Teaching & Learning Activities

Activity	Details	No. of Hours
Lectures | 36 |
Tutorials | 12 |
Reading / Self study | 100 |

Assessment Methods and Weighting

Method	Details	Weighting in final course grade (%)	Assessment Methods to CLO Mapping
Assignments | 10 | CLO 1, 2, 3, 4 |
Examination | 50 | CLO 1, 2, 3, 4 |
Test | 40 | CLO 1, 2, 3, 4 |

Required/recommended reading and online materials

Course Website

http://moodle.hku.hk/

Additional Course Information

Tutorial timetable: http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf

MATH3408

Computational methods and differential equations with applications (6 credits)

Academic Year: 2018

Offering Department: Mathematics

Quota: ---

Course Co-ordinator: Prof W K Ching, Mathematics (wching@hku.hk)

Teachers Involved: Prof W K Ching, Mathematics

Course Objectives

This course covers topics in the fields of differential equations, mathematical modelling and numerical analysis which are of importance to sciences students. The emphasis is practical applications of basic principles.

Course Contents & Topics

- Solution of linear difference equations.
- Mathematical modelling and dynamical systems.
- Numerical differentiation and integration.
- LU factorization for solving linear system of equations.
- Matrix norms and iterative solutions of matrix equations.
- Solution of nonlinear systems of equations.
- Elementary differential equations and power series method.
- Numerical solutions of ordinary and partial differential equations.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1: construct and implement numerical methods for numerical integration and differentiation, and the solution of linear and nonlinear system of equations.

CLO 2: explain mathematical ideas of numerical methods and mathematical modelling in solving linear difference equations, ordinary and partial differential equations.

CLO 3: construct one-step and linear multistep methods for the numerical solution of initial-value problems for ordinary differential equations and systems of such equations and analyze their stability and accuracy properties.

CLO 4: construct finite difference methods for the numerical solution of partial differential equations and analyze their stability and accuracy properties.

CLO 5: implement numerical methods for solving initial and boundary value problems by software packages like...
Introduction to topology (6 credits)

Course Type
Lecture-based course

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y Examination May

Grade Descriptors
(A+ to F)
A Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and computational methods and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.
B Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and computational methods and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems and computational methods or their applications or presentation or with some minor computational errors.
C Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems and computational methods, but with some inadequacies in applying them through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.
D Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems and computational methods, but with substantial inadequacies in applying them through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.
F Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems and computational methods or their applications, or not being able to complete the solution.

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in (MATH2101 and MATH2211) or MATH2014 or (MATH1821 and MATH2822)

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>50</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>50</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
D.F. Parkhurst: Introduction to Applied Mathematics for Environmental Science (Springer)
E.A. Coddington: An Introduction to Ordinary Differential Equations (Prentice-Hall)
A. Ralston and P. Rabinowitz: A First Course in Numerical Analysis (McGraw-Hill)

Course Website
http://moodle.hku.hk/

Additional Course Information
Tutorial timetable:
http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf

MATH3541
Introduction to topology (6 credits)

Offering Department
Mathematics

Quota

Course Co-ordinator
Dr T W Ching, Mathematics (lmtching@maths.hku.hk)

Teachers Involved
(Dr T W Ching, Mathematics)

Course Objectives
This course aims at introducing students to fundamental knowledge in topology and some of its applications. We will emphasize more on building geometric intuition and links between topology and other subjects. It can help prepare students for more advanced Mathematics and Physics courses and future research in Mathematics, Physics, Computer Science and Biology.

Course Contents & Topics
Topics will be chosen among the following:
(i) Basic point-set topology: topological spaces, product and quotient spaces.
(ii) Topological groups and orbit spaces.
(iii) Brouwer fixed point theorem, winding number.
(iv) Fundamental groups, covering spaces.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 understand basic constructions in point-set topology
CLO 2 give examples and counter examples for concepts in the "course contents"
CLO 3 understand basic ideas of fundamental groups and its application to the surface classification problem

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in MATH2101, MATH2102 and MATH2241.
Students are recommended to have passed or already enrolled in MATH3301 and MATH3401.

Course Type
Lecture-based course

Activities
Lectures 36
Tutorials 12
Reading / Self study 100

Assessment Methods
Assignments 10

Methods
Details
Assessment Methods to CLO Mapping
CLO 1,2,3

Examination Methods
May
MATH3600 Discrete mathematics (6 credits)
Offering Department
Mathematics
Quota

Teachers Involved
Dr K H Law, Mathematics (lawkaho@maths.hku.hk)
Course Objectives
To introduce students to the basic ideas and techniques of discrete mathematics.
- Counting: combinations, permutations, pigeonhole principle, inclusion-exclusion, recurrence relations, and generating functions.
- Graph theory: paths, circuits, trees, connectivity, planarity, etc.
- Applications of counting techniques and graph theory.
Course Contents & Topics
- Applications of counting techniques and graph theory.
- Generating functions.
- Counting: combinations, permutations, pigeonhole principle, inclusion-exclusion, recurrence relations, and generating functions.
- Graph theory: paths, circuits, trees, connectivity, planarity, etc.
- Applications of counting techniques and graph theory.
Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 demonstrate knowledge and understanding of the basic ideas and techniques of discrete mathematics
- CLO 2 solve various real-world problems by using counting techniques and graph theory
- CLO 3 develop their ability to read, comprehend, and create mathematical arguments
Pre-requisites (and Co-requisites and Impermissible combinations)
Passes in (MATH1013 and any 1 of Level 2 MATH courses) or (MATH1851 and MATH1853 and any 1 of level 2 MATH courses) or MATH2014 or (MATH1821 and MATH2822)
Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y
Grade Descriptors (A+ to F)
- A Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.
- B Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.
- C Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.
- D Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.
- Fail Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.
Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Assessment Types</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>10 CLO 1.2,3</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>50 CLO 1.2,3</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>40 CLO 1.2,3</td>
<td></td>
</tr>
<tr>
<td>Activities</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>No. of Hours</td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td>No. of Hours</td>
<td>12</td>
</tr>
</tbody>
</table>
Additional Course Information

MATH3601 Numerical analysis (6 credits)
Offering Department
Mathematics
Quota

Teachers Involved
Dr Z Zhang, Mathematics (zhangzw@maths.hku.hk)
Course Objectives
This course covers both the theoretical and practical aspects of numerical analysis. Emphasis will be on basic principles and numerical methods of solution, using high speed computers.
- Solution of equations of one variable.
- Direct and iterative methods for solving linear systems.
- Numerical differentiation and integration.
- Simple initial value problems for Ordinary Differential Equations.
Course Contents & Topics
- Different types of errors, condition number, and convergence order.
- Polynomial interpolation and function approximation.
- Solution of equations of one variable.
- Direct and iterative methods for solving linear systems.
- Numerical differentiation and integration.
- Simple initial value problems for Ordinary Differential Equations.
Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 construct and implement algorithms to find the zeros of functions, apply the bisection, Newton, Secant and fixed point iteration methods; and construct and implement Newton's method to solve a system of nonlinear equations.
- CLO 2 apply direct and iterative methods for solving linear equation systems
- CLO 3 construct interpolation polynomials in Lagrange, Newton, Hermite and spline forms
- CLO 4 understand the basic numerical integration and differentiation methods
- CLO 5 apply Euler methods and Runge-Kutta methods to solve initial value problems
Additional Course Information

Department of Mathematics
Course Objectives

On successful completion of this course, students should be able to:

1. Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and algorithms, and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out numerical procedures carefully and correctly, and with some innovative approaches to solving problems.

2. Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and algorithms, and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications or with some minor computational errors.

3. Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems and algorithms, but with some inadequacies in applying the theorems or their applications or with some minor computational errors.

4. Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems and algorithms, but with substantial inadequacies in applying the theorems or their applications or with substantial computational errors.

Assessment Methods

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
</tbody>
</table>

Additional Course Information

- Instructor's Lecture Notes: [Lecturer's Lecture Notes](http://moodle.hku.hk/)
- Course Website: http://moodle.hku.hk/
- Course Website: http://hkumath.hku.hk/~math/Timetable/timetable1819_S1.pdf
- Reading / Self study: 100
- Tutorials: 12
- Lectures: 36
- Test: 50
- Examination: 50

Course Learning Outcomes

CLO 1: Understand and recognize the fundamental principles of probability theory.

CLO 2: Explain the typical proofs and computational techniques in probability theory and apply them to concrete problems.

CLO 3: Demonstrate knowledge and understanding of various types of probability models.

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in (MATH2101 and MATH2211) or MATH2014 or (MATH1821 and MATH2822)

Course Type

Lecture-based course
MATH3901 Operations research I (6 credits)

Offering Department
Department of Mathematics

Course Co-ordinator
Dr Z Qu, Mathematics (zhengqu@maths.hku.hk)

Course Objectives
The objective is to provide a fundamental account of the basic results and techniques of Linear Programming (LP) and its related topics in operations research. There is an emphasis on all three aspects of understanding, algorithms and applications. The course serves, together with a course on network models, as essential concept and background for more advanced studies in operations research.

Course Content & Topics
- Linear Programming
- Duality Theory
- Sensitivity Analysis and Parametric Linear Programming
- Network Flow Problems
- Matrix Games

Course Learning Outcomes

- On successful completion of this course, students should be able to:
 - CLO 1 understand the fundamental concept and approach of linear programming appropriate to the further study of operations research
 - CLO 2 demonstrate knowledge and understanding of the underlying techniques of the simplex method and its extensions such as the dual simplex algorithm and the transportation simplex algorithm
 - CLO 3 understand and apply the theory of LP duality such as in sensitivity analysis, matrix games and network flow problems

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in MATH2014 or MATH2101 or MATH2102

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>B</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>C</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>D</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Fail</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework assessment</td>
<td>10</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Test</td>
<td>Two midterm tests</td>
<td>40</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

MATH3904 Introduction to optimization (6 credits)

Offering Department
Department of Mathematics

Course Co-ordinator
Prof W Zang, Mathematics (wzang@maths.hku.hk)

Course Objectives
This course introduces students to the theory and techniques of optimization, aiming at preparing them for further studies in operations research, mathematical economics and related subject areas.

Course Contents & Topics
- Unconstrained and constrained optimization.
- Necessary conditions and sufficient conditions for optimality, convexity, duality.
- Algorithms and numerical examples.
Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 demonstrate knowledge and understanding of the basic theory and techniques of optimization
- CLO 2 solve various optimization problems encountered in practice
- CLO 3 understand the connection between the purely analytical character of an optimization problem and the behavior of algorithms for solving it

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in (MATH2101 and MATH2211) or MATH2014 or (MATH1821 and MATH2822)

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A to F)</th>
<th>Offer in 2019 - 2020 : Y</th>
<th>Examination</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Test</td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>C</td>
<td>Test</td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>D</td>
<td>Examination</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website: http://moodle.hku.hk/

Additional Course Information

MATH3905

Queueing theory and simulation (6 credits)

Offering Department: Mathematics

Course Co-ordinator: Dr G Han, Mathematics (ghan@maths.hku.hk)

Course Content & Topics

This course introduces students to the models and theory of queueing system, as well as the technique of simulation as a practical tool of analysis.

- Markovian queueing networks, Imbedded Markov chain queueing models.
- Simulation of queueing models and discrete-event systems.
- Introduction of the Monte Carlo (MC) method and Markov Chain Monte Carlo (MCMC) method.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand the terminology and nomenclature appropriate to queueing theory
- CLO 2 demonstrate knowledge and understanding of various queueing models
- CLO 3 formulate concrete problems using queueing theoretical approaches
- CLO 4 become familiar with fundamental principles of simulation and compare different simulation techniques
- CLO 5 use Monte Carlo method and Markov Chain Monte Carlo method to conduct numerical simulations

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in (MATH2101 and MATH2211) or MATH2014 or (MATH1821 and MATH2822)

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A to F)</th>
<th>Offer in 2019 - 2020 : Y</th>
<th>Examination</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Test</td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>C</td>
<td>Test</td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>D</td>
<td>Examination</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Course Objectives

- Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.
- Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.
- Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.
- Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.
- Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Additional Course Information:

http://hkumath.hku.hk/~math/Timetable/timetable1819_S1.pdf
MATH3906

Financial calculus (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Dr S P Yung, Mathematics (spying@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved Course Objectives</td>
<td>(Dr S P Yung, Mathematics)</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>This course gives an elementary treatment for the modeling of financial derivatives, asset pricing and market risks from an applied mathematician's point of view. Stochastic calculus and solution methods will be introduced.</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
<td>Pass in (MATH2101 and MATH2211) or MATH2014 or (MATH1821 and MATH2822) or STAT2601</td>
</tr>
<tr>
<td>Offer in 2018 - 2019</td>
<td>Y 1st sem</td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.</td>
</tr>
<tr>
<td></td>
<td>B Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.</td>
</tr>
<tr>
<td></td>
<td>C Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.</td>
</tr>
<tr>
<td></td>
<td>D Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.</td>
</tr>
<tr>
<td></td>
<td>Fail Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.</td>
</tr>
<tr>
<td>Course Type</td>
<td>Lecture-based course</td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
</tr>
<tr>
<td></td>
<td>Test</td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td>A. Etheridge: A Course in Financial Calculus (Cambridge University Press)</td>
</tr>
<tr>
<td></td>
<td>R. Jarrow and S. Turnbull: Derivative Securities (South-Western College Publishing, 1994)</td>
</tr>
<tr>
<td>Course Website</td>
<td>http://moodle.hku.hk/</td>
</tr>
<tr>
<td>Additional Course Information</td>
<td>Tutorial timetable: http://hkumath.hku.hk/~math/Timetable/timetable1819_S1.pdf</td>
</tr>
</tbody>
</table>

MATH3911

Game theory and strategy (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Dr K H Law, Mathematics (lawkaho@maths.hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved Course Objectives</td>
<td>(Dr K H Law, Mathematics)</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>Game theory is the logical analysis of situations of conflict and cooperation. This course will introduce the students to the basic ideas and techniques of mathematical game theory in an interdisciplinary context.</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites)</td>
<td>Pass in (MATH2101 and MATH2211) or (MATH1821 and MATH2822)</td>
</tr>
</tbody>
</table>

Course Learning Outcomes

- **CLO 1**: Understand the basic terminology and solution concepts in game theory.
- **CLO 2**: Compute explicitly different solution concepts for some simple cooperative and non-cooperative games.
- **CLO 3**: Apply game theoretical ideas and methods to solve some problems in economics and biology.

Course Contents & Topics

- Application to politics: Shapley's theorem.
- Application to biology: evolutionary stable strategies; games in coalition form; Shapley value.
- Application to economics: the no-arbitrage-principle.
- Combinatorial games and Zermelo's Theorem; Prisoner's Dilemma; pure and mixed strategies, minimax theorem; mixed Nash equilibria.
- Application to biology: evolutionary stable strategies; games in coalition form; Shapley value.
- Application to politics: Shapley-Shubik power index; core and von Neumann-Morgenstern solution; bargaining set.

Assessment Methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>Weighting in final course grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>50</td>
</tr>
<tr>
<td>Test</td>
<td>50</td>
</tr>
</tbody>
</table>

Course Website

http://moodle.hku.hk/
Network models in operations research (6 credits)

Course Objectives
The objective is to provide a fundamental account of the basic results and techniques of network models in operations research. There is an equal emphasis on all three aspects of understanding, algorithms and applications. The course serves, together with a course on linear programming, to provide essential concept and background for more advanced studies in operations research.

Course Contents & Topics
- Graphs and algorithms
- Trees, matchings and paths.
- Network models of transportation and assignment problems.
- Ford-Fulkerson network flow theory and computation for maximum flow and minimum cost flow algorithms.
- Applications to combinatorial optimization problems such as allocation, location and sequencing.
- Project networks, if time permits.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 understand the fundamental concept and approach of graphs and network models appropriate to the further study of operations research
- CLO 2 demonstrate knowledge and understanding of the underlying techniques of the various graph and network algorithms and their extensions
- CLO 3 understand the theory of network flows and the duality aspects in such methods of flow computations

Pre-requisites
Pass in (MATH2101 and MATH2211) or MATH2014; and Pass in MATH3901, or already enrolled in this course.

Offer in 2018 - 2019
Y 2nd sem

Grade Descriptors (A to F)
A Demonstrate an excellent understanding of key concepts and ideas of Game Theory by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and to solve problems with some innovative approaches.
B Demonstrate a good understanding of key concepts and ideas of Game Theory by being able to identify the appropriate theorems, algorithms and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.
C Demonstrate an acceptable understanding of key concepts and ideas of Game Theory by being able to identify the appropriate theorems, algorithms and their applications through correctly analysing problems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.
D Demonstrate some understanding of key concepts and ideas of Game Theory by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.
Fail Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Assessment Methods and Weighting
- Assignments: 50
- Examination: 50
- Project reports: 20
- Test: 20

Additional Course Information
Tutorial timetable:
http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf
MATH3999

Directed studies in mathematics (6 credits)

Offering Department
Mathematics

Course Co-ordinator
Prof T W Ng, Mathematics (ntw@maths.hku.hk)

Teachers Involved
(All teaching staff, Mathematics)

Course Objectives
This course is designed for students who would like to have early experiences on research related independent studies.

Course Contents & Topics
The subject matter of the project will be determined by consultation between the student and the supervisor. The student must achieve good standing and get the approval from both the prospective supervisor and the course coordinator to take this course.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 understand how mathematical theories are applied and/or extended in problem-solving
CLO 2 gain experience in project writing and oral presentation
CLO 3 pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX or MATH7XXX) in the Mathematics, and Mathematics/Physics Majors, in addition to a pass in MATH2101, MATH2102, MATH2211 and MATH241. Subject to approval by the Department. This capstone course is for Mathematics, and Mathematics/Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019
Y 1st sem 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

A Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical evaluation of information drawn from a broad range of high quality sources and to reference aptly. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.

B Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to reference aptly. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Use of relevant information from sources, showing ability to make comparisons between different interpretations and to reference aptly. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presenational skills.

D Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presenational skills.

Fail Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presenational skills are minimally effective or ineffective.

Course Type
Project-based course

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Dissertation Written report plus oral presentation 100 CLO 1,2,3

MATH4302

Algebra II (6 credits)

Offering Department
Mathematics

Course Co-ordinator
Prof J H Lu, Mathematics (jhu@maths.hku.hk)

Teachers Involved
(Prof J H Lu, Mathematics) (jhlu@maths.hku.hk)

Course Objectives
This course is an extension of MATH3301 and goes deeper into the various topics treated in that course. Together, the two courses are complete in themselves, and may be followed by MATH7501 and MATH7502.

Course Contents & Topics
- Principal ideal domains and unique factorization domains;
- Structure theorem for finitely generated modules of principal ideal domains with applications to finitely generated abelian groups and canonical forms of matrices;
- Field extensions; introduction to Galois theory.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 understand basic examples of principal ideal domains and why principal ideal domains are unique factorization domains
CLO 2 understand the classification of finitely generated modules of principal ideal domains and certain canonical forms of matrices
CLO 3 understand and compute splitting fields of irreducible polynomials
CLO 4 compute examples of Galois groups

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in MATH2102 and MATH3301

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors
Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their
MATH4402
Analysis II (6 credits)

Offering Department
Mathematics

Course Co-ordinator
Dr Y M Chan, Mathematics (ymchan@maths.hku.hk)

Teachers Involved
(Deputy Head of Mathematics, Mathematics)

Course Objectives
This course gives a comprehensive and rigorous treatment on calculus of several variables, and a modern treatment of integration theory in the language of differential forms which is essential for more advanced studies in analysis and geometry.

Course Contents & Topics
- Differentiation of functions of several variables: partial derivatives, differential, differentiability, inverse function theorem, implicit function theorem, submanifolds in \mathbb{R}^n, method of Lagrange multipliers.
- Integration in \mathbb{R}^n: Basic definitions, measure zero and content zero sets, integrability, Fubini's Theorem, partition of unity, change of variables.
- Integration on chains: tensors, alternating tensors, vector fields, differential forms, Poincare Lemma, Stokes' Theorem.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 demonstrate knowledge and understanding of the modern language of mathematical analysis and geometry (e.g., able to manipulate differential forms)

CLO 2 apply knowledge and skills acquired in mathematical analysis to analyze and handle novel situations in a critical way (e.g., able to determine the differentiability and integrability of specific functions)

CLO 3 think creatively and laterally to generate innovative solutions to novel problems (e.g., able to do integration of specific functions on chains)

Pre-requisites
Pass in MATH3401

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)
A Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

B Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.

C Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.

D Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

Fail Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Course Type
Lecture-based course

Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 100

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments 10 CLO 1,2,3 4
Examination 50 CLO 1,2,3 4
Test 40 CLO 1,2,3 4

Required/recommended reading and online materials
- Apostol: Mathematical Analysis
- Munkres: Analysis on Manifolds
- Rudin: Principles of Mathematical Analysis

Additional Course Information
Tutorial timetable: http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf
MATH4404

Offering Department: Mathematics
Course Co-ordinator: Dr T K Wong, Mathematics (takkwong@maths.hku.hk)
Teachers Involved: Dr Y Gao, Mathematics

Course Objectives:
This course introduces students to the basic knowledge of linear functional analysis, an important branch of modern analysis.

Course Contents & Topics:
- Spectral theory of linear operators.

Course Learning Outcomes:
On successful completion of this course, students should be able to:

CLO 1 compare and contrast (i) finite and infinite dimensional linear spaces, (ii) complete and incomplete linear space, and (iii) normed and inner product spaces; in particular, recognize the importance of completeness and discuss how vectors are represented in these spaces

CLO 2 understand the notions of Banach spaces and Hilbert Spaces. State and apply fundamental theorems in these spaces

CLO 3 discuss the dual spaces of some standard Banach spaces

CLO 4 discuss the boundedness of linear operators and the spectra of special linear operators

Pre-requisites (and Co-requisites and Impermissible combinations):
Pass in MATH2101, MATH2102, MATH2211, MATH2241 and MATH3401

Offer in 2018 - 2019: Y 2nd sem

Grade Descriptors (A+ to F)

A
Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

B
Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, with some minor inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or with a number of minor computational errors.

C
Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some minor inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or with some minor computational errors.

D
Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

Fail
Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Assessment

- Assignments: 10% CLO 1,2,3,4
- Examination: 50% CLO 1,2,3,4
- Test: 40% CLO 1,2,3,4

Methods and Weighting

Methods
Assignments
Examination
Test

Weighting in final course grade (%) 10 50 40
Assessment Methods to CLO Mapping CLO 1,2,3,4

Course Type: Lecture-based course

Course Website: http://moodle.hku.hk/

Additional Course Information: Tutorial timetable:
http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf

MATH4406

Offering Department: Mathematics
Course Co-ordinator: Dr H Y Zhang, Mathematics (hzyhang@maths.hku.hk)
Teachers Involved: Dr H Y Zhang, Mathematics

Course Objectives:
This course introduces students to the basic techniques for solving partial differential equations as well as the underlying theories.

Course Contents & Topics:
- Green's function, generalized functions and fundamental solutions.
- Maximum principle, existence, uniqueness and continuous dependence on data.
- If time permits Cauchy-Kowalevski theorem, variational method, nonlinear partial differential equations.

Course Learning Outcomes:
On successful completion of this course, students should be able to:

CLO 1 apply the tools of calculus, linear algebra, mathematical analysis in a coherent way to PDE problems
CLO 2 understand the basic theory of partial differential equations and the methods to solve them
CLO 3 apply the knowledge of partial differential equations to physical sciences and engineering
Geometry (6 credits)

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.</td>
</tr>
</tbody>
</table>

Course Co-ordinator

Dr C W Wong, Mathematics (cwwongab@hku.hk)

Required/recommended reading and online materials

W.A. Strauss: Partial Differential Equations: An Introduction, 2nd ed. (Wiley)

Course Website

http://moodle.hku.hk/

Additional Course Information

Department of Mathematics
MATH4511

Introduction to differentiable manifolds (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>TBC, Mathematics</td>
</tr>
</tbody>
</table>

Teachers Involved
- Dr Z Zhang, Mathematics (zhangzw@maths.hku.hk)
- Singular values decomposition and its application in data analysis.
- Schur's Theorem, and Gershgorin's Theorem.
- SVD of a matrix and understand its applications in data analysis.

Course Objectives
On successful completion of this course, students should be able to:
- CLO 1 speak the language of differentiable manifolds such as that of vector fields, differential forms, vector bundles, and integration on manifolds
- CLO 2 present a number of examples of differentiable manifolds and carry out explicit calculations on such examples

Course Learning Outcomes
- Review on functions of several variables, inverse mapping theorem, implicit function theorem.
- Differentiable manifolds: definitions and examples.
- Maps between manifolds, submanifolds. Differential forms and exterior differentiation.
- Integration on manifolds.
- The tangent bundle, distributions and Frobenius Theorem.
- Further topics.

Course Contents & Topics
- Differentiable manifolds: definitions and examples.
- Maps between manifolds, submanifolds. Differential forms and exterior differentiation.
- Integration on manifolds.
- The tangent bundle, distributions and Frobenius Theorem.
- Further topics.

Pre-requisites
Pass in MATH3401 (having taken MATH4501 would be helpful; the course can also be taken concurrently with MATH4402).

Course Teaching & Learning Activities
- Lectures
- Tutorials
- Reading / Self study

Assessment Methods and Weighting
- Assignments
- Test

Course Website
http://moodle.hku.hk/

MATH4602

Scientific computing (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Dr Z Zhang, Mathematics (zhangzw@maths.hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr Z Zhang, Mathematics)</td>
</tr>
</tbody>
</table>

Course Objectives
This course introduces mathematical theories and computational techniques for solving various kinds of matrix computation problems, ordinary differential equations (ODEs), partial differential equations (PDEs), and stochastic differential equations (SDEs) that are often encountered in scientific or industrial applications.

In addition, this course will introduce some recent development in scientific computing, such as Monte Carlo method and fast direct solvers based on low-rank approximation and data sparsity.

Course Contents & Topics
- The matrix computation part covers basic methods such as direct and iterative solution of large linear systems, including LU decomposition, splitting method (Jacobi iteration, Gauss-Seidel iteration); eigenvalue and vector computations including the power method and QR iteration; spectral radius, Schur's Theorem, and Gershgorin's Theorem; Singular values decomposition and its application in data analysis.

The PDE parts include finite difference and finite element for elliptic/parabolic/hyperbolic equations.

Some selected topics: Monte Carlo method, Quasi-Monte Carlo method, and numerical methods for stochastic differential equation (SDE) arising from mathematical finance, etc.

Programming is a significant part of the course.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 apply direct methods in solving linear systems
- CLO 2 apply iterative methods in solving linear systems
- CLO 3 apply basic numerical methods to compute eigenvalues and eigenvectors of a matrix
- CLO 4 compute the singular value decomposition (SVD) of a matrix and understand its applications in data
Course Objectives
The objective is to provide a fundamental account of the basic results and techniques of integer programming (IP), dynamic programming (DP) and Markov decision processes (MDP) in operations research. There is emphasis on aspects of algorithms as well as applications. The course serves, together with courses on linear programming and network models, to provide essential optimization concept and algorithms for more advanced studies in operations research.

Course Contents & Topics
- Integer programming and heuristics.
- Dynamic programming (deterministic/stochastic).
- Markov decision process (discounted/average costs).

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 understand the terminology and nomenclature appropriate to integer programming, dynamic programming and Markov decision process
CLO 2 explain the typical techniques employed in integer programming, dynamic programming and Markov decision process
CLO 3 demonstrate the knowledge on algorithms for a variety of problems in operations research

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in MATH2101 and MATH2211; and Pass in MATH3901, or already enrolled in this course.

Offer in 2018 - 2019
N
Offer in 2019 - 2020 : N

Grade Descriptors (A+ to F)
A
Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and numerical algorithms and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

B
Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and numerical algorithms and their applications through correctly analysing problems, but with some inadequacies in arguments, identifying the appropriate theorems and numerical algorithms or their applications or presentation or with some minor computational errors.

C
Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems and numerical algorithms, but with some inadequacies in applying them through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.

D
Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems and numerical algorithms, but with substantial inadequacies in applying them through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

Fail
Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems and numerical algorithms or their applications, or not being able to complete the solution.

Course Teaching & Learning Activities
Activities
Details
No. of Hours
Lectures
36
Tutorials
12
Reading / Self study
100

Assessment Methods and Weighting
Methods
Details
Weighting in final course grade (%)
Assessment Methods to CLO Mapping
Examination
50
CLO 1,2,3,4,5,6
Test
50
CLO 1,2,3,4,5,6

Required/recommended reading and online materials
James W. Demmel: Applied Numerical Linear Algebra, SIAM, 1 Aug 1997
Peter E. Kloeden and Eckhard Platen: Numerical Solution of Stochastic Differential Equations

Course Type
Lecture-based course

CourseWebsite
http://moodle.hku.hk/

Additional Course Information
Tutorial timetable:
http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf

MATH4902
Operations research II (6 credits)

Offering Department
Mathematics

Course Co-ordinator
Dr G Han, Mathematics (ghan@maths.hku.hk)

Teachers Involved
Dr G Han, Mathematics (ghan@maths.hku.hk)

Academic Year
2018

Quota

Offer in 2018 - 2019
N
Offer in 2019 - 2020 : N

Grade Descriptors (A+ to F)
A
Demonstrate an excellent understanding of key concepts and ideas by being able to identify basic principles, appropriate theorems, algorithms and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and to solve problems with some innovative approaches.

B
Demonstrate a good understanding of key concepts and ideas by being able to identify basic principles, appropriate theorems, algorithms and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications or presentation or with some minor computational errors.

C
Demonstrate an acceptable understanding of key concepts and ideas by being able to identify basic principles, appropriate theorems, algorithms and their applications but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.

D
Demonstrate some understanding of key concepts and ideas by being able to identify basic principles, appropriate theorems, algorithms or their applications, or not being able to complete or compute the solution.

Fail
Demonstrate poor and inadequate understanding by not being able to identify basic principles, appropriate theorems, algorithms or their applications, or not being able to complete or compute the solution.

Course Teaching Activities Details No. of Hours

Tradition, Innovation, and Research in Mathematics
MATH4910 Senior mathematics seminar (6 credits)

Offering Department: Mathematics
Course Co-ordinator: Prof W S Cheung, Mathematics (wscheung@hku.hk)

Teachers Involved:
(Dr Z Hua, Mathematics)

Course Objectives

- This seminar course may be in the form of research seminar, reading seminar, or a combination of both. Research seminar provides first-hand research experience to students, who will discuss the advancement of knowledge brought about by the readings, and the difficulties they encounter in the research process. Reading seminar involves discussions on arguments delivered by the authors of books or articles, and how convincing the arguments are. Reading seminar also involves discussions on arguments delivered by the authors of books or articles, and how convincing the arguments are.

- This seminar style capstone course aims to provide students with the experience of reading journal articles and book chapters, followed by group discussions through which knowledge acquisition and synthesis will be attained. Students will look at particular mathematical topics in depth, and will master the topics through reading, listening, discussing and writing.

Course Contents & Topics

- This course aims at providing effective numerical methods as well as their theoretical aspects for solving problems arisen from financial derivatives and asset pricing.

Course Learning Outcomes

- On successful completion of this course, students should be able to:
 - CLO 1 demonstrate knowledge and understanding of the martingale theory in option pricings as well as related financial derivatives.
 - CLO 2 implement and analyse various numerical methods on the Black-Scholes pricing differential equation.
 - CLO 3 understand the connection between the binomial tree method and the finite difference method of the Black-Scholes pricing differential equation.
 - CLO 4 implement and analyse Monte Carlo simulation methods on the martingale pricing formula.

Pre-requisites

- Pass in MATH3906 or equivalent.

Offer in 2018 - 2019

- Y 2nd sem
- Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analyzing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analyzing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications or presentation or with some minor computational errors.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadecacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination</td>
<td>Test</td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
<td>Test</td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Academic Year: 2018

Course Website

- http://moodle.hku.hk/

Department of Mathematics
arguments are. Participants will experience the process of argumentation in the construction of knowledge and development of research idea. Student performance is manifested in their preparedness, quality of comments, responsiveness to comments and overall engagement in the seminar. The end product is a research paper or written report and oral presentations. Topics will be chosen by the instructors, including journal articles and book chapters.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 explain and discuss the contents of the topics they studied
- CLO 2 critique and argue about the ideas and theories of the work they studied
- CLO 3 organize and synthesize the material they have learned, and report orally and in writing using mathematical language

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics, and Mathematics/Physics Majors.

Subject to approval by the Department.

This capstone course is for Mathematics, and Mathematics/Physics Majors students only.

The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2019 - 2020</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>---</td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>---</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>---</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>---</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>---</td>
</tr>
</tbody>
</table>

Offering Department

Department of Mathematics

Offer in 2018 - 2019

Y 1st sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Offer in 2019 - 2020</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>---</td>
</tr>
</tbody>
</table>

Course Type

Project-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting with supervisor</td>
<td>Seminars: Students take turns to give presentations to the whole class; group discussions.</td>
<td>36</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>Reading material and preparation for presentations and discussions; writing of reports/research papers.</td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation</td>
<td>Based on class participation and group discussions.</td>
<td>20</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Oral presentation</td>
<td>Seminar presentations.</td>
<td>30</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Research report</td>
<td>Written report / research paper: Individual and/or group reports/research papers totally no more than 10,000 words.</td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

TBC

Course Website

http://moodle.hku.hk/

MATH4911 Mathematics capstone project (6 credits)

<table>
<thead>
<tr>
<th>Academic Year</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Dr S P Yung, Mathematics (spyung@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>Dr S P Yung, Mathematics</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>This course aims to provide students an experience of engaging in a project which requires integration and/or application of the mathematical knowledge they have acquired.</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>Students will work collaboratively in small groups on a project under the guidance of their supervisor(s). Emphasis of this capstone project is on the integration and/or application of mathematical knowledge acquired by the students. The project topic is not limited to academic context, but can also be extended to a community or corporate outreach project. Projects may take the form of a combination of literature research, survey, data analysis, creation of artifacts or media contents, exhibition, public lectures, development of solution plan for the problem under study, etc. Assessment may take the form of written report, oral presentation, media production, portfolio, and/or peer evaluation, etc. Topics are either chosen by the supervisor(s), or proposed by the students and approved by their supervisor(s).</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to: CLO 1 integrate and apply mathematical knowledge they have previously acquired CLO 2 work collaboratively with others CLO 3 communicate their project topic to experts and/or lay audiences through suitable media using appropriate mathematical terms and language</td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics, and Mathematics/Physics Majors. Subject to approval by the Department. This capstone course is for Mathematics, and Mathematics/Physics Majors students only. (This course is for third and fourth year students only. The earliest that a student is allowed to take this capstone course is their year 3 study.)</td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A Demonstrate excellent and creative integration and/or application of the mathematical knowledge previously acquired. Take initiative in, and collaborate highly effectively on, the project. Communicate effectively through suitable media using appropriate mathematical terms and language.</td>
</tr>
</tbody>
</table>
Students meet with their supervisor(s) to present results.

A 2018 Mathematics internship

No Exam

Dr T K Wong, Mathematics

Department of Mathematics

Teachers Involved & Topics

Course Contents & Topics

Within the university: each student will be supervised by a staff member (supervisor), working on a project outside the University or outside the University arranged by the department.

Outside the university: each student will carry out approved work under the guidance and supervision of an external supervisor.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 gain work experience in an industry related to mathematical sciences
- CLO 2 have an understanding of how mathematics is used to solve real-world problems

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics, and Mathematics/Physics Majors.

This capstone course is for Mathematics, and Mathematics/Physics Majors students only.

The earliest that a student is allowed to take this capstone course is their third year study.

Offer in 2018 - 2019

Y: Offered

1st sem: Offer in 2018 - 2019

2nd sem: Offer in 2019 - 2020

Summer: Offer in 2019 - 2020

Grade Descriptors (Pass /Fail)

Pass: Able to apply knowledge to solve problems in the workplace. Successfully handles and carries out the work required in the job or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, written and oral report, and evaluation by supervisor(s), etc. Students demonstrating excellent performance in the above would be awarded a grade of "Distinction".

Fail: Very limited or no ability to solve problems in the workplace. Fails to handle or carry out the work required in the job or assigned by supervisor(s). Fails to establish effective collaboration or communication with supervisor(s), other colleagues, or clients in the job. Fails to satisfy the requirements set out in the Course Description regarding working hours, written and oral report, or evaluation by supervisor(s), etc.

Course Type

Internship

Course Teaching & Learning Activities

Activities

Details

No. of Hours

Internship work

It is expected that students are to work at least 160 hours (or the equivalent of 4 weeks full-time)

160

Assessment Methods and Weighting

Methods

Details

Weighting in final course grade (%)

Assessment Methods to CLO Mapping

Written report

written report, employer’s feedback and oral presentation

100

CLO 1,2

Additional Course Information

Satisfactory completion of this course can be counted towards the Capstone requirement. Details of internship will be recorded on the student's transcript. This course will be assessed on "Pass/Fail" basis. Students who are interested to enrol in this course should contact the Department to obtain the approval.

Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.

MATH4999

Mathematics project (12 credits)

Academic Year

2018
<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Prof T W Ng, Mathematics (ntw@maths.hkhu)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(All teaching staff, Mathematics)</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>The aim of the course is to provide students with the opportunity to formulate and to investigate, in depth, problems of practical interest and/or to have a foretaste of mathematical research. The work, to be done on an individual basis, is considered a highly desirable part of the training of a mathematician.</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>The subject matter of the project will be determined by consultation between the student and his/her supervisor. The projects will be selected from areas of pure and applied mathematics. Students must achieve good standing and get the approval from both the prospective supervisor and the course co-ordinator to take this course.</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>Only successful completion of the course, students should be able to:</td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
<td>Pass in at least 24 credits of advanced level disciplinary core/elective mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) in the Mathematics, and Mathematics/Physics Majors.</td>
</tr>
<tr>
<td>Offer in 2018 - 2019</td>
<td>Y</td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A: Demonstrate through grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical evaluation of information drawn from a broad range of high quality sources and to reference aptly. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Method: Written report plus oral presentation</td>
</tr>
<tr>
<td>Examination</td>
<td>No Exam</td>
</tr>
<tr>
<td>Offer in 2019 - 2020</td>
<td>Y</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Pass in advanced level course in Complex Analysis such as MATH3403, and approval by the course coordinator.</td>
</tr>
<tr>
<td>Subject to approval by the Department.</td>
<td>This capstone course is for Mathematics, and Mathematics/Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study.</td>
</tr>
<tr>
<td>Offer in 2018 - 2019</td>
<td>Y</td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A: Demonstrate through grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical evaluation of information drawn from a broad range of high quality sources and to reference aptly. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Method: Written report plus oral presentation</td>
</tr>
<tr>
<td>Examination</td>
<td>No Exam</td>
</tr>
<tr>
<td>Offer in 2019 - 2020</td>
<td>Y</td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A: Demonstrate through grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical evaluation of information drawn from a broad range of high quality sources and to reference aptly. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Method: Written report plus oral presentation</td>
</tr>
<tr>
<td>Examination</td>
<td>No Exam</td>
</tr>
<tr>
<td>Offer in 2018 - 2019</td>
<td>Y</td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A: Demonstrate through grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical evaluation of information drawn from a broad range of high quality sources and to reference aptly. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Method: Written report plus oral presentation</td>
</tr>
<tr>
<td>Examination</td>
<td>No Exam</td>
</tr>
</tbody>
</table>
MATH7201

Topics in geometry (6 credits)

Offering Department Mathematics

Academic Year 2018

Quota ---

Course Type Lecture-based course

Course Co-ordinator TBC, Mathematics (/)

Teachers Involved

Course Objectives

This course introduces to students a main area of differential geometry beyond the notion of manifolds and the calculus of differential forms and prepares them to study further and to do research in geometry.

Course Contents & Topics

- The topic varies according to the year and the instructor. For example, it can be one of (but not restricted to) the following:
 (i) Riemannian geometry: affine and Levi-Civita connection, Riemann curvature tensor, spinor bundles, Laplace and Dirac operators, harmonic forms and spinors, applications in relativity;
 (ii) Symplectic geometry: symplectic vector spaces, symplectic manifolds, Lagrangian submanifolds, Hamiltonian group actions, moment maps, symplectic quotients, convexity theorems, localization;
 (iii) Vector bundles: vector bundles, connection and curvature, characteristic forms and classes, superconnections, transgression, topological K-theory, introduction to index theory.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 have a working knowledge of the calculus of differential forms beyond the level of MATH3511

CLO 2 understand the keys points of the particular subject chosen and be ready to learn other topics in Geometry

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in (MATH4402 or MATH4501) and (MATH4511 or the approval of the course coordinator)

Offer in 2018 - 2019

N Offer in 2019 - 2020 : N

Examination ---

Grade Descriptors (A+ to F)

A

Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.

B

Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.

C

Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

D

Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.

Fail

Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Course Type Lecture-based course

Course Teaching & Learning Activities

Activities Details No. of Hours

Lectures 36 100

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Test Written midterm test and written/oral end-of-term assessment 100 CLO 1,2,3,4

Required/recommended reading and online materials

R. Narasimhan: Complex Analysis in One Variable (Birkhauser, 2001, 2nd edition)
O. Forster: Lectures on Riemann Surfaces (Springer-Verlag, 1981)
J.B. Conway: Functions of One Complex Variable I (Springer-Verlag, 1995)
K. Chandrasekharan: Elliptic Functions (Springer-Verlag, 1985)

MATH7202

Complex manifolds (6 credits)

Offering Department Mathematics

Academic Year 2018

Quota ---

Course Type Lecture-based course

Course Co-ordinator TBC, Mathematics (/)

Teachers Involved

Course Objectives

This course aims to present the foundation of the theory of complex manifolds and to introduce students to a variety of research topics, focusing on compact complex manifolds.

Course Contents & Topics

- This course contains an introductory part on basic notions on complex manifolds including sheaf cohomology, cohomology theories in terms of differential forms, Hermitian and Kahler manifolds, and Hermitian holomorphic vector bundles.
- It proceeds to introduce the theory of harmonic forms, establishing fundamental results on compact complex
manifolds including Serre duality, the Kodaira Vanishing Theorem, the Kodaira Embedding Theorem and Hodge decomposition on compact Kahler manifolds.

- The course concludes with a choice of topics on analytic and geometric aspects of the theory of complex manifolds. Examples of such topics include

(i) Siegel's Theorem on the field of meromorphic functions on a compact complex manifold;
(ii) geometry of compact quotients of bounded symmetric domains and Hermitian symmetric manifolds;
(iii) an introduction to the deformation theory of compact complex submanifolds in a complex manifold;
(iv) an introduction to the deformation theory of complex structures on a compact complex manifold.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 grasp the notion of holomorphic line bundles, understand various ways for establishing the existence of global holomorphic sections of line bundles, and to relate them to the embedding of compact complex manifolds.

CLO 2 grasp the relationship between sheaf cohomology, dRham cohomology and d-bar cohomology, and make use of the relationship to solve various existence problems by means of vanishing theorems on harmonic forms.

CLO 3 grasp the basics of complex differential geometry such as notions of connections and curvature on Kahler manifolds and on Hermitian holomorphic vector bundles, and be able to relate various notions of positivity of curvature and apply them to vanishing and embedding theorems.

CLO 4 identify the key elements in the theoretic foundation of various additional topics covered in the course and to make use of them in solving problems.

Pre-requisites and Co-requisites

Pass in a first course in Complex Analysis such as MATH3403, a first course in Differential Geometry such as MATH4501, and approval by the course coordinator.

Grade Descriptors (A to F)

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrates an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrates a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrates an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrates some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

K. Kodaira: Complex Manifolds and Deformation of Complex Structures (Grundlehren der mathematischen Wissenschaften 283, Springer-Verlag, Berlin-Heidelberg 1986)

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

MATH7217

Topics in financial mathematics (6 credits)

Offering Department

Mathematics

Course Co-ordinator

Dr J Song, Mathematics (txjsong@hku.hk)

Teachers Involved

Course Objectives

This course aims at introducing students to fundamental knowledge in financial mathematics and risk management. It can help preparing students to research or take more advanced courses in those directions.

Course Contents & Topics

- Investment models and portfolio theory.
- Interest rate modeling.
- Mathematics of financial derivatives, pricing and hedging.
- Estimation and modeling of volatilities.
- Risk measures and risk management.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 understand and be able to utilize various models and results in investment and interest rate modeling.

CLO 2 grasp the methodology in derivative pricings and the modeling of volatilities.

CLO 3 understand and be able to utilize the concept of risk measures and risk management, subject to the topics chosen that year.

Pre-requisites and Co-requisites (and Impermissible combinations)

Pass in an advanced level mathematics courses (MATH3XXX, MATH4XXX, or MATH7XXX) and subject to the approval of the course coordinator.

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrates an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrates a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrates an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or with some minor computational errors.</td>
</tr>
</tbody>
</table>

689
MATH7224

Topics in advanced probability theory (6 credits)

- **Offering Department**: Mathematics
- **Course Co-ordinator**: Dr J Song, Mathematics (txjsong@hku.hk)
- **Academic Year**: 2018
- **Quota**: ---

Course Objectives

This course aims at introducing fundamental knowledge in probability theory to graduate students and senior undergraduate students. It can help preparing these students for advanced research in probability theory and its wide-range applications.

Course Contents

- Measure theory, law of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>50</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>50</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- On successful completion of this course, students should be able to:
 - Demonstrate some understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.
 - Demonstrate an acceptable understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.
 - Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.
 - Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Examination

- **Course Type**: Lecture-based course
- **No. of Hours**: 36
- **Weighting in final course grade (%)**: 50
- **Assessment Methods to CLO Mapping**: CLO 1,2,3,4

MATH7219

Topics in applied functional analysis (6 credits)

- **Offering Department**: Mathematics
- **Course Co-ordinator**: TBC, Mathematics

Course Objectives

This is a graduate to advanced undergraduate university level course on applied functional analysis, which aims at introducing to students the basic knowledge of using functional analysis on various applied topics in mathematics. This course would lay a foundation for students in studying more advanced mathematical courses.

Course Contents

- Generalized functions (also called distributions), delta function, generalized Fourier Transform. Applications to differential equations. Fundamental solution, Green's function.
- Sobolev spaces, Sobolev Embedding Theorem, Trace.
- Hilbert space linear operator theory (bounded operators, compact operators, closed unbounded operators), spectral theory. Applications to differential equations (infinitesimal generator, semigroup of linear operators).
- Applications to optimization problems.
- Wherever needed, we shall also review techniques for Metric spaces (Category Theorem), Banach spaces (Hahn-Banach Theorem, Opening Mapping Theorem, Closed Graph Theorem and Uniform Boundedness Principle) and Hilbert spaces (Orthogonality and best approximation, Fourier isometry).

Course Learning Outcomes

- CLO 1 apply generalized functions and their Fourier transform to practical problems
- CLO 2 understand Sobolev spaces and how to apply them in the process of solving differential equations
- CLO 3 understand Hilbert space linear operator theory and apply it in solving differential equations
- CLO 4 apply these results to optimization problems

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in MATH3401 and MATH4404, or approval of the course coordinator.

Offer in 2018 - 2019

- **N** Offer in 2019 - 2020 : **N**
- **Examination**: ---

Grade Descriptors (A+ to F)

- **A**: Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.
- **B**: Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.
- **C**: Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.
- **D**: Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.
- **Fail**: Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>50</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>50</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- TBC
MATH7501 Topics in algebra (6 credits) Academic Year 2018
Offering Department Mathematics Quota ---
Course Co-ordinator Prof T W Ng, Mathematics (ntw@maths.hku.hk)
Course Objectives To provide students specializing in mathematics with the opportunity to study some topics in algebra in greater depth.
Course Contents & Topics - A selection of advanced topics in algebra such as group theory; rings and modules; Galois theory; quadratic forms; multilinear algebra; algebraic number theory; group representations; commutative algebra; Grobner basis theory; introduction to algebraic geometry. Topics may vary from year to year.
Course Learning Outcomes On successful completion of this course, students should be able to:
- CLO 1 demonstrate in-depth understanding of basic concepts and terminologies in probability theory
- CLO 2 understand and apply the fundamental theorems for further problem solving in theory or practice, the learning outcomes are subject to the topics chosen that year
Pre-requisites (and Co-requisites and Impermissible combinations) Pass in MATH3603 and MATH4402, and approval of the course coordinator.
Grade Descriptors (A+ to F) A Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.
B Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.
C Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.
D Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.
Fail Demonstrates poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.
Course Type Lecture-based course
Course Teaching & Learning Activities Activities Details No. of Hours
Lectures 36
Reading / Self study 100
Assessment Methods and Weighting Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments
Examination 50 CLO 1,2
50 CLO 1,2
Course Website http://moodle.hku.hk/
MATH7502 Topics in applied discrete mathematics (6 credits) Academic Year 2018
Offering Department Mathematics
Course Co-ordinator Prof W Zang, Mathematics (wzang@maths.hku.hk)
Teachers Involved
Course Objectives This is a follow-up of the course MATH2600/MATH3600. It introduces students to some powerful linear algebra and probabilistic methods that have been used with striking success in discrete mathematics, and covers some of the most fundamental and beautiful results obtained by these methods.
Course Contents & Topics
1. Linear algebra method: rank argument, eigenvalue technique, polynomial technique, general position method.
3. Additional techniques if time permits.
Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 demonstrate knowledge and understanding of some research areas of applied discrete mathematics
CLO 2 solve various discrete mathematics problems using linear algebra and probabilistic methods
Pre-requisites and Co-requisites Pass in (MATH3301 or MATH3600), and approval of the course coordinator.
Offer in 2018 - 2019 N
Course Website http://moodle.hku.hk/

MATH7503 Topics in mathematical programming and optimization (6 credits) Academic Year 2018
Offering Department Mathematics
Course Co-ordinator Prof X Yuan, Mathematics (xmyuan@hku.hk)
Teachers Involved
Course Objectives A study in greater depth of some special topics in mathematical programming, optimization and data science. It is mainly intended for students in Operations Research or related subject areas.
Course Contents & Topics
A selection of advanced topics in mathematical programming and continuous optimization, which may include convex programming, nonconvex programming, saddle point problems, variational inequalities, optimization theory and algorithms suitable for applications in various areas such as machine learning, artificial intelligence, imaging and computer vision. The selection may vary from year to year.
Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 understand the advanced concept and approach of the mathematical programming topic(s) and/or optimization approaches as appropriate in Operations Research, Data Science, etc
CLO 2 demonstrate knowledge and understanding of the underlying theory and techniques of the various formulations and algorithms plus their extensions
Pre-requisites (and Co-requisites and Impermissible combinations) Pass in MATH3901, MATH3904 and (MATH4902 or the approval of the course coordinator)
Offer in 2018 - 2019 Y
Course Type Lecture-based course

Grade Descriptors
(A+ to F)
A Demonstrate an excellent understanding of key concepts and ideas by being able to identify appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.
B Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.
C Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with some inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.
D Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.
Fail Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>coursework assessment</td>
<td>50</td>
<td>CLO 1,2</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2.5-hour written examination</td>
<td>50</td>
<td>CLO 1,2</td>
</tr>
</tbody>
</table>

Learning Activities
<table>
<thead>
<tr>
<th>Activities</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>36</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Instructor's lecture notes.
On successful completion of this course, students should be able to:

- The L^p Spaces: The L^p spaces, convergence and completeness, bounded linear functionals.
- General Measure and Integration Theory: Measurable functions, Lebesgue integrals, convergence and completeness, bounded linear functionals.
- The Lebesgue Integral: The Lebesgue integral, modes of convergence.
- Differentiation and Integration: Functions of bounded variation, Differentiation of an integral, absolute continuity.

This course gives a geometric introduction to some of the methods of algebraic topology. The emphasis throughout will be on the geometric motivations and applications of the theory.

This course provides a geometric introduction to some of the methods of algebraic topology. The emphasis throughout will be on the geometric motivations and applications of the theory.

Theoretical and Practical Aspects (Springer, 2002)

Grade Descriptors

- A: Demonstrate an excellent understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, clearly and elegantly presenting correct logical reasoning and argumentation and being able to carry out computations carefully and correctly, and with some innovative approaches to solving problems.
- B: Demonstrate a good understanding of key concepts and ideas by being able to identify the appropriate theorems and their applications through correctly analysing problems, but with some minor inadequacies in arguments, identifying the appropriate theorems or their applications and presentation or with some minor computational errors.
- C: Demonstrate an acceptable understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument and presentation or a number of minor computational errors.
- D: Demonstrate some understanding of key concepts and ideas by being able to correctly identify appropriate theorems, but with substantial inadequacies in applying the theorems through incorrectly analysing problems with poor argument or presentation or with substantial computational errors.
- F: Demonstrate poor and inadequate understanding by not being able to identify appropriate theorems or their applications, or not being able to complete the solution.

Additional Course Information
http://moodle.hku.hk/
http://humath.hku.hk/~math/Timetable/timetable1819_S2.pdf

MATH7504
Geometric topology (6 credits)
Offering Department: Mathematics
Course Co-ordinator: TBC, Mathematics

Course Contents & Topics

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>10</td>
</tr>
<tr>
<td>Essay</td>
<td>20</td>
</tr>
<tr>
<td>Presentation</td>
<td>20</td>
</tr>
<tr>
<td>Project reports</td>
<td>30</td>
</tr>
<tr>
<td>Test</td>
<td>20</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
M.A. Armstrong: Basic Topology (Springer-Verlag UTM)
J. Rotman: An Introduction to Algebraic Topology (Springer-Verlag GTM)

MATH7505
Real analysis (6 credits)
Offering Department: Mathematics
Course Co-ordinator: Prof K M Tsang, Mathematics (kmtsang@maths.hku.hk)

Course Contents & Topics
- Lebesgue Measure on R: Measurable sets and Lebesgue measure, Measurable functions.
- The Lebesgue Integral: The Lebesgue integral, modes of convergence.
- Differentiation and Integration: Functions of bounded variation, Differentiation of an integral, absolute continuity.
- General Measure and Integration Theory: Measurable spaces, measurable functions, integration, convergence theorems, the Radon-Nikodym theorem.
- The L^p Spaces: The L^p spaces, convergence and completeness, bounded linear functionals.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>50</td>
</tr>
<tr>
<td>Examination</td>
<td>50</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Department of Mathematics
Outcomes

<table>
<thead>
<tr>
<th>CLO 1</th>
<th>describe basic properties of Lebesgue measure and measurable functions and understand and apply various convergence theorems</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLO 2</td>
<td>construct the Lebesgue integral, elucidate its basic properties and appreciate the existence of other useful integration theories besides Riemann's</td>
</tr>
<tr>
<td>CLO 3</td>
<td>understand the basic features of L^p spaces</td>
</tr>
</tbody>
</table>

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in MATH3401 and approval by the course coordinator

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities Details</td>
<td>No. of Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
<td>Details</td>
<td>Weighting in final course grade (%)</td>
<td>Assessment Methods to CLO Mapping</td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td>20</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>One 2.5-hour written final examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td>30</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- H.L. Royden: Real Analysis (Pearson)
- W. Rudin: Real and Complex Analysis (McGraw Hill)

Course Website

http://moodle.hku.hk/
http://hkumath.hku.hk/~math/Timetable/timetable1819_S2.pdf
PHYS1050
Offering Department: Physics
Course Co-ordinator: Dr C C Ling, Physics (coling@hku.hk)
Teachers Involved: (Dr C C Ling, Physics)
Course Objectives: This course offers a comprehensive training of physics for engineers. It covers the major physical laws on mechanics, electricity and magnetism. A calculus-based approach is adopted.
Course Contents & Topics: This course will introduce and discuss the following topics:
- Units and Dimensional Analysis, Motion of a Particle in One and Two Dimensions, Newton's Laws of Motion, Friction, Circular Motion, Force, Impulse and Momentum, Force Polygon and Static Equilibrium, Work and Energy, System of Particles, Moment of Inertia and Rotation of a Rigid Body, Simple Harmonic Motion and Pendulum;
Course Learning Outcomes: On successful completion of this course, students should be able to:
- CLO 1: describe and explain the physical principles of mechanics, electricity and magnetism
- CLO 2: apply these principles to situations of the physical and engineering world
- CLO 3: analyze and solve basic problems using the calculus-based approach
- CLO 4: acquire and interpret experimental data to examine the physical laws
Pre-requisites: Level 3 or above in HKDSE Physics or Combined Science with Physics components or equivalent; and (Level 2 or above in Module 1, or Module 2 of HKDSE Mathematics or equivalent, or Pass in MATH1011)
(This course is exclusive for Engineering students.)
Offer in 2018 - 2019: Y
Grade Descriptors (A+ to F):
- A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.
- B: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.
- C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and unfamiliar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.
- D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.
- Fail: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.
Course Type: Lecture with laboratory component course
Course Teaching & Learning Activities:
<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>72</td>
</tr>
</tbody>
</table>
Assessment Methods and Weighting:
<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>2-hour written exam</td>
<td>10</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>70</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>10</td>
<td>CLO 1,4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>10</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials: Lecture notes provided by Course Coordinator
R. Serway and J.W. Jewett: Physics for Scientists and Engineers (Thomson, 2009, 8th edition)
R. D. Knight: Physics for Scientists and Engineers (Pearson, 2008, 2nd edition)
Course Website: http://moodle.hku.hk
**PHYS1055
Offering Department: Physics
Course Co-ordinator: Dr M K Yip, Physics (mankit@bohr.physics.hku.hk)
Teachers Involved: (Dr M K Yip, Physics)
Course Objectives: This course is designed for students in all disciplines and all years who are curious about science in daily life. The course covers the working principles and mechanisms of the things and phenomena around us. Logical thinking and appreciation of science are emphasized with mathematics kept at a minimum. Students are trained to develop scientific intuition and to understand that many "magical" things in everyday life can be predictable.
Course Contents & Topics: Topics include: the science in the household and the science of driving, sports and amusement. Daily applications are explored with simple and lucid explanations. Developments in optical recording, medical imaging for diagnosis and the magnetic levitated trains in public transportation are introduced as examples of the modern technology. Contents of the course are constantly updated to reflect the advances in modern science and technology.
Course Learning Outcomes: On successful completion of this course, students should be able to:
- CLO 1: describe and discuss the physical principles that are behind the household appliances and the scientific issues in daily life
- CLO 2: demonstrate their knowledge to related topics qualitatively
- CLO 3: criticize and express views in logical and effective ways
- CLO 4: recognize the significance of science and technology
Pre-requisites: NIL
How things work (6 credits):
Offer in 2018 - 2019: Y
Academic Year: 2018
Quota: ---
Department of Physics
Weather, climate and climate change (6 credits)

Course Objectives

Weather and climate play an important role in human activities and history. In this course, we shall introduce students to the fundamentals of weather, climate and climate changes, to arouse their interests in the scientific and technological advancements.

Course Contents & Topics

The course will encompass topics on: basic physical principles on weather phenomena like: wind, temperature, humidity, cold/warm fronts, thunderstorms and tropical cyclones; introductory weather analysis, forecast and climate. Through real life examples, students will get familiarized with the weather/climate science and interpretation of meteorological information, climatology and climate change. Experts from the Hong Kong Observatory (HKO) will participate in the course to cover aspects on daily weather forecasts, public weather services, local severe weather phenomena, tropical cyclones, climatology of Hong Kong, and climate change. Tentatively, there will be visit to the HKO to study the meteorological facilities and understand the operational activities on weather and climate.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 recall the basic principles of weather and climate
CLO 2 apply the principles to interpret weather / climate information, for example from the HKO web site, internet or media
CLO 3 identify and explain the differences of weather and climate in Hong Kong as compared to other parts of the world
CLO 4 explain the basic causes of climate change and its potential impacts
CLO 5 describe and discuss the daily operational activities in the HKO

Required/Recommended reading and online materials

Grade Descriptors

A

Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B

Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C

Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D

Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail

Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Required/recommended reading and online materials

Lecture notes provided by Course Coordinator

Course Website

http://www.physics.hku.hk/~phys1055/
Kitchen science (6 credits) - PHYS1150

Course Objectives

The course aims to improve students' understanding of basic science behind the common daily activities related to food and cooking and to develop their critical thinking skills.

Course Contents & Topics

The course will introduce basic scientific concepts and principles necessary to understand different methods of food preparation, as well as kitchen tools. The introduced concepts will be illustrated in recipes and practical demonstrations.

The topics include:
- Basic food molecules (water, carbohydrates, fats, protein);
- Foams and bubbles (various examples, beer, sodas, ice-cream); colloids, emulsions, gelation (various sauces, jelly);
- Crystalization (sugar, sugar syrups, honey, chocolate); taste and flavor (herbs, spices); cooking processes and chemical reactions (Maillard reactions, caramelization, etc.);
- Chemical reactions for rising dough with application to cakes, bread and cookies; fermentation (alcoholic beverages, fermented dairy products, tofu); pH values in cooking, natural and artificial food colorings, culinary curiosities (novel flavors and textures);
- Principles of operation of kitchen tools, such as non-stick cookware, pressure cookers, induction heating ranges, microwave ovens, etc.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** describe principles of operation of kitchen tools encountered in daily life
- **CLO 2** explain basic physical and chemical processes involved in food preparation
- **CLO 3** illustrate how preparation method affects the flavor and texture of food
- **CLO 4** analyze common methods of food preparation and understand scientific reasons for performing procedures in certain ways

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>25</td>
<td>CLO 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour written exam</td>
<td>50</td>
<td>CLO 1, 3, 4, 5</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>25</td>
<td>CLO 1, 3, 4, 5</td>
</tr>
</tbody>
</table>

Pre-requisites (and Co-requisites and Impermissible combinations)

NIL

Grade Descriptors (A+ to F)

- **A** Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- **B** Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- **C** Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- **D** Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show moderately limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
- **E** Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities. Logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>essay & student presentations</td>
<td>70</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>30</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

- **Lectures** 36 hours
- **Tutorials** including demonstration (12 hours) 24 hours
- **Reading / Self study** 72 hours

Required/recommended reading and online materials

- T. Listner and H. Blumenthal: Kitchen Chemistry (Royal Society of Chemistry, 2005)

Required/recommended reading and online materials

Lecture notes provided by Course Coordinator

Course Website

http://moodle.hku.hk
analytical and numerical means. After completion, interested students may take the second level courses in this series, namely, PHYS2150 and/or PHYS2155. (Knowledge of Module 1 or Module 2 in HKDSE Mathematics, or MATH1011, or equivalent is advantageous, though not required.)

Course Contents & Topics
This course trains students to think and act as physicists by introducing basic problem solving, mathematical and computational skills that are commonly used in the study of university-level physics. Topics include: the use of vectors and their operations, differentiation, integration, differential equations, several variables differentiation, matrix operation, conic sections, complex numbers, and rudiment of numerical methods in tackling simple physics problems. Basic MATLAB commands will be introduced and used in this course.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 state physical systems by the language of mathematics and employ mathematical logic and reasoning to read physics
- CLO 2 apply calculus to solve problems
- CLO 4 review the features of various solving tools in physics as well as plan and select appropriate tools when solving physical problems
- CLO 5 describe the connections between mathematical equations and physical problems
- CLO 6 formulate and operate physical problems both qualitatively and quantitatively
- CLO 8 interpret and judge the physical meaning of result after calculations

Grade Descriptors

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Lecture notes provided by Course Coordinator R. Shankar: Basic Training in Mathematics - A Fitness Program for Science (Springer, 1995)

Course website
http://moodle.hku.hk

PHYS1240 Physics by inquiry (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Dr F K Chow, Physics (judychow@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr F K Chow,Physics)</td>
</tr>
</tbody>
</table>

Course Objectives
This course aims at providing students a solid background and knowledge in physics as well as its connection with our daily life phenomena and activities. It is targeted to those with little physics background and is conducted with no descriptions in differential and integral calculus. After completing this course, interested students may move on to take PHYS1150 or PHYS1250.

Course Contents & Topics
The course has a general coverage in most physics topics and is conducted with no descriptions in differential and integral calculus. Emphasis will be stressed on the understanding of various physical phenomena in daily life through qualitative and simple quantitative analysis. The course contents cover: Mechanics, Heat, Optics, Waves, Electricity and Magnetism.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 describe and distinguish the concepts and principles in introductory study of physics
- CLO 2 recognize the underlying physical principles behind various daily life phenomena
- CLO 3 explain physical phenomena using proper physical laws and theories
- CLO 4 apply simple mathematical techniques for quantitative analysis in solving physics problems

Pre-requisites (and Co-requisites and Impermissible combinations)
NIL

Offer in 2018 - 2019
Y 1st sem 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability...
to apply knowledge to familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B

Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply highly effective organizational and presentational skills. Critical use of data and results to draw appropriate conclusions.

C

Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D

Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail

Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments including in-class quizzes (10%)</td>
<td>25</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Examination 2-hour written exam</td>
<td>50</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>25</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Lecture notes provided by Course Coordinator

Raymond A. Serway and Chris Vuille: College Physics (Brooks Cole, 2011, 9th edition)

Course Website

http://moodle.hku.hk

PHYS1250

Fundamental physics (6 credits)

Academic Year 2018

Offering Department

Physics

Quota ---

Course Co-ordinator

Prof K S Cheng, Physics (hrspksc@hku.hk)

Teachers Involved

(Prof J H C Lee,Physics)

(Prof K S Cheng,Physics)

Course Objectives

This is the first physics course for those who want to minor in physics or astronomy as well as for those who want to have an overview in physics. It covers the fundamental blocks in physics in one semester. Conceptual ideas in physics are emphasized and the mathematical treatment is moderate. Those who enter HKU before 2018 may also take this course as one of their astronomy, math/physics or physics major requirements.

Course Contents & Topics

Topics include: Mechanics, Wave Motions, Geometric and Physical Optics, Thermodynamics, Electromagnetism, and Modern Physics.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 describe and explain the fundamental physical principles

CLO 2 apply these principles, together with logical and mathematical reasoning, to situations of the physical world

CLO 3 analyse and solve problems with the aids of mathematics

CLO 4 acquire and interpret experimental data to examine the physical laws

Pre-requisites (and Co-requisites and Impermissible combinations)

Level 3 or above in HKDSE Physics or equivalent, or Pass in PHYS1240, and Not for students who have passed in PHYS1050, or already enrolled in this course; and Not for students who have passed in any level 2 PHYS course or above.

Offer in 2018 - 2019

Y 1st sem 2nd sem Offer in 2019 - 2020 : Y

Examination Dec May

Grade Descriptors

(A+ to F)

A

Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.

B

Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

C

Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.

D

Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

Fail

Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>10</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Examination 2-hour written exam</td>
<td>50</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>15</td>
<td>CLO 1,4</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>25</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
</tbody>
</table>
PHYS1650 Nature of the universe (6 credits) Academic Year 2018

Offering Department Physics
Course Co-ordinator Dr K M Lee, Physics (kmlee@lily.physics.hku.hk)
Teachers Involved (Dr K M Lee, Physics)

Course Objectives This is an introductory course in astronomy for students in all disciplines and all years. This is also the first course in our series of two compulsory courses to introduce basic astronomy knowledge, methods and recent advances for astronomy major. No prior knowledge in astronomy, physics, and higher mathematics is required, but will help. After completing this course, interested students may take the second course in this series, namely, PHYS2650.

Course Contents & Topics Topics covered include the observational aspect of astronomy (including constellations and planets), the physics of our solar system, and our own Sun, stars and their evolution, galaxies, blackholes, and cosmology. It also provides students with a basic understanding of the relationship of astronomy to life and how our nature works on the macroscopic level. Students are expected to participate actively in the night sky observations.

Course Learning Outcomes On successful completion of this course, students should be able to:

- CLO 1 identify and describe the major objects in our Solar System and our universe (including stars and galaxies), and explain their main properties
- CLO 2 use the celestial sphere model to describe the apparent trajectories of celestial objects
- CLO 3 review the evolution of the world-view from the geocentric model to the heliocentric model, and the discovery of the expansion of the universe on our world-view
- CLO 4 apply quantitative physical laws, including Kepler's three laws of planetary motion, Newton's law of universal gravitation, Doppler shift formula and Hubble's law to calculate and solve simple astronomical problems
- CLO 5 explain the evolution of stars and the evolution of the universe
- CLO 6 communicate astronomical problems and solutions using appropriate astronomical terminology and good English

Pre-requisites (and Co-requisites and Impermissible combinations) NIL

Offer in 2018 - 2019

Offer in 2019 - 2020 : Y

Grade Descriptors

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective observation skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective observation skills and techniques. Correct use of data of results to draw appropriate conclusions.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective observation skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective observation skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective observation skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.

Course Type Lecture with laboratory component course
Course Teaching & Learning Activities Activities Details No. of Hours
Lectures 36
Laboratory 12
Tutorials 8
Reading / Self study 64

Assessment Methods and Weighting Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments 25 CLO 1, 2, 3, 4, 5, 6
Examination 2-hour written exam 50 CLO 1, 2, 3, 4, 5, 6
Test 25 CLO 1, 2, 3, 4, 5, 6

PHYS2055 Introduction to relativity (6 credits) Academic Year 2018

Offering Department Physics
Course Co-ordinator Dr K M Lee, Physics (kmlee@lily.physics.hku.hk)
Teachers Involved (Dr K M Lee, Physics)

Course Objectives This course aims at introducing students the essence of special relativity. It is designed as an elective for students in all disciplines and all years with science background. Students are expected to participate actively in the lecture activities.

Course Contents & Topics Topics include: "Common-sense" concepts of space and time versus Einstein's conceptions of space and time, Examples of time dilation and space contraction, Paradoxes of relativity including the famous twin paradox and the "pole-in-the-barn", Four vectors and Lorentz invariant, Some discussion on general relativity.

Course Website http://moodle.hku.hk
Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1: recall the setup and significance of Michelson-Morley experiment
CLO 2: state the basic postulates and the spacetime concept of special relativity
CLO 3: explain time dilation and length contraction
CLO 4: describe Lorentz transformation and its applications
CLO 5: state the resolution of the twin and pole-in-the-barn paradoxes

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in PHYS1050 or PHYS1150 or PHYS1250

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors
(A+ to F)

| A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
| B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
| C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
| D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>25</td>
<td>CLO 2.4</td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour written exam</td>
<td>50</td>
<td>CLO 1, 2.3, 4.5</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>25</td>
<td>CLO 1, 2.3, 4.5</td>
</tr>
</tbody>
</table>

Course Website
http://moodle.hku.hk

PHYS2150
Methods in physics I (6 credits)

Offering Department
Physics

Course Co-ordinator
Dr F K Chow, Physics (judychow@hku.hk)

Teachers Involved
(Dr F K Chow, Physics)

Course Objectives
This course provides students with experience in using mathematical tools and techniques to solve problems in physics. It is complete in itself, or may also be followed by Methods in Physics II.

Course Contents & Topics
Solutions of ordinary differential equations in first and second orders and their applications in particle dynamics, circuit theories and nuclear physics; Vector algebra; Analytic geometry in three dimensions; Vector functions; Cartesian, cylindrical and spherical coordinates; Partial derivatives, extremes of multi-variable functions and the Taylor series in two-variable functions; Double and triple integrals in Cartesian, cylindrical and spherical coordinates; Change of variables and the Jacobians; Calculations of centers of mass and moments of inertia.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1: review the theory and principles of mathematical methods and compare the features of various methods
CLO 2: describe the connections between mathematical equations and physical problems
CLO 3: state and set up mathematical equations to describe the dynamics and evolution of physics systems
CLO 4: demonstrate knowledge of choosing correct solution of mathematical equations
CLO 5: interpret and judge the physical meaning of result after calculations

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in MATH1011 or MATH1013 or MATH1851 or PHYS1150

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y

Grade Descriptors
(A+ to F)

| A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
| B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
| C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
| D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>
Methods in physics II (6 credits)

A (Dr F K Chow, Physics)

May CLO 1, 2, 3, 4, --- 201 2020

Department of Physics

& Topics

Course Objectives

http://moodle.hku.hk

Grade Descriptors

Course Co-ordinator

Dr F K Chow, Physics (judychow@hku.hk)

Teachers Involved

Dr F K Chow, Physics

Course Contents & Topics

Lecture notes provided by Course Coordinator

Course Website

http://moodle.hku.hk

PHYS2155 Methods in physics II (6 credits)

Academic Year 2018

Offering Department Physics

Quota ---

Grade Descriptors

Pass in MATH1011 or MATH1013 or MATH1851 or PHYS1150

Pre-requisites (and Co-requisites and Impermissible combinations)

Lecture notes provided by Course Coordinator

Pre-requisites

Lecture notes provided by Course Coordinator

Required/recommended reading and online materials

http://moodle.hku.hk

PHYS2250 Introductory mechanics (6 credits)

Academic Year 2018

Offering Department Physics

Quota ---
Course Co-ordinator
Dr M K Yip, Physics (mankit@hku.hk)

Teachers Involved
Dr M K Yip, Physics

Course Objectives
This calculus-based course covers the foundation of Newtonian mechanics in one semester. It is a core course for physics major, a discipline elective for physics minor, as well as an elective course for those who want to learn fundamental Newtonian mechanics concepts and to link them up with their studies in fields like engineering, chemistry and mathematics. Problem solving and analytical skills will be extensively used. They are supplemented by numerical skills occasionally. Upon completion, interested students may take PHYS3350 to continue their study in Lagrangian mechanics.

Course Contents & Topics

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 describe and explain the fundamental physical principles
- CLO 2 apply these principles, together with logical and mathematical reasoning, to situations of the physical world
- CLO 3 analyse and solve problems with the aids of mathematics
- CLO 4 acquire and interpret experimental data to examine the physical laws

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in PHYS1050 or PHYS1150 or PHYS1250

Offer in 2018 - 2019
<table>
<thead>
<tr>
<th></th>
<th>1st sem</th>
<th>2nd sem</th>
<th>Offer in 2019 - 2020: Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td></td>
<td></td>
<td>Dec May</td>
</tr>
</tbody>
</table>

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Limited ability to use data and results to draw appropriate conclusions.</td>
</tr>
<tr>
<td>Fail</td>
<td>Fail</td>
</tr>
</tbody>
</table>

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Including computational assignments</td>
<td>10</td>
<td>CLO 1, 2.3, 4</td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour written exam</td>
<td>50</td>
<td>CLO 1.2, 3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>15</td>
<td>CLO 1.4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>25</td>
<td>CLO 1.2, 3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk

<table>
<thead>
<tr>
<th>Physics</th>
<th>---</th>
</tr>
</thead>
</table>

PHYS2255
Introductory electricity and magnetism (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Dr J C S Pun, Physics (jcsjun@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr J C S Pun, Physics)</td>
</tr>
</tbody>
</table>

Course Objectives
This course covers the foundation of electricity and magnetism in one semester. It serves as a core course for students who are planning to take physics, astronomy, or mathematics/physics as major. It also serves students who intend to take physics as minor. Both conceptual ideas and mathematical treatment in electricity and magnetism are emphasized.

Course Contents & Topics
Topics include: Vector notation and vector field, Electric force and electric field, Gauss' law and electric conductors, Electric potential energy and potential, Capacitance and DC circuits, Magnetic force, Magnetic field, Faraday's law of induction, Inductance, AC circuit, Maxwell's equations and electromagnetic waves.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 describe and explain the fundamental physical principles
- CLO 2 apply these principles, together with logical and mathematical reasoning, to situations of the physical world
- CLO 3 analyse and solve problems with the aids of mathematics
- CLO 4 acquire and interpret experimental data to examine the physical laws

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in PHYS1050 or PHYS1250
Course Type & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour written exam</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>CLO 1,4</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- P. A. Tipler and G. Mosca: Physics for Scientists and Engineers (Freeman, 2008, 8th edition)
- R. D. Knight: Physics for Scientists and Engineers (Pearson, 2008, 2nd edition)

Course Website

http://moodle.hku.hk

PHYS2260 Heat and waves (6 credits)

Offering Department Physics

Course Co-ordinator Dr M Su, Physics (mengsu84@hku.hk)

Teachers Involved (Dr M Su, Physics)

Course Objectives

This course covers the foundation of heat and waves in one semester. It serves as a core course for students who are planning to take physics, astronomy, or mathematics/physics as major. It also serves students who intend to take physics as minor. Both conceptual ideas and mathematical treatment in heat and waves are emphasized.

Course Contents & Topics

Topics include: type of waves; Sinusoidal wave including transverse velocity and phase, Wave propagation through a stretched string as an example for transverse wave, Sound wave as an example for longitudinal wave, Wave equation, Energy in wave motion, The principle of superposition, Interference, Standing waves and resonance, Beats, The Doppler Effect, Light wave as an electromagnetic wave, Reflection, Refraction, Double slit interference, Interference from thin films, Single slit diffraction, Multiple slit and grating, Polarization, Temperature and equilibrium, Ideal gas law, Molecular view of pressure, Mean free path, distributions of molecular speed and energy, Concept of heat, First law of thermodynamic, Work done on or by an ideal gas, Internal energy of an ideal gas, Molar heat capacities at constant volume and constant pressure, Different thermodynamic processes including adiabatic, isothermal, constant-volume, cyclical and free expansion, Reversibility of process, definition of entropy change, The second law of thermodynamic, Carnot engine, Statistical view of entropy.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 describe and explain the fundamental physical principles
- CLO 2 apply these principles, together with logical and mathematical reasoning, to situations of the physical world
- CLO 3 analyse and solve problems with the aids of mathematics
- CLO 4 acquire and interpret experimental data to examine the physical laws

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in PHYS1050 or PHYS1250

Offer in 2018 - 2019

| Y 1st sem Offer in 2019 - 2020 : Y | Examination | Dec |

Grade Descriptors (A+ to F)

- A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.

- B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Critical use of data of results to draw appropriate conclusions.

- C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.

- D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

- Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.
This calculus-based course covers the basics of thermodynamics and kinetic theory in one semester. It is a core course for physics majors, a discipline elective for physics minors, as well as an elective course for those who want to learn fundamental thermodynamics concepts and link them up with their studies in fields like engineering, chemistry, and mathematics. Problem solving and analytical skills will be extensively used. They are supplemented by numerical skills occasionally. Upon completion, interested students may take PHYS3550 to further their study in thermodynamics and statistical mechanics.

Course Contents & Topics

Topics include: thermodynamic system, equilibrium state and its characterization; thermodynamic state function and equation of state and state transformation; first law of thermodynamics, adiabatic process, Carnot cycle; entropy and second law of thermodynamics; various thermodynamic potentials and their applications in phase equilibrium and mixtures; third law of thermodynamics and Nernst theorem. It also includes a discussion on kinetic theory.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1: Describe and explain the fundamental physical principles.
- CLO 2: Apply these principles, together with logical and mathematical reasoning, to situations of the physical world.
- CLO 3: Analyse and solve problems with the aids of mathematics.
- CLO 4: Acquire and interpret experimental data to examine the physical laws.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>10</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour written exam</td>
<td>50</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>15</td>
<td>CLO 1, 4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>25</td>
<td>CLO 1, 2, 3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- P. A. Tipler and G. Mosca: Physics for Scientists and Engineers (Freeman, 2008, 6th edition)
- Stephen J. Blundell and Katherine M. Blundell, Concepts in Thermal Physics, Oxford University Press, 2010
- Herbert B. Callen, Thermodynamics and an Introduction to Thermostatistics, John Willey & Sons, Inc. (1985)

Course Website

http://moodle.hku.hk
<table>
<thead>
<tr>
<th>Offer in 2018 - 2019</th>
<th>Grade Descriptors (A to F)</th>
<th>Course Type</th>
<th>Course Teaching & Learning Activities</th>
<th>Assessment Methods and Weighting</th>
<th>Required/recommended reading and online materials</th>
<th>Course Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pass in PHYS1050 or PHYS1250</td>
<td>Lecture with laboratory component course</td>
<td>Activities</td>
<td>Details</td>
<td>No. of Hours</td>
<td>Methods</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>Lectures</td>
<td>36</td>
<td>Assignments</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>Laboratory</td>
<td>6</td>
<td>Examination</td>
<td>2-hour written exam</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>Tutorials</td>
<td>8</td>
<td>Laboratory reports</td>
<td>15</td>
</tr>
<tr>
<td>Fail</td>
<td></td>
<td></td>
<td>Reading / Self study</td>
<td>80</td>
<td>Test</td>
<td>25</td>
</tr>
</tbody>
</table>

Course Objectives

This course covers the foundation of modern physics in one semester. It serves as a core course for students who are planning to take physics, astronomy, or mathematics/physics as major. It also serves students who intend to take physics as minor. Both conceptual ideas and mathematical treatment in modern physics are emphasized.

Course Contents & Topics

On successful completion of this course, students should be able to:

- CLO 1: describe and explain the fundamental physical principles
- CLO 2: apply these principles, together with logical and mathematical reasoning, to situations of the physical world
- CLO 3: analyse and solve problems with the aids of mathematics
- CLO 4: acquire and interpret experimental data to examine the physical laws

Pre-requisites (and Co-requisites and Impermissible combinations)

Some students are planning to take physics, astronomy, or mathematics/physics as major. It also serves students who intend to take physics as minor. Both conceptual ideas and mathematical treatment in modern physics are emphasized.

Offer in 2019 - 2020:

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Course Type</th>
<th>Course Teaching & Learning Activities</th>
<th>Assessment Methods and Weighting</th>
<th>Required/recommended reading and online materials</th>
<th>Course Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Lecture with laboratory component course</td>
<td>Activities</td>
<td>Details</td>
<td>No. of Hours</td>
<td>Methods</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Lectures</td>
<td>36</td>
<td>Assignments</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Laboratory</td>
<td>6</td>
<td>Examination</td>
<td>2-hour written exam</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>Tutorials</td>
<td>8</td>
<td>Laboratory reports</td>
<td>15</td>
</tr>
<tr>
<td>Fail</td>
<td></td>
<td>Reading / Self study</td>
<td>80</td>
<td>Test</td>
<td>25</td>
</tr>
</tbody>
</table>

Course Objective

This course covers the foundation of modern physics in one semester. It serves as a core course for students who are planning to take physics, astronomy, or mathematics/physics as major. It also serves students who intend to take physics as minor. Both conceptual ideas and mathematical treatment in modern physics are emphasized.

Course Contents & Topics

Topics include: exoplanets; general relativity; gravitational waves; neutrinos in astronomy; stellar physics; gamma-ray bursts; inflation and cosmology.

On successful completion of this course, students should be able to:

- CLO 1: recall the various detection techniques of exoplanets
- CLO 2: state the basic ideas of general relativity and gravitational waves
- CLO 3: describe the significance of neutrinos physics in astronomy
- CLO 4: recall the different aspects of gamma-ray bursts
- CLO 5: explain the principles of inflation and how it solves problems in cosmology

Course Website

http://moodle.hku.hk
Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour written exam</td>
<td>50</td>
<td>CLO 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Test</td>
<td>25</td>
<td></td>
<td>CLO 1, 2, 3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Lecture notes provided by Course Coordinator

Course Website
http://moodle.hku.hk

Course Objectives
On successful completion of this course, students should be able to:
- CLO 1 apply general considerations of quantum physics to atomic and nuclear structure, and shell model and nuclear reactions. Applications of the basic principles of atomic and nuclear physics will be mentioned when appropriate.
- CLO 2 explain how light interacting with atom; the working principle of laser trapping and cooling
- CLO 3 recognize the general features of atomic/nuclear spectroscopy
- CLO 4 apply quantum physics to understand the basic features of simple nuclei, binding of deuterons et al

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in PHYS2265

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Y</td>
<td>Examination</td>
</tr>
</tbody>
</table>

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply partially effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.</td>
</tr>
</tbody>
</table>
Course Objectives

The aim of this course is to provide students with the conceptual skills and key analytical tools for solving real problems in all major areas of physics.

Course Contents & Topics

This course will introduce and address the following topics: Application of complex variables including the Cauchy’s integral formula and calculus of residues, Partial differential equations (the general wave equation, the Schrodinger equation, the Poisson equation, and the diffusion equation), Properties of special functions widely used in Physics (Gamma functions, Beta functions, Bessel functions, spherical harmonics etc.), Fourier Series, and Fourier Transform.

Required/recommended reading and online materials

Lecture notes provided by Course Coordinator

W. Demtroder, Atoms, molecules and photons (Springer, 2nd, 2011)
K. Krane, Introductory nuclear physics (John Wiley & Sons, 1988)

Course Website

http://www.physics.hku.hk/~phys2628/
CLO 2 apply the techniques of machine learning in data analysis
CLO 3 use Python machine learning packages to solve simple problems
CLO 4 use of effective written and verbal communication skills through oral presentation
Pass in MATH2014 or MATH2101 or MATH2211 or PHYS2155.
Working knowledge of Python is needed (please talk to the course instructor in case of doubt).

<table>
<thead>
<tr>
<th>Pre-requisites (and Co-requisites and Impermissible combinations)</th>
<th>Offer in 2018 - 2019</th>
<th>Grade Descriptors (A to F)</th>
<th>Course Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Offer in 2019 - 2020: Y</td>
<td>Examination ---</td>
</tr>
</tbody>
</table>

- **A** Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.

- **B** Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.

- **C** Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.

- **D** Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

- **F** Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.

<table>
<thead>
<tr>
<th>Course Type & Learning Activities</th>
<th>Assessment Methods and Weighting</th>
<th>Required/recommended reading and online materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture with laboratory component course</td>
<td>Methods</td>
<td>Lecture notes provided by Course Coordinator</td>
</tr>
<tr>
<td>Tutorials</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Assignments</th>
<th>Examinations</th>
<th>Presentations</th>
<th>Project report</th>
<th>Quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-hour written exam</td>
<td>15</td>
<td></td>
<td>15</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
| | | | | | | CLO 1,2,3,4
| | | | | | | CLO 1,2,3
| | | | | | | CLO 1,2,3,4
| | | | | | | CLO 1,2,3

<table>
<thead>
<tr>
<th>Methods</th>
<th>CLOs Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Presentations</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Project report</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Math 3350</th>
<th>Classical mechanics (6 credits)</th>
<th>Academic Year 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
<td>Physics</td>
<td>Quota ---</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Dr S Z Zhang, Physics (shizhong@hku.hk)</td>
<td></td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr S Z Zhang, Physics)</td>
<td></td>
</tr>
<tr>
<td>Course Objectives</td>
<td>Build on the foundation course PHYS2250, this course discusses classical mechanics in the advanced undergraduate level using Lagrangian formalism. It serves as a core course for physics majors and as well as an elective course for those who are interested in gaining a deep understanding of classical mechanics and to apply related techniques in their own majors. This is also an essential course for those who plan to pursue postgraduate studies in physics or related disciplines. Both conceptual ideas and mathematical treatment are emphasized.</td>
<td></td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>This course will be essentially divided into two parts. In the first part, fundamental concepts related to Lagrangian mechanics will be treated. Topics include the variational principle, conservation laws and its relation to Newtonian mechanics. In the second part, we shall discuss applications of the Lagrangian mechanics. Topics include the central force problem, the coupled harmonic oscillators and rigid-body dynamics. Lagrangian mechanics in non-inertial frame will also be discussed.</td>
<td></td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
<td></td>
</tr>
<tr>
<td>CLO 1</td>
<td>understand the logical structure of Lagrangian mechanics and its advantage over the Newtonian formulation;</td>
<td></td>
</tr>
<tr>
<td>CLO 2</td>
<td>write down the form of Lagrangian for a mechanical system and solve the dynamic equations in simple cases</td>
<td></td>
</tr>
<tr>
<td>CLO 3</td>
<td>understand the general feature of a many-body system and the role of center of mass frame in two-body, as well as many-body and rigid body dynamics</td>
<td></td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
<td>Pass in PHYS2250</td>
<td></td>
</tr>
<tr>
<td>Grade Descriptors</td>
<td>A</td>
<td>Grade Descriptors (A to F)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materials for reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture notes provided by Course Coordinator</td>
</tr>
</tbody>
</table>

| Analysis of data and results to draw appropriate conclusions. |
| Apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. |
| Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. |
| Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. |

| Application of effective written and verbal communication skills through oral presentation. |
| Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions. |
| Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions. |
| Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. |
| Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. |

| Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions. |
| Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions. |
Course Type: Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Assessment</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>60</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>10</td>
<td>CLO 5</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>10</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Lecture notes provided by Course Coordinator

- Steven Thornton and Jerry Marion: Classical Dynamics of Particles and Systems, (Cengage Learning India, 2012)

Course Website

http://moodle.hku.hk

PHYS3351 Quantum mechanics (6 credits)

Academic Year: 2018

Offering Department: Physics

Course Co-ordinator: Prof W Yao, Physics (wangyao@hku.hk)

Teachers Involved: Prof W Yao (Physics)

Course Objectives

Build on the foundation course PHYS2265, this course discusses quantum mechanics in the advanced undergraduate level with rigorous mathematical treatment. It serves as a core course for physics major students as well as an elective core for those who are interested in gain a deep understanding of quantum mechanics and to apply related techniques in their own majors. This is also an essential course for those who plan to pursue postgraduate studies in physics or related disciplines. Both conceptual ideas and mathematical treatment are emphasized.

Course Contents & Topics

- Time-dependent Schroedinger equation; statistical interpretation of wave function; probability density; probability current and continuity equation; momentum; physical observable and expectation value; Heisenberg uncertainty principle; time-independent Schroedinger equation; Hamiltonian and stationary states; particle in a square well; transmission and reflection at a barrier; harmonic oscillator problem using ladder operators; free particle and wavepacket; delta function potential; Dirac notations; state vectors; Hilbert space; Hermitian operators; eigenstates and eigenvalues; generalized statistical interpretation; generalized uncertainty principle; angular momentum; hydrogen atom; atomic orbits; spin; non-degenerate perturbation theory.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 describe the statistical interpretation of quantum mechanical systems, and calculate expectation values and uncertainty of physical observables
- CLO 2 formulate energy eigenvalue problems, and solve them in examples where potentials have simple analytical forms
- CLO 3 formulate time evolution of the wavefunction and the expectation value of physical observables with known energy eigenfunctions
- CLO 4 judge the applicability of time-independent perturbation theory and formulate leading order energy corrections in certain perturbations applied to the physical system
- CLO 5 acquire and interpret experimental data to examine the physical laws

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in PHYS2265

Offer in 2016 - 2019

Grade Descriptors (A+ to F)

Y 1st sem Offer in 2019 - 2020 : Y

Grade Descriptors

- A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.
- B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentional skills. Apply effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.
- C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentional skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.
- D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentional skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.
- Fail: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentional skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.

Course Type: Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Electromagnetism (6 credits)

Offering Department: Physics
Course Co-ordinator: Prof X D Cui, Physics (xdcui@hku.hk)
Teachers Involved: (Prof X D Cui, Physics)

Course Objectives
Build on the foundation course PHYS2255, this course discusses electromagnetism in the advanced undergraduate level with vigorous mathematical treatment. It serves as a core course for physics major students as well as an elective core for those who are interested to gain a deep understanding of electromagnetism and to apply related techniques in their own majors. This is also an essential course for those who plan to pursue postgraduate studies in physics or related disciplines. Both conceptual ideas and mathematical treatment are emphasized.

Course Contents & Topics
Topics include electric fields and potential, methods in electrostatics, conductors and dielectrics, magnetostatics and electromagnetic induction, magnetic properties of materials and Maxwell's equations.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 identify the fundamental physics in electrostatics and magnetism
- CLO 2 apply mathematical tools to describe electrostatics and magnetism
- CLO 3 use the Maxwell's equations to explain various electrostatic and magnetic phenomena
- CLO 4 differentiate between electrostatics in vacuum and in dielectric materials
- CLO 5 differentiate between magnetism in vacuum and in magnetic materials
- CLO 6 apply essential skills of making measurements with appropriate instruments in physics. experiments; Interpret the experimental data and compare with the prediction of underlying physical principle

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in PHYS2255

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>10</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour written exam</td>
<td>60</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>10</td>
<td>CLO 5</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>20</td>
<td>CLO 1,2,3,4</td>
<td></td>
</tr>
</tbody>
</table>

Reading / Self study
Reading notes provided by Course Coordinator

Course Website
http://moodle.hku.hk

PHYS3550
Statistical mechanics & thermodynamics (6 credits)

Offering Department: Physics
Course Co-ordinator: Dr S Z Zhang, Physics (shizhong@hku.hk)
Teachers Involved: (Dr S Z Zhang, Physics)

Course Objectives
Build on the foundation course PHYS2260, this course discusses statistical mechanics and thermodynamics in the
advanced undergraduate level with vigorous mathematical treatment. It serves as a core course for physics major students as well as an elective core for those who are interested to gain a deep understanding of statistical mechanics and thermodynamics and to apply related techniques in their own majors. This is also an essential course for those who plan to pursue postgraduate studies in physics or related disciplines. Both conceptual ideas and mathematical treatment are emphasized.

Course Contents & Topics

Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** describe and explain the fundamental physical principles
- **CLO 2** apply these principles, together with logical and mathematical reasoning, to situations of the physical world
- **CLO 3** analyze and solve problems with the aids of mathematics
- **CLO 4** acquire and interpret experimental data to examine the physical laws

Pre-requisites

Pass in PHYS2260

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2019 - 2020 : Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Examination May</td>
</tr>
<tr>
<td>B</td>
<td>2nd sem</td>
</tr>
<tr>
<td>C</td>
<td>2019 - 2020</td>
</tr>
<tr>
<td>D</td>
<td>2018</td>
</tr>
</tbody>
</table>

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

Activities

- Lectures
- Laboratory
- Tutorials
- Reading / Self study

No. of Hours

- 36
- 6
- 8
- 80

Assessment Methods and Weighting

Methods

- Assignments
- Examination
- Laboratory reports
- Test

Details

- 10
- 2-hour written exam
- 2-hour written exam
- 2-hour written exam

Weighting in final course grade (%)

- CLO 1.2.3
- CLO 1.2.3
- CLO 1.4
- CLO 1.2.3

Assessment Methods to CLO Mapping

- 712

Required/recommended reading and online materials

Lecture notes provided by Course Coordinator

Daniel V. Schroeder: An Introduction to Thermal Physics (Pearson, 2014).

Course Website

http://moodle.hku.hk

PHYS3551

Introductory solid state physics (6 credits)

Academic Year

2018

Offering Department

Physics

Quota

Prof J Gao, Physics (jgao@hku.hk)

Course Objectives

To provides a broad introduction to modern theories of the behaviour and properties of the solid state of matter. It is designed as a self-contained course which at the same time will serve as a basis for more advanced courses and projects in solid state physics.

Course Contents & Topics

Crystal structures and symmetry. The formation of crystals. The reciprocal lattice and X-ray diffraction in crystals. Lattice vibrations and thermal properties. Free-electron theory of metals. Energy bands; metals, semiconductors, and insulators. If time permits, special topics such as superconductor will be briefly mentioned.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** demonstrate knowledge for crystal structures and characterization
- **CLO 2** describe the behavior of solid matter and explain the underlying physical concepts
- **CLO 3** apply physical principles and mathematical equations to discuss the physical properties of materials
- **CLO 4** apply essential skills of making measurements with appropriate instruments in physics experiments
- **CLO 5** interpret the experimental data and compare with the prediction of underlying physical principle

Pre-requisites

Pass in PHYS2260 and PHYS2265

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2019 - 2020 : N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Examination ---</td>
</tr>
<tr>
<td>B</td>
<td>2019 - 2020</td>
</tr>
</tbody>
</table>

Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.

Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.

Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.

Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.

Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. This is also an essential course for those who plan to pursue postgraduate studies in physics or related disciplines. Both conceptual ideas and mathematical treatment are emphasized.
Course Type: Lecture with laboratory component course

CLO 1,2,3

- Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities, logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentional skills. Apply partially effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.

- Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective organizational and presentional skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

Fail

- Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentional skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.

Department of Physics

Offering Department: Physics

Course Co-ordinator: Dr J J L Lim, Physics (jjlim@hku.hk)

Teachers Involved: Dr J J L Lim, Physics

Course Objectives: An introduction to tools of contemporary observation astronomy, with a focus on those used at optical wavelengths, as well as an introduction to observational aspects of stars and galaxies at optical wavelengths. An emphasis is placed on a hands-on approach for students to gain experience in doing astronomical observations and data reduction.

Course Contents & Topics: Topics include: properties and configurations of optical telescopes; properties of light, atmospheric effects on observations; properties of astronomical detectors (PMT, CCD); astronomical imaging and magnitude system; astronomical spectroscopy; observations of stars and galaxies including blackbody radiation, color-magnitude system, emission and absorption spectrum, and astronomical redshifts.

Course Learning Outcomes: On successful completion of this course, students should be able to:

- CLO 1 describe and explain the workings of astronomical telescopes and modern astronomical detectors at optical wavelengths
- CLO 2 describe the effects of the properties of light and Earth's atmosphere on astronomical observations
- CLO 3 explain how the methods of astronomical photometry and spectroscopy are applied to the observations of stars, galaxies, and the universe
- CLO 4 operate a small optical telescope to conduct simple day and night sky observations

Pre-requisites (and Co-requisites and Impermissible combinations): Pass in PHYS1650 and (PHYS2250 or PHYS2265)

Grade Descriptors (A+ to F):

A

- Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentional skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.

B

- Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentional skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.

C

- Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentional skills. Apply moderately effective lab skills and techniques. Correctly but some erroneous use of data and results to draw appropriate conclusions.

D

- Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective organizational and presentional skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

Fail

- Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentional skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.

Department of Physics

Offering Department: Physics

Course Co-ordinator: Dr J J L Lim, Physics (jjlim@hku.hk)

Teachers Involved: Dr J J L Lim, Physics

Course Objectives: An introduction to tools of contemporary observation astronomy, with a focus on those used at optical wavelengths, as well as an introduction to observational aspects of stars and galaxies at optical wavelengths. An emphasis is placed on a hands-on approach for students to gain experience in doing astronomical observations and data reduction.

Course Contents & Topics: Topics include: properties and configurations of optical telescopes; properties of light, atmospheric effects on observations; properties of astronomical detectors (PMT, CCD); astronomical imaging and magnitude system; astronomical spectroscopy; observations of stars and galaxies including blackbody radiation, color-magnitude system, emission and absorption spectrum, and astronomical redshifts.

Course Learning Outcomes: On successful completion of this course, students should be able to:

- CLO 1 describe and explain the workings of astronomical telescopes and modern astronomical detectors at optical wavelengths
- CLO 2 describe the effects of the properties of light and Earth's atmosphere on astronomical observations
- CLO 3 explain how the methods of astronomical photometry and spectroscopy are applied to the observations of stars, galaxies, and the universe
- CLO 4 operate a small optical telescope to conduct simple day and night sky observations

Pre-requisites (and Co-requisites and Impermissible combinations): Pass in PHYS1650 and (PHYS2250 or PHYS2265)

Grade Descriptors (A+ to F):

A

- Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentional skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.

B

- Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentional skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.

C

- Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentional skills. Apply moderately effective lab skills and techniques. Correctly but some erroneous use of data and results to draw appropriate conclusions.

D

- Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective organizational and presentional skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

Fail

- Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentional skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.

Department of Physics

Offering Department: Physics

Course Co-ordinator: Dr J J L Lim, Physics (jjlim@hku.hk)

Teachers Involved: Dr J J L Lim, Physics

Course Objectives: An introduction to tools of contemporary observation astronomy, with a focus on those used at optical wavelengths, as well as an introduction to observational aspects of stars and galaxies at optical wavelengths. An emphasis is placed on a hands-on approach for students to gain experience in doing astronomical observations and data reduction.

Course Contents & Topics: Topics include: properties and configurations of optical telescopes; properties of light, atmospheric effects on observations; properties of astronomical detectors (PMT, CCD); astronomical imaging and magnitude system; astronomical spectroscopy; observations of stars and galaxies including blackbody radiation, color-magnitude system, emission and absorption spectrum, and astronomical redshifts.

Course Learning Outcomes: On successful completion of this course, students should be able to:

- CLO 1 describe and explain the workings of astronomical telescopes and modern astronomical detectors at optical wavelengths
- CLO 2 describe the effects of the properties of light and Earth's atmosphere on astronomical observations
- CLO 3 explain how the methods of astronomical photometry and spectroscopy are applied to the observations of stars, galaxies, and the universe
- CLO 4 operate a small optical telescope to conduct simple day and night sky observations

Pre-requisites (and Co-requisites and Impermissible combinations): Pass in PHYS1650 and (PHYS2250 or PHYS2265)

Grade Descriptors (A+ to F):

A

- Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentional skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.

B

- Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentional skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.

C

- Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentional skills. Apply moderately effective lab skills and techniques. Correctly but some erroneous use of data and results to draw appropriate conclusions.

D

- Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Apply limited or barely effective organizational and presentional skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

Fail

- Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentional skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.
PHYS3651
Offering Department
Physics
Course Objectives
To introduce basic physical principles of astronomy and build a foundation in modern astrophysics.
Course Contents & Topics
Topics include: the sky and celestial coordinates, spherical geometry, optics and telescopes, basic celestial mechanics, two-body problem, radiative transfer, and blackbody radiation.
Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 calculate the transformation between different celestial coordinate systems
- CLO 2 describe the formation of spectral lines and basic structures of telescopes
- CLO 3 derive the orbits in two body problem from first principle
- CLO 4 recall the radiative transfer equation

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in PHYS1650 and (PHYS2250 or PHYS2265)

Offer in 2018 - 2019
Y 1st sem
Y 2nd sem
Offer in 2019 - 2020 : Y

Grade Descriptors
(A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply moderately effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show limited evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures 36
Tutorials
Reading / Self study 80

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments 12 CLO 1,2,3,4
Examination 2-hour written exam 60 CLO 1,2,3
Presentation 13 CLO 2,4
Test 15 CLO 1,2,3,4

Required/recommended reading and online materials
Lecture notes provided by Course Coordinator
George B. Rybicki and Alan P. Lightman, Radiative Processes in Astrophysics (Wiley-Interscience, 1985)
F. Mandl, Statistical Physics, 2nd ed. (John Wiley & Sons, 1988)

Course Website
http://www.physics.hku.hk/~phys3651/

PHYS3652
Offering Department
Physics
Course Objectives
To introduce or review a number of basic physical principles, and explain how these principles are applied in astronomy to gain knowledge of the Universe.
Course Contents & Topics
Topics include: special relativity, Doppler effect; interaction of light and matter, spectral lines; single-dish telescopes and interferometers; binary stars and stellar parameters, exoplanets; classification of stellar spectra.
Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 describe and explain the physical principles discussed
- CLO 2 associate the correct physical principles with the observed properties of certain astronomical objects
- CLO 3 apply understanding of the physical principle discussed to explain or compute the observed properties of select astronomical objects

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in PHYS1650 and (PHYS2250 or PHYS2265)

Offer in 2018 - 2019
Y 2nd sem
Offer in 2019 - 2020 : Y

Grade Descriptors
Demonstrate thorough mastery of the knowledge and skills required for attaining all the course learning outcomes. Show strong...
PHYS3653

Astronomy laboratory (6 credits)

Offering Department: Physics

Academic Year: 2018

Teachers Involved: Dr. J. J. L. Lim, Physics (jjlim@hku.hk)

Course Objectives: This course is a beginner course in astrophysics - the application of physics in astronomy, so as to interpret and understand astronomical objects and phenomena. Emphasis is placed on basic observational aspects and common objects/phenomena in astronomy that either form the foundation or are at the forefront of modern astrophysics. It is one of the core electives for astronomy minor and an elective course for the astrophysics theme. Upon completion, interested student may take its sequel PHYS4656 to further their studies in astrophysics.

Course Contents & Topics: Topics include: special relativity, Doppler effect, and relativistic beaming; interaction of light and matter, atomic physics, quantum mechanics; single-dish telescopes and interferometers; binary stars and stellar parameters, exoplanets; physics of stellar spectra.

Course Learning Outcomes:
- On successful completion of this course, students should be able to:
 - CLO 1 describe and explain the physical principles related to a given astronomical phenomenon
 - CLO 2 relate the correct physical principles to a given astronomical phenomenon
 - CLO 3 perform computations to demonstrate competence on and understanding of the physical principles related to a given astronomical phenomenon

Pre-requisites (and Co-requisites and Impermissible combinations):
- Pass in PHYS2250 or PHYS2265 or PHYS2650

Assessment Methods and Weighting:

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>35</td>
<td>CLO 1,2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>50</td>
<td>CLO 1,2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>15</td>
<td>CLO 2,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials:
- Lecture notes provided by Course Coordinator

Grade Descriptors (A+ to F):

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities, logical thinking, and ability to apply knowledge to familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some analytical and critical abilities, logical thinking, and ability to apply knowledge to most familiar situations. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type: Lecture-based course

Lectures 5 chapters
Tutorials 6 sessions
Reading / Self study

Examination 2-hour written exam

Course Website: http://www.physics.hku.hk/~phys3653/

PHYS3660

Astronomy laboratory (6 credits)

Academic Year: 2018
PHYS3750 Laser and spectroscopy (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Dr S C Y Ng, Physics (ncy@astro.physics.hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives
This course trains students with basics of extracting scientific information with astronomical observations. The focus is on practical experience in operating telescopes, data acquisition and reduction, and interpretation of the results rather than verification of known astronomical theories. It is one of the core electives for astronomy minor and an elective course for the astrophysics and experimental physics themes. Upon completion, interested students may apply the techniques learnt here in observational astronomy related capstone courses.

Course Contents & Topics
This course will cover the following topics: basics working principles of optical telescopes and CCDs; setting up and hands-on operations of small optical telescopes; error analysis and basic statistics related to the astronomy laboratories; introduction to the magnitude system and celestial coordinates, the color magnitude diagram, and blackbody radiation; observations and data reduction techniques in multi-wavelength astronomy; introduction to data analysis software packages.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 acquire astronomy observation techniques
- CLO 2 conduct observations to verify the physical principle(s) in astronomy
- CLO 3 apply analytical methods required to interpret and analyze results, and draw conclusions from the data
- CLO 4 use of effective written and verbal communication skills through written laboratory reports and oral presentation

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in (PHYS2261 or PHYS2650); and Pass in PHYS3650, or already enrolled in this course.

Grade Descriptors (A to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory labs</td>
<td>6-8 Laboratory reports</td>
<td>70</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Presentation</td>
<td>1 oral presentation</td>
<td>15</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Test</td>
<td>1 in-class test</td>
<td>15</td>
<td>CLO 1,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
- Lecture notes provided by Course Coordinator

Course Website
http://moodle.hku.hk

<table>
<thead>
<tr>
<th>Academic Year</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quota</td>
<td>---</td>
</tr>
</tbody>
</table>
Course Objectives
This course is designed to let senior undergraduate students and fresh postgraduate students know fundamental concepts and physical properties of nanomaterials including two-dimensional quantum wells, one-dimensional quantum wires and zero-dimensional quantum dots.

Course Contents & Topics
- Introduction to nanomaterials and quantum size effect. Dimensionalities and density of states of various nanomaterials. Optical and transport properties of quantum wells, superlattices and two-dimensional electron gas.
- Physical properties of carbon nanotubes and semiconductor nanowires. Physical properties of quantum dots and nanocrystals. Fundamental principles of scanning tunneling microscopy and advanced thin-film growth techniques such as molecular beam epitaxy and metalorganic chemical vapor deposition.

Assessment Methods and Weighting
- **Methods**: Details
- **Assignments**: 20
- **Examination**: 60
- **Laboratory reports**: 20

Course Learning Outcomes
On successful completion of this course, students should be able to:

- **CLO 1**: recall basic concepts and knowledge of dimensionality, density of states, quantum size effect
- **CLO 2**: identify and compare optical and transport properties of quantum wells, superlattices and two-dimensional electron gas
- **CLO 3**: recognise the fundamental principles of scanning tunneling microscopy and advanced thin-film growth techniques such as molecular beam epitaxy and metalorganic chemical vapor deposition
- **CLO 4**: describe the basic physics of carbon nanotubes and semiconductor nanowires
- **CLO 5**: explain physical properties of zero-dimensional quantum dots and nanocrystals

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentional skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of the knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentional skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentional skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentional skills.</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
PHYS3760 - Waves and Optics (6 credits)

Course Details
- **Offering Department**: Physics
- **Course Co-ordinator**: Prof S J Xu, Physics (sjxu@hku.hk)

Course Objectives
On successful completion of this course, students should be able to:
- CLO 1 describe the properties of waves including propagation, reflection, refraction, interference and diffraction by using the theory of waves.
- CLO 2 design and conduct experiments to verify the physics principle(s) commonly used in advanced university-level physics courses.
- CLO 3 make use of analytical methods required to interpret and analyze results, and draw conclusions from the data.
- CLO 4 make use of effective written and verbal communication skills through written laboratory reports and oral presentations.

Course Contents & Topics
This course trains students with experimental knowledge and skills, as well as the understanding on how to prove physics principles with measurements. The focus is on advanced lab skills and techniques, including data acquisition, and data analysis by computers rather than verification of known physical theories. It is one of the core electives for physics major and a required course for the experimental physics theme. Upon completion, interested students may apply the techniques learnt here in experiment-oriented capstone courses.

Course Learning Outcomes
- CLO 1: Explain and calculate the properties of waves including propagation, reflection, refraction, polarization, interference and diffraction by using the theory of waves.
- CLO 2: Design and conduct experiments to verify the physics principle(s) commonly used in advanced university-level physics courses.
- CLO 3: Make use of analytical methods required to interpret and analyze results, and draw conclusions from the data.
- CLO 4: Make use of effective written and verbal communication skills through written laboratory reports and oral presentations.

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in any two of the following courses: PHYS3350, PHYS3351, PHYS3450, PHYS3550

Offer in 2018 - 2019
- **N**: Offer in 2019 - 2020: N

Examination
- ---

Grade Descriptors (A+ to F)
- **A**: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate conclusions.
- **B**: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.
- **C**: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.
- **D**: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.
- **Fail**: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory reports</td>
<td>8 lab reports</td>
<td>70</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Presentation</td>
<td>1 oral presentation</td>
<td>15</td>
<td>CLO 2,3</td>
</tr>
<tr>
<td>Project report</td>
<td>1 full project report</td>
<td>15</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Course Type & Learning Activities
- **Course Type**: Lecture with laboratory component course
- **Lectures**: Working principle of equipment, Experimental Skills, Data analysis, Writing skills (8)
- **Laboratory**: 8 standard labs and 1 project (28)
- **Project work**: Presentation and preparation (20)
- **Reading / Self study**: 64

Optional/Recommended reading and online materials
- Lab manuals provided by Course Coordinator
- Python tutorial at https://www.python.org/about/gettingstarted/
This course will introduce students to the fundamentals of atomic physics and nuclear physics. It will also discuss properties of atoms and nuclei, nuclear composition, liquid drop model, shell model in atoms and nuclei, and some unfamiliar situations. Apply effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

Grade Descriptors (A+ to F)

A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.

B: Demonstrate substantial command of the knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities, reasoned logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.

C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective observation skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.

D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

Fail: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Mismeasure of data and results and/or unable to draw appropriate conclusions.

Department of Physics

PHYS3851 Atomic and nuclear physics (6 credits) Academic Year 2018

Offering Department Physics Quota ---

Course Co-ordinator Dr J H C Lee, Physics (jleehc@hku.hk)

Teachers Involved (Dr J H C Lee, Physics)

This course will introduce students to the fundamentals of atomic physics and nuclear physics. It will also discuss nuclear astrophysics and applications of atomic and nuclear science. It aims to provide students a conceptual framework of atomic and nuclear physics and serves as an elective course to better prepare students for graduate studies in relevant subjects.

Course Contents & Topics Properties of Atoms and Nuclei, Nuclear Composition, Liquid Drop Model, Shell Model in Atoms and Nuclei, Particle & Gamma Decay, Nuclear Reactions, Radiation Detectors, Nuclear Astrophysics, Frontier research and applications in atomic and nuclear science.

Course Learning Outcomes On successful completion of this course, students should be able to:

CLO 1 describe and explain the basic features of atoms and nuclei

CLO 2 apply general considerations of quantum mechanics to atomic and nuclear system

CLO 3 make general orders of magnitude in estimation of physical effects in atoms and nuclei

CLO 4 describe nuclear decay processes and nuclear reactions in nucleosynthesis

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in PHYS3351, or already enrolled in this course

Grade Descriptors (A+ to F)

A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.

B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.

C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.

D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.

Fail: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve
Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Assessment</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>10</td>
<td>CLO 1</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Lecture notes from the Course Coordinator

W. Demtroder: Atoms, molecules and photons (Springer, 2011, 2nd ed.)
K. Krane: Introductory nuclear physics (John Wiley & Sons, 1988)

PHYS3999

<table>
<thead>
<tr>
<th>Directed studies in physics (6 credits)</th>
<th>Academic Year</th>
<th>Quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directed studies in physics (6 credits)</td>
<td>2018</td>
<td>50</td>
</tr>
</tbody>
</table>

Offering Department
Physics

Teachers Involved
(Various teachers in the department, Physics)

Course Objectives
This capstone course is offered to students majoring in physics, math/physics or astronomy. It should be taken normally in their final year of study. It provides students with the opportunity to study a small problem by themselves, either theoretical, experimental or numerical, under the supervision of an academic staff using the subject materials the student has learnt in all years of his/her major study. The available projects range from small scale research, critical literature review and comment, and to development of university-level physics or astronomy teaching tools.

Course Contents & Topics
Students interested in taking this course should contact their prospective supervisors in May to determine the contents and the nature of their projects in the coming academic year. They must get the approval from both the prospective supervisor and the course coordinator to take this course.

Students will receive training in research literature reading and reviewing, under the supervision of a staff member. For theoretical project, students may need to fill in mathematical gaps of some sophisticated derivations and the critically analyze the research methods used in the field. For numerical projects, students need to use computers to reproduce existing numerical or simulation results. For experimental projects, students have to understand the design of the experiment, carrying it out and analyze the sources of errors.

Course Learning Outcomes
On successful completion of this course, students should be able to:

1. CLO 1 review the knowledge of a physics or astronomy problem in depth through literature review of books and research journals based on what they have learnt in their majors.
2. CLO 2 criticize existing approaches for solving the selected physics or astronomy problem.
3. CLO 3 describe and explain connections between the physical principles and the study problem.
4. CLO 4 (for theoretical or computational projects) identify the key issues of the problem and solve them independently either by analytical or numerical means, and compare the results with predictions or existing solutions.
5. CLO 5 (for experimental projects) propose and execute physics experiments or astronomical observations, analyze results and sources of errors of the experiment or observation in comparison with predictions.

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in at least 24 credits of advanced level (3XXX level or above) disciplinary core/elective courses of the Physics Major, Mathematics/Physics Major or Astronomy Major curriculum.

This capstone course is for Astronomy, Mathematics/Physics, and Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>No Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough grasp of the subject. Show evidence of strong logical and independent thinking. Insightful use and critical analysis/evaluation of information drawn from a full range of high quality sources and to quote/reference aptly. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial grasp of the subject. Show evidence of logical and independent thinking. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Correct use of data and results to draw appropriate conclusions. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete grasp of the subject. Show some evidence of logical and independent thinking. Use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/reference aptly. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Show limited evidence of logical and independent thinking. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Show little or no evidence of logical and independent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type
Project-based course

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting with supervisor</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>84</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation</td>
<td>including supervisor’s comments (10%)</td>
<td>30</td>
<td>CLO 1,3,4,5</td>
</tr>
<tr>
<td>Research report</td>
<td></td>
<td>70</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
To be provided by individual project supervisor

Note: The text is a summary of the course details and content as provided in the document. The grading scale and assessment methods have been adapted for clarity.
Course Information

PHY4150: Computational Physics (6 credits)

Offering Department: Physics
Academic Year: 2018
Quota: ---

Course Co-ordinator
Prof J Wang, Physics (jianwang@hku.hk)

Teachers Involved
Prof J Wang, Physics

Course Objectives
The aim of the course is to show how the power of computers enables computational approach to solving physics problems to be adopted, which is distinct from, and complimentary to, traditional experimental and theoretical approaches. The material covered will be found useful in any project or problem solving work that contains a strong computational or data analysis element. The course is designed such that a significant fraction of the student's time is spent actually programming specific physical problems rather than learning abstract techniques.

Course Contents & Topics
The course will cover the following problems: Introductory computational physics and computer algebra, integration and differentiation, interpolation and extrapolation, ordinary differential equation such as those of classical mechanics, partial differential equations (such as the Maxwell's equation, the diffusion equation, and the Schrodinger equation), matrix methods (such as systems of equations and eigenvalue problems applied to Poisson's equation and electronic structure calculations), Monte Carlo (Metropolis algorithm) and other simulation methods (such as molecular dynamics), and several physics projects.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1: Demonstrate knowledge in essential methods and techniques for numerical computation in physics.
- CLO 2: Apply Monte Carlo method and other simulation methods to solve deterministic as well as probabilistic physical problems.
- CLO 3: Employ appropriate numerical method to interpolate and extrapolate data collected from physics experiments.
- CLO 4: Use appropriate numerical method to solve the differential equations governing the dynamics of physical systems.

Pre-requisites (and Co-requisites and Impermissible combinations)
- Pass in (MATH3301 or MATH3401 or MATH3403 or MATH3405 or PHYS3150); and
- Pass in any three of the following courses: PHYS3350, PHYS3351, PHYS3450, PHYS3550

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)
- **A:** Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. Apply highly effective lab skills and techniques. Critical use of data and results to draw appropriate and insightful conclusions.
- **B:** Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. Apply effective lab skills and techniques. Correct use of data of results to draw appropriate conclusions.
- **C:** Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective lab skills and techniques. Mostly correct but some erroneous use of data and results to draw appropriate conclusions.
- **D:** Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to some unfamiliar situations. Apply effective organizational and presentational skills. Apply partially effective lab skills and techniques. Limited ability to use data and results to draw appropriate conclusions.
- **Fail:** Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. Apply minimally effective or ineffective lab skills and techniques. Misuse of data and results and/or unable to draw appropriate conclusions.

Course Type
Lecture with laboratory component course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Details</td>
<td></td>
<td>CLO 1.2, 3.4</td>
</tr>
<tr>
<td>Assignments</td>
<td>20</td>
<td>CLO 1.2, 3.4</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>40</td>
<td>CLO 1.3, 4</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>15</td>
<td>CLO 1</td>
<td></td>
</tr>
<tr>
<td>Project report</td>
<td>25</td>
<td>CLO 1.2, 3.4</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Lecture notes provided by Course Coordinator
Samuel S.M. Wong: Computational Methods in Physics and Engineering (World Scientific)
N.J. Giordano and N. Nakashita: Computational physics (Pearson Education Inc.).

PHY4151: Data Analysis and Modeling in Physics (6 credits)

Offering Department: Physics
Academic Year: 2018
Quota: ---

Course Co-ordinator
Prof H F Chau, Physics (hfcchau@hku.hk)

Teachers Involved
Prof H F Chau, Physics

Course Objectives
This course covers general modeling and data analysis techniques used in physics and related subjects with special emphasis on their uses in complex systems, nonlinear systems and adaptive systems. The focus is on the basic principles and concepts rather than the use of computer packages. This course provides a solid foundation for students who intended to do computational physics and complex systems research. It also prepares students to work in related industries.

Course Contents & Topics
Topics include basic data analysis techniques, linear and non-linear fittings, determining the goodness of the fit, basic hypothesis testing techniques, modeling physical and related systems via differential (ordinary and/or partial), difference equations as well as discrete models such as cellular automata, introduction to complex systems, complex adaptive systems and nonlinear dynamics, the use of computer package such as Matlab in modeling and...
data analysis. The emphasis is on the basic principles and concepts rather than a particular software package or physical model. Depending on the mutual interests of the coordinators and the students, illustrative examples will be drawn from conventional fields such as classical mechanics, electromagnetism and quantum mechanics as well as more recent fields like biophysics, econophysics and sociophysics.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 describe and explain state-of-the-art modeling methods used in physics
- CLO 2 apply basic modeling techniques, together with logical and mathematical reasoning, to situations of the physical world
- CLO 3 analyse and solve problems with the aid of computer packages such as Matlab
- CLO 4 critically interpret experimental data from physics experiments

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in (MATH3301 or MATH3401 or MATH3403 or MATH3405 or PHYS3150); and Pass in any one of the following courses: PHYS3350, PHYS3351, PHYS3450, PHYS3550

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Ofer in 2019 - 2020 : Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Examination ---</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>10</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour written exam</td>
<td>50</td>
<td>CLO 1, 2, 4</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td>20</td>
<td>CLO 1, 4</td>
</tr>
<tr>
<td>Project report</td>
<td></td>
<td>20</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Lecture notes provided by Course Coordinator

PHYS3450

Advanced classical mechanics (6 credits)

Academic Year 2018

Offering Department

Physics

Quota

Course Co-ordinator

Prof S Q Shen, Physics (sshen@hku.hk)

Course Objectives

Build on the advanced undergraduate level course PHYS3350, this course further discusses concepts and mathematical techniques in classical mechanics through special topics and applications. It serves as an elective course to better prepare students for their postgraduate studies in physics or other related disciplines.

Course Contents & Topics

Topics include: Hamiltonian principles, Lagrangian formulation of dynamics, nonlinear problems, many-body systems, variational principle, generalized coordinates, simple application of Lagrangian equation.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 explain the difference between Newtonian mechanics and analytical mechanics
- CLO 2 solve the mechanical problems using Lagrangian formalism
- CLO 3 discuss the connection between classical mechanics and quantum mechanics from Hamiltonian formalism
- CLO 4 apply the variational principle to real physical situations

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in PHYS3350

Offer in 2018 - 2019

1st sem

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Offer in 2019 - 2020 : Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Examination Dec</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Assignments 10 CLO 1,2,3,4

Reading & Self study 8

Laboratory 12

Tutorials 8

Examination - ---
Course Type	Lecture-based course
Course Teaching & Learning Activities | Activities | Details | No. of Hours
---|---|---|---
Lectures | 36
Tutorials | 12
Reading / Self study | 80
Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping
---|---|---|---|---
Assignments | 20 | CLO 1,2,3,4
Examination | 3-hour written exam | 60 | CLO 1,2,3,4
Test | 20 | CLO 1,2,3,4
Required/recommended reading and online materials | Lecture notes provided by Course Coordinator
H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, (Pearson Education Inc, 2004)
Course Website | http://moodle.hku.hk

PHYS4351 Advanced quantum mechanics (6 credits)
Offering Department | Physics
Course Co-ordinator | Prof W Yao, Physics (wangyao@hku.hk)
Teachers Involved | (Prof W Yao, Physics)
Course Objectives | Build on the advanced undergraduate level course PHYS3351, this course further discusses concepts and mathematical techniques in quantum mechanics through special topics and applications. It serves as an elective course to better prepare students for their postgraduate studies in physics or other related disciplines.
Course Contents & Topics | Topics include Maxwell's Equations, Poynting theorem, wave equations, reflection and transmission of waves, identical particles. Pauli exclusion principle, Fermion and bosons. WKB approximation. Time-independent, non-degenerate and degenerate perturbation theory. Time dependent perturbation theory. Scattering, cross section, partial waves and Born approximation. Variational method.
Course Learning Outcomes | On successful completion of this course, students should be able to:
- CLO 1 review the perturbation theory and some other approximation methods on various quantum systems
- CLO 2 apply physics principles to describe the physical properties of various quantum systems
- CLO 3 demonstrate knowledge and discuss the underlying physical concepts associated with the selected quantum systems
Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in PHYS3351
Grade Descriptors | A | Advanced quantum mechanics (6 credits)
---|---
(A+ to F) | Academic Year | 2018
---|---
A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.
Course Type | Lecture-based course
Course Teaching & Learning Activities | Activities | Details | No. of Hours
---|---|---|---
Lectures | 36
Tutorials | 12
Reading / Self study | 80
Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping
---|---|---|---|---
Assignments | 20 | CLO 1,2,3
Examination | 3-hour written exam | 60 | CLO 1,2,3
Test | 20 | CLO 1,2,3
Required/recommended reading and online materials | Lecture notes provided by Course Coordinator
Course Website | http://www.physics.hku.hk/~phys4351/
wave guides, retarded potentials, gauge transformations, dipole radiation, special theory of relativity.

CLO 1 review and discuss the fundamental physics in classical electrodynamics

CLO 2 apply Maxwell's equations to analyze complicated electrostatic and magnetic phenomena

CLO 3 evaluate how special relativity is incorporated in the study of electromagnetism

CLO 4 formulate and solve problems in electromagnetism using appropriate mathematical techniques

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in PHYS3450

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type
Lecture-based course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>10</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
<tr>
<td>Examination</td>
<td>3-hour written exam</td>
<td>60</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>30</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Lecture notes provided by Course Coordinator

PHYS4550

Offering Department
Physics

Teachers Involved
Dr Y J Tu, Physics (yanjuntu@hku.hk)

Course Objectives
Build on the advanced undergraduate level course PHYS3550, this course further discusses concepts and mathematical techniques in statistical mechanics through special topics and applications. It serves as an elective course to better prepare students for their postgraduate studies in physics or other related disciplines.

Course Contents & Topics

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 describe and explain the fundamental physical principles

CLO 2 apply these principles, together with logical and mathematical reasoning, to situations of the physical world

CLO 3 analyses and solve problems with the aids of mathematics

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in PHYS3550

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type
Lecture-based course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>20</td>
<td>CLO 1, 2, 3, 4</td>
</tr>
</tbody>
</table>
PHYS4650 Stellar physics (6 credits) Academic Year 2018

Offering Department Physics Quota ---
Course Co-ordinator Dr S C Y Ng, Physics (ncy@bohr.physics.hku.hk)
Teachers Involved (Dr S C Y Ng,Physics)
Course Objectives To introduce the basic theory of stellar structure and evolution. It follows a vigorous mathematical treatment that stresses on the underlying physical processes. Knowledge in quantum mechanics and statistical mechanics will be advantageous.
Course Learning Outcomes On successful completion of this course, students should be able to:

CLO 1 describe what is stars and to classify different types of stars
CLO 2 analytically calculate and solve problems related to the structure and evolution of stars including the use of stellar structure equations and Saha equations
CLO 3 critically examine the physical processes occurring in stars and how these processes affect the evolution of stars
CLO 4 assess selected research papers in the field of stellar astrophysics

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in PHYS3351 and PHYS3651

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type Lecture-based course
Course Teaching & Learning Activities Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 80

Assessment Methods and Weighting Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments 20 CLO 1,2,3,4
Examination 3-hour written exam 60 CLO 1,2,3,4
Test 20 CLO 1,2,3,4

Required/recommended reading and online materials Lecture notes provided by course coordinator.

Relevant and/or Impermissible (and Co-requisites (ncy@bohr.physics.hku.hk))
Prof M H Xie, Physics (mhxie@hku.hk)

Department of Physics
Grade Descriptors (A+ to F)

A
Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B
Demonstrate substantial command of a broad range of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C
Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D
Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply moderately or barely effective organizational and presentational skills.

Fail
Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>10</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>60</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Project reports</td>
<td></td>
<td>10</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Lecture notes provided by Course Coordinator
Francis, LeBlanc, An Introduction to Stellar Astrophysics (Wiley, 2010)

Course Website
http://www.physics.hku.hk/~phys4650/

PHYS4651 Selected topics in astrophysics (6 credits)

Offering Department
Physics

Course Co-ordinator
Prof K S Cheng, Physics (hrspsksc@hku.hk)

Teachers Involved
To introduce students some current topics in astrophysics. It may be taken as a self-contained course or as background to research work in astrophysics.

Course Contents & Topics

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 apply physics principles to describe the physical properties of various astrophysical systems
- CLO 2 explain the observed phenomena of some selected astrophysical objects
- CLO 3 demonstrate knowledge and discuss the underlying physical concepts associated with the astrophysical systems and their dynamic interactive processes

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in PHYS3351 or PHYS3450 or PHYS3550 or PHYS3651

Offer in 2018 - 2019
N Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)

A
Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B
Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C
Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D
Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply moderately or barely effective organizational and presentational skills.

Fail
Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>8</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>7</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td>15</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>
PHYS4652

Offering Department: Physics

Course Co-ordinator: Dr M H Lee, Physics (mhlee@hku.hk)

Course Objectives

This course provides students with a modern advanced-level understanding of the properties of our Solar System and planetary systems around other stars and of the physical, chemical, and geological processes that govern them.

Course Contents & Topics

Terrestrial planets, giant planets, moons and minor bodies in our Solar System; planetary dynamics; energy transport; planetary atmospheres, surfaces, and interiors; planet formation; extrasolar planets.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 describe key aspects of our Solar System and extrasolar planetary systems acquired through observations and experiments
- CLO 2 explain essential elements of the processes governing the properties of planetary bodies
- CLO 3 apply physical principles to construct models for some basic aspects of the structure, formation, and evolution of planetary bodies

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in PHYS3651 or (PHYS3350 and PHYS3550)

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
<td>36</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Essay</td>
<td></td>
<td>15</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>15</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Lecture notes provided by Course Coordinator

Offer Website

http://moodle.hku.hk

PHYS4653

Offering Department: Physics

Course Co-ordinator: Prof K S Cheng, Physics (hrspscs@hku.hk)

Teachers Involved

Prof K S Cheng, Physics

Course Objectives

The aim of the course is to offer an advanced introduction to cosmology, to familiarize students with the mathematical formulation used to model the evolution and dynamics of the universe, and to provide an up to date discussion of the big bang theory and structure and galaxy formation.

Course Contents & Topics

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 apply physics principles to describe the observational/experimental aspects of cosmology
- CLO 2 explain the observed phenomena of cosmology
- CLO 3 demonstrate knowledge and discuss the underlying physical concepts associated with the cosmological evolution of the universe and with the dynamic interactive processes that take place in the universe

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in PHYS3651 or PHYS3652

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
<td>36</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>20</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Essay</td>
<td></td>
<td>15</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>50</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>15</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Lecture notes provided by Course Coordinator

Course Website

http://moodle.hku.hk
Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>8</td>
<td>CLO 1.2,3</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>50</td>
<td>CLO 1.2,3</td>
<td></td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>7</td>
<td>CLO 1.2,3</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>15</td>
<td>CLO 1.2,3</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>20</td>
<td>CLO 1.2,3</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Lecture notes provided by Course Coordinator

Course Website
http://moodle.hku.hk

PHYS4654
General relativity (6 credits)

Offering Department
Physics

Course Co-ordinator
Dr M Su, Physics (mengsu84@hku.hk)

Teachers Involved
(Dr M Su, Physics)

Course Objectives
To introduce students to the field of general relativity. To provide conceptual skills and analytical tools necessary for astrophysical and cosmological applications of the theory.

Course Contents & Topics

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1: apply the mathematical and physical ideas of the theory of general relativity for the study of various systems in astrophysics and cosmology
- CLO 2: explain the observational effects at the scale of the Solar System that cannot be described by Newtonian gravity from a general relativistic point of view
- CLO 3: demonstrate knowledge and discuss the dynamic interactive physical processes in astrophysics by using a general relativistic approach

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in PHYS2055 and PHYS3350

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

| A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

| B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar some unfamiliar situations. Apply effective organizational and presentational skills.

| C | Demonstrate general but limited command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

| D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

| Fail | Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>20</td>
<td>CLO 1.2,3</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>60</td>
<td>CLO 1.2,3</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>20</td>
<td>CLO 1.2,3</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and
Lecture notes provided by Course Coordinator
PHYS4655 Interstellar medium (6 credits)

Offering Department
Physics

Course Co-ordinator
Dr M H Lee, Earth Sciences (mhlee@hku.hk)

Teachers Involved
Dr M H Lee, Earth Sciences

Course Objectives
This course provides students with an advanced-level understanding of the processes responsible for the absorption and emission of continuum and line radiation from gas and dust in stellar atmospheres and interstellar space, and their astrophysical applications and implications.

Course Contents & Topics
- Gas, dust, atoms, molecules, radiation; physical and radiative properties of hydrogen, helium and heavier elements; hydrogen clouds, molecular clouds; HII regions, nebulae, supernovae.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- **CLO 1**: express what exists between stars in spiral and elliptical galaxies
- **CLO 2**: apply physical principles to describe excitation/ionization and de-excitation/recombination of atoms and ions
- **CLO 3**: recognize which process or processes occur or dominate in which object or phase of the interstellar medium

Pre-requisites
Pass in PHYS3651 or (PHYS3351 and PHY3550)

Grade Descriptors (A+ to F)

- **A**: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- **B**: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- **C**: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- **D**: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Limited or barelly effective organizational and presentational skills.
- **Fail**: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Method</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>20</td>
<td>CLO 1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>Essay</td>
<td>15</td>
<td>CLO 1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour written exam</td>
<td>50</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Test</td>
<td>15</td>
<td>CLO 1, 2, 3</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Outcomes

- **CLO 1**: describe what is stars and to classify different types of stars
- **CLO 2**: analytically calculate and solve problems related to the structure and evolution of stars including the use of stellar structure equations and Saha equations
- **CLO 3**: critically examine the physical processes occurring in stars and how these processes affect the evolution of stars
- **CLO 4**: apply physics principles to describe the physical properties of various astrophysical systems
- **CLO 5**: demonstrate knowledge and discuss the underlying physical concepts associated with the astrophysical systems and their dynamic interactive processes
- **CLO 6**: assess selected research papers in the field of stellar astrophysics

Required/Recommended reading and online materials

- Lecture notes provided by Course Coordinator

Online materials

- B. Schutz: *A First Course in General Relativity* (Cambridge University Press, 2009)

Course Website
http://moodle.hku.hk

PHYS4656 Advanced astrophysics (6 credits)

Offering Department
Physics

Course Co-ordinator
TBA, Physics (1)

Teachers Involved

Course Objectives
Built on PHYS3653, this course covers selected astrophysics topics at the advanced undergraduate level. Foci include radiation mechanism and high energy processes, basic theory of stellar structure and evolution, and introduction to compact objects. It follows a vigorous mathematical treatment that stresses on the underlying physical processes. This is an elective course for the astrophysics theme. This is also an essential course for those who plan to pursue postgraduate studies in astrophysics.

Course Contents & Topics
Topics include: radiation mechanisms; stellar structure equations; polytropic model; elementary stellar radiation processes; simple stellar nuclear processes; stellar formation; late stage of stellar evolution; supernova explosion; compact stellar if time permits, additional selected topics will be covered.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- **CLO 1**: apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- **CLO 2**: demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- **CLO 3**: demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- **CLO 4**: demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Limited or barely effective organizational and presentational skills.
- **CLO 5**: demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Pre-requisites and Co-requisites
Pass in PHYS3651 or PHYS3653 or (PHYS3351 and PHYS3450)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Course Type</td>
<td>Lecture-based course</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
<td>Details</td>
<td>No. of Hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
<td>36</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
<td>12</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
<td>80</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
<td>Details</td>
<td>Weighting in final course grade (%)</td>
<td>Assessment Methods to CLO Mapping</td>
</tr>
<tr>
<td></td>
<td>Assignments</td>
<td>10</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examination</td>
<td>2-hour written exam</td>
<td>60</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td></td>
<td>Presentation</td>
<td>10</td>
<td>CLO 1,2,3,4,5,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td>20</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td>Lecture notes provided by Course Coordinator</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shapiro and S. A. Teukolsky Longair High Energy Astrophysics 3rd ed</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Francis, LeBlanc, An Introduction to Stellar Astrophysics (Wiley, 2010)</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

PHYS4750

Experimental physics (6 credits)

Offering Department Physics

Course Co-ordinator TBC, Physics (j)

Teachers Involved (TBC,Physics)

Course Objectives TBC

Course Contents & Topics TBC

Course Learning Outcomes On successful completion of this course, students should be able to:

Pre-requisites (and Co-requisites and Impermissible combinations)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fail</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Course Type</td>
<td>Lecture with laboratory component course</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
<td>Details</td>
<td>No. of Hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
<td>Details</td>
<td>Weighting in final course grade (%)</td>
<td>Assessment Methods to CLO Mapping</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td>TBC</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

PHYS4850

Particle physics (6 credits)

Offering Department Physics

Course Co-ordinator Dr Y J Tu, Physics (yanjuntu@hku.hk)

Teachers Involved (Dr Y J Tu,Physics)

Course Objectives This course discusses both theoretical and experimental aspects of particle physics. It serves as an elective course to better prepare students for their postgraduate studies in physics or other related disciplines.

Course Contents & Topics Topics include: fundamental particles, symmetry and conservation law, Feynman diagrams, scattering cross section, electroweak theory, QCD, particle accelerator and detector, neutrino mass and oscillation, Higgs particle.

Course Learning Outcomes On successful completion of this course, students should be able to:

Pre-requisites (and Co-requisites and Impermissible combinations)

| Pass in PHYS3351 | --- | --- |

730
and Impermissible combinations)
Offer in 2018 - 2019	Y	1st sem	Offer in 2019 - 2020	Y	Examination	Dec
Grade Descriptors (A+ to F)
A | Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B | Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C | Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D | Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail | Demonstrate little or no command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.
Course Type | Lecture-based course
Course Teaching & Learning Activities
Activities | Details | No. of Hours
--- | --- | ---
Lectures | 36
Tutorials | 12
Reading / Self study | 80
Assessment Methods and Weighting
Methods | Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping
--- | --- | --- | ---
Assignments | 20 | CLO 1,2,3
Examination | 50 | CLO 1,2,3
Test | 30 | CLO 1,2,3
Required/recommended reading and online materials
Lecture notes provided by Course Coordinator
PHYS4966
Offering Department | Physics
Course Co-ordinator | Dr J C S Pun, Physics (jcspun@hku.hk)
Teachers Involved | (NIL,Physics)
Course Objectives
This capstone course is offered to students majoring in physics, math/physics or astronomy. It should be taken normally in the summer immediately before their final year of study. It provides students with the opportunity to gain working experience in the field of physics or astronomy through intern placement. Students are expected to use what they have learnt in their majors in this intern.
Course Contents & Topics
Students will work as an intern for at least 160 hours within the University or outside the University in a company, government department or NGO. The work nature must be related to physics or astronomy. The internship should be arranged by the Department or obtained by students themselves. In the latter case, it must be approved before the commencement of the internship.
Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 apply physics or astronomy knowledge students have learnt in their majors to real working environment
CLO 2 help to create, propose or design part of the project he/she is working on during the internship
CLO 3 employ effective technical and inter-personal communication skills
Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in at least 24 credits of advanced level (3XXX level or above) discipline/core elective courses of the Physics Major, Mathematics/Physics Major or Astronomy Major curriculum.
This capstone course is for Astronomy, Mathematics/Physics, and Physics Majors students only.
The earliest that a student is allowed to take this capstone course is their year 3 study.
Offer in 2018 - 2019 | Y | Summer Offer in 2019 - 2020 | Y | Examination | No Exam
Grade Descriptors (Pass /Pass with distinction /Fail)
Pass | Able to apply knowledge to solve problems in the workplace. Successfully handles and carries out the work required in the job or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, written and oral report, and evaluation by supervisor(s), etc. Students demonstrating excellent performance in the above would be awarded a grade of “Distinction”.
Fail | Very limited or no ability to solve problems in the workplace. Fails to handle or carry out the work required in the job or assigned by supervisor(s). Fails to establish effective collaboration or communication with supervisor(s), other colleagues, or clients in the job. Fails to satisfy the requirements set out in the Course Description regarding working hours, written and oral report, or evaluation by supervisor(s), etc.
Course Type | Internship
Course Teaching & Learning Activities
Activities | Details | No. of Hours
--- | --- | ---
Internship work | it is expected that students are to work at least 160 hours (or the equivalent of 4 weeks full-time) | 160
Assessment Methods and Weighting
Methods | Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping
--- | --- | --- | ---
Written report | written report, employer’s feedback and oral presentation | 100 | CLO 1,2,3
Required/recommended reading and online materials
To be provided by individual project supervisor
Additional Course Information
Satisfactory completion of this course can be counted towards the Capstone requirement. Details of internship will be recorded on the student's transcript. This course will be assessed on “Pass/Fail” basis. Students who are interested to enrol in this course should contact the Department to obtain the approval. Enrolment of this course is not conducted via the online course selection system and should be made through the relevant Department/School office after approval has been obtained from the course coordinator.
PHYS4999
Physics project (12 credits)
Academic Year | 2018
Course Co-ordinator: Prof K S Cheng, Physics (hrspksc@hku.hk)

Teachers Involved: (Various teachers in the department, Physics)

Course Objectives

This capstone course is offered to students majoring in physics, math/physics or astronomy. It is designed for those who are interested in tackling a research project in physics and/or astronomy. It should be taken normally in their final year of study. It provides students with the opportunity to study a specific problem by themselves, either theoretical, experimental or numerical, under the supervision of an academic staff using the knowledge the student gained in all years of his/her major study. The available projects are close to postgraduate level research in physics and/or astronomy.

Course Contents & Topics

Students interested in taking this course should contact their prospective supervisors in May to determine the contents and the nature of their projects in the coming academic year. They must get the approval from both the prospective supervisor and the course coordinator to take this course.

For theoretical and numerical projects: Students will receive training in research literature reading and reviewing, and make investigation which is close to research work in nature, under the supervision of a staff member. The student may need to perform some original calculations, to fill in mathematical gaps of some sophisticated derivations, or a combination of both. For numerical projects, students also need to use computers to find numerical or simulation results.

For experimental projects: Students will carry out experiments in research labs under the supervision of a staff member. The student will receive a comprehensive training in advanced experimental techniques, including preparation of samples, determination of physical properties, measurement of small signals obscured by noise, laser, high-vacuum and low-temperature techniques and so on. Wide reading of the relevant scientific literature and originality in experimental design are expected.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 plan and execute a theoretical, numerical or experimental research project on a topic in physics or astronomy
- CLO 2 review the knowledge of a physics or astronomy problem in depth through literature review of books and research journals based on what they have learnt in their majors
- CLO 3 criticize existing approaches for solving the selected physics or astronomy problem
- CLO 4 describe and explain connections between the physical principles and the study problem
- CLO 5 identify the key issues of the problem and solve them independently either by analytical or numerical means, and compare the results with predictions or existing solutions (for theoretical or computational projects)
- CLO 6 propose and execute physics experiments or astronomical observations, analyze results and sources of errors of the experiment or observation in comparison with predictions (for experimental projects)

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in at least 24 credits of advanced level (3XXX level or above) disciplinary core/elective courses of the Physics Major, Mathematics/Physics Major or Astronomy Major curriculum.

This capstone course is for Astronomy, Mathematics/Physics, and Physics Majors students only. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019

Offer in 2019 - 2020: Y

Y Year long Examination No Exam

Grade Descriptors (A+ to F)

A Demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical analysis/evaluation of information drawn from a full range of high quality sources and to quote/reference aptly. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills. Work of A+ should show considerable additional work beyond that is required in wider areas relevant to the topic.

B Demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/reference aptly. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.

Failed Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Course Type

Project-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting with supervisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation</td>
<td>including supervisor's comments (10%)</td>
<td>30</td>
<td>CLO 2,4,5,6</td>
</tr>
<tr>
<td>Research report</td>
<td></td>
<td>70</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

To be provided by individual project supervisor

PHYS7350

Graduate classical mechanics (6 credits)

Offering Department: Physics

Course Co-ordinator: TBC, Physics (TBC,Physics)

Course Objectives: TBC

Course Contents & Topics: TBC

Course Learning: On successful completion of this course, students should be able to:
This course introduces postgraduates and senior undergraduates to theory and advanced techniques in quantum mechanics, and their applications to select topics in condensed matter physics.

On successful completion of this course, students should be able to:

- CLO 1: formulate and solve problems in quantum mechanics using Dirac notation
- CLO 2: examine and predict the properties of identical quantum particles
- CLO 3: argue the importance of symmetry and conservation laws in quantum mechanics
- CLO 4: explain physical phenomena in the modern language of quantum mechanics
- CLO 5: analyse physical system in a quantum mechanical way
- CLO 6: recognise the connection between relativity and quantum mechanics

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in PHYS4351

Assessment Methods

Methods	Details	Weighting in final course grade (%)	Assessment Methods to CLO Mapping
Assignments | 36 | --- | ---
Examination | 80 | --- | ---

Required/recommended reading and online materials

Lecture notes provided by Course Coordinator
J. J. Sakurai: Modern Quantum Mechanics (Addison-Wesley, 1994)
Offering Department: Physics
Quota: ---

Course Co-ordinator: Prof Z D Wang, Physics (zwang@hku.hk)
Teachers Involved: Prof Z D Wang, Physics

Course Objectives: The aim of this course is to provide students with the advanced level of comprehending on the theory of classic electromagnetic field, enabling them to master key analytical tools for solving real physics problems.

Course Contents & Topics: This course will introduce and discuss the following topics: Boundary-value problems in electrostatics and Green Function method, Electrostatics of Media, Magnetostatics, Maxwell's equations and conservation laws, Gauge transformations, Electromagnetic waves and wave guides.

Course Learning Outcomes: On successful completion of this course, students should be able to:
- CLO 1 analyse and solve various electrostatic and magnetostatic problems with Green's Function
- CLO 2 comprehend and explain many electromagnetic phenomena
- CLO 3 recognise and comprehend the important concepts of conservation laws and gauge transformations, which should be very helpful for doing research in future

Pre-requisites (and Co-requisites and Impermissible combinations): Pass in PHYS4450

Offer in 2018 - 2019: Y
Offer in 2019 - 2020: Y
Examination: Dec

Grade Descriptors (A+ to F):
- A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
- Fail: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type: Lecture-based course

Course Teaching & Learning Activities:
- **Activities**: Details
 - Lectures: 36
 - Tutorials: 12
 - Reading / Self study: 80

Assessment Methods and Weighting:
- Methods: Details
 - Weighting in final course grade (%):
 - Examination: 70
 - CLO 1.2,3

Required/recommended reading and online materials:
- J.D. Jackson: Classical Electrodynamics (John Wiley & Sons, 1999)

PHYS7550: Graduate statistical mechanics (6 credits)
Offering Department: Physics
Quota: ---

Course Co-ordinator: Prof J Wang, Physics (jianwang@hku.hk)
Teachers Involved: Prof J Wang, Physics

Course Objectives: This course intends to introduce some advanced topics in the field of equilibrium statistical physics.

Course Contents & Topics: Ensemble theory: the micro-canonical ensemble, the canonical ensemble, and the grand canonical ensemble. Quantum mechanical ensemble theory. Theory of simple gases, ideal Bose systems, ideal Fermi systems. Statistical mechanics of interacting systems. Some topics in the theory of phase transition may be selected.

Course Learning Outcomes: On successful completion of this course, students should be able to:
- CLO 1 discuss the various classical ensembles and quantum ensembles
- CLO 2 solve the statistical mechanics problems using ensemble theory
- CLO 3 explain the connection between classical statistical mechanics and quantum statistical mechanics
- CLO 4 explain the concept of density matrix

Pre-requisites (and Co-requisites and Impermissible combinations): Pass in PHYS4450

Offer in 2018 - 2019: N
Offer in 2019 - 2020: Y
Examination: ---

Grade Descriptors (A+ to F):
- A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
- Fail: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type: Lecture-based course

Course Teaching & Learning Activities:
- **Activities**: Details
 - Lectures: 36
PHYS7551: Graduate solid state physics (6 credits)

Offering Department: Physics
Course Co-ordinator: Prof J Wang, Physics (jianwang@hku.hk)

Course Objectives:
To provide students with an understanding of more advanced topics in selected areas of solid state physics.

Course Contents & Topics:
- Bloch theory. Nearly free electrons and tight binding model. Band structure calculations for realistic systems. The semi-classical model of electron dynamics. Ab initio total energy calculations and other advanced topics.

Course Learning Outcomes:
On successful completion of this course, students should be able to:

- CLO 1: Discuss various methods to calculate the band structures and the major approximations that have been used.
- CLO 2: Discuss various minimization methods.
- CLO 3: Discuss the concepts of density functional theory.
- CLO 4: Explain the concept of first principle calculation and various approximations used.

Pre-requisites:
Pass in PHYS3551 and PHYS4351

Assessment Methods and Weighting:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>15</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td>3-hour written exam</td>
<td>70</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>15</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials:

Lecture notes provided by the Course Coordinator
R.K. Pathria: Statistical mechanics
M. Plischke and B. Bergersen: Equilibrium statistical physics

Grade Descriptors (A+ to F):

- **A**: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- **B**: Demonstrate substantial command of the knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- **C**: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. Apply moderately effective observation skills and techniques.
- **D**: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems using limited or barely effective organizational and presentational skills.
- **Fail**: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type: Lecture-based course

Course Teaching & Learning Activities:

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>15</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td>3-hour written exam</td>
<td>70</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>15</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials:

Lecture notes provided by the Course Coordinator

PHYS7650: Stellar atmospheres (6 credits)

Offering Department: Physics
Course Co-ordinator: TBC, Physics (jiaji@hku.hk)

Course Objectives:
On successful completion of this course, students should be able to:

- Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- Demonstrate substantial command of the knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to familiar and some unfamiliar situations. Apply highly effective organizational and presentational skills.

Grade Descriptors (A+ to F):

- **A**: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- **B**: Demonstrate substantial command of the knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to familiar and some unfamiliar situations. Apply highly effective organizational and presentational skills.
Nanophysics (6 credits)

Offering Department

Physics

Course Co-ordinator

Prof S J Xu, Physics (sjsxu@hku.hk)

Teachers Involved

(Prof S J Xu, Physics)

Course Objectives

This course is designed to let fresh postgraduate students know fundamental concepts and principles of nano physics, such as two-dimensional electron gas, quantum Hall effects, one-dimensional electron system, quantum wires and nanotubes, zero-dimensional electron systems, single electron effects and quantum dots.

Course Contents & Topics

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1: recall basic concepts and knowledge of dimensionality, density of states, quantum size effect
- CLO 2: identify and compare optical and transport properties of two-dimensional electron gas with external fields, especially quantum Hall effects
- CLO 3: recognize the fundamental principles and important applications of scanning tunneling microscopy in the study of nano physics
- CLO 4: describe the basic physics of one-dimensional electron systems including carbon nanotubes and semiconductor nanowires
- CLO 5: understand the central physics of zero-dimensional quantum dots and nanocrystals, single electron effects

Pre-requisites

Pass in PHYS3551 and PHYS4351

Offer in 2018 - 2019

N Offer in 2019 - 2020: N

Grade Descriptors (A+ to F)

- A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems using limited or barely effective organizational and presentational skills.
- Fail: Demonstrate no or very limited knowledge of knowledge and skills. Lack of analytical and critical abilities and logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Environmental radiation (6 credits)

Offering Department

Physics

Course Co-ordinator

Dr J K C Leung, Physics (jcleung@hku.hk)

Teachers Involved

(Dr J K C Leung, Physics)

<table>
<thead>
<tr>
<th>Course</th>
<th>Type</th>
<th>Teaching & Learning Activities</th>
<th>Assessment Methods and Weighting</th>
<th>Required/recommended reading and online materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENV5306</td>
<td>Lecture-based course</td>
<td>Activities Details No. of Hours</td>
<td>Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping</td>
<td>Lecture notes prepared by Course Coordinator</td>
</tr>
<tr>
<td>Lecture notes prepared by Course Coordinator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLO</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLO 1</td>
<td></td>
</tr>
<tr>
<td>CLO 2</td>
<td></td>
</tr>
<tr>
<td>CLO 3</td>
<td></td>
</tr>
<tr>
<td>CLO 4</td>
<td></td>
</tr>
<tr>
<td>CLO 5</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods

- Assignments: 10
- Essay: 20
- Examination: 70

Assessment Methods

- CLO 1,2,3,4,5
In this course, students will learn about various kinds of radiations in the environment, the experimental techniques to detect them, the methods to trace them and to assess their hazard to the environment, and the ways to reduce the hazard in events of nuclear accidents or incidents.

Course Contents & Topics
The course will cover naturally occurring radiation sources and man-made radiation sources including nuclear power plants; transport models for radionuclides in the environment; nuclear accidents and its impact to the environment; radiation risk assessment and emergency preparedness; techniques for measuring low level radioactivities; nuclear techniques in ecology; concept of radiation protection to human species and non-human species.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- **CLO 1**: realise sources and transport of radionuclides in the environment
- **CLO 2**: explain and assess the impact to the environment from the use of nuclear energies
- **CLO 3**: detect and measure low level radioactivities in environmental samples
- **CLO 4**: justify, optimize, and assess the risk of using radiation and nuclear technologies
- **CLO 5**: compare and contrast the environmental impacts from nuclear energy and other forms of energy

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in CHEM2041 or ENVS2001 or ENVS2002 or PHYS2265

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>---</td>
</tr>
<tr>
<td>B</td>
<td>---</td>
</tr>
<tr>
<td>C</td>
<td>---</td>
</tr>
<tr>
<td>D</td>
<td>---</td>
</tr>
<tr>
<td>Fail</td>
<td>---</td>
</tr>
</tbody>
</table>

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Field work</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td></td>
<td>20</td>
<td>CLO 1.2, 4.5</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>2-hour written exam</td>
<td>CLO 1.2, 4.5</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td></td>
<td>10</td>
<td>CLO 2.3</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td>10</td>
<td>CLO 2.4, 5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk
<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture-based course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td>Assignments</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
</tr>
<tr>
<td></td>
<td>Presentation</td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td>Lecture notes provided by Course Coordinator</td>
</tr>
<tr>
<td>Course Website</td>
<td>http://moodle.hku.hk</td>
</tr>
</tbody>
</table>
Course Objectives
The objectives are to give students a holistic view of the science discipline in terms of its nature, concepts and impact on civilization and society; to equip students with basic skills of logical and quantitative reasoning; and to introduce to students mathematical and statistical methods for science studies and research.

Course Contents & Topics

Part I: The nature and methodology of science
- Demarcation between science and non-science
- Shared features of the sciences
- Scientific method
- The role of mathematics in the historical development of science

Part II: Quantitative reasoning
- a. Mathematics with topics selected from
 - Foundation of mathematics,
 - Mathematics and advancement of science - an introduction,
 - Mathematical modelling - an introduction,
 - Guessimation,
 - Difference equations,
 - Linear algebra and matrices,
 - Calculus and differential equations, and/or
 - Fractals and Chaos.
- b. Statistics
 - Probability rules
 - Probabilistic methods
 - Statistical inference
 - Confidence intervals estimation
 - Hypothesis testing
 - Decision making with statistics
 - Statistical modelling, and use and misuse of statistics

Part III: The nature and methodology of science
- The role of mathematics in the historical development of science
- Scientific method
- Shared features of the sciences
- Demarcation between science and non-science

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 describe key aspects of scientific methodology
- CLO 2 describe the key elements of the foundation of mathematics and statistics
- CLO 3 identify the mathematics that underlies scientific problems
- CLO 4 apply logical and quantitative reasoning to re-formulate both real life and scientific problems in mathematical terms, and to interpret their solutions

Pre-requisites (and Co-requisites and Impermissible combinations)
NIL

(This course is compulsory for all students taking a Science major offered by the Faculty of Science. Students should take this course in their first year.)

Offer in 2018 - 2019
Y 1st sem 2nd sem Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, and ability to apply knowledge to a wide range of familiar and unfamiliar situations. Carry out computations carefully and correctly. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Carry out computations mostly in a careful and correct way, but commit some minor computational errors. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Commit a number of minor computational errors. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Commit serious computational errors. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Commit serious computational errors. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>coursework includes projects, class tests, and participation in tutorials</td>
<td>60</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td>2-hour examination</td>
<td>40</td>
<td>CLO 1,2,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
TBC
Course Objectives
This course aims to provide students an overview of the giant web of knowledge that makes up science. This course adopts an integrated approach and encompasses physics, astronomy, earth sciences, chemistry, and biology, and focuses on the general principles and unifying concepts of science used in various disciplines to describe the diverse phenomena and objects in the natural world. The fundamental laws of each discipline, the historical developments and the modern frontiers, and the interconnectedness of different science disciplines will be introduced and highlighted.

Course Contents & Topics

<table>
<thead>
<tr>
<th>(1) Universal principles and unifying concepts of science</th>
<th>(2) Fundamental structure of matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Structure of matter</td>
<td>- The quantum world</td>
</tr>
<tr>
<td>- The elementary particles and standard model</td>
<td>- Chemical bonds and chemical reactions</td>
</tr>
<tr>
<td>(3) Atoms and molecules</td>
<td>- Important molecules: water, carbon, molecular cluster</td>
</tr>
<tr>
<td>- Molecules and atoms: The periodic table</td>
<td>- Nanoscience and nanotechnology</td>
</tr>
<tr>
<td>(4) DNA/Genetic</td>
<td>- Genomics and DNA: Genetics and inheritance</td>
</tr>
<tr>
<td>- Molecules of life</td>
<td>(5) Cells and systems</td>
</tr>
<tr>
<td>- Genomics and DNA: Genetics and inheritance</td>
<td>(6) Organism and environment</td>
</tr>
<tr>
<td>- The origin and evolution of life</td>
<td>- Ecology and environment</td>
</tr>
<tr>
<td>- Earth's motion in space</td>
<td>(7) Earth and Beyond</td>
</tr>
<tr>
<td>- Solid Earth, Earth's atmosphere and hydrosphere</td>
<td>- Solid Earth, Earth's atmosphere and hydrosphere</td>
</tr>
<tr>
<td>- Earth's motion in space</td>
<td>- Planets, the Sun, and the solar system</td>
</tr>
<tr>
<td>- Planets, the Sun, and the solar system</td>
<td>- Cosmology</td>
</tr>
</tbody>
</table>

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 acquire an understanding of the historical development of modern science, the essence and spirit of scientific inquiry methods, and the role of science in the advancement of civilization over time

CLO 2 understand and be familiar with the fundamental scientific principles and concepts

CLO 3 appreciate the diversity of different scientific disciplines and develop multidisciplinary and interdisciplinary perspectives on scientific issues

CLO 4 critically and creatively appraise received ideas and established knowledge

CLO 5 develop curiosity in science and an appreciation of sciences as related to different Science Majors and as a form of life-long learning

Pre-requisites (and Co-requisites and Impermissible combinations)
NIL
(This course is compulsory for all students taking a Science major offered by the Faculty of Science. Students should take this course in their first year.)

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>NIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>Dec May</td>
</tr>
</tbody>
</table>

Course Type
Lecture with laboratory component course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>1 hour in-class quiz</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>tutorials and homework</td>
<td>20</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Examination</td>
<td>50</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>project presentation</td>
<td>20</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Test</td>
<td>10</td>
<td>CLO 1,2,3,4,5</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

SCNC1113

The big history of our planet: a scientific perspective on everything that has ever happened (6 credits)

Offering Department: Science Faculty

Quota: 50

Course Co-ordinator: Dr W M Y Cheung, Faculty (willmyc@hku.hk)

Course Objectives

By exploring the Big History of our planet: from the Big Bang of the Universe, the synthesis of different chemical substances, through the evolution of various species on Earth, to the establishment of modern human society, the course aims to:

1. discuss the process of scientific discovery, and how our current body of knowledge about Nature was established;
2. develop students understanding of the multi-disciplinary nature of science;
3. develop students understanding of the importance of science and technology to our society, in formulating policies in the society, and solving the future problems of our planet;
4. increase scientific literacy.

Course Contents & Topics

Part I: From the Cosmos to the Atom
Main theme: How fundamental interactions between the building blocks of matter shape the Universe today as we know it;
Topics include: Big bang, nucleosynthesis, cosmic expansion, cooling of the universe, star formation, and thermal equilibrium of our planet Earth.

Part II: From the Atom to Life
Main theme: How we understand the transition from non-living matter to the diversified biosphere on earth today;
Topics include: Origin of life, evolution, natural selection and tree of life.

Part III: From Life to Mind to Society
Main theme: How our modern civilised society emerges through the development of intelligence and accumulation of knowledge; how science, technology, human society and environment influence one another;
Topics include: Neural network and the emergence of intelligence, historical development of modern science, the role of science in human civilisation and the contemporary world.

Part IV: Looking into the Future
Main theme: Outlook on the future of science, technology, human society and environment; key challenges to be faced by humankind that could be addressed by science and technology;
Topics include: Students will attend one of several parallel modules on topics that suit their interests, such as nanotechnology, climate change, energy crisis, bioethics and artificial intelligence.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 appreciate and elaborate on the significance of major events in the development and formation of our Universe, our Earth system and our modern society

CLO 2 explain, with some level of depth and details, how a number of major theories allows us to understand the workings of the world

CLO 3 understand how different science disciplines fit and emerge from one another as a collective effort of the humankind to understand Nature

CLO 4 critically assess the mutual influence between science and human society, the role of science in our society as well as the making of science policy in our local region

CLO 5 evaluate some of the major challenges faced by humankind, and discuss solutions from a multi-disciplinary perspective

CLO 6 test claims and engage in historical analysis based on theories and practices from multiple disciplines

Pre-requisites (and Co-requisites and Permissible combinations)

Level 3 or above in at least one science subject at the pre-university level (HKDSE Physics, Chemistry, Biology, Combined/Integrated Science or equivalent)

This course is not offered to students in the 6901 BSc or 6119 BEddBSc programmes.

Offer in 2018 - 2019

N Offer in 2019 - 2020 : Y Examination ---

Grade Descriptors (A+ to F)

A Demonstrate thorough mastery of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, and ability to apply knowledge to a wide range of familiar and unfamiliar situations. Carry out computations carefully and correctly. Apply highly effective organizational and presentational skills.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Carry out computations mostly in a careful and correct way, but commit some minor computational errors. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Commit a number of minor computational errors. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Commit some substantial computational errors. Apply limited or barely effective organizational and presentational skills.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Commit serious computational errors. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities

Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 100

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments About 3 reading assignments will be given. Students will then be assessed in various forms such as drawing mind maps, short quizzes 40 CLO 1,2,3,4,5,6
Required/recommended reading and online materials

Steven Weinberg: The First Three Minutes: A Modern View of the Origin of the Universe (Basic Books)
Charles Darwin: The Origin of Species
Eric R. Kandel: In Search of Memory: The Emergence of a New Science of Mind (W. W. Norton & Company)
Fred Spier: Big history and the future of humanity (Wiley-Blackwell)
David Christian, Cynthia Brown and Craig Benjamin: Big History: Between Nothing and Everything (McGraw-Hill Humanities/Social Sciences/Languages)
The Big History Project website: https://www.bighistoryproject.com/

SCNC2121 Sustainable food production (6 credits)
Offering Department Faculty
Course Co-ordinator Dr H S El-Nezami, Biological Sciences (elnezami@hku.hk)
Teachers Involved (Dr DeLisa Lewis,UBC Faculty of Land and Food Systems)
(Dr H S El-Nezami,Biological Sciences)
Course Objectives This course is designed to provide students with the opportunity to experience the inner-workings of a sustainable, campus farming operation, and to make connections between the ecosystems that nourish the thriving, urban communities surrounding the farm. Students will participate in plenary sessions with course instructors and guest lecturers from the UBC Faculty of Land and Food Systems, in guided group discussions, field trips on and off-campus, and in a variety of seasonal, hands-on farming activities.

Course Contents & Topics The MacMillan building, home of the UBC Faculty of Land and Food Systems, will be the site of the plenary sessions, guest speaker lectures, and morning group discussion sessions. The south campus farm in UBC is the site of the majority of farming activities, including afternoon group discussions, harvest Fridays and market Saturdays. Students will have a chance to explore the UBC campus sustainability hot-spots, including the LFS orchard garden, the world-class CIRS green building, Place Vanier, home of an innovative campus chef, Steve Goileb, and the wiggle worm project in the Student Union Building/ SUB. Students will also venture off-campus to the Vancouver Farmers' Market and to Granville Island Public Market to provide a comparative view of marketing systems and the regionally grounded food system context.

The main approach to learning with this course is student-centered learning and hands-on experience. To meet course learning objectives, students are expected to attend and participate in all sessions, to contribute to group discussions and the group oral presentation, and to complete a series of reflective journals on each of the four main course themes-soils, biodiversity, seeds, marketing.

Course Learning Outcomes On successful completion of this course, students should be able to:
CLO 1 connect underlying agroecosystem concepts and soil science fundamentals with principles and practices of sustainable farming.
CLO 2 observe and compare multiple models of agricultural food production in an urban and campus farm setting.
CLO 3 identify multiple strategies for creating on-farm biodiversity.
CLO 4 demonstrate a basic understanding of composting fundamentals.
CLO 5 demonstrate the ability to perform a select set of basic crop maintenance, harvest, washing, and packing techniques in a sustainable campus farm setting.
CLO 6 demonstrate best practices with post-harvest handling and food safety protocols.

Pre-requisites (and Co-requisites and Impermissible combinations) Students are expected to have passed at least 30 credits of level 1 and/or level 2 science courses. Students will also need to pass an interview in order to be enrolled in the course.

Grade Descriptors (A+ to F) Students will divide into groups of 3-4. Each group will submit a 7-10 pages report (not including the references). Please refer to Remarks for format requirements.

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments To be announced by UBC Faculty of Land and Food Systems 40 CLO 1,2,4,5
Report Students will be announced by UBC Faculty of Land and Food Systems 60 CLO 3,5,6

Science Faculty
SCNC2122

Marine life science: a North East Pacific perspective (6 credits)

Offering Department
Faculty

Course Co-ordinator
Dr T Vengatesen, Biological Sciences (rajan@hku.hk)

Teachers Involved
(Prof S Kwok, Earth Sciences)
(Prof R S S Wu, Biological Sciences)
(Prof G A Williams, Biological Sciences)
(Prof R S S Wu, Biological Sciences)

Course Objectives
Marine Life Science is an integrated study of how the oceans influence large and small scale patterns of marine biology through biophysical interactions. By studying the temperate cold waters of the NE Pacific Ocean, students will learn marine habitats as habitable planet, to appreciate the dynamics of marine biodiversity, the complex interactions between the physical and biological components, and the services the coastal oceans provide to human. This course will provide an excellent opportunity for students to experience the diversity of marine life on the other side of the Pacific.

Course Contents & Topics
Lectures from both HKU and UBC teachers will introduce ‘marine life science’, with a focus on biodiversity, abundance and distribution of species, productivity, coastal pollution, fisheries, aquaculture and climate change. The course will also introduce the commercial aspects of marine life, i.e. eel-grass, aquaculture and climate change mitigation through management of coastal ecosystems. All these lectures will be discussed through a series of field observations, presentations from guest lecturers and group discussions. There will be an excellent opportunity to touch and learn about Canada’s wonderful marine life diversity in the Vancouver Aquarium, and northern Vancouver Island. Students will also be exposed to the intertidal zone, exposed and protected coastal habitats, sandy beaches and estuaries in the Vancouver Island. Marine biodiversity survey techniques and methods of studying marine life in the field will be emphasized. Students will be exposed to a different learning environment involving not only HKU teachers and students but also UBC teachers and students, bringing diverse range of expertise, cultures, and learning opportunities from both sides of the Pacific Ocean to focus on the diversity, dynamic interactions and threats to marine life.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 understand the basics of marine life science and the marine habitable planet
CLO 2 explain the major types, causes, and effects of marine threats such as pollution, overfishing, global warming and ocean acidification, and invasive species, as well as describe the consequences of these threats for marine communities and ecosystem services
CLO 3 describe the difference between coastal marine biodiversity and harbors in Hong Kong and Canada
CLO 4 discover the reasons why marine biodiversity and ecosystem services in Hong Kong are so different from the North Pacific coastal ecosystems

Pre-requisites (and Co-requisites and Impermissible combinations)
Students are expected to have passed at least 30 credits of level 1 and/or level 2 science courses. Students will also need to pass an interview in order to be enrolled in the course.

Offer in 2018 - 2019

N Offer in 2019 - 2020 : Y

Grade Descriptors (A to F)

A Demonstrate through knowledge in basics of marine science and clearly understand why and how coastal biodiversity in subtropical Hong Kong is different from the North Pacific coastal areas. Ability to explain how marine organisms have adapted to their particular environments. Showing strong abilities, and logical thinking, with evidence of original thought, to examine reasons why the diversity of marine life and their habitats are so important to human society. Independent critique on how human induced threats such as climate change, pollution and habitat change will affect marine life, its diversity and their ecosystem services.

B Clear understanding of the basics of marine science. Ability to explain how marine organisms have adapted to their particular environments. Knowing the common views on the reasons why the diversity of marine life and their habitats are so important to human society. Knowing the common views on how human induced threats such as climate change, pollution and habitat change will affect marine life, its diversity and their ecosystem services.

C Demonstrate partial and limited command of knowledge and understanding of the basics of marine science, biodiversity and coastal ecosystem services. Develop little ability to explain how marine organisms have adapted to their particular environments. Knowing the common views on the reasons why the diversity of marine life and their habitats are so important to human society. Knowing the common views on how human induced threats such as climate change, pollution and habitat change will affect marine life, its diversity and their ecosystem services.

D Knowing some of the basics of marine science. Developing ability to explain how marine organisms have adapted to their particular environments. Knowing the common views on how human induced threats such as climate change, pollution and habitat change will affect marine life, its diversity and their ecosystem services.

Fail Failure to follow the basics of marine science and/or how marine organisms have adapted to their particular environments.

Course Type
Field camps

Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures 10 sessions x 2.5 hours 25
Field work Field observation and work: about 5 to 6 field study 36
Presentation Group discussion / Project: 1 group project with presentation 10
Reading / Self study 70

Assessment Methods
Methods Details Weighing in final Assessment

Science Faculty
SCNC3111: Frontiers of Science Honours Seminar Course (6 Credits)

Academic Year: 2018
Offering Department: Faculty
Quota: 120
Course Co-ordinator: Dr R K W Lui, Faculty of Science (lui2012@hku.hk)

Course Website: http://www.scifac.hku.hk/news/bsc/ubc-summer-course

Offer in 2018 - 2019: Y

Grade Descriptors (A+ to F):

<table>
<thead>
<tr>
<th>Grade</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>A series of writing and reflection assignments will be given</td>
<td>40</td>
<td>CLO 1,2,4</td>
</tr>
<tr>
<td>Presentation</td>
<td>Students will give a 30-minute group presentation during the last week of the instruction</td>
<td>40</td>
<td>CLO 3,4,5,6</td>
</tr>
</tbody>
</table>

- **In-class formative assessment:**
- **Reference reading materials will be put on Moodle.**
- **This course will be offered subject to a minimum enrollment number and availability of teachers.**
- **Enrolment of this course is not conducted via the online course selection system. Students will be enrolled manually by the Faculty after approval has been obtained from the course coordinator.**

Course Objectives

- To introduce the research being done by our Faculty's professors
- To broaden and enrich students' scientific knowledge in and outside of their chosen major
- To foster intellectual discussions between our research professors and students
- To observe how research is done and note the thinking processes and paths that lead to scientific discoveries
- To enhance students' awareness of the importance of science to solve some of the problems facing the society
- To collaborate with and learn from peers from different academic backgrounds in a scientific setting
- To develop essential written and spoken communication skills
- To serve as a potential mentor-mentee matching platform for faculty members and students
- To develop an awareness of research ethics

Course Contents & Topics

Professors from different departments will be featured in the honours seminar course, and they will discuss their latest research with students. The topics will span the areas of Biological Sciences, Chemistry, Earth Sciences, Physics, as well as Mathematics/Statistics & Actuarial science. In addition, the following topics to prepare students for conducting and communicating research will also be introduced: Introduction to Different Search Engines for Scientific Journals and/or Decoding a Scientific Paper and/or Effective Communication for Scientists (Writing, Oral and Poster Presentations).

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 describe and discuss in an informed manner the fields of research of some of our research professors
- CLO 2 identify how professors with different scientific training solve their research problems
- CLO 3 apply literature search skills to identify and develop a research topic
- CLO 4 practice and master scientific writing and presentation skills
- CLO 5 demonstrate interpersonal skills in collaborating with their peers in a scientific setting
- CLO 6 devise a research proposal and evaluate their peers' works

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in SCNC1111, SCNC1112 and a level 2 science course. Students who participated or will participate in ORF/SRF must take this course.

Additional Course Information

- Please note: Students have to cover their own travel costs and course fees charged by the hosting institution (prices to be announced).
- This course will be offered subject to a minimum enrollment number and availability of teachers.
- Enrolment of this course is not conducted via the online course selection system. Students will be enrolled manually by the Faculty after approval has been obtained from the course coordinator.

Offer in 2019 - 2020: Y

In-class formative assessment:

- CLO 2: Group project work (30-mins presentation)
- CLO 1,4: 2-hour written examination
- CLO 3,4: Field observation (group activities & reports)
<table>
<thead>
<tr>
<th>Required/recommended reading and online materials</th>
<th>Project reports activities for students to work in groups</th>
<th>20</th>
<th>CLO 1,2,4,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBC (suggested by the professors)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STAT1600
Statistics: ideas and concepts (6 credits) Academic Year 2018

Offering Department
Statistics & Actuarial Science

Course Co-ordinator
Prof W K Li, Statistics & Actuarial Science (hrmlwk@hku.hk)
(Dr C W Kwan, Statistics & Actuarial Science)
(Prof W K Li, Statistics & Actuarial Science)

Teachers Involved

Course Objectives
The course aims at providing a broad overview of statistics for students who aspire to major in Statistics or Risk Management. It focuses on the roles of statistics as a scientific tool with applications to a wide spectrum of disciplines, and as a science of reasoning which has revolutionized modern intellectual endeavours. It lays a panoramic foundation for a formal study of statistics at the university level.

Course Contents & Topics
- Data collection: observational studies versus designed experiments
- Data presentation: tables; graphs; frequency distributions; correlations; trends
- Probability: randomness; probability models; distributions; measures of central tendency and dispersion
- Inference: estimation; tests of significance and hypotheses; confidence intervals; regression; prediction
- Further issues: controversies; misuse of statistics; ethics.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 understand the role of statistics as a tool for scientific reasoning
CLO 2 present data in a useful and informative way
CLO 3 acquire basic concepts and perspectives of statistical modelling and inference
CLO 4 distinguish between good and bad statistical practices
CLO 5 pursue a major study in Statistics or Risk Management with a well-established conceptual foundation

Pre-requisites
Not for students who have passed in any of the following courses: STAT1602, STAT1603, STAT3902.

Offer in 2018 - 2019
Y 1st sem 2nd sem Offer in 2019 - 2020: Y Examination Dec May

Grade Descriptors (A to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. SHow very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Outcomes
On successful completion of this course, students should be able to:

CLO 1 select and use appropriate statistical methods to analyze data
CLO 2 perform statistical analysis with calculator and Microsoft Excel
CLO 3 understand and apply basic concepts of probability
CLO 4 gain familiarity with the fundamental concepts of random variables
CLO 5 make inferences on a population based on sample data
CLO 6 determine the most appropriate statistical method to use for a given statistical problem

Course Type
Lecture-based course

Course Teaching & Learning Activities
Activities
Details
No. of Hours
Lectures
36
Tutorials
12
Reading / Self study
100

Assessment Methods and Weighting
Methods
Details
Weighting in final course grade (%)
Assessment Methods to CLO Mapping
Assignments
Coursework (assignments, class test(s) and project(s))
60
CLO 1,2,3,4,5
Examination
One 2-hour written examination
40
CLO 1,2,3,4,5

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk

STAT1601
Elementary statistical methods (6 credits) Academic Year 2018

Offering Department
Statistics & Actuarial Science

Course Co-ordinator
Prof W K Li, Statistics & Actuarial Science (hrmlwk@hku.hk)

Teachers Involved
TBC, Statistics & Actuarial Science

Course Objectives
Research findings are usually supported by data. Data collected in an experiment/survey are often concerned with situations involving variability and uncertainty. They are used to estimate the true value of a certain quantity or to test the acceptability of a certain new hypothesis. Valid methods of analysing the data are thus essential to any successful investigation. The course aims to present the fundamentals of statistical methods widely used by researchers. Microsoft Excel might be used to carry out some statistical analysis. There is no demand of sophisticated technical mathematics.

Course Contents & Topics
The course will introduce and study the following topics:
- Presentation of data, Measures of Central Tendency, Measures of Variability and Uncertainty, Basic Probability Laws, Common Probability Distributions such as Uniform, Binomial, Poisson, Hyper-geometric, Geometric and Normal distributions, Random Sampling, Distribution of the Mean, Normal Sampling Theorem, Point Estimation, Confidence Intervals, Sample Size Determination, Hypothesis Testing, Inferences for Mean and Proportion, Chi-squared tests, Simple Regression and Correlation

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 select and use appropriate statistical methods to analyze data
CLO 2 perform statistical analysis with calculator and Microsoft Excel
CLO 3 understand and apply basic concepts of probability
CLO 4 gain familiarity with the fundamental concepts of random variables
CLO 5 make inferences on a population based on sample data
CLO 6 determine the most appropriate statistical method to use for a given statistical problem

Course Type
Lecture-based course

Course Teaching & Learning Activities
Activities
Details
No. of Hours
Lectures
36
Tutorials
12
Reading / Self study
100

Assessment Methods and Weighting
Methods
Details
Weighting in final course grade (%)
Assessment Methods to CLO Mapping
Assignments
Coursework (assignments, class test(s) and project(s))
60
CLO 1,2,3,4,5
Examination
One 2-hour written examination
40
CLO 1,2,3,4,5

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk
CLO 7 write appropriate conclusions based on the statistical results
CLO 6 understand the basic principles of simple linear regression and correlation and their applications to practical problems

Pre-requisites
Level 2 or above in HKDSE Mathematics or equivalent; and
Not for students with Level 2 or above in HKDSE Mathematics Extended Module 1 or 2; and
Not for students who have passed or already enrolled in any of the following courses: STAT2901, STAT1602, STAT2601, STAT1603, ECON1280

Offer in 2018 - 2019
N Offer in 2019 - 2020 : N

Grade Descriptors (A to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities
<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
Chiu W. K.: Basic Statistics (Pearson (Asia), 2007)
Berk, K.N. & Carey, P.: Data Analysis with Microsoft EXCEL (Ox bury press, Update Office 2007)

Course Website
http://moodle.hku.hk

Additional Course Information
Calculator: CASIO fx-50FH (This model has SD-MODE, REG-MODE, nCr and Normal Probability Function which is very suitable for this course.)

STAT1602
Business statistics (6 credits)

Offering Department
Statistics & Actuarial Science

Course Co-ordinator
Dr R W L Wong, Statistics & Actuarial Science (rwong@hku.hk)

Teachers Involved
(Dr R W L Wong, Statistics & Actuarial Science)

Course Objectives
The discipline of statistics is concerned with situations involving uncertainty and variability. Variability greatly affects the interpretation of data. Thus statistics forms an important descriptive and analytical tool. This elementary course, which is taught without much technical mathematics, presents many standard situations of data analysis and interpretation with emphases on business examples. The statistical tests of these situations are presented. Microsoft Excel might be used to carry out some statistical analysis.

Course Contents & Topics
The course will introduce and discuss the following topics: Presentation of Data, Measures of Central Tendency, Measures of Variability and Uncertainty, Elementary Probability Rules and Basic Probability Distributions such as Binomial, Normal, Poisson, Hyper-geometric and Geometric, Random Sampling, the Normal Sampling Theorem, Point Estimation, Confidence Intervals and Sample Size Determination, Hypothesis Testing involving Inferences for Means and Proportions as well as the Chi-square tests, Simple Regression and Correlation, Elementary Time Series and Index Numbers

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 understand the methods for describing sets of data
CLO 2 perform statistical analysis with calculator and Microsoft Excel, draw conclusions from data using numerical summaries
CLO 3 understand and apply basic concepts of probability
CLO 4 gain familiarity with the fundamental concepts of random variables
CLO 5 make inferences on a population based on sample data
CLO 6 determine the most appropriate statistical method to use for a given statistical problem
CLO 7 gain familiarity with the fundamental concepts of statistical inference as they apply to a variety of problems
CLO 8 understand the basic principles of simple linear regression and correlation and their applications to practical problems in today's society

Pre-requisites (and Co-requisites and Impermissible combinations)
Not for students who have passed or already enrolled in any of the following courses: STAT1601, STAT2601, STAT1603, STAT2901 or ECON1280
(This course is available to students pursuing a major/minor in Business only).

Offer in 2018 - 2019
Y 1st sem 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
familiar situations. Apply moderately effective organizational and presentational skills.

D
Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail
Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
</tr>
</tbody>
</table>

No. of Hours
36
12
100

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, a class test)</td>
<td>25</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Gerald Keller: Managerial Statistics (Cengage Learning, 2009, 8th edition)
Berk, K.N. & Carey, P.: Data Analysis with Microsoft EXCEL (Duxbury press, Update Office 2007)

Course Website
http://moodle.hku.hk

STAT1603 Introductory statistics (6 credits) Academic Year 2018
Offering Department Statistics & Actuarial Science
Course Co-ordinator Dr E A L Li, Statistics & Actuarial Science (ericili11@hku.hk)
Teachers Involved Dr E A L Li, Statistics & Actuarial Science

Course Objectives
The discipline of statistics is concerned with situations involving uncertainty and variability. The interpretation of data needs special techniques when variability plays a role, as it usually does. Thus statistics forms an important descriptive and analytical tool of many scientific disciplines. Candidates with a mathematical background will find this course suitable, because the language of mathematics allows the subject of statistics to be presented with economy and clarity.

Course Contents & Topics

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 compute different measures of central tendency and dispersion
- CLO 2 make use of the basic probability theory and techniques to solve practical problem
- CLO 3 know how to construct confidence intervals and use hypotheses testing to carry out inference on the population
- CLO 4 use linear regression and correlation methods to solve problems in science and in social and business environment

Pre-requisites (and Co-requisites and Impermissible combinations)
(Level 2 or above in HKDSE Mathematics Extended Module 1 or 2 or equivalent) or (Pass or already enrolled in any of these courses: MATH1009, MATH1011, MATH1013, MATH1851, MATH1853); and
Not for students who have passed or already enrolled in any of these courses: STAT1601, STAT1602, STAT2601, STAT2901

Offer in 2018 - 2019
1st sem 2nd sem Offer in 2019 - 2020 : Y Examination Dec May

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
</tr>
</tbody>
</table>

No. of Hours
36
12
100

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, a class test)</td>
<td>25</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Probability and statistics I (6 credits)

Offering Department: Statistics & Actuarial Science
Course Co-ordinator: Dr K P Wat, Statistics & Actuarial Science (watkp@hku.hk)
Teachers Involved: (Dr K P Wat, Statistics & Actuarial Science)

Course Objectives
The discipline of statistics is concerned with situations in which uncertainty and variability play an essential role and forms an important descriptive and analytical tool in many practical problems. Against a background of motivating problems this course concerns itself with the description of such uncertainty and variability.

Course Contents & Topics
Sample spaces; Operations of events; Probability and probability laws; Conditional probability; Independence; Discrete random variables; Cumulative distribution function (cdf); Probability mass function (pmf); Bernoulli, binomial, geometric, and Poisson distributions; Continuous random variables; Cumulative distribution function (cdf); Probability density function (pdf); Exponential, Gamma, and normal distributions; Functions of a random variable; Joint distributions; Marginal distributions; Independent random variables; Functions of jointly distributed random variables; Expected value; Variance and standard deviation; Covariance and correlation.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 understand the basic concepts in probability theory
- CLO 2 gain some insights to statistics and inference
- CLO 3 solve real-world problem by using probability calculations
- CLO 4 pursue their further studies in statistics

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass or already enrolled in MATH2101 or MATH2211, for students admitted in 2014 or thereafter; or Pass in MATH1013, or already enrolled in this course, for students admitted in 2013 or before; or Pass in MATH1851 and MATH1853, for students admitted in 2013 or before; and Not for students who have passed in STAT1603, or already enrolled in this course; Not for students who have passed in STAT2901, or already enrolled in this course; and Not for BSc(ActuarSc) students.

Offer in 2018 - 2019
Y 1st sem 2nd sem Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presenational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 100

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and class test(s))</td>
<td>30</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>70</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website: http://moodle.hku.hk

Probability and statistics II (6 credits)

Offering Department: Statistics & Actuarial Science
Course Co-ordinator: Dr K Zhu, Statistics & Actuarial Science (mazhuke@hku.hk)
Teachers Involved: (Dr C Wang, Statistics & Actuarial Science) (Dr K Zhu, Statistics & Actuarial Science)

Course Objectives
This course builds on STAT2601, introducing further the concepts and methods of statistics. Emphasis is on the two major areas of statistical analysis: estimation and hypothesis testing. Through the disciplines of statistical modelling, inference and decision making, students will be equipped with both quantitative skills and qualitative perceptions essential for making rigorous statistical analysis of real-life data.

Course Contents
1. Overview: random sample, sampling distributions of statistics; moment generating function; large-sample theory;
Offer in 2018 - 2019: Y

Grade Descriptors (A+ to F)

A
Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B
Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C
Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D
Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail
Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities

Activities
Details
No. of Hours
Lectures
36
Tutorials
12
Reading / Self study
100

Assessment Methods and Weighing

Methods
Details
Weighting in final course grade (%)
Assessment Methods to CLO Mapping
Assignments
Coursework (assignments, tutorials and a class test)
25
CLO 1,2,3,4
Examination
One 2-hour written examination
75
CLO 1,2,3,4

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk

STAT2603 Data management with SAS (6 credits)

Offering Department
Statistics & Actuarial Science

Course Co-ordinator
Dr G C S Lui, Statistics & Actuarial Science (csglui@hku.hk)

Teachers Involved
(Dr G C S Lui, Statistics & Actuarial Science)

Course Objectives
This course is designed for students who want to learn the statistical software (SAS) for data management and elementary data analysis. This course focuses on using SAS to manage data set input and output, work with different data types, manipulate and transform data, perform random sampling and descriptive data analysis, and create summary reports and graphics.

Course Contents & Topics

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 access online help and document
CLO 2 use Data Step to create data files
CLO 3 summarize data by PROC MEANS, PROC FREQ, and PROC UNIVARIATE
CLO 4 work with numeric, character, and date variables and functions in Data Step
CLO 5 perform conditional processing in Data Step
CLO 6 perform iterative processing in Data Step including the following: work with arrays in Data step; restructure SAS data sets by Data Step and PROC TRANSPOSE; subset and merge data sets by Data Step and PROC APPEND; present data in a readable way by PROC TABLE; produce high-resolution graphics by PROC SGPLOT; HTML output by ODS; procedure SQL for structured query language.

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in STAT1600 or MATH1821, or already enrolled in this course

Offer in 2018 - 2019: Y

Grade Descriptors (A+ to F)

A
Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
Demographic and socio-economic statistics (6 credits)

Ms L M S Kwan, Statistics & Actuarial Science

2018 May

Course Code: CLO 1,2,3,4,5,6

(A+ to F)

Grade Descriptors

Y 2nd sem Offer in 2019 - 2020 : Y

Offering Department: Statistics & Actuarial Science

Course Co-ordinator: Ms L M S Kwan, Statistics & Actuarial Science (lucykwan@hku.hk)

Teachers Involved: Ms L M S Kwan, Statistics & Actuarial Science

Course Objectives

The course covers the major methods for studying demographic and socio-economic statistics, with a quantitative evidence-based approach to understand the socio-economic well-being of residents in a territory. The course aims to provide students with 1) essential underlying principles and the pertinent methods behind internationally adopted statistical indicators; and 2) skills in the statistical descriptions and further analysis for application to planning, policy-making and commercial endeavours of a territory.

Course Contents & Topics

Demographic statistics on population structure, fertility, mortality, migration, life tables, population projections; Economic statistics on external trade, innovation, prices and GDP measurements (with emphasis on methods pertaining to some important economic sectors in the case of GDP); Sources, theory and methods of such statistics; Examples would be especially drawn from Hong Kong, neighbouring economies or comparable economies.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 describe and interpret major official & other publicly disseminated socio-economic statistics of a territory
- CLO 2 further appraise and analyse the socio-economic well-being of a territory with particular reference to Hong Kong, neighbouring economies or comparable economies
- CLO 3 predict a future situation by extrapolating or referencing from appropriate statistics
- CLO 4 critically assess statistics reporting

Pre-requisites (and Co-requisites and Impermissible combinations)

(Level 2 or above in HKDSE Mathematics or Level 2 or above in HKDSE Mathematics Extended Module 1 or 2 or equivalent); and Pass or already enrolled in BIOL2102, ECON1280, STAT1601, STAT1602, STAT2601, STAT1603, STAT2901

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors - (A+ to F)

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presential skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presential skills.

Fail

Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presential skills are minimally effective or ineffective.

Course Type: Lecture-based course

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments Coursework (assignments, tutorials and a test) 35 CLO 1,2,3,4

Grade Descriptors

A Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

B Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presential skills.

C Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presential skills.

D Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presential skills are minimally effective or ineffective.

Course Type: Lecture-based course

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments Coursework (assignments, tutorials and a test) 35 CLO 1,2,3,4

Grade Descriptors

A Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

B Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presential skills.

C Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presential skills.

D Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presential skills are minimally effective or ineffective.

Course Type: Lecture-based course

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments Coursework (assignments, tutorials and a test) 35 CLO 1,2,3,4

Grade Descriptors

A Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

B Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presential skills.

C Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presential skills.

D Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presential skills are minimally effective or ineffective.

Course Type: Lecture-based course

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments Coursework (assignments, tutorials and a test) 35 CLO 1,2,3,4

Grade Descriptors

A Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

B Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presential skills.

C Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presential skills.

D Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presential skills are minimally effective or ineffective.

Course Type: Lecture-based course

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments Coursework (assignments, tutorials and a test) 35 CLO 1,2,3,4

Grade Descriptors

A Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

B Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presential skills.

C Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presential skills.

D Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presential skills are minimally effective or ineffective.
STAT2901

Probability and statistics: foundations of actuarial science (6 credits)

Offering Department Statistics & Actuarial Science

Course Co-ordinator Prof S M S Lee, Statistics & Actuarial Science (smslee@hku.hk)

Teachers Involved (Prof S M S Lee, Statistics & Actuarial Science)

Course Objectives
The purpose of this course is to develop knowledge of the fundamental tools in probability and statistics for quantitatively assessing risk. Applications of these tools to actuarial science problems will be emphasized. Students will have a thorough command of probability topics and the supporting calculations.

Course Contents & Topics
1. General probability
 - Basic elements of probability in set notation
 - Mutually exclusive events
 - Addition and multiplication rules
 - Independence of events
 - Combinatorial probability
 - Conditional probability and expectations
 - Bayes theorem / Law of total probability
 - Random variables
2. Univariate probability distributions (including binomial, negative binomial, geometric, hypergeometric, Poisson, uniform, exponential, chi-square, beta, Pareto, lognormal, gamma, Weibull and normal) and bivariate normal distribution
 - Probability functions and probability density functions
 - Cumulative distribution functions
 - Mode, median, percentiles and moments
 - Variance and measures of dispersion
 - Central limit theorem
3. Sampling distributions and introduction of estimation

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 understand the mathematical theory underlying the modern practice of statistics
- CLO 2 develop skills in probabilistic analysis for problems involving randomness
- CLO 3 apply techniques in probability and statistics to solve actuarial science problems

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in MATH1821 [for BSc(ActuarSc) students] or already enrolled in this course, or
Pass in MATH1013 or already enrolled in this course [for students outside the BSc(ActuarSc) programme], and
Not for students who have passed or enrolled in any of these courses: STAT1601, STAT1602, STAT1603, STAT2601

Grade Descriptors (A+ to F)
- A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- D Demonstrate limited or bare command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
- Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type Lecture-based course

Course Teaching & Learning Activities Activities Details No. of Hours
- Lectures
- Tutorials tutorials/example classes 12
- Reading / Self study

Assessment Methods and Weighting Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
- Assignments Coursework (assignments, tutorials, and a class test) 25 CLO 1,2,3
- Examination One 3-hour written examination 75 CLO 1,2,3

Required/recommended reading and online materials

Course Website http://moodle.hku.hk
Course Contents & Topics
Development of basic actuarial techniques. Practical applications of these concepts are also covered.

Key topics include: measurement of interest, annuities certain; discounted cash flow analysis; yield rates; amortization schedules and sinking funds; bonds and related securities; practical applications such as real estate mortgage and short sales; stochastic approaches to interest; and key terms of financial analysis such as yield curves, spot rates, forward rates, duration, convexity, and immunization.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 understand basic concepts of financial mathematics
- CLO 2 understand and formulate elementary financial problems
- CLO 3 apply compound interest theory to tackle some practical financial problems
- CLO 4 show an understanding of the term structure of interest rates
- CLO 5 show an understanding of simple stochastic models for investment returns

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in STAT2901, or already enrolled in this course; and Not for students who have passed in STAT3615, or already enrolled in this course.

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y Examination May

Grade Descriptors (A+ to F)
(A+ to F)

Grade Descriptors
(A to F)

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>tutorials/example classes</td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and class test(s))</td>
<td>25</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Examination</td>
<td>One 3-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk

STAT3600
Linear statistical analysis (6 credits)

Offering Department
Statistics & Actuarial Science

Course Co-ordinator
Dr F Jiang, Statistics & Actuarial Science (feijiang@hku.hk)

Teachers Involved
(Deputy) Dr F Jiang, Statistics & Actuarial Science
Dr W T Li, Statistics & Actuarial Science

Course Objectives
The analysis of variability is mainly concerned with locating the sources of the variability. Many statistical techniques investigate these sources through the use of 'linear' models. This course presents the theory and practice of these models.

Course Contents & Topics
(1) Simple linear regression: least squares method, analysis of variance, coefficient of determination, hypothesis tests and confidence intervals for regression parameters, prediction.
(2) Multiple linear regression: least squares method, analysis of variance, coefficient of determination, reduced vs full models, hypothesis tests and confidence intervals for regression parameters, prediction, polynomial regression.
(3) One-way classification models: one-way ANOVA, analysis of treatment effects, contrasts.
(4) Two-way classification models: interactions, two-way ANOVA for balanced data structures, analysis of treatment effects, contrasts, randomised complete block design.
(5) Universal approach to linear modelling: dummy variables, 'multiple linear regression' representation of one-way and two-way (unbalanced) models, ANCOVA models, concomitant variables.
(6) Regression diagnostics: leverage, residual plot, normal probability plot, outlier, studentized residual, influential observation, Cook's distance, multicollinearity, model transformation.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 understand linear regression model with one or multiple independent variables
- CLO 2 understand ANOVA models for one and two factors
- CLO 3 understand general linear model with categorical and continuous independent variables

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in STAT2602; and Not for students who have passed in STAT3907, or have already enrolled in this course.

Offer in 2018 - 2019
Y 1st sem 2nd sem Offer in 2019 - 2020 : Y Examination Dec May

Grade Descriptors (A+ to F)
(A+ to F)

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Examination One 3-hour written examination 7

Assessment Methods Details Weighting in final course grade (%)
Assignments Coursework (assignments, tutorials, and class test(s)) 25 CLO 1,2,3,4,5
Examination One 3-hour written examination 75 CLO 1,2,3,4,5

CLO to CLO Mapping

- CLO 1: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- CLO 2: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- CLO 3: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- CLO 4: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
- CLO 5: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.
Department of Statistics & Actuarial Science

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture-based course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td>Assignments</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
</tr>
<tr>
<td>Course Website</td>
<td>http://moodle.hku.hk</td>
</tr>
</tbody>
</table>

STAT3602 Statistical inference (6 credits) Academic Year 2018

Offering Department Statistics & Actuarial Science Quota ---

Course Co-ordinator Prof S M S Lee, Statistics & Actuarial Science (smslee@hku.hk)

Teachers Involved (Prof S M S Lee,Statistics & Actuarial Science)

Course Objectives This course covers the advanced theory of point estimation, interval estimation and hypothesis testing. Using a mathematically-oriented approach, the course provides a solid and rigorous treatment of inferential problems, statistical methodologies and the underlying concepts and theory. It is suitable in particular for students intending to further their studies or to develop a career in statistical research.

Course Contents & Topics

1. Decision problem - frequentist approach: loss function; risk; decision rule; admissibility; minimaxity; unbiasedness; Bayes’ rule.
2. Decision problem - Bayesian approach: prior and posterior distributions, Bayesian inference.
3. Estimation theory: exponential families; likelihood; sufficiency; minimal sufficient; completeness; UMVU estimators; information inequality; large-sample theory of maximum likelihood estimation.
4. Hypothesis testing: uniformly most powerful test; monotone likelihood ratio; UMP unbiased test; large-sample theory of likelihood ratio; confidence set.

Course Learning Outcomes On successful completion of this course, students should be able to:

CLO 1 form a panoramic view of classical developments in mathematical statistics
CLO 2 gain thorough insight into the essentials of statistical inference
CLO 3 build a solid foundation for future research studies in statistics and related areas

Pre-requisites Pass in STAT2602 or STAT3902

Grade Descriptors (A+ to F)

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Required/recommended reading and online materials

Pace, L. & Salvan, A.: Principles of Statistical Inference: from a neo-Fisherian perspective (World Scientific:
STAT3603 Stochastic processes (6 credits)
Offering Department Statistics & Actuarial Science
Course Co-ordinator Prof J J F Yao, Statistics & Actuarial Science (jeffyao@hku.hk)
Teachers Involved (Prof J J F Yao,Statistics & Actuarial Science)

Course Objectives This is an introductory course in stochastic processes.
Course Contents & Topics Introduction to probability theory, conditional probability and expectation, Markov chains, random walk models, classification of states in a Markov chain, calculation of limiting probabilities and mean time spent in transient states, Poisson process, distribution of inter-arrival time and waiting time, conditional distribution of the arrival time, Brownian Motion, hitting time and maximum variable, geometric Brownian motion, the Black-Scholes option pricing formula, Gaussian bridge, and stationary processes. Birth-and-death process, branching process and renewal process may also be covered (if time permits).

Course Learning Outcomes On successful completion of this course, students should be able to:
CLO 1 apply the conditioning method to calculate the mean and probability
CLO 2 understand the essentials of Markov chains, the Poisson process, and Brownian motion
CLO 3 understand how stochastic models can be applied to the study of real-life phenomena

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in STAT2601; and Not for students who have passed in MATH3603, or have already enrolled in this course; and Not for students who have passed in STAT3903, or have already enrolled in this course.

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Assessment Methods and Weighting Methods Details Weighting in final course grade (%)
Assignments Coursework (assignments, tutorials, and a class test) 25 CLO 1,2,3
Examination One 2-hour written examination 75 CLO 1,2,3

Course Type Lecture-based course
Course Teaching & Learning Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 100

Required/recommended reading and online materials
S. M. Ross: Introduction to Probability Models (9th edition)
Course Website http://moodle.hku.hk

STAT3604 Design and analysis of experiments (6 credits)
Offering Department Statistics & Actuarial Science
Course Co-ordinator Dr Z Liu, Statistics & Actuarial Science (ug_enquiry@saas.hku.hk)
Teachers Involved (Dr Z Liu,Statistics & Actuarial Science)

Course Objectives Scientific research often requires proper design and analysis of experiments. This course aims to introduce the basic principles of experimental design; to explain the concepts and to develop the statistical skills in model-based analysis of experiment.
Course Contents & Topics Basic principles and guidelines for designing experiments. Analysis for experiments with a single factor, randomised block, crossed and nested factorial structure. Balanced incomplete factorial experiments. Latin squares and related designs. Fixed/random effects models.

Course Learning Outcomes On successful completion of this course, students should be able to:
CLO 1 develop a conceptual understanding of experimental design
CLO 2 acquire the fundamental statistical tools of experimental design and the understanding to use them appropriately
CLO 3 select appropriate experimental designs for different problems
CLO 4 select appropriate statistical model and to know how to validate the model

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in STAT2602 or STAT3611 or STAT3902

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Assessment Methods and Weighting Methods Details Weighting in final course grade (%)
Assignments Coursework (assignments, tutorials, and a class test) 25 CLO 1,2,3
Examination One 2-hour written examination 75 CLO 1,2,3

Course Type Lecture-based course
Course Teaching & Learning Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 100

Required/recommended reading and online materials
S. M. Ross: Introduction to Probability Models (9th edition)
Course Website http://moodle.hku.hk

755
CLO 1,2,3,4 201 A

& Learning Activities

TBC. Statistics & Actuarial Science

Teachers Involved & Topics

Course Learnin

N Offer in 2019 - 2020 : N

Grade Descriptors (A to F)

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

On successful completion of this course, students should be able to:

CLO 1 appreciate the practicality of statistical concepts and methods in general

CLO 2 understand how certain specific statistical methods can benefit various production situations

CLO 3 know the traditional and modern systems of quality management

The successful control of quality in production is a matter of primary importance to a company’s prosperity. This course provides an overview of quality compromise which involves both the producer and the consumer. It presents a variety of statistical solutions including control charts, acceptance and sequential sampling plans, reliability, and life-testing. Contemporary quality management systems such as total quality control, zero defects, six-sigma, and ISO-9000 will be introduced. The student is brought to the frontier of today’s quality control and management ideas.

Assessment Methods

Course Type Lecture-based course

Course Co-ordinator TBC, Statistics & Actuarial Science

Teachers Involved

Course Objectives

The successful control of quality in production is a matter of primary importance to a company’s prosperity. This course provides an overview of quality compromise which involves both the producer and the consumer. It presents a variety of statistical solutions including control charts, acceptance and sequential sampling plans, reliability, and life-testing. Contemporary quality management systems such as total quality control, zero defects, six-sigma, and ISO-9000 will be introduced. The student is brought to the frontier of today’s quality control and management ideas.

Course Contents & Topics

On successful completion of this course, students should be able to:

CLO 1 appreciate the practicality of statistical concepts and methods in general

CLO 2 understand how certain specific statistical methods can benefit various production situations

CLO 3 know the traditional and modern systems of quality management

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or STAT2602 or (STAT1603 and any University level 2 course) or STAT3902

Required/recommended reading and online materials

P. W. M. John: Statistical Design and Analysis of Experiments (Macmillan, 1971)

Course Website

http://moodle.hku.hk

Examination One 2-hour written examination 75 CLO 1,2,3,4

Assignments Coursework (assignments, tutorials, and a class test) 25 CLO 1,2,3,4

Assessment Methods to CLO Mapping

Examination One 2-hour written examination 75 CLO 1,2,3,4

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments Coursework (assignments, tutorials, and a class test) 25 CLO 1,2,3,4

Assessment Methods and Weighting

Activity Details No. of Hours

Lectures 36

Tutorials 12

Reading / Self study 100

Assessment Methods and Weighting

Required/recommended reading and online materials

Lectures 36

Tutorials 12

Reading / Self study 100

Assessment Methods and Weighting

P. W. M. John: Statistical Design and Analysis of Experiments (Macmillan, 1971)

Course Website

http://moodle.hku.hk

Examination One 2-hour written examination 75 CLO 1,2,3,4

Assignments Coursework (assignments, tutorials, and a class test) 25 CLO 1,2,3,4

Assessment Methods to CLO Mapping

Examination One 2-hour written examination 75 CLO 1,2,3,4

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments Coursework (assignments, tutorials, and a class test) 25 CLO 1,2,3,4

Assessment Methods and Weighting

Required/recommended reading and online materials

STAT3606

Business logistics (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Statistics & Actuarial Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Ms O T K Choi, Statistics & Actuarial Science (ochoi@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>Ms O T K Choi, Statistics & Actuarial Science</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>Modern business corporations are increasingly using logistics as a management tool, for example, in capital budgeting problems, production planning, scheduling, transporting and deciding location for a new factory. This course addresses the business applications of logistics.</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>In this course, students will apply the analytical skills with aid of computer techniques in solving the business logistic problems. Topics include optimization techniques applied in allocation of resources, financial planning, transportation, assignment, inventory control and queuing problems.</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
</tr>
<tr>
<td></td>
<td>CLO 1 solve linear programming with Graphical approach, Simplex method and hands-on Excel Solving function</td>
</tr>
<tr>
<td></td>
<td>CLO 2 set-up and solve network flow problems using least-cost approach, MODI method and Vogel's approximation.</td>
</tr>
<tr>
<td></td>
<td>CLO 3 understand decision theory and its applications</td>
</tr>
<tr>
<td></td>
<td>CLO 4 evaluate the cost and effectiveness of service systems</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Pass in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or STAT2601 or STAT1603 and any University level 2 course) or STAT2901; and</td>
</tr>
<tr>
<td></td>
<td>Not for students who have passed MATH3901, or have already enrolled in this course.</td>
</tr>
<tr>
<td>Offer in 2018 - 2019</td>
<td>Y 1st sem Offer in 2019 - 2020: Y</td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td></td>
<td>B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td></td>
<td>C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar situations. Appropriate moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td></td>
<td>D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td></td>
<td>Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
<tr>
<td>Course Type</td>
<td>Lecture-based course</td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td>Assignments</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td>B. Render, R. Stair, M. Hanna: Quantitative Analysis for Management, 10th edition, Pearson</td>
</tr>
<tr>
<td></td>
<td>F.S. Hillier and G. J. Lieberman: An Introduction to Operations Research</td>
</tr>
<tr>
<td></td>
<td>Robert F.V. Anderson, Holt, Rinehart and Winston: Introduction to Linear Algebra</td>
</tr>
<tr>
<td>Course Website</td>
<td>http://moodle.hku.hk</td>
</tr>
</tbody>
</table>
Course Objectives

Teachers Involved: (Prof T W K Fung, Statistics & Actuarial Science)

This course aims to provide students with a fundamental knowledge of DNA profiling in human identification and genetic epidemiology in gene mapping and to understand how statistical theory and methods are applied to solve forensic DNA and genetic problems.

Assessment and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>75</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website

- http://moodle.hku.hk

Additional Course Information

Other references:

Course Contents & Topics

This course will cover the following topics: background of genetics; Mendelian inheritance; Hardy-Weinberg equilibrium; linkage equilibrium; chi-square test; likelihood ratio test; exact test; match probability; paternity testing and kinship analysis; DNA mixed stain; relatedness; population structure; gene mapping; parametric linkage analysis; non-parametric linkage analysis; linkage disequilibrium; association designs; case-control analysis; family-based association study; quantitative traits.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand the fundamental principles in statistical DNA forensics and genetic epidemiology
- CLO 2 know the usefulness and possible limitations of statistical methodology in human identification and gene mapping
- CLO 3 provide statistical solutions to specific problems in the field

Pre-requisites

Pass in STAT3602 or STAT3902

Grade Descriptors

- A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presenational skills.
- B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presenational skills.
- C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presenational skills.
- D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presenational skills.
- Fail: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presenational skills are minimally effective or ineffective.
Course Type | Lecture-based course
--- | ---
Course Teaching & Learning Activities |
| Activities | Details | No. of Hours |
| Lectures | | 36 |
| Tutorials | | 12 |
| Reading / Self study | | 100 |
Assessment Methods and Weighting |
| Methods | Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping |
| Assignments | Coursework (assignments, tutorials, and a class test) | 25 | CLO 1,2,3 |
| Examination | One 2-hour written examination | 75 | CLO 1,2,3 |
Required/recommended reading and online materials |
| Books | |
Course Website | http://moodle.hku.hk/
Course Co-ordinator
Dr R W L Wong, Statistics & Actuarial Science (rwong@hku.hk)

Course Objectives
To provide knowledge on basic risk and its management, as well as basic financial planning through insurance products, to students. To allow students to understand the statistical, financial and legal principles underlying the techniques for managing the insurable risks faced by organisations and individuals. Aiming at students who have minimal background in quantitative methods, it involves very minimal quantitative calculations and is not available to students majoring in Actuarial Science.

Course Contents & Topics
The course introduces and explains:
- risk in our society,
- insurance and risk,
- introduction to risk management,
- fundamental legal principles, and analysis of insurance contracts,
- life insurance, their contractual provisions,
- individual health insurance coverages.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 understand the general risks faced by organisations and individuals and the generic risk management principle
CLO 2 demonstrate knowledge and understanding of the underlying financial and legal principles of the insurance industry
CLO 3 understand how risk can be managed through insurance
CLO 4 compare and contrast different types of commercial and personal insurance products
CLO 5 plan for and arrange their own personal insurance needs

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or STAT2601 or (STAT1603 and any University level 2 course) or STAT2901.
(NOT available to Actuarial Science students)

Grade Descriptors (A to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities
<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
<td>CLO 1,3</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk

STAT3611
Computer-aided data analysis (6 credits)

Offering Department
Statistics & Actuarial Science

Course Co-ordinator
Dr E K F Lam, Statistics & Actuarial Science (hmtlkh@hku.hk)

Teachers Involved
Rejda, G. E.

Course Objectives
A wide range of statistical analyses and methods are presented using data sets from social sciences research and scientific studies. Measuring uncertainty, describing patterns of variability and the inter-relationship between several variables are essential aspects of scientific investigations that require good understanding of statistics. This computer-oriented but non-mathematical course develops the important concepts and methods of statistics. The course makes extensive use of computers through the user friendly statistical software JMP. No knowledge of a programming language is required.

Course Contents & Topics
Data exploration, formulation of testable hypotheses, the evaluation of evidence and forecasting on the basis of past experience.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 summarize and describe the quantitative and qualitative data using some simple statistical measures
CLO 2 describe the patterns of variability and the inter-relationship between several continuous or discrete variables
CLO 3 carry out simple statistical analyses based on some real life data, formulate testable hypotheses, make appropriate statistical inferences and make interpretations on the findings

Pre-requisites (and Co-requisites and Impermissible combinations)
Passes in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or (STAT1603 and any University level 2 course) or (STAT2601 and any University level 2 course); and Not for students who have passed in or have already enrolled in any of these courses: STAT2601, STAT2901, STAT3616

Offer in 2018 - 2019
N Offer in 2019 - 2020 : N
Course Learning Outcomes

CLO 1: understand and apply a wide range of data mining techniques, and recognize their characteristics, strengths and weaknesses.
CLO 2: identify and use appropriate data mining techniques for a data mining project, taking into account both the nature of the data to be mined and the goals of the user of the discovered knowledge.
CLO 3: evaluate the quality of discovered knowledge, taking into account the requirements of the data mining task being solved and the goals of the user.
CLO 4: classify new knowledge and skills required for attaining some of the course learning outcomes. Show limited ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply moderately effective organizational and presentational skills.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, practical work, and a term test)</td>
<td>40</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>60</td>
<td>CLO 1, 2, 3</td>
</tr>
</tbody>
</table>

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in STAT2602 or (STAT1603 and any University level 2 course) or STAT3902; and Pass in STAT3600 or STAT3907, or already enrolled in these courses; and Not for students who have passed in STAT4904, or already enrolled in this course; and Not for BSc(Actuarial Science) students.

BSc(Actuarial Science) students are advised to take STAT4904 Statistical learning for risk modelling instead.

Grade Descriptors (A+ to F)

A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show very strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
F: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of meaningful understanding of analytical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Additional Course Information

http://moodle.hku.hk

Other reference:
J. T. McClave & F. H. Dietrich II: Statistics (Maxwell Macmillian, 5th ed.)
M. R. Middleton: Data Analysis Using Microsoft EXCEL 5.0 (Duxbury)

J. G. Peatman: Introduction to Applied Statistics (Harper)
Marketing engineering (6 credits)

Course Type: Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>30</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Project reports</td>
<td>30</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>40</td>
<td>CLO 1, 2, 3, 4, 5</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- Tan, P. N., Steinback, M. and Kumar, V.: Introduction to Data Mining (Addison Wesley, 2014, 3rd edition)
- J. Han & M. Kamber: Data Mining: Concepts and Techniques (Morgan Kaufmann, 2011, 3rd edition)
- Larose, D. T.: Discovering Knowledge in Data: An Introduction to Data Mining (Wiley, 2005)

Course Website: http://moodle.hku.hk

Additional Course Information

Other references: M. J. A. Berry & G. S. Linoff: Data Mining Techniques: For Marketing, Sales and Customer Relationship Management (Wiley, 2011, 3rd edition)

STAT3613

Offering Department: Statistics & Actuarial Science

Course Co-ordinator: Dr C W Kwan, Statistics & Actuarial Science (ckwan@hku.hk)

Course Objectives:
This course is designed to provide an overview and practical application of trends, technology and methodology used in the marketing survey process including problem formulation, survey design, data collection and analysis, and report writing. Special emphasis will be put on statistical techniques particularly for analysing marketing data including market segmentation, market response models, consumer preference analysis and conjoint analysis. Students will analyse a variety of marketing case studies.

Course Contents & Topics
Marketing decision models, Market response models, Survey research, Statistical methods for segmentation, Statistical methods for positioning, Statistical methods for new product design

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1: develop hands-on skills of curve fitting and analyzing data with SAS procedures or R packages
- CLO 2 understand marketing decision models
- CLO 3: understand cluster analysis, factor analysis, multidimensional scaling, correspondence analysis, conjoint analysis, choice models, confirmatory factor analysis, and discriminant analysis in market segmentation, positioning and new product design

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or (STAT2601 and any University level 2 course) or STAT2901

Offer in 2018 - 2019: Y

Grade Descriptors (A to F)

- A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.
- F: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type: Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, a class test and a group project)</td>
<td>50</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>50</td>
<td>CLO 1, 2, 3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- Lattin J., Carroll J.D. and Green P.E.: Analysing multivariate data (Thomson)
Course Website http://moodle.hku.hk

STAT3614 Business forecasting (6 credits) Academic Year 2018
Offering Department Statistics & Actuarial Science Quota ---
Course Co-ordinator Dr R W L Wong, Statistics & Actuarial Science (rwong@hku.hk)

Course Objectives In daily business operations, forecasts are routinely required on different aspects of the economy, the market and individual companies. Numerous statistical techniques have been developed in the past decades to provide forecasts for the business decision-maker. This course considers a wide range of such techniques that have proven useful to practitioners. The course will involve the use of computer software, EXCEL, in the teaching process.

Course Contents & Topics Review of basic statistical concepts; autocorrelation analysis; evaluation and combination of forecasts; moving averages and smoothing methods; simple linear regression; multiple regression; growth curves; time series regression; the handling of seasonal cycles; decomposition methods.

Course Learning Outcomes On successful completion of this course, students should be able to:

CLO 1 understand data patterns and choose a suitable forecasting techniques.

CLO 2 understand forecasting methods: moving averages and smoothing methods, decomposition and winter's methods, simple and multiple linear regression.

CLO 3 develop hands-on skills of analyzing business data with computer software, EXCEL, and its add-ins functions.

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in BIOL2102 or (ECON1280 and any University level 2 course) or (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or (STAT1603 and any University level 2 course); and Not for students who have passed or already enrolled in any of these courses: STAT2601, STAT2901, STAT3907, STAT4801, ECON2280.

Grade Descriptors (A+ to F) A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type Lecture-based course
Course Teaching & Learning Activities Activities Details No. of Hours
 Lectures 36
 Tutorials 12
 Reading / Self study 100

Assessment Methods and Weighting Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
 Assignments Coursework (assignments, tutorials, and a class test) 40 CLO 1
 Examination One 2-hour written examination 60 CLO 1,2,3

Course Website http://moodle.hku.hk

Additional Course Information Also available to CompSc students having taken STAT1301. Students should obtain approval from the course coordinator before choosing this course.

STAT3615 Practical mathematics for investment (6 credits) Academic Year 2018
Offering Department Statistics & Actuarial Science Quota ---
Course Co-ordinator Dr A G Benchimol, Statistics & Actuarial Science (banchi@hku.hk)

Course Objectives This course covers: simple and compound interest; annuities certain; discounted cash flow analysis; amortization schedules and sinking funds; yield rates; bonds and related securities; practical applications such as real estate mortgage, short sales and term structure of interest rates.

Course Learning Outcomes On successful completion of this course, students should be able to:

CLO 1 solve practical problems relating to annuities certain, simple and compound interest.

CLO 2 carry out discounted cash flow analysis.

CLO 3 apply amortization schedules and sinking funds to the practical problems such as real estate mortgage.

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in (STAT1601 and any University level 2 course) or (STAT1602 and any University level 2 course) or STAT2601 or (STAT1603 and any University level 2 course) or STAT2901; and Not for students who have passed in STAT2902, or have already enrolled in this course.

Grade Descriptors (A+ to F) A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture-based course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td>Assignments</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td>STAT3616: Sample survey methods (6 credits)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course Objectives
This course will cover design and implementation of sample surveys and analysis of statistical data thus obtained. Survey design includes overall survey design, design of sampling schemes and questionnaires, etc. Sampling methods include sample size determination, sampling and non-sampling errors and biases, methods of estimation of parameters from survey data, imputation for missing data etc.

Course Contents & Topics
Topics include survey design and planning; survey quality and ethics; implementation matters like management of survey staff, respondent relationship and logistical issues; and sampling methods like simple random sampling, systematic sampling, stratified sampling, cluster sampling, multi-stage sampling, sample size determination, post-stratification, ratio and regression estimation methods, non-sampling errors and biases, non-responses and missing data. Case studies of major applications of sample survey methods in the public and private sectors, with some examples on the analysis and application of the statistical data thus produced, will be discussed.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 demonstrate knowledge and understanding of the various steps to be taken in the planning and implementation of sample surveys
CLO 2 design different sample schemes and select the most efficient and suitable one for adoption for a particular survey study - make statistical inference on parameters based on a sample CLO 3 judge whether the statistics presented by other survey takers are trustworthy

Pre-requisites
Pass or already enrolled in BIOL2102, or (ECON1280 and any University level 2 course), or (STAT1601 and any University level 2 course), or (STAT1602 and any University level 2 course), or STAT2901, or (STAT1603and any University level 2 course), or STAT2901.

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y Examination May

Grade Descriptors
(A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to familiar situations. Demonstrate limited ability to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study 100

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments Coursework (assignments, tutorials, and a class test) 25 CLO 1,2,3
Examination One 2-hour written examination 75 CLO 1,2,3

Required/recommended reading and online materials
W. G. Cochran: Sampling Techniques (John Wiley & Sons Ltd., 1997)

Course Website
http://moodle.hku.hk

STAT3618 Derivatives and risk management (6 credits) Academic Year 2018
Offering Department Statistics & Actuarial Science Quota ---
Course Co-ordinator Dr R W L Wong, Statistics & Actuarial Science (rwong@hku.hk)
Teachers Involved (Dr R W L Wong, Statistics & Actuarial Science)

Course Objectives
Nowadays all risk managers must be well versed in the use and valuation of derivatives. The two basic types of derivatives are forwards (having a linear payoff) and options (having a non-linear payoff). All other derivatives can be decomposed to these underlying payoffs or alternatively they are variations on these basic ideas. This course aims at demonstrating the practical use of financial derivatives in risk management. Emphases are on pricing and hedging strategies, and the concept of no-arbitrage.

Course Contents & Topics
Review of futures, forwards and options and the concept of no arbitrage; hedging strategies using futures; pricing of forwards and futures; interest rate futures and swaps; trading strategies using options; put-call parity; valuation of European and American options using the binomial-tree model; valuation of European and American options using the Black-Scholes option pricing model; the Greeks: their calculation and interpretation; implied volatility; delta hedging and the role of market-makers; exotic options: Asian options, barrier options, compound options, gap options and exchange options.

Course Learning Outcomes
On successful completion of this course, students should be able to:

CLO 1 use futures, forwards, options and swaps to formulate financial strategies CLO 2 determine the payoff and the value of various derivative products using binomial tree and Black-Scholes formula
CLO 3 explain how derivative products can be used as tools to manage financial risk
CLO 4 recognize how to decompose complicated derivatives into a portfolio of standard derivatives

Pre-requisites (and Co-requisites)
Pass in STAT3615; and Not for students who have passed in STAT3910, or have already enrolled in this course; and

Grade Descriptors
(A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to familiar situations. Demonstrate limited ability to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.
STAT3620 Modern nonparametric statistics (6 credits) Academic Year 2018
Offering Department Statistics & Actuarial Science Quota ---
Course Co-ordinator Dr P L H Yu, Statistics & Actuarial Science (plhyu@hku.hk)
Course Objectives The course aims to acquaint students with the fundamentals, basic properties and use of classical and modern nonparametric statistical methods for data analysis.
Course Contents Topics may include: order-statistics; goodness-of-fit tests; rank tests for single-sample and two-independent samples; tests for designed experiments; permutation tests; tests for trends and association; jackknife and bootstrapping methods; nonparametric regression.
Course Learning Outcomes On successful completion of this course, students should be able to:
- CLO 1 identify appropriate nonparametric methods for analyzing data
- CLO 2 perform a variety of nonparametric statistical analyses
- CLO 3 gain a working proficiency in the use of statistical software for data management and performing basic nonparametric statistical analyses
- CLO 4 effectively communicate findings and conclusions
Pre-requisites Pass in STAT2602 or STAT3902

Required/recommended reading and online materials
STAT3621 Statistical data analysis (6 credits)

Offering Department Statistics & Actuarial Science
Course Co-ordinator Dr G C S Lui, Statistics & Actuarial Science
Teachers Involved Dr G C S Lui, Statistics & Actuarial Science

Course Objectives
Building on prior coursework in statistical methods and modeling, students will get a deeper understanding of the entire process of data analysis. The course aims to develop skills of model selection and hypotheses formulation so that questions of interest can be properly formulated and answered. An important element deals with model review and improvement, when one’s first attempt does not adequately fit the data. Students will learn how to explore the data, to build reliable models, and to communicate the results of data analysis to a variety of audiences.

Course Contents & Topics
Descriptive statistics, presentation and visualization of data; Simple statistical analyses for the one-sample and two-sample case using parametric and nonparametric methods; Regression analyses: model fitting; variable selection and model diagnostic checking; Analysis of Variance (ANOVA): 1-way, two-way and higher-way ANOVA; Covariance analysis; Categorical and count data: binary logistic regression, Poisson regression.

Course Learning Outcomes
On successful completion of this course, students should be able to:

- **CLO 1**: make good sense of the problem and identify what to measure for the question of interest
- **CLO 2**: summarize and describe the quantitative and qualitative data using some simple appropriate statistical measures
- **CLO 3**: identify the association among several continuous or discrete variables
- **CLO 4**: carry out appropriate and comprehensive statistical analyses based on real life data including model selection, perform model diagnostics, formulate testable hypotheses, make appropriate statistical inferences, make interpretations on the findings and report writing

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in STAT3600 or STAT3907

(Students are strongly recommended to take STAT2603 prior to taking this course.)

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments and a class test)</td>
<td>50</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Examination</td>
<td>One 3-hour written examination</td>
<td>50</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk

STAT3622 Data visualization (6 credits)

Offering Department Statistics & Actuarial Science
Course Co-ordinator Dr A J Zhang, Statistics & Actuarial Science
Teachers Involved Dr A J Zhang, Statistics & Actuarial Science

Course Objectives
This course will focus on how to work with statistical graphics, graphics that display statistical data, to communicate and analyze data. Students will learn a set of tools such as R to create these graphics and critically evaluate them.

Course Contents & Topics
Grammar of graphics, visualizing patterns over time, visualizing relationship, visualizing spatial relationships, visualizing texts.

Course Learning
On successful completion of this course, students should be able to:

- Use R to create and interpret statistical graphics.
- Evaluate the effectiveness of visualizations in communication.
- Understand the principles behind effective data visualization.

Course Website
http://moodle.hku.hk

767
Course Description

Course Title: Directed studies in statistics
Course Code: CLO 1, CLO 2, CLO 3, CLO 4
Department: Department of Statistics & Actuarial Science
Offering Year: 2018 - 2019
Credit: 6 credits

Course Objectives:
- To enhance students' knowledge of a particular topic and students' self-directed learning and critical thinking skills.
- To develop skills in important technical tools, including the use of computer software or programs, for typical statistical research and data analyses.
- To provide opportunities for students to apply knowledge to a wide range of complex, familiar and unfamiliar situations.

Outcomes:
- **CLO 1:** Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- **CLO 2:** Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- **CLO 3:** Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
- **CLO 4:** Demonstrate little or no command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Pre-requisites:
- Pass in STAT2602 or STAT3902

Course Activities:
- Lecture-based course
- Tutorials
- Reading / Self study

Assessment Methods and Weighting:
- Presentation oral presentation and in-class discussion: 40%
- Project reports written report: 60%

Course Materials:

Website:
http://moodle.hku.hk
<table>
<thead>
<tr>
<th>Course Type</th>
<th>Project-based course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities Details No. of Hours</td>
</tr>
<tr>
<td>No. of Hours</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study discussion & meetings to be arranged by the student & the supervisor</td>
<td>120</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping</td>
</tr>
<tr>
<td>No. of Hours</td>
<td></td>
</tr>
<tr>
<td>Oral presentation oral presentation & in-class discussion</td>
<td>40 CLO 1,2,4</td>
</tr>
<tr>
<td>Research report written report</td>
<td>60 CLO 1,2,3</td>
</tr>
<tr>
<td>Course Website</td>
<td>http://moodle.hku.hk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAT3901</th>
<th>Life contingencies I (6 credits)</th>
<th>Academic Year</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
<td>Statistics & Actuarial Science</td>
<td>Quota</td>
<td>---</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Prof K C Yuen, Statistics & Actuarial Science (kcyuen@hku.hk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Prof K C Yuen, Statistics & Actuarial Science)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Objectives</td>
<td>The major objectives of this course are to integrate life contingencies into a full probabilistic framework. The time- until-death random variable is the basic building block by which models for life insurances, designed to reduce the financial impact of the random event of untimely death, are developed. This course introduces the concepts of life contingencies and the basic mathematical skills for modelling life insurance products.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>Key topics include: survival distributions; life table functions; select and ultimate tables; life insurance models; life annuity models; loss-at-issue random variable; benefit premiums.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to: CLO 1 calculate the expected values, variances, probabilities, and percentiles for survival-time random variables CLO 2 define the continuous survival-time random variable that arises from the discrete survival-time random variable using some assumptions for fractional ages CLO 3 define present-value-of-benefit random variables defined on survival-time random variables CLO 4 define and calculate the expected values, variances and probabilities for present-value-of-benefit random variables, present-value-of-loss-at-issue random variables, and present-value-of-loss random variables CLO 5 calculate benefit premiums for life insurances and annuities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>(Pass in STAT2602 and STAT3615) or (Pass in STAT2902 and (Pass in STAT3902 or already enrolled in this course)) or (Pass in STAT2602 and STAT2902)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade Descriptors (A to F)</td>
<td>A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show strong analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills. C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills. D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills. Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Type</td>
<td>Lecture-based course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities Details No. of Hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activities Details No. of Hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments coursework (assignments, tutorials, and a class test)</td>
<td>25 CLO 1,2,3,4,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examination one 3-hour written examination</td>
<td>75 CLO 1,2,3,4,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Website</td>
<td>http://moodle.hku.hk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAT3902</th>
<th>Statistical models (6 credits)</th>
<th>Academic Year</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
<td>Statistics & Actuarial Science</td>
<td>Quota</td>
<td>---</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Dr J F Xu, Statistics & Actuarial Science (xjf@hku.hk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr J F Xu, Statistics & Actuarial Science)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Objectives</td>
<td>This course is on the basis of 'STAT3901 Probability and Statistics: Foundation of Actuarial Science'. It will further study the concepts and methods of statistics. The course will lay emphasis on the estimation and hypothesis testing, the two major areas of statistical inference. Through the study of this course, students will be equipped with both quantitative skills and qualitative perceptions essential for making rigorous statistical analysis of data. This course is an approved course for VEE Mathematical Statistics from the Society of Actuaries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>Distribution and density of function of random variables; order statistics, central limit theorem, maximum likelihood estimator (MLE), moment estimator, Bayesian estimator, properties of estimators, limiting properties of MLE; confidence interval estimations for normal mean, the difference of two normal means, normal variance, the ratio of two normal variances, and large-sample confidence intervals; power function, Neyman-Pearson Lemma, likelihood</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

769
Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 understand the importance of sufficient statistic(s) in data reduction and statistical inferences such as point estimation, confidence interval estimation, and testing hypothesis

CLO 2 derive maximum likelihood estimators of parameters to calculate maximum likelihood estimates

CLO 3 locate pivotal quantity to construct confidence intervals of parameters

CLO 4 find test statistic to test hypotheses associated with one-sample and/or two-sample normal distributions with small sample sizes and non-normal distributions with large sample sizes

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in STAT2901; and Not for students who have passed in STAT2602, or already enrolled in this course; and For BSc(Actuarial Science) students only.

Course Learning Outcomes

Y 1st sem Offer in 2019 - 2020 : Y

A

Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B

Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C

Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D

Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail

Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type

Lecture-based course

Course Teaching & Learning Activities

Activities Details No. of Hours

Lectures

Tutorials

Reading / Self study

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments Coursework (assignments, tutorials, and a class test) One 3-hour written examination

Examination

Reading / Self study

Tutorials

Assessment

No. of Hours

36

12

100

Methods

Assignments Coursework (assignments, tutorials, and a class test) One 3-hour written examination

Examination

No. of Hours

25

CLO 1,2,3,4

80

CLO 1,2,3,4

Required/recommended reading and online materials

Course Website

http://moodle.hku.hk

STAT3903

Stochastic models (6 credits)

Academic Year 2018

Offering Department

Statistics & Actuarial Science

Quota

Course Co-ordinator

Prof J J F Yao, Statistics & Actuarial Science (jeyfyoao@hku.hk)

(P)rof J J F Yao, Statistics & Actuarial Science

Teachers Involved

Course Objectives

Course Contents & Topics

Introduction to probability theory, conditional probability and expectation, Markov chains, random walk models, classification of states in a Markov chain, calculation of limiting probabilities and mean time spent in transient states, Poisson process, distribution of inter-arrival time and waiting time, conditional distribution of the arrival time, Brownian Motion, hitting time and maximum variable, geometric Brownian motion, the Black-Scholes option pricing formula, Gaussian bridge, and stationary processes. Birth-and-death process, branching process and renewal process may also be covered (if time permits).

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 apply the conditioning method to calculate the mean and probability

CLO 2 understand the essentials of Markov chains, the Poisson process, and Brownian motion

CLO 3 understand how stochastic models can be applied to the study of real-life phenomena

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in STAT2901; and Not for students who have passed in MATH3603, or have already enrolled in this course; and For students who have passed in STAT3603, or have already enrolled in this course; and For BSc(Actuarial Science) students only.

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y

A

Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B

Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C

Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D

Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail

Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.
Course Type
Lecture-based course

Course Teaching & Learning Activities
<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td>One 3-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
S. M. Ross: Introduction to Probability Models (9th edition)

Course Website
http://moodle.hku.hk

STAT3904
Corporate finance for actuarial science (6 credits)

Offering Department Statistics & Actuarial Science

Course Co-ordinator Dr D Lee, Statistics & Actuarial Science (leedav@hku.hk)

Teachers Involved (Dr D Lee, Statistics & Actuarial Science)

Course Objectives
This course is designed for actuarial science students to receive VEE Corporate Finance from the Society of Actuaries. The objective of this course is to introduce students to the fundamental principles of corporate finance. The course will provide students with a systematic framework within which to evaluate investment and financing decisions for corporations.

Course Contents & Topics
The first part of the course will give an introduction to corporate finance and provide an overview of some topics covered in STAT2902 and STAT3615. These include financial markets and companies, time value of money, and measures and performance assessment of financial performance. The main part of the course will focus on some important topics of corporate finance including: portfolio theory, Markowitz mean-variance analysis, capital asset pricing model, weighted average cost of capital, market efficiency, capital structure and dividend policy, financial leverage and firm value, and option pricing models.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 describe the tasks of a financial manager and the financial decisions made by a corporation
- CLO 2 recall the use of present and future values in calculating the value of bonds and stocks
- CLO 3 assess financial performance using various investment criteria and techniques of project analysis
- CLO 4 analyze the mean-variance portfolio theory, capital asset pricing model and arbitrage pricing theory
- CLO 5 identify the factors to be considered by a company when deciding on its capital structure and dividend policy, and also the impact of financial leverage and long/short term financing policies on capital structure
- CLO 6 describe the various forms of market efficiency
- CLO 7 calculate the value of options using the binomial option pricing model

Pre-requisites (and Co-requisites and Impermissible combinations)
- [(Pass in ACCT1101 and STAT2902) or (Pass in STAT3610 and STAT3615)]: and
- Not for students who have passed in FINA1310, or have already enrolled in this course.

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y Examination May

Grade Descriptors (A+ to F)
- **A** Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- **B** Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- **C** Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- **D** Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply limited but effective organizational and presentational skills.
- **Fail** Demonstrate little or no evidence of command of knowledge and skills required for attaining all the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

STAT3905
Introduction to financial derivatives (6 credits)

Offering Department Statistics & Actuarial Science

Course Co-ordinator Dr K C Cheung, Statistics & Actuarial Science (kccg@hku.hk)

Teachers Involved (Dr K C Cheung, Statistics & Actuarial Science)

Course Objectives
This course aims at providing an understanding of the fundamental concepts of financial derivatives. Emphases

Course Type
Lecture-based course

Course Teaching & Learning Activities
<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
<td>CLO 1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Examination</td>
<td>One 3-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3,4,5,6,7</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk

Department of Statistics & Actuarial Science

771
<table>
<thead>
<tr>
<th>Course Contents & Topics</th>
<th>Derivatives; short-selling; forward contracts; call options; put options; equity-linked CD; spreads and collars; hedging; financial forwards and futures; commodity swaps; interest rate swaps; put-call parity.</th>
</tr>
</thead>
</table>
| Course Learning Outcomes | On successful completion of this course, students should be able to:
CLO 1 define and recognize the definitions of terms commonly used in derivatives markets
CLO 2 evaluate the payoff, profit, and properties of basic derivative contracts, including forwards, futures, options, and swaps
CLO 3 explain how derivative securities can be used as tools to manage financial risk |
| Pre-requisites (Co-requisites and Impermissible combinations) | Pass in STAT2902; and Not for students who have passed in STAT3618, or have already enrolled in this course; and Not for students who have passed in FINA2322; or have already enrolled in this course; and For BSc(Actuarial Science) students only. |
| Grade Descriptors (A to F) | A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective. |
| Course Type | Lecture-based course | | | |
| Course Teaching & Learning Activities | Activities | Details | No. of Hours |
| | Lectures | | 36 |
| | Tutorials | | 12 |
| | Reading / Self study | | 100 |
| Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping |
| | Assignments | Coursework (assignments, tutorials, and a class test) | 25 | CLO 1, 2, 3 |
| | Examination | One 3-hour written examination | 75 | CLO 1, 2, 3 |
| Course Website | http://moodle.hku.hk |

STAT3906 Risk theory I (6 credits)

Offering Department
Statistics & Actuarial Science
Quota: ---

Course Co-ordinator
Dr D Lee, Statistics & Actuarial Science (leedav@hku.hk)

Teachers Involved
Dr D Lee, Statistics & Actuarial Science

Course Objectives
Risk theory is one of the main topics in actuarial science. Risk theory is the applications of statistical models and stochastic processes to insurance problems such as the premium calculation.

Course Contents & Topics
Severity models; frequency models; collective risk models; coverage modifications; risk measures.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 understand the individual risk model and the collective risk model, evaluate the distribution and expectation of the total claim amounts
CLO 2 estimate the premium of a policyholder and the total claim amounts using the information of the claim amounts made in previous years
CLO 3 calculate some commonly used risk measures and explain their use and limitation

Pre-requisites (Co-requisites and Impermissible combinations)
Pass in STAT3903, or already enrolled in this course; or Pass in MATH3603 or STAT3603

Offer in 2018 - 2019
N Offer in 2019 - 2020: Y

Grade Descriptors (A to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities
Activities | Details | No. of Hours |
	Lectures		36
	Tutorials		12
	Reading / Self study		100
Course Objectives
This course deals with applied statistical methods of linear models and investigates various forecasting procedures through using linear models and time series analysis.

Course Contents & Topics
Regression and multiple linear regression; predicting; generalised linear model; time series models including autoregressive, moving average, autoregressive-moving average and integrated models; forecasting.

Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Method</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
<td>CLO 1,2,3</td>
</tr>
<tr>
<td>Examination</td>
<td>One 3-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk

STAT3907
Linear models and forecasting (6 credits)

Offering Department
Statistics & Actuarial Science

Course Co-ordinator
Dr G Li, Statistics & Actuarial Science (gdli@hku.hk)

Teachers Involved
(Dr G Li, Statistics & Actuarial Science)

Course Objectives
On successful completion of this course, students should be able to:
CLO 1 apply limited fluctuation (classical) credibility including criteria for both full and partial credibility
CLO 2 perform Bayesian analysis using both discrete and continuous models
CLO 3 fit a generalised linear model to the real data
CLO 4 identify and fit a suitable AR, MA or ARMA model to real data
CLO 5 perform residual analysis
CLO 6 do forecasting with these fitted models

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in STAT2602 or STAT3902, or already enrolled in this course; and Not for students who have passed in STAT3600, or have already enrolled in this course; and Not for students who have passed in STAT4601, or have already enrolled in this course; and Not for students who have passed in ECON2280, or have already enrolled in this course; and For BSc(Actuarial Science) students only.

Offer in 2018 - 2019
- Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>F</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type
Lecture-based course

Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Method</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Examination</td>
<td>One 3-hour written examination</td>
<td>75</td>
<td>CLO 1,2,4,5,6</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk

STAT3908
Credibility theory and loss distributions (6 credits)

Offering Department
Statistics & Actuarial Science

Course Co-ordinator
Dr A G Benchimol, Statistics & Actuarial Science (benchi@hku.hk)

Teachers Involved
(Dr A G Benchimol, Statistics & Actuarial Science)

Course Objectives
Credibility is an example of a statistical estimate. The idea of credibility is very useful in premium calculation. Insurance loss varies according to the business nature, what distribution should be used to fit a particular loss is both of theoretical interest and practical importance. This course covers important actuarial and statistical methods.

Course Contents & Topics
Limited fluctuation approach; Buhlman's approach; Bayesian approach; empirical Bayes parameter estimations; construction and selection of parametric models; properties and estimation of failure time and loss distributions, determination of the acceptability of a fitted model; comparison of fitted models; simulation of both discrete and continuous random variables.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 apply limited fluctuation (classical) credibility including criteria for both full and partial credibility
CLO 2 perform Bayesian analysis using both discrete and continuous models

Course Website
http://moodle.hku.hk

773
CLO 3 apply Buhlmann and Buhlmann-Straub models and understand the relationship of these to the Bayesian model
CLO 4 apply conjugate priors in Bayesian analysis and in particular the Poisson-gamma model
CLO 5 apply empirical Bayesian methods in the nonparametric and semiparametric cases
CLO 6 construct and select empirical models
CLO 7 determine the acceptability of a fitted model and/or compare models

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in STAT2602 or STAT3902 or STAT3906

Offer in 2018 - 2019
Y 1st sem 2nd sem Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type Lecture-based course

Course Teaching & Learning Activities

Activities Details No. of Hours
Lectures 36
Tutorials 12
Assignments
Reading / Self study 100

Assessment Methods and Weighting Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments Coursework (assignments, tutorials, and a class test) 25 CLO 1,2,3,4,5,6,7
Examination One 3-hour written examination 75 CLO 1,2,3,4,5,6,7

Required/recommended reading and online materials

Course Website http://moodle.hku.hk

STAT3909
Life contingencies II (6 credits)

Offering Department Statistics & Actuarial Science
Academic Year 2018
Quota ---

Course Co-ordinator Dr D Lee, Statistics & Actuarial Science (leedav@hku.hk)
Teachers Involved (Dr D Lee,Statistics & Actuarial Science)
Course Objectives This course aims at introducing some topics in non-traditional life insurance. Emphasis will be placed on applications of more advanced theories of life contingencies.
Course Contents & Topics This course is a continuation of the materials covered in STAT3901. We shall discuss the following topics: future loss random variable; policy values; expenses and asset shares; multiple state models and their applications; profit testing.

Course Learning Outcomes On successful completion of this course, students should be able to:
CLO 1 calculate policy values for life insurances and annuities
CLO 2 incorporate expenses in gross premium and calculate policy values based on the gross premium for life insurances and annuities
CLO 3 calculate probabilities and actuarial present values under the multiple state model framework
CLO 4 analyze multiple decrement models and calculate the life insurances and annuities in models with multiple decrements
CLO 5 analyze multiple life models and calculate the life insurances and annuities in models with multiple lives
CLO 6 explain the concept of profit testing

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in STAT3901, or already enrolled in this course; and For BSc(Actuarial Science) students only.

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020: Y

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Failure Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type Lecture-based course

Course Teaching & Learning Activities

Activities Details No. of Hours
Lectures 36
Examinations One 3-hour written examination 75
STAT3910

Financial economics I (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Statistics & Actuarial Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Prof H L Yang, Statistics & Actuarial Science (hlyang@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Prof H L Yang, Statistics & Actuarial Science)</td>
</tr>
</tbody>
</table>

Course Objectives
This course is an advanced course on the option pricing theory. The course covers Black-Scholes equation and stochastic calculus, and interest models.

Course Contents & Topics
- Brownian motion: introduction to stochastic calculus; arithmetic and geometric Brownian motion; Ito formula; Sharpe ratio and risk premium; Black-Scholes equation; risk-neutral stock-price process and option pricing; option's elasticity and volatility; Vasicek, Cox-Ingersoll-Ross, and Black-Derman-Toy models; delta-hedging for bonds and the Sharpe-ratio equality constraint; Black's model; options on zero-coupon bonds; interest-rate caps and caplets.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Examination</td>
<td>One 3-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
</tbody>
</table>

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in STAT2602 or STAT3902; and Not for students who have passed in STAT3618, or have already enrolled in this course; and Not for students who have passed in FINA2322, or have already enrolled in this course.

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Academic Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination Dec</td>
<td>2018</td>
</tr>
</tbody>
</table>

Course Type
Lecture-based course

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Course Website
http://moodle.hku.hk

STAT3911

Financial economics II (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Statistics & Actuarial Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Prof H L Yang, Statistics & Actuarial Science (hlyang@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Prof H L Yang, Statistics & Actuarial Science)</td>
</tr>
</tbody>
</table>

Course Objectives
This course is an advanced course on the option pricing theory. The course covers Black-Scholes equation and stochastic calculus, and interest models.

Course Contents & Topics
- Brownian motion: introduction to stochastic calculus; arithmetic and geometric Brownian motion; Ito formula; Sharpe ratio and risk premium; Black-Scholes equation; risk-neutral stock-price process and option pricing; option's elasticity and volatility; Vasicek, Cox-Ingersoll-Ross, and Black-Derman-Toy models; delta-hedging for bonds and the Sharpe-ratio equality constraint; Black's model; options on zero-coupon bonds; interest-rate caps and caplets.

Course Learning
On successful completion of this course, students should be able to:

- CLO 1: calculate option price using binomial tree
- CLO 2: understand the risk neutral probability
- CLO 3: understand basic probability theory, include probability space, random variable, conditional probability, conditional expectation and discrete time martingale
- CLO 4: understand the Black-Scholes formula and its assumptions, the option Greeks, option elasticity, and implied volatility
- CLO 5: understand the hedging strategies and portfolio, market-maker risk, self-financing portfolio
- CLO 6: understand exotic options

Assessment Methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Examination</td>
<td>One 3-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
</tbody>
</table>

Course Website
http://moodle.hku.hk
Course Contents & Topics

Topics cover further analysis of the multiple state model; unit-linked contracts; cost of guarantees and options; applications of actuarial techniques to a wide range of insurance problems; equity-linked life-contingent insurance products and valuation of these products; simple ruin models for non-life insurance.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- **CLO 1** obtain transition probabilities in continuous-time multiple state models and evaluate expected state-dependent cash flows
- **CLO 2** apply the Esscher transform on probability distributions and stochastic processes
- **CLO 3** value equity-linked death benefits via the discounted density function
- **CLO 4** value equity-linked death benefits via the discounted density function
- **CLO 5** appreciate the role of the expected discounted penalty function in simple risk processes for non-life insurance
- **CLO 6** evaluate ruin probabilities and related quantities for simple risk processes

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in MATH3603 or STAT3603 or STAT3903 or STAT3910

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Examination</td>
<td>One 3-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- Steven Shreve: Stochastic Calculus for Finance II Continuous-Time Models (2008)

Course Website

http://moodle.hku.hk
STAT3952

Investment and asset management (6 credits)

Offering Department: Statistics & Actuarial Science

Course C: STAT3952 Investment and asset management (6 credits)

Pre-requisites:
- Pass in STAT3901; and
- Not for students who have passed in FINA2320, or have already enrolled in this course; and
- Pass in STAT3901; and
- For BSc(Actuarial Science) students only.

Course Co-ordinator: TBC, Statistics & Actuarial Science (/)

Course Objectives:

The main objective of this course is to introduce students to some of the methods and procedures commonly used in the management of an investment portfolio. Emphasis will be placed on methods to tackle problems faced by insurance industry such as investment strategy formulation and interest rate risk management.

Course Contents & Topics:

This course provides an overview on the problems faced by actuaries when applying fundamental actuarial concepts to investment practice. This course will cover the following topics: Investment Management Process, Asset Allocation, Managing Fixed Income Portfolios and Performance Measurement.

Assessment Methods and Weights:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
</tbody>
</table>

Reading / Self study:

- CT5 Contingencies Core Technical Core Reading (Institute of Actuaries, 2010)
- Lecture notes on equity linked insurance products and simple dividend-ruin models.

Grade Descriptors (A+ to F):

- **A:** Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- **B:** Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- **C:** Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- **D:** Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Limited ability to use knowledge to solve problems. Limited ability to use knowledge to solve problems. Limited ability to use knowledge to solve problems.
- **Fail:** Demonstrate little or no evidence of command of knowledge and skills required for attaining some of the course learning outcomes. Lack of analytical and critical abilities. Logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type: Lecture-based course

<table>
<thead>
<tr>
<th>Assessment Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Course Website:

- http://moodle.hku.hk

Course Website:

http://moodle.hku.hk

Additional Course Information:

<table>
<thead>
<tr>
<th>STAT3953</th>
<th>Fundamentals of actuarial practice (6 credits)</th>
<th>Academic Year</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
<td>Statistics & Actuarial Science</td>
<td>Quota</td>
<td>---</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>Dr A.G. Benchimol, Statistics & Actuarial Science (benchi@hku.hk)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr A G Benchimol Statistics & Actuarial Science)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>This course teaches students about the business environment and exposes them to practical real-world situations using the actuarial control cycle as a framework.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>This course provides an overview on selected materials relating to the following topics: Role of the Professional Actuary, External Forces, Risk in Actuarial Problems. Design and Pricing of Actuarial Solutions. Emphasis will be placed on applications to various financial security programmes including individual life insurance, group insurance, social security plans, retirement plans, investment funds and property and casualty insurance.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CLO 1</td>
<td>provide introductory description of financial security systems, common actuarial techniques and practical experiences</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CLO 2</td>
<td>describe actuarial practices, principles, approaches, methods, commonalities, problems and solutions</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CLO 3</td>
<td>explain actuarial practices across the traditional areas of practice</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CLO 4</td>
<td>explain actuarial practices as applied directly on behalf of financial security system providers or as a consultant to those providers</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CLO 5</td>
<td>apply actuarial skills in nontraditional and emerging areas of practice</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CLO 6</td>
<td>provide context for the specific mathematical and technical skills developed in the basic actuarial courses</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CLO 7</td>
<td>prepare for the professional role as an Associate of the Society of Actuaries</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
<td>Pass in STAT3909; and For BSc(Actuarial Science) students only.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Offer in 2018 - 2019</td>
<td>Y</td>
<td>1st sem</td>
<td>Offer in 2019 - 2020</td>
</tr>
<tr>
<td>Grade Descriptors (A+ to F)</td>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
<td>---</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organizational and presentational skills are minimally effective or ineffective.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Course Type</td>
<td>Lecture-based course</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
<td>Details</td>
<td>No. of Hours</td>
</tr>
<tr>
<td>Lectures</td>
<td>---</td>
<td>---</td>
<td>36</td>
</tr>
<tr>
<td>Project work</td>
<td>---</td>
<td>---</td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td>---</td>
<td>---</td>
<td>100</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
<td>Details</td>
<td>Weighting in final course grade (%)</td>
</tr>
<tr>
<td>Presentation</td>
<td>oral presentation</td>
<td>25</td>
<td>CLO 4.5,6</td>
</tr>
<tr>
<td>Project reports</td>
<td>written report</td>
<td>50</td>
<td>CLO 4.5,6,7</td>
</tr>
<tr>
<td>Test</td>
<td>in-class quizzes</td>
<td>25</td>
<td>CLO 1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Required/recommended reading and online materials</td>
<td>Klugman, S., Understanding Actuarial Practice (Society of Actuaries, 2012)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Course Website</td>
<td>http://moodle.hku.hk</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAT3954</th>
<th>Current topics in actuarial science (6 credits)</th>
<th>Academic Year</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department</td>
<td>Statistics & Actuarial Science</td>
<td>Quota</td>
<td>---</td>
</tr>
<tr>
<td>Course Co-ordinator</td>
<td>TBC, Statistics & Actuarial Science ()</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>This course aims at providing practical elements for actuarial students including daily life actuarial practice and the basic capability to understand, research in and handle the laws as and when situations would arise, which will benefit students in their coming future career.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>This course covers a full range of topics related to both areas including 1) Practical Actuarial Practice and 2) Actuaries’ Legal Thinking. For Practical Actuarial Practice: It covers the major practical topics in both Life and Casualty areas. For Life Insurance, it covers the full picture of actuarial control cycle including Product Pricing, Valuation, Financial Reporting and Experience Analysis. For General Insurance, it covers the backbone areas including Product Pricing and Valuation. For Actuaries’ Legal Thinking: This is the 7th year of the course and the full start of a new course structure echoing changes in the market for basic legal and general insurance skills for actuaries. Intellectually stimulating recent legal materials with heavy involvement of actuarial and other general insurance expertise would dominate the course, alongside with basic legal research skills and fundamental legal thinking. Sharing of experience from guests from the General Insurance Industry would also infiltrate the course.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CLO 1</td>
<td>have a basic understanding regarding Actuarial Control Cycle from A to Z for Life Insurance and General</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
This course is concerned with how models which predict the survival pattern of humans or other entities are studied. Topics to be covered include: the introduction of some important basic quantities like the hazard function and survival function; some commonly used parametric survival models; concepts of censoring and/or truncation; parametric estimation of the survival distribution by maximum likelihood estimation method; nonparametric estimation of the survival functions from possibly censored samples by means of the Kaplan-Meier estimator, the Nelson-Aalen estimator; and the kernel density estimator or the Ramlau-Hansen estimator and comparisons of k independent survival functions by the log-rank test, the Breslow test and the Wilcoxon test. The nature and properties of parametric and nonparametric survival models will be studied. This course is concerned with how models which predict the survival pattern of humans or other entities are established. This exercise is sometimes referred to as survival-model construction.

Course Contents & Topics
- The properties and nature of parametric and nonparametric survival models will be studied. Topics to be covered include: the introduction of some important basic quantities like the hazard function and survival function; some commonly used parametric survival models; concepts of censoring and/or truncation; parametric estimation of the survival distribution by maximum likelihood estimation method; nonparametric estimation of the survival functions from possibly censored samples by means of the Kaplan-Meier estimator, the Nelson-Aalen estimator; and the kernel density estimator or the Ramlau-Hansen estimator and comparisons of k independent survival functions by means of the generalized log-rank test, parametric regression models, Cox's semiparametric proportional hazards regression model,
- Multivariate survival analysis.
- On successful completion of this course, students should be able to:
 - CLO 1 acquire a clear understanding of the nature of failure time data or survival data, a generalization of the concept of death and life
 - CLO 2 perform estimation for some commonly used survival models under different types of censoring mechanisms.
 - CLO 3 analyze survival data using the Cox's semiparametric proportional hazards model.
 - CLO 4 extend the Cox's model to a multivariate setup to accommodate multivariate survival data.

Course Learning Outcomes
- Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentional skills.
- Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentional skills.
- Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentional skills.
- Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentional skills.
- Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentional skills are minimally effective or ineffective.

Course Type
- Lecture-based course

Offer in 2018 - 2019

Grade Descriptors
(A+ to F)
- A
- B
- C
- D
- Fail

Course Contents
- Understand the basic elements of a routine judgment, the matrix of the facts and the law involved
- Insure some experience regarding fundamental actuarial practice through practical project
- Possess basic understanding of the legal system in Hong Kong
- Possess fundamental knowledge in certain core legal aspects such as the law of contract and the law of tort
- Possess fundamental knowledge of the law of insurance

Pre-requisites
- Pass in STAT3901, or already enrolled in this course; or
- Pass in STAT3909, or already enrolled in this course; and
- For BSc(Actuarial Science) students only.

Offer in 2019 - 2020
- Y

Offer in 2018 - 2020
- Y

Tutorials
- 12

Examination
- ---

Activities
- Details
- No. of Hours
- Lectures
- 36
- Tutorials
- 12
- Reading / Self study
- 100

Methods
- Details
- Weighting in final course grade (%)
- Assessment Methods to CLO Mapping
- Assignments
- Coursework (assignments, practical project & class test(s))
- 100
- CLO 1,2,3,4,5,6,7

Course Website
- http://moodle.hku.hk

STAT3955
- Survival analysis (6 credits)
- Academic Year: 2018
- Quota: ---

Offering Department
- Statistics & Actuarial Science

Course Co-ordinator
- Dr J F Xu, Statistics & Actuarial Science (xujf@hku.hk)

Teachers Involved
- (Dr J F Xu, Statistics & Actuarial Science)

Course Objectives
- This course is concerned with how models which predict the survival pattern of humans or other entities are established. This exercise is sometimes referred to as survival-model construction.
Pension funds and pension mathematics (6 credits)

Course Objectives
On successful completion of this course, students should be able to:

- **CLO 1**: calculate the pension benefits in accordance with the provisions of a pension plan
- **CLO 2**: calculate the normal cost and actuarial liabilities using different actuarial cost methods
- **CLO 3**: perform gain and loss analyses for pension valuations
- **CLO 4**: select appropriate assumptions and methods for funding or accounting purposes
- **CLO 5**: interpret the valuation results presented in actuarial valuation reports
- **CLO 6**: understand the principles of asset and liability modeling as related to pension plans

Pre-requisites (and Co-requisites and Impermissible combinations)
- Pass in STAT3909; and
- For BSc(Actuarial Science) students only.

Course Contents & Topics
The following topics will be covered:
- Fundamentals of private pension plans; pricing and valuation of pension obligations; actuarial cost methods and their effects on cost patterns; selection of actuarial assumptions; principles of asset and liability management.
- Measuring Pension Obligations
- Actuarial Standard of Practice No. 35, Selection of Demographic and Other Noneconomic Assumptions for Measuring Pension Obligations
- Actuarial Standard of Practice No. 44, Selection and Use of Asset Valuation Methods for Pension Valuations
- Measuring Pension Obligations
- Actuarial Standard of Practice No. 27, Selection of Economic Assumptions for Measuring Pension Obligations
- Actuarial Standard of Practice No. 35, Selection of Demographic and Other Noneconomic Assumptions for Measuring Pension Obligations

Course Materials

Course Website
http://moodle.hku.hk
Course Objectives
A time series consists of a set of observations on a random variable taken over time. Time series arise naturally in climatology, economics, environment studies, finance and many other disciplines. The observations in a time series are usually correlated; the course establishes a framework to discuss this. This course distinguishes different type of time series, investigates various representations for the processes and studies the relative merits of different forecasting procedures. Students will analyse real time-series data on the computer.

Course Contents & Topics
- Stationarity and the autocorrelation functions; linear stationary models; linear non-stationary models; model identification; estimation and diagnostic checking; seasonal models and forecasting methods for time series.

Course Learning Outcomes
- On successful completion of this course, students should be able to:
 - CLO 1 recognize a stationary vs non-stationary time series
 - CLO 2 understand some basic properties of commonly used time series models such as AR (autoregressive), MA (moving average) and ARMA models
 - CLO 3 transform non-stationary time series into stationary ones
 - CLO 4 identify different time series models based on autocorrelation functions
 - CLO 5 fit a suitable AR, MA or ARMA model to real data using SAS (after transforming to stationarity if necessary)
 - CLO 6 perform goodness of fit tests for such models
 - CLO 7 do forecasting with these fitted time series models

Pre-requisites (and Co-requisites and Impermissible combinations)
- Pass in STAT3600; and
- Not for students who have passed in STAT3614, or have already enrolled in this course; and
- Not for students who have passed in STAT3907, or have already enrolled in this course.

Offer in 2018 - 2019
<table>
<thead>
<tr>
<th>Y</th>
<th>1st sem</th>
<th>Offer in 2019 - 2020: Y</th>
</tr>
</thead>
</table>

Grade Descriptors (A+ to F)
- A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
- Fail: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
- Lecture-based course

Course Teaching & Learning Activities
<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting
<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>40</td>
<td>CLO 1.2,3,4,5,6,7</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>60</td>
<td>CLO 1.2,3,4,6,7</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk

STAT4602
- Multivariate data analysis (6 credits)
- **Offering Department** Statistics & Actuarial Science
- **Teachers Involved** Prof T W K Fung, Statistics & Actuarial Science (wingfung@hku.hk)

Course Objectives
In many designed experiments or observational studies, the researchers are dealing with multivariate data, where each observation is a set of measurements taken on the same individual. These measurements are often correlated. The correlation prevents the use of univariate statistics to draw inferences. This course develops the statistical methods for analysing multivariate data through examples in various fields of application and hands-on experience with the statistical software SAS.

Course Contents & Topics

Course Learning Outcomes
- On successful completion of this course, students should be able to:
 - CLO 1 analyze multivariate data with main SAS procedures, such as PROC IML, PROC REG, PROC CORR, PROC CANCORR, PROC PRINCOMP, PROC FACTOR, PROC DISCRIM, PROC CANDISC and etc.
 - CLO 2 compare the mean structure of multiple measurements for one or more than one population(s) by multivariate MANOVA and profile analysis
 - CLO 3 investigate the linear associations among one/two group(s) of variables by multiple, partial and canonical correlation and multivariate regression
 - CLO 4 explore the latent linear structure of a data set with multiple measurements by principal components analysis and factor analysis
 - CLO 5 classify observations of a population with one or more than one measurements by discriminant analysis

Pre-requisites (and Co-requisites)
- Pass in STAT3600 or STAT3907

Department of Statistics & Actuarial Science
Course Type: Lecture-based course

Course Title: Current topics in risk management (6 credits)

Offering Department: Statistics & Actuarial Science

Course Co-ordinator: Ms O T K Choi, Statistics & Actuarial Science (ochoi@hku.hk)

Course Objectives:
This course is designed to broaden the students' knowledge of risk management by considering current topics in risk management. These topics will build on the theory and methods covered in the core courses. Each year, topics offered depend on staff availability.

Course Contents & Topics:
- Liquidity risk; Operational risk; Model risk; Enterprise risk management; Cutting edge risk analytics and innovations in risk management.

Course Learning Outcomes:
- On successful completion of this course, students should be able to:
 - CLO 1: Gain insights into current advances in risk management.
 - CLO 2: Understand current risk management pitfalls and development.
 - CLO 3: Make effective use of models and techniques for managing various kinds of risk.

Pre-requisites and Co-requisites:
- Pass in (STAT3618 or FINA2322) and STAT4601.

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrates little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting:
- **Assignments:** Coursework (assignments, tutorials, and a class test) - 50 CLO 1, 2, 3, 4, 5
- **Examination:** One 2-hour written examination - 50 CLO 1, 2, 3, 4, 5

Reading and Self Study:
- Online materials: Use the HELP button.

Course Website: http://moodle.hku.hk

Required/Recommended Reading and Online Materials:
- Srivastava M. S.: Methods of Multivariate Statistics (John Wiley and Sons, 2002)
- SAS Manuals on-line: Use the HELP button.

Course Grade (%):
- Fail: Demonstrates little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.
- D: Demonstrates partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
- C: Demonstrates general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- B: Demonstrates substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- A: Demonstrates thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

Course Website: http://moodle.hku.hk
Department of Statistics & Actuarial Science

Required/recommended reading and online materials
Basel Committee on Banking Supervision: Basel III: A global regulatory framework for more resilient banks and banking systems (BIS, 2010)

Course Website
http://moodle.hku.hk

STAT4606
Risk management and Basel Accords in banking and finance (6 credits)
Academic Year 2018
Offering Department Statistics & Actuarial Science
Course Co-ordinator Mr P K Y Pang, Statistics & Actuarial Science (the_pang@yahoo.com)
Teachers Involved (Mr P K Y Pang, Statistics & Actuarial Science)
Course Objectives
Mr P K Y Pang, Statistics & Actuarial Science
To provide comprehensive knowledge and in-depth understanding of risk management in the banking and finance industry to students. The focus is on management with basic measurement fundamentals only forming a part of the course. Accordingly, minimal background in quantitative methods will be required and involved. However, basic financial product (e.g., bonds, swaps, options) knowledge will be required.

Course Contents & Topics
The course introduces and explains:
- the importance of risk management,
- risk nature and types,
- design and establishment of a risk management framework,
- the importance of people and corporate culture,
- the complete risk management cycle,
- measurement and management of credit, market and operational risks,
- Basel accords and the capital treatments for credit, market and operational risks,
- key developments (e.g., Know-Your-Customers, Anti-Money laundering, Sarbanes-Oxley) and critical issues,
- the importance of business continuity,
- design and implementation of a business continuity plan.

Course Learning Outcomes
On successful completion of this course, students should be able to:
CLO 1 understand the importance, nature and classification of various risks, and the risk management principle and cycle
CLO 2 design and establish a risk management framework
CLO 3 demonstrate knowledge and understanding of the measurements of credit, market and operational risks
CLO 4 explain and describe Basel accords and its capital treatments for credit, market and operational risks
CLO 5 appreciate the importance of, design and implement a business continuity plan

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in STAT3618 or STAT3910 or STAT3905 or (FINA2322 and any University level 3 course)

Offer in 2018 - 2019
Y 2nd sem Offer in 2019 - 2020 : Y Examination May

Grade Descriptors (A+ to F)
A
Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B
Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C
Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D
Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail
Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course
Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures
36
Tutorials
12
Reading / Self study
100

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments Coursework (assignments, tutorials, and a class test) 40 CLO 1,2,3,4
Examination One 2-hour written examination 60 CLO 1,2,3,4,5

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk
Additional Course Information
This course is previously called STAT2320 as the prerequisite changed to STAT3303.

STAT4607
Credit risk analysis (6 credits)
Academic Year 2018
Offering Department Statistics & Actuarial Science
Course Co-ordinator Dr K P Wat, Statistics & Actuarial Science (watkp@hku.hk)
Teachers Involved (Dr K P Wat, Statistics & Actuarial Science)
Course Objectives
For a commercial bank, credit risk has always been the most significant. It is the risk of default on debt, swap, or
other counterparty instruments. Credit risk may also result from a change in the value of an asset resulting from a change in the counterparty's creditworthiness. This course will introduce students to quantitative models for measuring and managing credit risk. It also aims to provide students with an understanding of the credit risk methodology used in the financial industry and the regulatory framework in which the credit risk models operate.

Course Contents & Topics
Probabilities of default, recovery rates and loss given default; Default and credit migration; credit scoring and internal rating models; Credit portfolio models such as CreditMetrics, CreditPortfolioView, KMV and actuarial approach; Credit derivatives.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- CLO 1 understand the Basel requirements for credit risk
- CLO 2 estimate credit scores using the logit model
- CLO 3 understand and estimate default probabilities using various approaches such as Moody's KMV and the mortality method
- CLO 4 understand the concept of credit value-at-risk and the CreditMetrics approach
- CLO 5 estimate default correlations
- CLO 6 assess rating systems

Pre-requisites
Pass in STAT3618 or STAT3905 or STAT3910 or (FINA2322 and any University level 3 course)

Offer in 2018 - 2019
Y 1st sem Offer in 2019 - 2020 : Y

Grade Descriptors
- A: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentation skills.
- B: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentation skills.
- C: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentation skills.
- D: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentation skills.
- Fail: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentation skills are minimally effective or ineffective.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and class test(s))</td>
<td>40</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td></td>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>60</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website
http://moodle.hku.hk

STAT4608
Market risk analysis (6 credits)

<table>
<thead>
<tr>
<th>Offering Department</th>
<th>Statistics & Actuarial Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Co-ordinator</td>
<td>Dr K Zhu, Statistics & Actuarial Science (mazhuke@hku.hk)</td>
</tr>
<tr>
<td>Teachers Involved</td>
<td>(Dr K Zhu, Statistics & Actuarial Science)</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>Financial risk management has experienced a revolution in the last decade thanks to the introduction of new methods for measuring risk, particularly Value-at-Risk (VaR). This course introduces modern risk management techniques covering the measurement of market risk using VaR models and financial time series models, and stress testing.</td>
</tr>
<tr>
<td>Course Contents & Topics</td>
<td>Risk Measures; Value-at-Risk (VaR) models (parametric, Monte Carlo simulation and Historical simulation); Risk factor mapping; Advanced VaR models (GARCH-type models, extreme-value theory and normal-mixture); Principal Component Analysis and VaR; Backtesting and stress testing.</td>
</tr>
<tr>
<td>Course Learning Outcomes</td>
<td>On successful completion of this course, students should be able to:</td>
</tr>
<tr>
<td>Pre-requisites (and Co-requisites and Impermissible combinations)</td>
<td>Pass in STAT3607 and STAT3910 or Pass in STAT4601 and (FINA2320 or STAT3609)</td>
</tr>
</tbody>
</table>
No Exam

A Big data analytics (6 credits)
(Dr P L H Yu, Statistics & Actuarial Science)

Course Type
Lecture-based course

Course Teaching & Learning Activities

Activities	Details	No. of Hours
Lectures | 36
Tutorials | 12
Reading / Self study | 100

Assessment Methods and Weighting

Methods	Details	Weighting in final course grade (%)	Assessment Methods to CLO Mapping
Assignments | Coursework (assignments, tutorials, and a class test) | 40 | CLO 1,2,3,4,5
Examination | One 2-hour written examination | 60 | CLO 1,2,3,4,5

Course Website
http://moodle.hku.hk

STAT4609

Offering Department
Statistics & Actuarial Science

Course Co-ordinator
Dr P L H Yu, Statistics & Actuarial Science (plhyu@hku.hk)

Teachers Involved
(Dr P L H Yu, Statistics & Actuarial Science)

Course Objectives
In the past decade, huge volume of data with highly complicated structure has appeared in every aspect, such as social web logs, e-mails, video, speech recordings, photographs, tweets and others. The efficient extraction of valuable information from these data sources becomes a challenging task. This course focuses on the practical knowledge and skills of some advanced analytics and statistical modeling for solving big data problems.

Course Contents & Topics
Web analytics, text analytics, sentiment analytics, link analysis, social network analysis, recommender systems (collaborative filtering), and parallel computing for big data analytics

Course Learning Outcomes
On successful completion of this course, students should be able to:

- CLO 1 understand and apply a wide range of data analytic techniques, and recognize their characteristics, strengths and weaknesses
- CLO 2 obtain hands-on experience of computer software for data analytics
- CLO 3 identify and use appropriate data analytic techniques for data extraction, taking into account both the structure of the data and the goals of the user of the discovered knowledge
- CLO 4 evaluate the quality of discovered knowledge, taking into account the requirements of the data analytic task being performed and the goals of the user

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in STAT3612

Offer in 2018 - 2019
Y 2nd sem
Offer in 2019 - 2020: Y

Examination
May

Grade Descriptors
(A+ to F)

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presential skills.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presential skills.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presential skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presential skills.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presential skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities

Activities	Details	No. of Hours
Lectures | 36
Tutorials | 12
Reading / Self study | 100

Assessment Methods and Weighting

Methods	Details	Weighting in final course grade (%)	Assessment Methods to CLO Mapping
Assignments | 30 | CLO 1,2,3,4
Project reports | 30 | CLO 1,2,3,4
Test | 40 | CLO 3,4
STAT4710 Capstone experience for statistics undergraduates (6 credits) Academic Year 2018

Offering Department Statistics & Actuarial Science Quota 50

Course Co-ordinator Prof G Yin, Statistics & Actuarial Science (ug_enquiry@saas.hku.hk)

Teachers Involved Prof G Yin, Statistics & Actuarial Science (ug_enquiry@saas.hku.hk)

Course Objectives This project-based course aims to provide students with capstone experience to formulate and investigate real life problems in the area of statistics, risk management, finance, climate, social science, medicine and scientific research by integrating and applying the statistical theories and quantitative techniques learnt in their junior university years.

Course Contents & Topics No formal teaching. Students are expected to devote 120-140 hours working on this project. Students will work in groups of four or five under the supervision of a teacher. Students are required to give a presentation on their work two to three weeks before the end of the semester, and submit their final report at the end of the semester.

Course Learning Outcomes On successful completion of this course, students should be able to:

CLO 1 formulate a problem using statistical or risk management ideas for a particular issue we are facing with and determine ways in which statistics/risk management can be used to solve the problems or to make predictions.

CLO 2 integrate theory and practice, and to understand limitations of their current knowledge.

CLO 3 work in a team and to collaborate with people with different background.

CLO 4 express ideas effectively in both written and oral forms.

CLO 5 develop further logical, critical thinking, creativity, technical report writing, communication and consultation skills.

CLO 6 advocate to others the appreciation of statistics/risk management as to its relevance to our daily life.

Pre-requisites (and Co-requisites and Impermissible combinations) Students are expected to have satisfactorily completed at least 24 credits of advanced level disciplinary core/elective courses in the Decision Analytics/Risk Management/Statistics Majors. Students who are interested in taking the course should submit their applications to the Department.

This capstone course is only for students majoring in Decision Analytics/Risk Management/Statistics, and is mutually exclusive with STAT3799, STAT4766 and STAT4799.

The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Y 1st sem</th>
<th>2nd sem</th>
<th>Offer in 2019 - 2020: Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type Project-based course

Course Teaching & Learning Activities Activities Details No. of Hours

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation</td>
<td>oral presentation, progress, attendance, and in-class discussion</td>
<td>50</td>
<td>CLO 1, 2, 3, 4, 5, 6</td>
<td></td>
</tr>
<tr>
<td>Research report</td>
<td>written report</td>
<td>50</td>
<td>CLO 1, 2, 3, 4, 5, 6</td>
<td></td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials No specific list of textbooks and references. Students are encouraged to obtain information via various channels (main library, e-journals, internet, and discussions with classmates and teachers, etc.).

Course Website http://moodle.hku.hk

STAT4711 Capstone experience for actuarial science undergraduates (6 credits) Academic Year 2018

Offering Department Statistics & Actuarial Science Quota 50

Course Co-ordinator Prof G Yin, Statistics & Actuarial Science (ug_enquiry@saas.hku.hk)

Teachers Involved Prof G Yin, Statistics & Actuarial Science (ug_enquiry@saas.hku.hk)

Course Objectives This project-based course aims to provide students with capstone experience to formulate and investigate practical problems in actuarial science by integrating and applying actuarial theories and techniques learnt in their university years. It aims to help the students to establish a good and solid foundation of self-learning skills, and to enable
| Course Contents & Topics | No formal teaching will be given for this course. Students are expected to devote 120-140 hours working on this project. Students will work in groups of four or five under the supervision of a teacher and/or an industry supervisor. Students are required to give a presentation on their work two to three weeks before the end of the semester, and submit their final report at the end of the semester. Topics acceptable for projects in this course can be related to any of the traditional actuarial areas of practice such as life insurance, pension, finance, investment, enterprise risk management and general insurance. Students are also encouraged to suggest topics in non-traditional actuarial areas provided they can find a suitable teacher and/or industry supervisor. All topics for this course will be subject to final approval by the Department to ensure relevance to actuarial science.

Course Learning Outcomes | Students will need to decide on the topic for a practical project, conduct market research regarding industry activities related to the topic, and make suggestion on a solution of the problem identified in their project. On successful completion of this course, students should be able to:
- CLO 1 define a practical problem, discuss the issues faced by different stakeholders, and design workable solutions for the problems
- CLO 2 integrate theoretical results and practical approaches, and to specify limitations of current developments
- CLO 3 work in a team and to collaborate with members with different background
- CLO 4 deliver actuarial results effectively in a written report and in oral presentations
- CLO 5 develop further logical, critical thinking, creativity, technical report writing, communication and consultation skills
- CLO 6 explain to a non-actuarial audience the approaches of actuarial science as applied to problems in a financial security system

Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in at least 24 credits of advanced level disciplinary core/elective courses in BSc(Actuarial Science) programme including (Pass in STAT3901, or already enrolled in this course; or Pass in STAT3909, or already enrolled in this course); and This capstone course is only for BSc(Actuarial Science) students, and is mutually exclusive with STAT4767 and STAT4798. The earliest that a student is allowed to take this capstone course is their year 3 study.

Grade Descriptors (A+ to F) | A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type | Project-based course

Course Teaching & Learning Activities	Activities	Details	No. of Hours
Reading / Self study | Tutorials, group work/project, reading/self-study | 120

Assessment Methods and Weighting | Methods | Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping
--- | --- | --- | ---
Oral presentation | oral presentation, progress, in-class discussion | 50 | CLO 1, 2, 3, 4, 5
Research report | written report | 50 | CLO 1, 2, 3, 4, 5

Course Website | http://moodle.hku.hk

STAT4766	Statistics internship (6 credits)	Academic Year	Quota
Statistics & Actuarial Science | 2018 | ---

Course Co-ordinator | Dr C W Kwan, Statistics & Actuarial Science (cwkwan@hku.hk)

Teachers Involved | (Various teachers as the assessors of oral presentations and written reports, Statistics & Actuarial Science)

Course Objectives | This course is offered to students majoring in Decision Analytics/Risk Management/Statistics who take on a minimum of 160 hours of internship work related to his/her major disciplines. It provides students with first-hand experience in the applications of academic knowledge in a real-life work environment. The report should emphasize important working/educational experiences encountered by the student during his/her internship. In many situations, this would mean a report of the project(s) that the student has been involved in during his/her internship.

Course Contents & Topics | Upon completion of the internship, each student is required to submit a written report and to give a presentation on his/her internship experience. The report should emphasize important working/educational experiences encountered by the student during his/her internship. In many situations, this would mean a report of the project(s) that the student has been involved in during his/her internship.

Course Learning Outcomes | CLO 1 gain first-hand work experience in an industry related to decision analytics, risk management or statistics
- CLO 2 apply knowledge in decision analytics, risk management or statistics to solve practical problems in the work place
- CLO 3 understand contexts for specific quantitative skills developed in basic decision analytics, risk management or statistics courses
- CLO 4 communicate specialist knowledge in decision analytics, risk management or statistics to non-experts in a work environment

Pre-requisites (and Co-requisites and Impermissible combinations) | Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Decision Analytics/Risk Management/Statistics Majors. This capstone course is only for students majoring in Decision Analytics/Risk Management/Statistics; and is mutually exclusive with STAT4710.
The earliest that a student is allowed to take this capstone course is their year 3 study. It is expected that students are to work at least 160 hours (or equivalent to 4 weeks full-time).

Course Objectives
- CLO 1: Gain practical experiences during internship
- CLO 2: Describe basic actuarial practices learned during the internship
- CLO 3: Explain how actuarial theories learned in University can be applied in practice
- CLO 4: Provide context for specific technical skills developed in basic actuarial courses

Course Contents & Topics
This course will include a written report which should emphasize important practical/educational experiences encountered by the student during his/her internship. In many situations, this would mean a report of the project(s) that the student has been involved in during his/her internship.

Course Learning Outcomes

- **On successful completion of this course, students should be able to:**
 - CLO 1: Gain practical experiences during internship
 - CLO 2: Describe basic actuarial practices learned during the internship
 - CLO 3: Explain how actuarial theories learned in University can be applied in practice
 - CLO 4: Provide context for specific technical skills developed in basic actuarial courses

Pre-requisites (and Co-requisites and Impermissible combinations)
Pass in at least 24 credits of advanced level disciplinary core/elective courses in BSc(Actuarial Science) programme including STAT3901; and

This capstone course is only for BSc(Actuarial Science) students; and is mutually exclusive with STAT4711.

The earliest that a student is allowed to take this capstone course is their year 3 study.

Grade Descriptors (Pass /Pass with distinction /Fail)
- **Pass:** Able to apply knowledge to solve problems in the workplace. Successfully handles and carries out the work required in the job or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, written and oral report, and evaluation by supervisor(s), etc. Students demonstrating excellent performance in the above would be awarded a grade of "Distinction".
- **Fail:** Very limited or no ability to solve problems in the workplace. Fails to handle or carry out the work required in the job or assigned by supervisor(s). Fails to establish effective collaboration or communication with supervisor(s), other colleagues, or clients in the job. Fails to satisfy the requirements set out in the Course Description regarding working hours, written and oral report, or evaluation by supervisor(s), etc.

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation</td>
<td>oral presentation and in-class discussion</td>
<td>40</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Written report</td>
<td>written report</td>
<td>60</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Course Website
http://moodle.hku.hk

STAT4767: Actuarial science internship (6 credits)

Offering Department: Statistics & Actuarial Science
Academic Year: 2018
Quota: ---

Course Co-ordinator: Dr A G Benchimol, Statistics & Actuarial Science (benchi@hku.hk)

Teachers Involved: (Various teachers as the assessors of oral presentations and written reports, Statistics & Actuarial Science)

Course Objectives: This course is offered to actuarial science students who take on a 6-month full time or similar internships. The objective is for a student to complete this course as a project based on his/her internship.

Course Contents & Topics: This course will include a written report which should emphasize important practical/educational experiences encountered by the student during his/her internship. In many situations, this would mean a report of the project(s) that the student has been involved in during his/her internship.

Course Learning Outcomes: On successful completion of this course, students should be able to:

1. CLO 1: Gain practical experiences during internship
2. CLO 2: Describe basic actuarial practices learned during the internship
3. CLO 3: Explain how actuarial theories learned in University can be applied in practice
4. CLO 4: Provide context for specific technical skills developed in basic actuarial courses

Pre-requisites (and Co-requisites and Impermissible combinations): Pass in at least 24 credits of advanced level disciplinary core/elective courses in BSc(Actuarial Science) programme including STAT3901; and

This capstone course is only for BSc(Actuarial Science) students; and is mutually exclusive with STAT4711.

The earliest that a student is allowed to take this capstone course is their year 3 study.

Grade Descriptors (Pass /Pass with distinction /Fail):
- **Pass:** Able to apply knowledge to solve problems in the workplace. Successfully handles and carries out the work required in the job or assigned by supervisor(s). Establishes effective collaboration and communication with supervisor(s), colleagues, and clients in the job. Successfully fulfills the requirements set out in the Course Description regarding working hours, written and oral report, and evaluation by supervisor(s), etc. Students demonstrating excellent performance in the above would be awarded a grade of "Distinction".
- **Fail:** Very limited or no ability to solve problems in the workplace. Fails to handle or carry out the work required in the job or assigned by supervisor(s). Fails to establish effective collaboration or communication with supervisor(s), other colleagues, or clients in the job. Fails to satisfy the requirements set out in the Course Description regarding working hours, written and oral report, or evaluation by supervisor(s), etc.

Assessment Methods and Weighting:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation</td>
<td>oral presentation and in-class discussion</td>
<td>40</td>
<td>CLO 1,2,3,4</td>
</tr>
<tr>
<td>Written report</td>
<td>written report</td>
<td>60</td>
<td>CLO 1,2,3,4</td>
</tr>
</tbody>
</table>

Course Website: http://moodle.hku.hk

STAT4798: Statistics and actuarial science project (6 credits)

Offering Department: Statistics & Actuarial Science
Academic Year: 2018

Course Co-ordinator: Dr A G Benchimol, Statistics & Actuarial Science (benchi@hku.hk)

Additional Course Information:

- **Examination:** No Exam
- **Offer in 2018 - 2019:** Y
- **Offer in 2019 - 2020:** Y
- **Offer in 2018 - 2019:** Y

- **Course Type:** Internship

- **Course Teaching & Learning Activities:**
 - Activities: Internship work
 - Details: it is expected that students are to work at least 6 months (or equivalent to 4 weeks full-time)
 - No. of Hours: 160

- **Course Website:** http://moodle.hku.hk

Department of Statistics & Actuarial Science
Department of Statistics & Actuarial Science

Offering Department: Statistics & Actuarial Science

Quota: 50

Teachers Involved: Prof S M S Lee, Statistics & Actuarial Science (smslee@hku.hk)

Course Objectives: Each year a few projects suitable for Actuarial Science students will be offered to provide students with practical experience in approaching a real problem, in report writing and in oral presentation.

Course Contents & Topics

<table>
<thead>
<tr>
<th>Pre-requisites (and Co-requisites and Impermissible combinations)</th>
<th>Pass in at least 24 credits of advanced level disciplinary core/elective courses in BSc(Actuarial Science) programmes including STAT3902 and STAT3907; and Passes or already enrolled in at least one of the following courses: STAT3616, STAT3911, STAT4602; and This capstone course is only for BSc(Actuarial Science) students; and subject to the consent of course coordinator. This course is mutually exclusive with STAT4711. The earliest that a student is allowed to take this capstone course is their year 3 study.</th>
</tr>
</thead>
</table>

Course Learning Outcomes

- These projects, under the supervision of individual staff members, involve the applications of statistics and/or probability in a wide range of problems of practical and/or academic interests.
- On successful completion of this course, students should be able to:
 - CLO 1 formulate meaningful research problems
 - CLO 2 learn and apply advanced techniques in probability and/or statistics to solve real life problems
 - CLO 3 summarize and present research findings in a professional manner

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A to F)</th>
<th>Offer in 2018 - 2019</th>
<th>Examination</th>
<th>Offer in 2019 - 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Course Type: Project-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation</td>
<td>oral presentation & in-class discussion written report</td>
<td>40</td>
<td>CLO 1.2,3</td>
</tr>
<tr>
<td>Research report</td>
<td></td>
<td>60</td>
<td>CLO 1.2,3</td>
</tr>
</tbody>
</table>

Course Website: http://moodle.hku.hk

Additional Course Information: Approval is subject to past academic performance.

STAT4799

Offering Department: Statistics & Actuarial Science

Quota: 30

Teachers Involved: Prof S M S Lee, Statistics & Actuarial Science (smslee@hku.hk)

Course Objectives: Each year a few projects suitable for students majoring in Decision Analytics/ Risk Management/ Statistics will be offered to provide students with practical experience in approaching a real problem, in report writing and in oral presentation.

Course Contents & Topics

- These projects, under the supervision of individual staff members, involve the applications of statistics and/or probability in a wide range of problems of practical and/or academic interests.

Course Learning Outcomes

- On successful completion of this course, students should be able to:
 - CLO 1 gain first-hand experience in solving a research or applied problem in statistics or related areas
 - CLO 2 develop skills in important technical tools, including the use of computer software or programs, for typical statistical research and data analyses
 - CLO 3 write succinct reports on the findings of a research study
 - CLO 4 make concise oral presentation of the findings of a research study

Pre-requisites (and Co-requisites and Impermissible combinations)

- Pass in at least 24 credits of advanced level disciplinary core/elective courses in the Decision Analytics/Risk Management/Statistics Majors including STAT3600; and Passes or already enrolled in at least one of the following courses: STAT3612, STAT3911, STAT4601, STAT4602; and Not for students who have already enrolled in STAT3799 in this academic year.

This capstone course is only for students majoring in Decision Analytics/Risk Management/Statistics; and subject to the consent of course coordinator. This course is mutually exclusive with STAT4710. The earliest that a student is allowed to take this capstone course is their year 3 study.

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A to F)</th>
<th>Offer in 2018 - 2019</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Grade Descriptors: These projects, under the supervision of individual staff members, involve the applications of statistics and/or probability in a wide range of problems of practical and/or academic interests.

- On successful completion of this course, students should be able to:
 - CLO 1 demonstrate thorough grasp of the subject. Show strong analytical and critical abilities and logical thinking, with evidence of original thought. Insightful use and critical analysis / evaluation of information drawn from a full range of high quality sources and to quote/reference aptly. Critical use of data and results to draw appropriate and insightful conclusions. Apply highly effective organizational and presentational skills. (Work of A+ should show considerable additional work beyond that is required in wider areas relevant to the topic.)
 - CLO 2 demonstrate substantial grasp of the subject. Evidence of analytical and critical abilities and logical thinking. Critical use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Correct use of data of results to draw appropriate conclusions. Apply effective organizational and presentational skills.
 - CLO 3 demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Use of relevant information from sources, showing ability to make meaningful comparisons between different secondary interpretations and to quote/reference aptly. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.
 - CLO 4 demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through a summary rather than analysis and comparison. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.
 - Fail demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

Assessment Methods to CLO Mapping

<table>
<thead>
<tr>
<th>Assessment Methods to CLO Mapping</th>
<th>CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLO 1.2,3</td>
<td>CLO 1.2,3</td>
</tr>
</tbody>
</table>
C. Demonstrate general but incomplete grasp of the subject. Evidence of some analytical and critical abilities and logical thinking. Use of relevant information from sources, showing ability to make comparisons between different interpretations and to quote/refer to others correctly. Mostly correct but some erroneous use of data and results to draw appropriate conclusions. Apply moderately effective organizational and presentational skills.

D. Demonstrate partial but limited grasp, with retention of some relevant information, of the subject. Evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Demonstrate use and reference of several sources, but mainly through summary rather than analysis and comparison. Limited ability to use data and results to draw appropriate conclusions. Apply limited or barely effective organizational and presentational skills.

Fail. Demonstrate evidence of little or no grasp of the knowledge and understanding of the subject. Evidence of little or lack of analytical and critical abilities, logical and coherent thinking. Limited use of secondary sources and no critical comparison of them. Misuse of data and results and/or unable to draw appropriate conclusions. Organization and presentational skills are minimally effective or ineffective.

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Project-based course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Teaching & Learning Activities</td>
<td>Activities</td>
</tr>
<tr>
<td></td>
<td>Reading / Self study</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
</tr>
<tr>
<td></td>
<td>Dissertation</td>
</tr>
<tr>
<td></td>
<td>Oral presentation</td>
</tr>
<tr>
<td>Course Website</td>
<td>http://moodle.hku.hk</td>
</tr>
<tr>
<td>Additional Course Information</td>
<td>Approval is subject to past academic performance.</td>
</tr>
</tbody>
</table>

STAT4901 Risk theory II (6 credits)

Academic Year: 2018

Offering Department: Statistics & Actuarial Science

Quota: ---

Teachers Involved:

Course Objectives:

This course is an advanced course in risk theory which extends various topics discussed in STAT3906. It discusses utility theory, ruin theory, aggregate claims process, and related topics.

Course Contents & Topics:

Utility theory; discrete ruin model; compound Poisson risk model; ruin probability; reinsurance; adjustment coefficient; Lundbergs inequality; Tijms approximation; non-homogeneous birth process; contagion model; mixed Poisson process; inflation model; IBNR (Incurred But Not Reported) claims; mixed Erlang distributions; stop-loss moments; equilibrium distributions.

Course Learning Outcomes:

On successful completion of this course, students should be able to:

- CLO 1 understand utility theory including some commonly used utility functions, Jensens inequality, risk aversion and utility maximization
- CLO 2 define discrete and continuous ruin models
- CLO 3 calculate the adjustment coefficient, Lundbergs inequality and Tijms approximation in ruin theory
- CLO 4 understand the effect of reinsurance and change of parameters on ruin probability
- CLO 5 understand non-homogeneous birth process and its applications as contagion models for claim frequencies
- CLO 6 understand mixed Poisson process and its applications including the inflation model and the IBNR model
- CLO 7 derive the relationship between stop-loss moments and equilibrium distributions

Pre-requisites (and Co-requisites and Impermissible combinations): Pass in STAT3906

Offer in 2018 - 2019:

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
</tr>
<tr>
<td>B</td>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
</tr>
<tr>
<td>C</td>
<td>Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
</tr>
<tr>
<td>D</td>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.</td>
</tr>
<tr>
<td>Fail</td>
<td>Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.</td>
</tr>
</tbody>
</table>

Course Type: Lecture-based course

Assessment Methods and Weighting:

Methods: Assignments and Examination

Examination: 3-hour written examination

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
<tr>
<td>Examination</td>
<td>One 3-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3,4,5,6</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials:

Course Website http://moodle.hku.hk

STAT4902 Selected topics in actuarial science (6 credits) Academic Year 2018
Offering Department Statistics & Actuarial Science Quota ---
Course Co-ordinator TBC, Statistics & Actuarial Science ()
Teachers Involved This course is an advanced course in actuarial science which discusses selected topics which potential graduate students will find useful. It focuses on tools that are in the frontier of actuarial science with examples on applications.

Course Contents & Topics The contents will be chosen from the following topics:
- Coherent risk measures; Premium calculation principles; Copulas; Extreme value theory; Stochastic dominance; Ordering of risks; Renewal equations with insurance applications; Reliability properties; Generalized linear models; Comonotonicity; Measures of dependency; Phase-type distributions; Applications to enterprise risk analysis; Other topics as determined by the instructor.

Course Learning Outcomes On successful completion of this course, students should be able to:
- CLO 1: understand the mathematical tools useful for further research and applications
- CLO 2: apply the tools to solve potentially unseen problems

Pre-requisites (and Co-requisites and Impermissible combinations) Pass in STAT3906

Grade Descriptors (A+ to F)
A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
C Demonstrate partial but limited command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
D Demonstrate partial but limited command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type Lecture-based course

Course Teaching & Learning Activities
Activities Details No. of Hours
Lectures 36
Tutorials 12
Reading / Self study

Assessment Methods and Weighting
Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping
Assignments Coursework (assignments, tutorials and class test(s)) 40 CLO 1,2
Examination 60 CLO 1,2

Required/recommended reading and online materials

Course Website http://moodle.hku.hk

STAT4903 Actuarial techniques for general insurance (6 credits) Academic Year 2018
Offering Department Statistics & Actuarial Science Quota ---
Course Co-ordinator Dr A G Benchimol, Statistics & Actuarial Science (benchi@hku.hk)
Teachers Involved (Dr A G Benchimol,Statistics & Actuarial Science)

Course Objectives The purpose of this course is to develop knowledge of the basic techniques for ratemaking and estimating claim liabilities for general insurance. Application of the actuarial techniques to resolve general insurance problems will be emphasized. The course also provides general knowledge on the general insurance markets in Hong Kong and China. Students will acquire the fundamental concept on general insurance actuarial science together with the supporting calculations.

Course Contents & Topics
1. General Insurance Markets in Hong Kong, Taiwan and PRC
 - Introduction of general insurance markets
 - Regulations on general insurance
2. Basic techniques for ratemaking
 - How to read and use manual rate pages
 - Ratemaking related to exposures
 - Ratemaking related to premiums
 - Ratemaking related to loss and loss adjustment expenses
 - Calculate the underwriting expense provisions
 - Pure premium methods
 - Loss ratio methods
 - Rating differential and relatitivies
 - Considerations when selecting the final rates

Course Website http://moodle.hku.hk
Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand the feature and underlying risk of general insurance products
- CLO 2 calculate the premium rate for basic general insurance products
- CLO 3 estimate the claims liabilities for general insurance products

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in STAT3906

Offer in 2018 - 2019

Y 1st sem Offer in 2019 - 2020 : Y

Grade Descriptors (A+ to F)

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining all most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>coursework (assignments, tutorials, and a class test)</td>
<td>25</td>
<td>CLO 1, 2, 3</td>
</tr>
<tr>
<td>Examination</td>
<td>One 3-hour written examination</td>
<td>75</td>
<td>CLO 1, 2, 3</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

- Actuarial Standard Board of the American Academy of Actuaries, Actuarial Standard of Practice No. 13, Trending Procedures in Property/Casualty Insurance Ratemaking
- American Academy of Actuaries Committee on Risk Classification, Risk Classification Statement of Principles, June 1980
- Feldthum, S., Personal Automobile Premiums: An Asset Share Pricing Approach for Property-Casualty Insurance, PCAS LXXIII, 1996, pp. 190-256 (excluding Sections 7-9)
- Insurance Services Office, Inc., Personal Automobile Manual (Effective 6-98), General Rules 1-6 only.

Additional Course Information

References:
- Actuarial Standard Board of the American Academy of Actuaries, Actuarial Standard of Practice No. 13, Trending Procedures in Property/Casualty Insurance Ratemaking
- American Academy of Actuaries Committee on Risk Classification, Risk Classification Statement of Principles, June 1980
- Feldthum, S., Personal Automobile Premiums: An Asset Share Pricing Approach for Property-Casualty Insurance, PCAS LXXIII, 1996, pp. 190-256 (excluding Sections 7-9)
- Insurance Services Office, Inc., Personal Automobile Manual (Effective 6-98), General Rules 1-6 only.

On successful completion of this course, students should be able to:

- CLO 1 understand and apply a wide range of predictive analytics techniques for risk modelling
- CLO 2 apply the techniques by using the R programming language and interpret the outputs
- CLO 3 recognize and compare the characteristics, strengths and weaknesses of different methods

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in STAT3907 or STAT3600; and Not for students who have passed in STAT3612, or already enrolled in this course; and For BSc(Actuarial Science) students only.

Offer in 2018 - 2019

Y 2nd sem Offer in 2019 - 2020 : Y

Grade Descriptors

Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Treatment of the feature of general insurance products, and use of predictive analytics techniques, such as principal component analysis, naive Bayes classification, decision tree models, and cluster analysis. The R programming language will be used for actual implementation.

Basics of statistical learning, cross-validation, linear model selection and regularization (subset selection, shrinkage methods, dimensional reduction methods), tree-based methods (decision trees, bagging, boosting, random forests), principal component analysis, naive Bayes classification, decision tree models, and cluster analysis. The R programming language will be used for actual implementation.

On successful completion of this course, students should be able to:

- CLO 1 understand the feature and underlying risk of general insurance products
- CLO 2 calculate the premium rate for basic general insurance products
- CLO 3 estimate the claims liabilities for general insurance products

Using a combination of predictive learning techniques, students are expected to discuss issues associated with predictive analytics in insurance. Specific topics such as data requirement, data analysis, building and analyzing predictive models, and data-driven decision making will be covered.

On successful completion of this course, students should be able to:

- CLO 1 understand the feature and underlying risk of general insurance products
- CLO 2 calculate the premium rate for basic general insurance products
- CLO 3 estimate the claims liabilities for general insurance products

Using a combination of predictive learning techniques, students are expected to discuss issues associated with predictive analytics in insurance. Specific topics such as data requirement, data analysis, building and analyzing predictive models, and data-driven decision making will be covered.

Course Contents & Topics

Basics of statistical learning, cross-validation, linear model selection and regularization (subset selection, shrinkage methods, dimensional reduction methods), tree-based methods (decision trees, bagging, boosting, random forests), principal component analysis, naive Bayes classification, decision tree models, and cluster analysis. The R programming language will be used for actual implementation.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand the feature and underlying risk of general insurance products
- CLO 2 calculate the premium rate for basic general insurance products
- CLO 3 estimate the claims liabilities for general insurance products

Using a combination of predictive learning techniques, students are expected to discuss issues associated with predictive analytics in insurance. Specific topics such as data requirement, data analysis, building and analyzing predictive models, and data-driven decision making will be covered.

Course Contents & Topics

Basics of statistical learning, cross-validation, linear model selection and regularization (subset selection, shrinkage methods, dimensional reduction methods), tree-based methods (decision trees, bagging, boosting, random forests), principal component analysis, naive Bayes classification, decision tree models, and cluster analysis. The R programming language will be used for actual implementation.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand and apply a wide range of predictive analytics techniques for risk modelling
- CLO 2 apply the techniques by using the R programming language and interpret the outputs
- CLO 3 recognize and compare the characteristics, strengths and weaknesses of different methods

Using a combination of predictive learning techniques, students are expected to discuss issues associated with predictive analytics in insurance. Specific topics such as data requirement, data analysis, building and analyzing predictive models, and data-driven decision making will be covered.

Course Contents & Topics

Basics of statistical learning, cross-validation, linear model selection and regularization (subset selection, shrinkage methods, dimensional reduction methods), tree-based methods (decision trees, bagging, boosting, random forests), principal component analysis, naive Bayes classification, decision tree models, and cluster analysis. The R programming language will be used for actual implementation.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand and apply a wide range of predictive analytics techniques for risk modelling
- CLO 2 apply the techniques by using the R programming language and interpret the outputs
- CLO 3 recognize and compare the characteristics, strengths and weaknesses of different methods

Using a combination of predictive learning techniques, students are expected to discuss issues associated with predictive analytics in insurance. Specific topics such as data requirement, data analysis, building and analyzing predictive models, and data-driven decision making will be covered.
Course Details

Department of Statistics & Actuarial Science

Course Title: Research methods in statistics (6 credits)

Course Type: Lecture-based course

Offering Department: Statistics & Actuarial Science

Teachers Involved:
- Course Co-ordinator: Prof J J F Yao, Statistics & Actuarial Science (jeffyao@hku.hk)
- Course Objectives: This course introduces some statistical concepts and methods which potential graduate students will find useful in preparing for work on a research degree in statistics. Focus is on applications of state-of-the-art statistical techniques and their underlying theory.

Course Contents & Topics

Contents may be selected from:
1. Basic asymptotic methods: modes of convergence; stochastic orders; laws of large numbers; central limit theorems; delta method; Edgeworth expansions; saddlepoint approximations.
2. Parametric and nonparametric likelihood methods: high-order approximations; profile likelihood and its variants; signed likelihood ratio statistics; empirical likelihood.
3. Nonparametric statistical inference: sign and rank tests; Kolmogorov-Smirnov test; nonparametric regression; density estimation; kernel methods.
4. Computationally-intensive methods: cross-validation; bootstrap; permutation methods.
5. Robust methods: measures of robustness; M-estimator; L-estimator; R-estimator; estimating functions.
6. Sequential analysis: sequential probability ratio test; sequential estimation.
7. Computationally-intensive methods: cross-validation; bootstrap; permutation methods.
8. Other topics as determined by the instructor.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 comprehend the language and technicalities found in statistical research literature
- CLO 2 understand the use of standard mathematical tools for conducting statistical research
- CLO 3 apply a variety of research tools to solve standard statistical problems
- CLO 4 acquire exposure to some developments in contemporary statistical research

Pre-requisites

Pass in STAT3600 or STAT3907

Offer in 2018 - 2019

- **Y 1st sem Offer in 2019 - 2020 : Y**

Grade Descriptors (A+ to F)

<table>
<thead>
<tr>
<th>Grade Descriptors</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type

- Lecture-based course

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, test(s) and project(s))</td>
<td>50%</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>50%</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
</tbody>
</table>

| Course Website | http://moodle.hku.hk |

<table>
<thead>
<tr>
<th>STAT7609 Research methods in statistics (6 credits)</th>
<th>Academic Year</th>
<th>Quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offering Department Statistics & Actuarial Science</td>
<td>2018</td>
<td>---</td>
</tr>
<tr>
<td>Course Co-ordinator Prof J J F Yao, Statistics & Actuarial Science (jeffyao@hku.hk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teachers Involved (Prof J J F Yao,Statistics & Actuarial Science)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Objectives: This course introduces some statistical concepts and methods which potential graduate students will find useful in preparing for work on a research degree in statistics. Focus is on applications of state-of-the-art statistical techniques and their underlying theory.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Course Contents & Topics**
| Contents may be selected from:
| (1) Basic asymptotic methods: modes of convergence; stochastic orders; laws of large numbers; central limit theorems; delta method; Edgeworth expansions; saddlepoint approximations.
| (2) Parametric and nonparametric likelihood methods: high-order approximations; profile likelihood and its variants; signed likelihood ratio statistics; empirical likelihood.
| (3) Nonparametric statistical inference: sign and rank tests; Kolmogorov-Smirnov test; nonparametric regression; density estimation; kernel methods.
| (4) Computationally-intensive methods: cross-validation; bootstrap; permutation methods.
| (5) Robust methods: measures of robustness; M-estimator; L-estimator; R-estimator; estimating functions.
| (6) Sequential analysis: sequential probability ratio test; sequential estimation.
| (7) Model selection using information criteria.
| (8) Other topics as determined by the instructor. |
| **Course Learning Outcomes**
| On successful completion of this course, students should be able to:
| - CLO 1 comprehend the language and technicalities found in statistical research literature
| - CLO 2 understand the use of standard mathematical tools for conducting statistical research
| - CLO 3 apply a variety of research tools to solve standard statistical problems
| - CLO 4 acquire exposure to some developments in contemporary statistical research
| **Pre-requisites**
| Pass in STAT3600 or STAT3907
| **Offer in 2018 - 2019**
| Y 1st sem Offer in 2019 - 2020 : Y
| **Grade Descriptors (A+ to F)**
| | A | B | C | D | Fail |
| | **learning outcomes.** Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills. |
| | **Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.** |
| | **Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.** |
| | **Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes.** |
| | **Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems.** |

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture-based course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities</td>
<td>Details</td>
</tr>
<tr>
<td>Lectures</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Methods and Weighting</th>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, test(s) and project(s))</td>
<td>50%</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>50%</td>
<td>CLO 1,2,3</td>
<td></td>
</tr>
</tbody>
</table>

| Course Website | http://moodle.hku.hk |

| Department of Statistics & Actuarial Science | 793 |
Course Co-ordinator

Prof H L Yang, Statistics & Actuarial Science
(hlyang@hku.hk)

Course Objectives

This course provides an introduction to measure theory and probability. The course will focus on some basic concepts in theoretical probability which are important for students to do research in actuarial science, probability and statistics.

Course Contents & Topics

Contents include: sigma-algebra, measurable space, measure and probability, measure space and probability space, measurable functions, random variables, integration theory, characteristic functions, convergence of random variables, Hilbert spaces, conditional expectation, martingales.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 understand the fundamental measure theory and probability theory

CLO 2 learn the general concept of integration, understand the monotone convergence theorem, Fatou's lemma and dominated convergence theorem

CLO 3 understand the concept of conditional expectation

CLO 4 have some elementary knowledge of martingale

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in STAT3603 or STAT3903

Offer in 2018 - 2019

Y 1st sem Offer in 2019 - 2020 : Y

Grade Descriptors (A to F)

A Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.

B Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.

C Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.

D Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.

Fail Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type

Lecture-based course

Course Teaching & Learning Activities

Activities Details No. of Hours

Lectures 36

Tutorials 12

Reading / Self study 100

Assessment Methods and Weighting

Methods Details Weighting in final course grade (%) Assessment Methods to CLO Mapping

Assignments Coursework (assignments, tutorials, and a class test) 25 CLO 1,2,3,4

Examination One 2-hour written examination 75 CLO 1,2,3,4

Required/recommended reading and online materials

Course Website

http://moodle.hku.hk

STAT7611

Computational statistics (6 credits)

Academic Year 2018

Offering Department

Statistics & Actuarial Science

Quota ---

Course Co-ordinator

Prof G Yin, Statistics & Actuarial Science (ggyin@hku.hk)

Course Objectives

This course aims to give undergraduate and postgraduate students in statistics a background in modern computationally intensive methods in statistics. It emphasizes the role of computation as a fundamental tool of discovery in data analysis, of statistical inference, and for development of statistical theory and methods. Contents include: Bayesian statistics, Markov chain Monte Carlo methods including Gibbs sampler, the Metropolis-Hastings algorithm, and data augmentation; Generation of random variables including the inversion methods, rejection sampling, the sampling/importance resampling method; Optimization techniques including Newton’s method, expectation-maximization (EM) algorithm and its variants, and minorization-maximization (MM) algorithms; Integration including Laplace approximations, Gaussian quadrature, the importance sampling method; and other topics such as Hidden Markov models, neural networks, and Bootstrap methods.

Course Learning Outcomes

On successful completion of this course, students should be able to:

CLO 1 understand the importance of the technique for generating random variables in Bayesian statistics, Monte Carlo integration and bootstrapping methods

CLO 2 realize the advantages and disadvantages of the Newton-Raphson algorithm and the Fisher scoring algorithm and apply them to fit generalized linear models

CLO 3 understand the essence and basic principle of the EM-type algorithms and MM-type algorithms, realize
their range of application, and apply them to solve practical problems

CLO 4 apply EM-type algorithms to find the posterior mode and apply Markov chain Monte Carlo methods to generate posterior samples

CLO 5 apply Bootstrap methods to obtain estimated standard errors of estimators and confidence intervals of parameters for both parametric and non-parametric cases

Pre-requisites

Pass in STAT3600 or STAT3907

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Y</th>
<th>1st sem</th>
<th>Offer in 2019 - 2020 : Y</th>
<th>Examination</th>
<th>Dec</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td></td>
<td></td>
<td>Examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td></td>
<td></td>
<td>Examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td></td>
<td></td>
<td>Examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td></td>
<td></td>
<td>Examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Objectives

On successful completion of this course, students should be able to:

- CLO 1 understand the basic characteristic and rationale behind the formulation of each statistical model
- CLO 2 identify for a given set of data the most suitable statistical model and tools to use
- CLO 3 develop computational skills of building scoring models for various management and prediction, problems involving binary and count responses; employing the powerful tool of kernel smoothing using R or Python for real data mining problems; and analysing data with R packages glm2, lme4, gam, depmixS4, bnlm or equivalent Python libraries

Course Contents & Topics

Topics from: (i) Generalized linear models; (ii) Mixed models; (iii) Kernel and local polynomial regression; selection of smoothing parameters; (iv) Generalized additive models; (v) Hidden Markov model and Bayesian network.

Course Learning Outcomes

- Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentional skills.
- Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentional skills.
- Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentional skills.
- Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentional skills.
- Fail

Assessment Methods and Weighting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Details</th>
<th>Weighting in final course grade (%)</th>
<th>Assessment Methods to CLO Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>Coursework (assignments, practical work, and a term test)</td>
<td>25</td>
<td>CLO 1,2,3,4,5</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>75</td>
<td>CLO 1,2,3,4,5</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials

Course Website

http://moodle.hku.hk

STAT7614

Advanced statistical modelling (6 credits)

Offering Department

Statistics & Actuarial Science

Course Co-ordinator

Dr Y K Chung, Statistics & Actuarial Science (yukchung@hku.hk)

Teachers Involved

Dr Y K Chung, Statistics & Actuarial Science

Course Objectives

This course introduces modern methods for constructing and evaluating statistical models and their implementation using popular computing software, such as R or Python. It will cover the underlying principles of each modelling approach and the model estimation procedures.

Course Contents & Topics

Topics from: (i) Generalized linear models; (ii) Mixed models; (iii) Kernel and local polynomial regression; selection of smoothing parameters; (iv) Generalized additive models; (v) Hidden Markov model and Bayesian network.

Course Learning Outcomes

On successful completion of this course, students should be able to:

- CLO 1 understand the basic characteristic and rationale behind the formulation of each statistical model
- CLO 2 identify for a given set of data the most suitable statistical model and tools to use
- CLO 3 develop computational skills of building scoring models for various management and prediction, problems involving binary and count responses; employing the powerful tool of kernel smoothing using R or Python for real data mining problems; and analysing data with R packages glm2, lme4, gam, depmixS4, bnlm or equivalent Python libraries

Pre-requisites (and Co-requisites and Impermissible combinations)

Pass in STAT3600 or STAT3907

Offer in 2018 - 2019

<table>
<thead>
<tr>
<th>Grade Descriptors (A+ to F)</th>
<th>Y</th>
<th>1st sem</th>
<th>2nd sem</th>
<th>Offer in 2019 - 2020 : Y</th>
<th>Examination</th>
<th>Dec</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Type

Lecture-based course

Course Teaching & Learning Activities

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Reading / Self study</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Assessment Methods and Weighting</td>
<td>Methods</td>
<td>Details</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Assignments</td>
<td>Coursework (assignments and class test(s))</td>
<td>50</td>
</tr>
<tr>
<td>Examination</td>
<td>One 2-hour written examination</td>
<td>50</td>
</tr>
</tbody>
</table>

Required/recommended reading and online materials
- R.H. Myers et al., 2010: Generalized Linear Models (2nd ed.), Wiley
- W. Hardle et al., 2004: Nonparametric and Semi-parametric Models, Springer
- M. Scutari & J. Denis, 2015: Bayesian Networks: with Examples in R, CRC Press
- Danielsson Jon: Financial Risk Forecasting (Willy 2011)

Course Website
http://moodle.hku.hk

Course Details
- **Course Code**: STAT7615
- **Title**: Advanced quantitative risk management and finance (6 credits)
- **Offering Department**: Statistics & Actuarial Science
- **Co-ordinator**: Dr Z Zhang, Statistics & Actuarial Science (zhangz08@hku.hk)
- **Course Objectives**: This course covers statistical methods and models of importance to risk management and finance and links finance theory to market practice via statistical modeling and decision making. Emphases will be put on empirical analyses to address the discrepancy between finance theory and market data.
- **Course Contents & Topics**: Contents include: Elementary Stochastic Calculus; Basic Monte Carlo and Quasi-Monte Carlo Methods; Variance Reduction Techniques; Simulating the value of options and the value-at-risk for risk management; Review of univariate volatility models; multivariate volatility models; Value-at-risk and expected shortfall; estimation, back-testing and stress testing; Extreme value theory for risk management.

Course Learning Outcomes
On successful completion of this course, students should be able to:
- **CLO 1**: apply Monte Carlo methods to determine the value of options and other derivative securities
- **CLO 2**: predict volatility of a set of securities using appropriate models
- **CLO 3**: estimate the value-at-risk under extreme value theory

Pre-requisites
Pass in STAT4608

Offer in 2018 - 2019
- **Offer in 2018 - 2019**: Y
- **Offer in 2019 - 2020**: Y
- **Examination**: May

Grade Descriptors (A+ to F)
- **A**: Demonstrate thorough mastery at an advanced level of extensive knowledge and skills required for attaining all the course learning outcomes. Show strong analytical and critical abilities and logical thinking, with evidence of original thought, and ability to apply knowledge to a wide range of complex, familiar and unfamiliar situations. Apply highly effective organizational and presentational skills.
- **B**: Demonstrate substantial command of a broad range of knowledge and skills required for attaining at least most of the course learning outcomes. Show evidence of analytical and critical abilities and logical thinking, and ability to apply knowledge to familiar and some unfamiliar situations. Apply effective organizational and presentational skills.
- **C**: Demonstrate general but incomplete command of knowledge and skills required for attaining most of the course learning outcomes. Show evidence of some analytical and critical abilities and logical thinking, and ability to apply knowledge to most familiar situations. Apply moderately effective organizational and presentational skills.
- **D**: Demonstrate partial but limited command of knowledge and skills required for attaining some of the course learning outcomes. Show evidence of some coherent and logical thinking, but with limited analytical and critical abilities. Show limited ability to apply knowledge to solve problems. Apply limited or barely effective organizational and presentational skills.
- **Fail**: Demonstrate little or no evidence of command of knowledge and skills required for attaining the course learning outcomes. Lack of analytical and critical abilities, logical and coherent thinking. Show very little or no ability to apply knowledge to solve problems. Organization and presentational skills are minimally effective or ineffective.

Course Type
Lecture-based course

Course Teaching & Learning Activities
- **Activities**: Details | No. of Hours
 - Lectures 36
 - Tutorials 12
 - Reading / Self study

Assessment Methods and Weighting
- **Methods**: Details | Weighting in final course grade (%) | Assessment Methods to CLO Mapping
 - Assignments Coursework (assignments, tutorials, and a class test) 25 CLO 1,2,3
 - Examination One 2-hour written examination 75 CLO 1,2,3

Required/recommended reading and online materials
- Danielsson Jon: Financial Risk Forecasting (Willy 2011)

Course Website
http://moodle.hku.hk
SECTION X Degree Regulations

REGULATIONS FOR THE DEGREE OF
BACHELOR OF SCIENCE
(BSc)

These regulations apply to students admitted under the 4-year ‘2012 curriculum’ to the BSc degree curriculum to the first year in the academic year 2017-18 and thereafter, and students admitted directly to the second year in the academic year 2018-19.

(See also General Regulations and Regulations for First Degree Curricula)

Definitions

Sc1 1 For the purpose of these regulations and the syllabuses for the BSc degree, unless the context otherwise requires:

“Science course” means any course offered by the Faculty of Science, and the School of Biomedical Sciences.

“Advanced Science course” means any level 3, 4 or above course offered by the Faculty of Science and the School of Biomedical Sciences.

“Course” means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.

“Syllabus” means courses taught by departments, centres, and schools, offered under a degree curriculum.

“Credits” or “credit-units” means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.

Admission to the BSc degree

Sc2 To be eligible for admission to the BSc degree, candidates shall:

(a) comply with the General Regulations;

(b) comply with the Regulations for First Degree Curricula; and

(c) satisfy all the requirements of the curriculum in accordance with these regulations and the syllabuses.

Period of study

Sc3 The curriculum for the BSc degree shall normally require eight semesters of full-time study, extending over not fewer than four academic years, and shall include any assessment to be held during and/or at the end of each semester. Candidates shall not in any case be permitted to extend their studies beyond the maximum period of registration of six academic years.

1 This regulation should be read in conjunction with UG1 of the Regulations for First Degree Curricula.
Selection of courses

Sc4 Candidates shall select their courses in accordance with these regulations and the guidelines specified in the syllabuses before the beginning of each semester. Any change to the selection of courses shall be made only during the add/drop period of the semester in which the course begins, and such changes shall not be reflected in the transcript of the candidate. Requests for changes after the designated add/drop period of the semester shall not be considered.

Curriculum requirements and progression in curriculum

Sc5

(a) Candidates shall satisfy the requirements prescribed in UG5 of the Regulations of First Degree Curricula.

(b) Candidates shall take not fewer than 240 credits, in the manner specified in these regulations and the syllabuses.

(c) Candidates shall take at least 96 credits of Science courses including all required courses of the major programme of the BSc degree curriculum.

(d) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements may be fewer than 24 credits.

(e) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load of 288 credits for the normative period of study specified in the curriculum regulations, save as provided for under Sc5(f).

(f) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load of 432 credits for the maximum period of registration specified in the curriculum regulations.

(g) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The number of transferred credits will be recorded on the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.

(h) Candidates shall be recommended for discontinuation of their studies if they have:

(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or

(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or

(iii) exceeded the maximum period of registration specified in Sc3, unless otherwise permitted by the Board of the Faculty.
Advanced standing

Sc6 Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum in accordance with UG2 of the Regulations for First Degree Curricula. Credits granted for advanced standing will be recorded on the transcript of the candidate but shall not be included in the calculation of the GPA.

Assessment

Sc7

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.

(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate’s absence from any examination. Any supplementary examination shall be part of that academic year’s examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.

(c) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.

(d) Candidates are required to make up for failed courses in the following manner: repeating the failed course by undergoing instruction and satisfying the assessment, or for elective courses, taking another course in lieu and satisfying the assessment requirements.

(e) There shall be no appeal against the results of examinations and all other forms of assessment.

Award of BSc Degree

Sc8 To be eligible for the award of the BSc degree, candidates shall have:

(a) satisfied the requirements in UG5 of the Regulations for First Degree Curricula;

(b) passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the major programme of the BSc degree curriculum.
Honours classification

(a) Honours classifications shall be awarded in five divisions: First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the Degree of BSc in accordance with the following Graduation GPA scores, with all courses taken (including failed courses, but not including courses approved by the Senate graded as ‘Pass’, ‘Fail’ or ‘Distinction’) carrying weightings which are proportionate to their credit values:

<table>
<thead>
<tr>
<th>Class of honours</th>
<th>GGPA range</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class Honours</td>
<td>3.60 – 4.30</td>
</tr>
<tr>
<td>Second Class Honours</td>
<td>(2.40 – 3.59)</td>
</tr>
<tr>
<td>Division One</td>
<td>3.00 – 3.59</td>
</tr>
<tr>
<td>Division Two</td>
<td>2.40 – 2.99</td>
</tr>
<tr>
<td>Third Class Honours</td>
<td>1.70 – 2.39</td>
</tr>
<tr>
<td>Pass</td>
<td>1.00 – 1.69</td>
</tr>
</tbody>
</table>

(b) Honours classification may not be determined solely on the basis of a candidate’s Graduation GPA and the Board of Examiners for the Degree of BSc may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Graduation GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.

(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

2 For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core course with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.
REGULATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE (BSc)

These regulations apply to students admitted under the 4-year ‘2012 curriculum’ to the BSc degree curriculum to the first year in the academic year 2015-16 and 2016-17, students admitted directly to the second year in the academic year 2017-18, and students admitted directly to the third year in the academic years 2017-18 and 2018-19.

(See also General Regulations and Regulations for First Degree Curricula)

Definitions

Sc1 For the purpose of these regulations and the syllabuses for the BSc degree, unless the context otherwise requires:

“Science course” means any course offered by the Faculty of Science, and the School of Biomedical Sciences.

“Advanced Science course” means any level 3, 4 or above course offered by the Faculty of Science and the School of Biomedical Sciences.

“Course” means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.

“Syllabus” means courses taught by departments, centres, and schools, offered under a degree curriculum.

“Credits” or “credit-units” means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.

Admission to the BSc degree

Sc2 To be eligible for admission to the BSc degree, candidates shall:

(a) comply with the General Regulations;

(b) comply with the Regulations for First Degree Curricula; and

(c) satisfy all the requirements of the curriculum in accordance with these regulations and the syllabuses.

Period of study

Sc3 The curriculum for the BSc degree shall normally require eight semesters of full-time study, extending over not fewer than four academic years, and shall include any assessment to be held during and/or at the end of each semester. Candidates shall not in any case be permitted to extend their studies beyond the maximum period of registration of six academic years.

1 This regulation should be read in conjunction with UG1 of the Regulations for First Degree Curricula.
Selection of courses

Sc4 Candidates shall select their courses in accordance with these regulations and the guidelines specified in the syllabuses before the beginning of each semester. Any change to the selection of courses shall be made only during the add/drop period of the semester in which the course begins, and such changes shall not be reflected in the transcript of the candidate. Requests for changes after the designated add/drop period of the semester shall not be considered.

Curriculum requirements and progression in curriculum

Sc5

(a) Candidates shall satisfy the requirements prescribed in UG5 of the Regulations of First Degree Curricula.

(b) Candidates shall take not fewer than 240 credits, in the manner specified in these regulations and the syllabuses.

(c) Candidates shall take at least 96 credits of Science courses including all required courses of the major programme of the BSc degree curriculum.

(d) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements may be fewer than 24 credits.

(e) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load of 288 credits for the normative period of study specified in the curriculum regulations, save as provided for under Sc5(f).

(f) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load of 432 credits for the maximum period of registration specified in the curriculum regulations.

(g) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The number of transferred credits will be recorded on the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.

(h) Candidates shall be recommended for discontinuation of their studies if they have:

(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or

(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or

(iii) exceeded the maximum period of registration specified in Sc3, unless otherwise permitted by the Board of the Faculty.
Advanced standing

Sc6 Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum in accordance with UG2 of the Regulations for First Degree Curricula. Credits granted for advanced standing will be recorded on the transcript of the candidate but shall not be included in the calculation of the GPA.

Assessment

Sc7

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.

(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate’s absence from any examination. Any supplementary examination shall be part of that academic year’s examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.

(c) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.

(d) Candidates are required to make up for failed courses in the following manner: repeating the failed course by undergoing instruction and satisfying the assessment, or for elective courses, taking another course in lieu and satisfying the assessment requirements.

(e) There shall be no appeal against the results of examinations and all other forms of assessment.

Award of BSc Degree

Sc8 To be eligible for the award of the BSc degree, candidates shall have:

(a) satisfied the requirements in UG5 of the Regulations for First Degree Curricula;

(b) passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the major programme of the BSc degree curriculum.
Honours classification

Sc9 .

(a) Honours classifications shall be awarded in five divisions: First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the Degree of BSc in accordance with the following Graduation GPA scores, with all courses taken (including failed courses, but not including courses approved by the Senate graded as ‘Pass’, ‘Fail’ or ‘Distinction’) carrying weightings which are proportionate to their credit values:

<table>
<thead>
<tr>
<th>Class of honours</th>
<th>GGPA range</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class Honours</td>
<td>3.60 – 4.30</td>
</tr>
<tr>
<td>Second Class Honours</td>
<td>(2.40 – 3.59)</td>
</tr>
<tr>
<td>Division One</td>
<td>3.00 – 3.59</td>
</tr>
<tr>
<td>Division Two</td>
<td>2.40 – 2.99</td>
</tr>
<tr>
<td>Third Class Honours</td>
<td>1.70 – 2.39</td>
</tr>
<tr>
<td>Pass</td>
<td>1.00 – 1.69</td>
</tr>
</tbody>
</table>

(b) Honours classification may not be determined solely on the basis of a candidate’s Graduation GPA and the Board of Examiners for the Degree of BSc may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Graduation GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.

(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

2 For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core course with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.
Definitions

Sc1 For the purpose of these regulations and the syllabuses for the BSc degree, unless the context otherwise requires:

“Science course” means any course offered by the Faculty of Science, and the School of Biomedical Sciences.

“Advanced Science course” means any level 3, 4 or above course offered by the Faculty of Science and the School of Biomedical Sciences.

“Course” means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.

“Syllabus” means courses taught by departments, centres, and schools, offered under a degree curriculum.

“Credits” or “credit-units” means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.

Admission to the BSc degree

Sc2 To be eligible for admission to the BSc degree, candidates shall:

(a) comply with the General Regulations;

(b) comply with the Regulations for First Degree Curricula; and

(c) satisfy all the requirements of the curriculum in accordance with these regulations and the syllabuses.

Period of study

Sc3 The curriculum for the BSc degree shall normally require eight semesters of full-time study, extending over not fewer than four academic years, and shall include any assessment to be held during and/or at the end of each semester. Candidates shall not in any case be permitted to extend their studies beyond the maximum period of registration of six academic years.

Selection of courses

1 This regulation should be read in conjunction with UG1 of the Regulations for First Degree Curricula.
Candidates shall select their courses in accordance with these regulations and the guidelines specified in the syllabuses before the beginning of each semester. Any change to the selection of courses shall be made only during the add/drop period of the semester in which the course begins, and such changes shall not be reflected in the transcript of the candidate. Requests for changes after the designated add/drop period of the semester shall not be considered.

Curriculum requirements and progression in curriculum

(a) Candidates shall satisfy the requirements prescribed in UG5 of the Regulations of First Degree Curricula.

(b) Candidates shall take not fewer than 240 credits, in the manner specified in these regulations and the syllabuses.

(c) Candidates shall take at least 96 credits of Science courses including all required courses of the major programme of the BSc degree curriculum.

(d) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements may be fewer than 24 credits.

(e) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load of 288 credits for the normative period of study specified in the curriculum regulations, save as provided for under Sc5(f).

(f) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load of 432 credits for the maximum period of registration specified in the curriculum regulations.

(g) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The number of transferred credits will be recorded on the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.

(h) Candidates shall be recommended for discontinuation of their studies if they have:
 (i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or
 (ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or
 (iii) exceeded the maximum period of registration specified in Sc3, unless otherwise permitted by the Board of the Faculty.
Advanced standing

Sc6 Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum in accordance with UG2 of the Regulations for First Degree Curricula. Credits granted for advanced standing will be recorded on the transcript of the candidate but shall not be included in the calculation of the GPA.

Assessment

Sc7

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.

(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate’s absence from any examination. Any supplementary examination shall be part of that academic year’s examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.

(c) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.

(d) Candidates are required to make up for failed courses in the following manner: repeating the failed course by undergoing instruction and satisfying the assessment, or for elective courses, taking another course in lieu and satisfying the assessment requirements.

(e) There shall be no appeal against the results of examinations and all other forms of assessment.

Award of BSc Degree

Sc8 To be eligible for the award of the BSc degree, candidates shall have:

(a) satisfied the requirements in UG5 of the Regulations for First Degree Curricula;

(b) passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the major programme of the BSc degree curriculum.
Honours classification

(a) Honours classifications shall be awarded in five divisions: First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the Degree of BSc in accordance with the following Cumulative GPA scores, with all courses taken (including failed courses, but not including courses approved by the Senate graded as ‘Pass’, ‘Fail’ or ‘Distinction’) carrying equal weighting:

<table>
<thead>
<tr>
<th>Class of honours</th>
<th>CGPA range</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class Honours</td>
<td>3.60 – 4.30</td>
</tr>
<tr>
<td>Second Class Honours</td>
<td>(2.40 – 3.59)</td>
</tr>
<tr>
<td>Division One</td>
<td>3.00 – 3.59</td>
</tr>
<tr>
<td>Division Two</td>
<td>2.40 – 2.99</td>
</tr>
<tr>
<td>Third Class Honours</td>
<td>1.70 – 2.39</td>
</tr>
<tr>
<td>Pass</td>
<td>1.00 – 1.69</td>
</tr>
</tbody>
</table>

(b) Honours classification may not be determined solely on the basis of a candidate’s Cumulative GPA and the Board of Examiners for the Degree of BSc may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Cumulative GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.

(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.
REGULATIONS FOR THE DEGREE OF
BACHELOR OF SCIENCE
(BSc)

These regulations apply to students admitted under the 4-year ‘2012 curriculum’ to the BSc degree curriculum to the first year in the academic years 2012-13 and 2013-14, and students admitted directly to the third year in the academic years 2014-15 and 2015-16.

(See also General Regulations and Regulations for First Degree Curricula)

Definitions

Sc1 For the purpose of these regulations and the syllabuses for the BSc degree, unless the context otherwise requires:

“Science course” means any course offered by the Faculty of Science, and the School of Biomedical Sciences.

“Advanced Science course” means any level 3, 4 or above course offered by the Faculty of Science and the School of Biomedical Sciences.

“Course” means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.

“Syllabus” means courses taught by departments, centres, and schools, offered under a degree curriculum.

“Credits” or “credit-units” means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.

Admission to the BSc degree

Sc2 To be eligible for admission to the BSc degree, candidates shall:

(a) comply with the General Regulations;

(b) comply with the Regulations for First Degree Curricula; and

(c) satisfy all the requirements of the curriculum in accordance with these regulations and the syllabuses.

Period of study

Sc3 The curriculum for the BSc degree shall normally require eight semesters of full-time study, extending over not fewer than four academic years, and shall include any assessment to be held during and/or at the end of each semester. Candidates shall not in any case be permitted to extend their studies beyond the maximum period of registration of six academic years.

1 This regulation should be read in conjunction with UG1 of the Regulations for First Degree Curricula.
Selection of courses

Sc4 Candidates shall select their courses in accordance with these regulations and the guidelines specified in the syllabuses before the beginning of each semester. Any change to the selection of courses shall be made only during the add/drop period of the semester in which the course begins, and such changes shall not be reflected in the transcript of the candidate. Requests for changes after the designated add/drop period of the semester shall not be considered.

Curriculum requirements and progression in curriculum

Sc5

(a) Candidates shall satisfy the requirements prescribed in UG5 of the Regulations of First Degree Curricula.

(b) Candidates shall take not fewer than 240 credits, in the manner specified in these regulations and the syllabuses.

(c) Candidates shall take at least 96 credits of Science courses including all required courses of the major programme of the BSc degree curriculum.

(d) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements may be fewer than 24 credits.

(e) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load of 288 credits for the normative period of study specified in the curriculum regulations, save as provided for under Sc5(f).

(f) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load of 432 credits for the maximum period of registration specified in the curriculum regulations.

(g) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The number of transferred credits will be recorded on the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.

(h) Candidates shall be recommended for discontinuation of their studies if they have:

(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or

(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or

(iii) exceeded the maximum period of registration specified in Sc3, unless otherwise permitted by the Board of the Faculty.
Advanced standing

Sc6 Advanced standing may be granted to candidates in recognition of studies completed successfully in an approved institution of higher education elsewhere in accordance with UG2 of the Regulations for First Degree Curricula. Credits granted for advanced standing will be recorded on the transcript of the candidate but shall not be included in the calculation of the GPA.

Assessment

Sc7

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.

(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate’s absence from any examination. Any supplementary examination shall be part of that academic year’s examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.

(c) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.

(d) Candidates are required to make up for failed courses in the following manner: repeating the failed course by undergoing instruction and satisfying the assessment, or for elective courses, taking another course in lieu and satisfying the assessment requirements.

(e) There shall be no appeal against the results of examinations and all other forms of assessment.

Award of BSc Degree

Sc8 To be eligible for the award of the BSc degree, candidates shall have:

(a) satisfied the requirements in UG5 of the Regulations for First Degree Curricula;

(b) passed not fewer than 240 credits, comprising 96 credits of the required courses as prescribed in the major programme of the BSc degree curriculum.
Honours classification

Sc9

(a) Honours classifications shall be awarded in five divisions: First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the Degree of BSc in accordance with the following Cumulative GPA scores, with all courses taken (including failed courses, but not including courses approved by the Senate graded as ‘Pass’, ‘Fail’ or ‘Distinction’) carrying equal weighting:

<table>
<thead>
<tr>
<th>Class of honours</th>
<th>CGPA range</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class Honours</td>
<td>3.60 – 4.30</td>
</tr>
<tr>
<td>Second Class Honours</td>
<td>(2.40 – 3.59)</td>
</tr>
<tr>
<td>Division One</td>
<td>3.00 – 3.59</td>
</tr>
<tr>
<td>Division Two</td>
<td>2.40 – 2.99</td>
</tr>
<tr>
<td>Third Class Honours</td>
<td>1.70 – 2.39</td>
</tr>
<tr>
<td>Pass</td>
<td>1.00 – 1.69</td>
</tr>
</tbody>
</table>

(b) Honours classification may not be determined solely on the basis of a candidate’s Cumulative GPA and the Board of Examiners for the Degree of BSc may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Cumulative GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.

(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.
REGULATIONS FOR FIRST DEGREE CURRICULA

Regulations for First Degree Curricula (for students admitted under the 4-year ‘2012 curriculum’ to the first year in the academic year 2018-19 and thereafter)

(See also General Regulations)

UG 1 Definitions:

For the purpose of regulations and syllabuses for all first degree curricula unless otherwise defined —

An ‘academic year’ comprises two semesters, the first semester to commence in September and end in December, and the second semester to commence in January and end in May/June, on dates as prescribed by the Senate. It includes, normally at the end of each semester, a period during which candidates are assessed. For some curricula, a ‘summer semester’ may be organized in addition to the normal two semesters. Clinical curricula have extended semesters.

A ‘summer semester’ normally comprises seven to eight weeks of intensive timetabled teaching and assessment to commence four weeks after the end of the second semester assessment period, and to conclude about one week before the start of the next academic year.

The ‘maximum period of registration’ is equivalent to a period which is 150% of the curriculum’s normative period of study as specified in the degree regulations, provided that where this results in a residual fraction of an academic year, the fractional period shall be extended to one full academic year.

‘Degree curriculum’ means the entire study requirements for the award of an undergraduate degree.

‘Major programme’ means the study requirements, including a capstone experience, for a single major area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 72 credits nor more than 96 credits, as prescribed in the syllabuses for a degree curriculum.

‘Minor programme’ means the study requirements for a single minor area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 36 credits nor more than 48 credits, as prescribed in the syllabuses for a degree curriculum.

‘Professional core’ refers to the study requirements, including a capstone experience, prescribed in the regulations and syllabuses for disciplinary studies in degree curricula which are not structured as major/minor programmes for reasons relating to professional qualification and/or accreditation.

‘Course’ means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.

‘Disciplinary elective course’ or ‘Disciplinary Elective’ means any course offered in the same major or minor programme or the professional core which can be taken by candidates to fulfill the curriculum requirements as specified in the syllabuses of the degree curriculum.

‘Elective course’ or ‘Elective’ means any course offered within the same or another curriculum, other than compulsory courses in the candidate’s degree curriculum, that can be

1 These regulations are applicable to candidates admitted from 2018-19 onwards. Reference in these regulations to the powers of the Boards of Faculties shall be applicable to Senate Boards of Studies which administer first degree curricula.
taken by the candidate in order to complete the credit requirements of the degree curriculum.

‘Capstone experience’ refers to one or more courses within the major programme or professional core which are approved by the Board of the Faculty for the purpose of integrating knowledge and skills acquired, and which are prescribed in the syllabuses of the degree curriculum.

‘Syllabus’ means courses taught by departments, centres, and schools, offered under a degree curriculum.

‘Prerequisite’ means a course or a group of courses which candidates must have completed successfully or a requirement which candidates must have fulfilled before being permitted to take the course in question.

‘Corequisite’ means a course which candidates must take in conjunction with the course in question.

‘Credits’ or ‘credit-units’ means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.

‘Grade Points’ are standardized measurements of candidates’ academic achievement in courses taken to satisfy the requirements of the degree curriculum and are expressed as a scale prescribed in these regulations.

‘Grade Point Average’ is a numerical measure of a candidate’s academic achievement over a specified period of time. Each course attempted (including each failed course) is assigned a numerical value, with all courses carrying equal weighting. This numerical value is the product of grade points earned for the course and the credit value of that course. The ‘Grade Point Average’ is the sum of these numerical values divided by the total number of credits attempted:

\[
GPA = \frac{\sum_i \text{Course Grade Point} \times \text{Course Credit Value}}{\sum_i \text{Course Credit Value}}
\]

(where ‘i’ stands for all passed and failed courses taken by the student over a specified period)

‘Semester Grade Point Average’ or ‘Semester GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) during a given semester.

‘Year Grade Point Average’ or ‘Year GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) during a given academic year.

‘Cumulative Grade Point Average’ or ‘Cumulative GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) at the time of calculation.

‘Graduation Grade Point Average’ or ‘Graduation GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) at the point of graduation. For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core courses with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.

‘Assessment’ refers to judgment about the quality and extent to which a student has achieved the stated learning objectives or learning outcomes. It includes all types of assessment activities which allow for such a judgment to be made. For the purpose of interpreting the relevant provisions of the Ordinance and the Statutes and where appropriate,
reference to ‘examination’ or 'examinations' in the Ordinance and the Statutes shall include and cover all forms of ‘assessment’ and its related processes.

A ‘transcript’ refers to a transcript of the record of study of a candidate, issued by the Registry of the University.

UG 2 Advanced standing:

Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum. Candidates who are awarded Advanced Standing will not be granted any further credit transfer for those studies for which Advanced Standing has been granted. The amount of credits to be granted for advanced standing shall be determined by the Board of the Faculty, in accordance with the following principles:

(a) at least half the number of credits of the degree curriculum normally required for award of the degree shall be accumulated through study at this University or from transfer of credits for courses completed at other institutions in accordance with Regulation UG 4(d); and

(b) in accordance with Statute III.5 and notwithstanding the granting of advanced and/or transfer credits, a minimum of two semesters of study at this University shall be required before a candidate is considered for the award of a first degree, other than a degree in medicine or surgery, and a minimum of four semesters of study at this University shall be required before a candidate is considered for a first degree in medicine or surgery.

Credits granted for advanced standing shall not normally be included in the calculation of the GPA unless permitted by the Board of the Faculty but will be recorded on the transcript of the candidate.

UG 3 Period of study:

The period of study of the curriculum shall be specified in the regulations governing the degree. To be eligible for award of the degree, a candidate shall fulfill all curriculum requirements within the maximum period of registration, unless otherwise permitted or required by the Board of the Faculty.

UG 4 Progression in curriculum:

(a) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements is fewer than 24 credits.

(b) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load for the normative period of study specified in the curriculum regulations, save as provided for under UG4(c).

(c) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load for the maximum period of registration specified in the curriculum regulations.

(d) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The
number of transferred credits may be recorded in the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.

(e) Unless otherwise permitted by the Board of the Faculty, candidates shall be recommended for discontinuation of their studies if they have:
 (i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or
 (ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or
 (iii) exceeded the maximum period of registration specified in the regulations of the degree.

UG 5 Requirements for graduation:

To be eligible for admission to the degree, candidates shall fulfill the following requirements in addition to the requirements prescribed in the regulations and syllabuses governing the degree curriculum within the maximum period of registration:
 (a) successful completion of 12 credits in English language enhancement, including 6 credits in Core University English\(^2\) and 6 credits in an English in the Discipline course\(^3\);
 (b) successful completion of 6 credits in Chinese language enhancement\(^4\);
 (c) successful completion of 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry\(^5\) with not more than 24 credits of course being selected within one academic year except where candidates are required to make up for failed credits; and
 (d) successful completion of a capstone experience as specified in the syllabuses of the degree curriculum.

UG 6 Exemption:

Candidates may be exempted, with or without special conditions attached, from any of the requirements in UG 5 by the Senate in exceptional circumstances. Candidates who are so exempted must replace the number of exempted credits with courses of the same credit value.

\(^2\) Candidates who have achieved Level 5** in English Language in the Hong Kong Diploma of Secondary Education Examination, or equivalent, may at the discretion of the Faculty be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.

\(^3\) (a) To satisfy the English in the Discipline (ED) requirement, candidates who have passed the ED course for a Major but subsequently change that Major are required to pass the ED course for the new Major, or either of the double Majors finally declared upon graduation irrespective of whether the second Major is offered within or outside of the candidates’ home Faculty.

(b) Candidates declaring double Majors can, if they fail in the ED course for one of the Majors, either (i) re-take and successfully complete that failed ED course, or (ii) successfully complete the ED course for the other Major, irrespective of whether the Major is offered within or outside of the candidates’ home Faculty.

(c) Candidates who undertake studies in double Majors or double degrees are not required to take a second ED course but may be advised by the Faculty to do so.

\(^4\) Candidates who have not studied Chinese language during their secondary education may be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.

\(^5\) Candidates registered for dual degree studies are required to successfully complete 24 credits of courses in the Common Core Curriculum, selecting one course from each Area of Inquiry, within the curriculum of the first degree, as appropriate.
UG 7 Assessment:

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.

(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate’s absence from any examination. Any supplementary examination shall be part of that academic year’s examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.

(c) Candidates suspended under Statute XXXI shall not be allowed to take, present themselves for, and participate in any assessments during the period of suspension, unless otherwise permitted by the Senate.

(d) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.

(e) Candidates are required to make up for failed courses in the following manner as prescribed in the curriculum regulations:

(i) undergoing re-assessment/re-examination in the failed course to be held no later than the end of the following semester (not including the summer semester); or
(ii) re-submitting failed coursework, without having to repeat the same course of instruction; or
(iii) repeating the failed course by undergoing instruction and satisfying the assessments; or
(iv) for elective courses, taking another course in lieu and satisfying the assessment requirements.

(f) There shall be no appeal against the results of examinations and all other forms of assessment.

UG 8 Grading system:

(a) The grades, their standards and the grade points for assessment shall be as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Standard</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>Excellent</td>
<td>4.3</td>
</tr>
<tr>
<td>A</td>
<td>Excellent</td>
<td>4.0</td>
</tr>
<tr>
<td>A-</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>Good</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>Good</td>
<td>3.0</td>
</tr>
<tr>
<td>B-</td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>Satisfactory</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>Satisfactory</td>
<td>2.0</td>
</tr>
<tr>
<td>C-</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>D+</td>
<td>Pass</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td>Pass</td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td>Fail</td>
<td>0</td>
</tr>
</tbody>
</table>

(b) Special permission may be given by Senate for courses in individual curricula to be

6 UG 8 is not applicable to the respective Professional Core of the BDS and MBBS curricula.
graded as ‘Pass’, ‘Fail’ or ‘Distinction’. Such courses will not be included in the calculation of the GPA.

UG 9 Honours classifications:

(a) Honours classifications shall be awarded in five divisions: First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the degree in accordance with the following Graduate GPA scores, with all courses taken (including failed courses) carrying equal weighting which are proportionate to their credit values:

<table>
<thead>
<tr>
<th>Class of honours</th>
<th>GGPA range</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class Honours</td>
<td>3.60 – 4.30</td>
</tr>
<tr>
<td>Second Class Honours</td>
<td>(2.40 – 3.59)</td>
</tr>
<tr>
<td>Division One</td>
<td>3.00 – 3.59</td>
</tr>
<tr>
<td>Division Two</td>
<td>2.40 – 2.99</td>
</tr>
<tr>
<td>Third Class Honours</td>
<td>1.70 – 2.39</td>
</tr>
<tr>
<td>Pass</td>
<td>1.00 – 1.69</td>
</tr>
</tbody>
</table>

(b) Honours classification may not be determined solely on the basis of a candidate’s Graduation GPA and the Board of Examiners for the degree may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Graduation GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.

(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

7 UG 9 is not applicable to the BChinMed, BDS and MBBS curricula.

8 For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core course with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.
REGULATIONS FOR FIRST DEGREE CURRICULA

Regulations for First Degree Curricula (for students admitted under the 4-year ‘2012 curriculum’ to the first year in the academic year 2017-18 and students admitted directed to the second year in the academic year 2018-19)

(See also General Regulations)

UG 1 Definitions:

For the purpose of regulations and syllabuses for all first degree curricula unless otherwise defined —

An ‘academic year’ comprises two semesters, the first semester to commence in September and end in December, and the second semester to commence in January and end in May/June, on dates as prescribed by the Senate. It includes, normally at the end of each semester, a period during which candidates are assessed. For some curricula, a ‘summer semester’ may be organized in addition to the normal two semesters. Clinical curricula have extended semesters.

A ‘summer semester’ normally comprises seven to eight weeks of intensive timetabled teaching and assessment to commence four weeks after the end of the second semester assessment period, and to conclude about one week before the start of the next academic year.

The ‘maximum period of registration’ is equivalent to a period which is 150% of the curriculum’s normative period of study as specified in the degree regulations, provided that where this results in a residual fraction of an academic year, the fractional period shall be extended to one full academic year.

‘Degree curriculum’ means the entire study requirements for the award of an undergraduate degree.

‘Major programme’ means the study requirements, including a capstone experience, for a single major area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 72 credits nor more than 96 credits, as prescribed in the syllabuses for a degree curriculum.

‘Minor programme’ means the study requirements for a single minor area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 36 credits nor more than 48 credits, as prescribed in the syllabuses for a degree curriculum.

‘Professional core’ refers to the study requirements, including a capstone experience, prescribed in the regulations and syllabuses for disciplinary studies in degree curricula which are not structured as major/minor programmes for reasons relating to professional qualification and/or accreditation.

‘Course’ means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.

‘Disciplinary elective course’ or ‘Disciplinary Elective’ means any course offered in the same major or minor programme or the professional core which can be taken by candidates to fulfill the curriculum requirements as specified in the syllabuses of the degree curriculum.

‘Elective course’ or ‘Elective’ means any course offered within the same or another
curriculum, other than compulsory courses in the candidate’s degree curriculum, that can be taken by the candidate in order to complete the credit requirements of the degree curriculum.

‘Capstone experience’ refers to one or more courses within the major programme or professional core which are approved by the Board of the Faculty for the purpose of integrating knowledge and skills acquired, and which are prescribed in the syllabuses of the degree curriculum.

‘Syllabus’ means courses taught by departments, centres, and schools, offered under a degree curriculum.

‘Prerequisite’ means a course or a group of courses which candidates must have completed successfully or a requirement which candidates must have fulfilled before being permitted to take the course in question.

‘Corequisite’ means a course which candidates must take in conjunction with the course in question.

‘Credits’ or ‘credit-units’ means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.

‘Grade Points’ are standardized measurements of candidates’ academic achievement in courses taken to satisfy the requirements of the degree curriculum and are expressed as a scale prescribed in these regulations.

‘Grade Point Average’ is a numerical measure of a candidate’s academic achievement over a specified period of time. Each course attempted (including each failed course) is assigned a numerical value, with all courses carrying equal weighting. This numerical value is the product of grade points earned for the course and the credit value of that course. The ‘Grade Point Average’ is the sum of these numerical values divided by the total number of credits attempted:

\[
GPA = \frac{\sum \text{Course Grade Point} \times \text{Course Credit Value}}{\sum \text{Course Credit Value}}
\]

(\text{where ‘i’ stands for all passed and failed courses taken by the student over a specified period})

‘Semester Grade Point Average’ or ‘Semester GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) during a given semester.

‘Year Grade Point Average’ or ‘Year GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) during a given academic year.

‘Cumulative Grade Point Average’ or ‘Cumulative GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) at the time of calculation.

‘Graduation Grade Point Average’ or ‘Graduation GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) at the point of graduation. For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core courses with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.

‘Assessment’ refers to judgment about the quality and extent to which a student has achieved the stated learning objectives or learning outcomes. It includes all types of assessment activities which allow for such a judgment to be made. For the purpose of
interpreting the relevant provisions of the Ordinance and the Statutes and where appropriate, reference to ‘examination’ or 'examinations' in the Ordinance and the Statutes shall include and cover all forms of ‘assessment’ and its related processes.

A ‘transcript’ refers to a transcript of the record of study of a candidate, issued by the Registry of the University.

UG 2 Advanced standing:

Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum. Candidates who are awarded Advanced Standing will not be granted any further credit transfer for those studies for which Advanced Standing has been granted. The amount of credits to be granted for advanced standing shall be determined by the Board of the Faculty, in accordance with the following principles:

(a) at least half the number of credits of the degree curriculum normally required for award of the degree shall be accumulated through study at this University or from transfer of credits for courses completed at other institutions in accordance with Regulation UG 4(d); and

(b) in accordance with Statute III.5 and notwithstanding the granting of advanced and/or transfer credits, a minimum of two semesters of study at this University shall be required before a candidate is considered for the award of a first degree, other than a degree in medicine or surgery, and a minimum of four semesters of study at this University shall be required before a candidate is considered for a first degree in medicine or surgery.

Credits granted for advanced standing shall not normally be included in the calculation of the GPA unless permitted by the Board of the Faculty but will be recorded on the transcript of the candidate.

UG 3 Period of study:

The period of study of the curriculum shall be specified in the regulations governing the degree. To be eligible for award of the degree, a candidate shall fulfill all curriculum requirements within the maximum period of registration, unless otherwise permitted or required by the Board of the Faculty.

UG 4 Progression in curriculum:

(a) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements is fewer than 24 credits.

(b) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load for the normative period of study specified in the curriculum regulations, save as provided for under UG4(c).

(c) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load for the maximum period of registration specified in the curriculum regulations.
(d) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The number of transferred credits may be recorded in the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.

(e) Unless otherwise permitted by the Board of the Faculty, candidates shall be recommended for discontinuation of their studies if they have:

(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or

(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or

(iii) exceeded the maximum period of registration specified in the regulations of the degree.

UG 5 Requirements for graduation:

To be eligible for admission to the degree, candidates shall fulfill the following requirements in addition to the requirements prescribed in the regulations and syllabuses governing the degree curriculum within the maximum period of registration:

(a) successful completion of 12 credits in English language enhancement, including 6 credits in Core University English2 and 6 credits in an English in the Discipline course3;

(b) successful completion of 6 credits in Chinese language enhancement4;

(c) successful completion of 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry5 with not more than 24 credits of course being selected within one academic year except where candidates are required to make up for failed credits; and

(d) successful completion of a capstone experience as specified in the syllabuses of the degree curriculum.

UG 6 Exemption:

Candidates may be exempted, with or without special conditions attached, from any of the

2 Candidates who have achieved Level 5** in English Language in the Hong Kong Diploma of Secondary Education Examination, or equivalent, may at the discretion of the Faculty be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.

3 (a) To satisfy the English in the Discipline (ED) requirement, candidates who have passed the ED course for a Major but subsequently change that Major are required to pass the ED course for the new Major, or either of the double Majors finally declared upon graduation irrespective of whether the second Major is offered within or outside of the candidates’ home Faculty.

(b) Candidates declaring double Majors can, if they fail in the ED course for one of the Majors, either (i) re-take and successfully complete that failed ED course, or (ii) successfully complete the ED course for the other Major, irrespective of whether the Major is offered within or outside of the candidates’ home Faculty.

(c) Candidates who undertake studies in double Majors or double degrees are not required to take a second ED course but may be advised by the Faculty to do so.

4 Candidates who have not studied Chinese language during their secondary education may be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.

5 Candidates registered for dual degree studies are required to successfully complete 24 credits of courses in the Common Core Curriculum, selecting one course from each Area of Inquiry, within the curriculum of the first degree, as appropriate.
requirements in UG 5 by the Senate in exceptional circumstances. Candidates who are so exempted must replace the number of exempted credits with courses of the same credit value.

UG 7 Assessment:

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.

(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate’s absence from any examination. Any supplementary examination shall be part of that academic year’s examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.

(c) Candidates suspended under Statute XXXI shall not be allowed to take, present themselves for, and participate in any assessments during the period of suspension, unless otherwise permitted by the Senate.

(d) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.

(e) Candidates are required to make up for failed courses in the following manner as prescribed in the curriculum regulations:

(i) undergoing re-assessment/re-examination in the failed course to be held no later than the end of the following semester (not including the summer semester); or

(ii) re-submitting failed coursework, without having to repeat the same course of instruction; or

(iii) repeating the failed course by undergoing instruction and satisfying the assessments; or

(iv) for elective courses, taking another course in lieu and satisfying the assessment requirements.

(f) There shall be no appeal against the results of examinations and all other forms of assessment.

UG 8 Grading system:

(a) The grades, their standards and the grade points for assessment shall be as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Standard</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>Excellent</td>
<td>4.3</td>
</tr>
<tr>
<td>A</td>
<td>Good</td>
<td>4.0</td>
</tr>
<tr>
<td>A-</td>
<td>Satisfactory</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>Pass</td>
<td>3.0</td>
</tr>
<tr>
<td>B-</td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>Fail</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>C-</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>D+</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

6 UG 8 is not applicable to the respective Professional Core of the BDS and MBBS curricula.
(b) Special permission may be given by Senate for courses in individual curricula to be graded as ‘Pass’, ‘Fail’ or ‘Distinction’. Such courses will not be included in the calculation of the GPA.

UG 9 Honours classifications:

(a) Honours classifications shall be awarded in five divisions: First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the degree in accordance with the following Graduate GPA scores, with all courses taken (including failed courses) carrying equal weighting which are proportionate to their credit values:

<table>
<thead>
<tr>
<th>Class of honours</th>
<th>GGPA range</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class Honours</td>
<td>3.60 – 4.30</td>
</tr>
<tr>
<td>Second Class Honours</td>
<td>(2.40 – 3.59)</td>
</tr>
<tr>
<td>Division One</td>
<td>3.00 – 3.59</td>
</tr>
<tr>
<td>Division Two</td>
<td>2.40 – 2.99</td>
</tr>
<tr>
<td>Third Class Honours</td>
<td>1.70 – 2.39</td>
</tr>
<tr>
<td>Pass</td>
<td>1.00 – 1.69</td>
</tr>
</tbody>
</table>

(b) Honours classification may not be determined solely on the basis of a candidate’s Graduation GPA and the Board of Examiners for the degree may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Graduation GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.

(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

7 UG 9 is not applicable to the BChinMed, BDS and MBBS curricula.
8 For students in the 2017-18 intake and thereafter who have successfully completed six Common Core courses, the calculation of Graduation GPA is subject to the proviso that either five Common Core course with the highest grades (covering all four Areas of Inquiry), or all six courses will be counted towards Graduation GPA, depending on which generates the higher Graduation GPA.
REGULATIONS FOR FIRST DEGREE CURRICULA

Regulations for First Degree Curricula (for students admitted under the 4-year ‘2012 curriculum’ to the first year in the academic years in 2014-15, 2015-16 and 2016-17, students admitted directed to the second year in the academic year 2017-18, and students admitted directed to the third year in the academic years 2016-17, 2017-18 and 2018-19)

(See also General Regulations)

UG 1 Definitions:

For the purpose of regulations and syllabuses for all first degree curricula unless otherwise defined —

An ‘academic year’ comprises two semesters, the first semester to commence in September and end in December, and the second semester to commence in January and end in May/June, on dates as prescribed by the Senate. It includes, normally at the end of each semester, a period during which candidates are assessed. For some curricula, a ‘summer semester’ may be organized in addition to the normal two semesters. Clinical curricula have extended semesters.

A ‘summer semester’ normally comprises seven to eight weeks of intensive timetabled teaching and assessment to commence four weeks after the end of the second semester assessment period, and to conclude about one week before the start of the next academic year.

The ‘maximum period of registration’ is equivalent to a period which is 150% of the curriculum’s normative period of study as specified in the degree regulations, provided that where this results in a residual fraction of an academic year, the fractional period shall be extended to one full academic year.

‘Degree curriculum’ means the entire study requirements for the award of an undergraduate degree.

‘Major programme’ means the study requirements, including a capstone experience, for a single major area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 72 credits nor more than 96 credits, as prescribed in the syllabuses for a degree curriculum.

‘Minor programme’ means the study requirements for a single minor area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 36 credits nor more than 48 credits, as prescribed in the syllabuses for a degree curriculum.

‘Professional core’ refers to the study requirements, including a capstone experience, prescribed in the regulations and syllabuses for disciplinary studies in degree curricula which are not structured as major/minor programmes for reasons relating to professional qualification and/or accreditation.

1 These regulations are applicable to candidates admitted from 2016-17 onwards to the first year of first degree curricula under the 4-year ‘2012 curriculum’, the 2-year curriculum in respect of the BSc(IM), the 5-year curriculum in respect of the BA&BEd(LangEd), BEd&BSc, BEd&BSocSc, BSc(Sp&HearSc), and BNurs, and the 6-year curriculum in respect of the BChinMed, BDS and MBBS. Reference in these regulations to the powers of the Boards of Faculties shall be applicable to Senate Boards of Studies which administer first degree curricula.

(The Regulations for First Degree Curricula applicable to cohorts admitted in 2012-13 and 2013-14 under the 4-year ‘2012 curriculum’ can be found in the Calendar for 2013-14, and in the Calendar for 2014-15 for the cohorts admitted in 2014-15 and 2015-16.)
‘Course’ means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.

‘Disciplinary elective course’ or ‘Disciplinary Elective’ means any course offered in the same major or minor programme or the professional core which can be taken by candidates to fulfill the curriculum requirements as specified in the syllabuses of the degree curriculum.

‘Elective course’ or ‘Elective’ means any course offered within the same or another curriculum, other than compulsory courses in the candidate’s degree curriculum, that can be taken by the candidate in order to complete the credit requirements of the degree curriculum.

‘Capstone experience’ refers to one or more courses within the major programme or professional core which are approved by the Board of the Faculty for the purpose of integrating knowledge and skills acquired, and which are prescribed in the syllabuses of the degree curriculum.

‘Syllabus’ means courses taught by departments, centres, and schools, offered under a degree curriculum.

‘Prerequisite’ means a course or a group of courses which candidates must have completed successfully or a requirement which candidates must have fulfilled before being permitted to take the course in question.

‘Corequisite’ means a course which candidates must take in conjunction with the course in question.

‘Credits’ or ‘credit-units’ means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.

‘Grade Points’ are standardized measurements of candidates’ academic achievement in courses taken to satisfy the requirements of the degree curriculum and are expressed as a scale prescribed in these regulations.

‘Grade Point Average’ is a numerical measure of a candidate’s academic achievement over a specified period of time. Each course attempted (including each failed course) is assigned a numerical value, with all courses carrying equal weighting. This numerical value is the product of grade points earned for the course and the credit value of that course. The ‘Grade Point Average’ is the sum of these numerical values divided by the total number of credits attempted:

$$\text{GPA} = \frac{\sum \text{Course Grade Point} \times \text{Course Credit Value}}{\sum \text{Course Credit Value}}$$

(where ‘i’ stands for all passed and failed courses taken by the student over a specified period)

‘Semester Grade Point Average’ or ‘Semester GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) during a given semester.

‘Year Grade Point Average’ or ‘Year GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) during a given academic year.

‘Cumulative Grade Point Average’ or ‘Cumulative GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) at the time of calculation.

‘Assessment’ refers to judgment about the quality and extent to which a student has achieved the stated learning objectives or learning outcomes. It includes all types of assessment activities which allow for such a judgment to be made. For the purpose of interpreting the relevant provisions of the Ordinance and the Statutes and where appropriate,
reference to ‘examination’ or 'examinations' in the Ordinance and the Statutes shall include and cover all forms of ‘assessment’ and its related processes.

A ‘transcript’ refers to a transcript of the record of study of a candidate, issued by the Registry of the University.

UG 2 Advanced standing:

Advanced standing may be granted to candidates in recognition of studies completed successfully before admission to the curriculum. Candidates who are awarded Advanced Standing will not be granted any further credit transfer for those studies for which Advanced Standing has been granted. The amount of credits to be granted for advanced standing shall be determined by the Board of the Faculty, in accordance with the following principles:

(a) at least half the number of credits of the degree curriculum normally required for award of the degree shall be accumulated through study at this University or from transfer of credits for courses completed at other institutions in accordance with Regulation UG 4(d); and

(b) in accordance with Statute III.5 and notwithstanding the granting of advanced and/or transfer credits, a minimum of two semesters of study at this University shall be required before a candidate is considered for the award of a first degree, other than a degree in medicine or surgery, and a minimum of four semesters of study at this University shall be required before a candidate is considered for a first degree in medicine or surgery.

Credits granted for advanced standing shall not normally be included in the calculation of the GPA unless permitted by the Board of the Faculty but will be recorded on the transcript of the candidate.

UG 3 Period of study:

The period of study of the curriculum shall be specified in the regulations governing the degree. To be eligible for award of the degree, a candidate shall fulfill all curriculum requirements within the maximum period of registration, unless otherwise permitted or required by the Board of the Faculty.

UG 4 Progression in curriculum:

(a) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements is fewer than 24 credits.

(b) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load for the normative period of study specified in the curriculum regulations, save as provided for under UG4(c).

(c) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load for the maximum period of registration specified in the curriculum regulations.

(d) Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The
number of transferred credits may be recorded in the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.

(e) Unless otherwise permitted by the Board of the Faculty, candidates shall be recommended for discontinuation of their studies if they have:

(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or

(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or

(iii) exceeded the maximum period of registration specified in the regulations of the degree.

UG 5 Requirements for graduation:

To be eligible for admission to the degree, candidates shall fulfill the following requirements in addition to the requirements prescribed in the regulations and syllabuses governing the degree curriculum within the maximum period of registration:

(a) successful completion of 12 credits in English language enhancement, including 6 credits in Core University English\(^2\) and 6 credits in an English in the Discipline course\(^3\);

(b) successful completion of 6 credits in Chinese language enhancement\(^4\);

(c) successful completion of 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry\(^5\) with not more than 24 credits of course being selected within one academic year except where candidates are required to make up for failed credits; and

(d) successful completion of a capstone experience as specified in the syllabuses of the degree curriculum.

UG 6 Exemption:

Candidates may be exempted, with or without special conditions attached, from any of the

\(^2\) Candidates who have achieved Level 5** in English Language in the Hong Kong Diploma of Secondary Education Examination, or equivalent, may at the discretion of the Faculty be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.

\(^3\) (a) To satisfy the English in the Discipline (ED) requirement, candidates who have passed the ED course for a Major but subsequently change that Major are required to pass the ED course for the new Major, or either of the double Majors finally declared upon graduation irrespective of whether the second Major is offered within or outside of the candidates’ home Faculty.

(b) Candidates declaring double Majors can, if they fail in the ED course for one of the Majors, either (i) re-take and successfully complete that failed ED course, or (ii) successfully complete the ED course for the other Major, irrespective of whether the Major is offered within or outside of the candidates’ home Faculty.

(c) Candidates who undertake studies in double Majors or double degrees are not required to take a second ED course but may be advised by the Faculty to do so.

\(^4\) Candidates who have not studied Chinese language during their secondary education may be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.

\(^5\) Candidates registered for double degree studies are required to successfully complete 24 credits of courses in the Common Core Curriculum, selecting one course from each Area of Inquiry, within the curriculum of the first degree, as appropriate.
requirements in UG 5 by the Senate in exceptional circumstances. Candidates who are so exempted must replace the number of exempted credits with courses of the same credit value.

UG 7 Assessment:

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.

(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate’s absence from any examination. Any supplementary examination shall be part of that academic year’s examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.

(c) Candidates suspended under Statute XXXI shall not be allowed to take, present themselves for, and participate in any assessments during the period of suspension, unless otherwise permitted by the Senate.

(d) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.

(e) Candidates are required to make up for failed courses in the following manner as prescribed in the curriculum regulations:

(i) undergoing re-assessment/re-examination in the failed course to be held no later than the end of the following semester (not including the summer semester); or

(ii) re-submitting failed coursework, without having to repeat the same course of instruction; or

(iii) repeating the failed course by undergoing instruction and satisfying the assessments; or

(iv) for elective courses, taking another course in lieu and satisfying the assessment requirements.

(f) There shall be no appeal against the results of examinations and all other forms of assessment.

UG 8 Grading system:

(a) The grades, their standards and the grade points for assessment shall be as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Standard</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>Excellent</td>
<td>4.3</td>
</tr>
<tr>
<td>A</td>
<td>Good</td>
<td>4.0</td>
</tr>
<tr>
<td>A-</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>Satisfactory</td>
<td>3.0</td>
</tr>
<tr>
<td>B-</td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td></td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>Pass</td>
<td>2.0</td>
</tr>
<tr>
<td>C-</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>D+</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td>Fail</td>
<td>0</td>
</tr>
</tbody>
</table>

UG 8 is not applicable to the respective Professional Core of the BDS and MBBS curricula.
(b) Special permission may be given by Senate for courses in individual curricula to be graded as ‘Pass’, ‘Fail’ or ‘Distinction’. Such courses will not be included in the calculation of the GPA.

UG 9 Honours classifications:

(a) Honours classifications shall be awarded in five divisions: First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the degree in accordance with the following Cumulative GPA scores, with all courses taken (including failed courses) carrying equal weighting:

<table>
<thead>
<tr>
<th>Class of honours</th>
<th>CGPA range</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class Honours</td>
<td>3.60 – 4.30</td>
</tr>
<tr>
<td>Second Class Honours</td>
<td>(2.40 – 3.59)</td>
</tr>
<tr>
<td>Division One</td>
<td>3.00 – 3.59</td>
</tr>
<tr>
<td>Division Two</td>
<td>2.40 – 2.99</td>
</tr>
<tr>
<td>Third Class Honours</td>
<td>1.70 – 2.39</td>
</tr>
<tr>
<td>Pass</td>
<td>1.00 – 1.69</td>
</tr>
</tbody>
</table>

(b) Honours classification may not be determined solely on the basis of a candidate’s Cumulative GPA and the Board of Examiners for the degree may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Cumulative GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.

(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

7 UG 9 is not applicable to the BChinMed, BDS and MBBS curricula.
REGULATIONS FOR FIRST DEGREE CURRICULA

Regulations for First Degree Curricula (for students admitted under the 4-year ‘2012 curriculum’ to the first year in the academic years 2012-13 and 2013-14, and students admitted directly to the third year in 2014-15 and 2015-16)

(See also General Regulations)

UG 1 Definitions:

For the purpose of regulations and syllabuses for all first degree curricula unless otherwise defined —

An ‘academic year’ comprises two semesters, the first semester to commence in September and end in December, and the second semester to commence in January and end in May/June, on dates as prescribed by the Senate. It includes, normally at the end of each semester, a period during which candidates are assessed. For some curricula, a ‘summer semester’ may be organized in addition to the normal two semesters. Clinical curricula have extended semesters.

A ‘summer semester’ normally comprises seven to eight weeks of intensive timetabled teaching and assessment to commence four weeks after the end of the second semester assessment period, and to conclude about one week before the start of the next academic year.

The ‘maximum period of registration’ is equivalent to a period which is 150% of the curriculum’s normative period of study as specified in the degree regulations, provided that where this results in a residual fraction of an academic year, the fractional period shall be extended to one full academic year.

‘Degree curriculum’ means the entire study requirements for the award of an undergraduate degree.

‘Major programme’ means the study requirements, including a capstone experience, for a single major area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 72 credits nor more than 96 credits, as prescribed in the syllabuses for a degree curriculum.

‘Minor programme’ means the study requirements for a single minor area of disciplinary, interdisciplinary or multidisciplinary study, accumulating not fewer than 36 credits nor more than 48 credits, as prescribed in the syllabuses for a degree curriculum.

‘Professional core’ refers to the study requirements, including a capstone experience, prescribed in the regulations and syllabuses for disciplinary studies in degree curricula which are not structured as major/minor programmes for reasons relating to professional qualification and/or accreditation.

1 These regulations are applicable to candidates admitted from 2016-17 onwards to the first year of first degree curricula under the 4-year ‘2012 curriculum’, the 2-year curriculum in respect of the BSc(IM), the 5-year curriculum in respect of the BA&BEd(LangEd), BEd&BSc, BEd&BSocSc, BSc(Sp&HearSc), and BNurs, and the 6-year curriculum in respect of the BChinMed, BDS and MBBS. Reference in these regulations to the powers of the Boards of Faculties shall be applicable to Senate Boards of Studies which administer first degree curricula.

(The Regulations for First Degree Curricula applicable to cohorts admitted in 2012-13 and 2013-14 under the 4-year ‘2012 curriculum’ can be found in the Calendar for 2013-14, and in the Calendar for 2014-15 for the cohorts admitted in 2014-15 and 2015-16.)
'Course' means a course of study, with a credit value expressed as a number of credit-units as specified in the syllabuses for a degree curriculum.

'Disciplinary elective course' or 'Disciplinary Elective' means any course offered in the same major or minor programme or the professional core which can be taken by candidates to fulfill the curriculum requirements as specified in the syllabuses of the degree curriculum.

'Elective course' or 'Elective' means any course offered within the same or another curriculum, other than compulsory courses in the candidate’s degree curriculum, that can be taken by the candidate in order to complete the credit requirements of the degree curriculum.

'Capstone experience' refers to one or more courses within the major programme or professional core which are approved by the Board of the Faculty for the purpose of integrating knowledge and skills acquired, and which are prescribed in the syllabuses of the degree curriculum.

'Syllabus' means courses taught by departments, centres, and schools, offered under a degree curriculum.

'Prerequisite' means a course or a group of courses which candidates must have completed successfully or a requirement which candidates must have fulfilled before being permitted to take the course in question.

'Corequisite' means a course which candidates must take in conjunction with the course in question.

'Credits' or 'credit-units' means the value assigned to each course to indicate its study load relative to the total study load under a degree curriculum. The study load refers to the hours of student learning activities and experiences, both within and outside the classroom, and includes contact hours and time spent on assessment tasks and examinations. Candidates who satisfactorily complete courses with a credit value earn the credits assigned to these courses.

'Grade Points’ are standardized measurements of candidates’ academic achievement in courses taken to satisfy the requirements of the degree curriculum and are expressed as a scale prescribed in these regulations.

'Grade Point Average’ is a numerical measure of a candidate’s academic achievement over a specified period of time. Each course attempted (including each failed course) is assigned a numerical value, with all courses carrying equal weighting. This numerical value is the product of grade points earned for the course and the credit value of that course. The ‘Grade Point Average’ is the sum of these numerical values divided by the total number of credits attempted:

\[GPA = \frac{\sum_{i} \text{Course Grade Point} \times \text{Course Credit Value}}{\sum_{i} \text{Course Credit Value}} \]

(where ‘i’ stands for all passed and failed courses taken by the student over a specified period)

'Semester Grade Point Average’ or ‘Semester GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) during a given semester.

'Year Grade Point Average’ or ‘Year GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) during a given academic year.

'Cumulative Grade Point Average’ or ‘Cumulative GPA’ is the GPA in respect of courses attempted by a candidate (including failed courses) at the time of calculation.

'Assessment’ refers to judgment about the quality and extent to which a student has achieved the stated learning objectives or learning outcomes. It includes all types of assessment activities which allow for such a judgment to be made. For the purpose of interpreting the relevant provisions of the Ordinance and the Statutes and where appropriate,
reference to ‘examination’ or ‘examinations’ in the Ordinance and the Statutes shall include and cover all forms of ‘assessment’ and its related processes.

A ‘transcript’ refers to a transcript of the record of study of a candidate, issued by the Registry of the University.

UG 2 Advanced standing:

Advanced standing may be granted to candidates in recognition of studies completed successfully in an approved institution of higher education elsewhere. Candidates who are awarded Advanced Standing will not be granted any further credit transfer for those studies for which Advanced Standing has been granted. The amount of credits to be granted for advanced standing shall be determined by the Board of the Faculty, in accordance with the following principles:

(a) at least half the number of credits of the degree curriculum normally required for award of the degree shall be accumulated through study at this University or from transfer of credits for courses completed at other institutions in accordance with Regulation UG 4(d); and

(b) in accordance with Statute III.5 and notwithstanding the granting of advanced and/or transfer credits, a minimum of two semesters of study at this University shall be required before a candidate is considered for the award of a first degree, other than a degree in medicine or surgery, and a minimum of four semesters of study at this University shall be required before a candidate is considered for a first degree in medicine or surgery.

Credits granted for advanced standing shall not normally be included in the calculation of the GPA unless permitted by the Board of the Faculty but will be recorded on the transcript of the candidate.

UG 3 Period of study:

The period of study of the curriculum shall be specified in the regulations governing the degree. To be eligible for award of the degree, a candidate shall fulfill all curriculum requirements within the maximum period of registration, unless otherwise permitted or required by the Board of the Faculty.

UG 4 Progression in curriculum:

(a) Candidates shall normally be required to take not fewer than 24 credits nor more than 30 credits in any one semester (except the summer semester) unless otherwise permitted or required by the Board of the Faculty, or except in the last semester of study when the number of outstanding credits required to complete the curriculum requirements is fewer than 24 credits.

(b) Candidates may, of their own volition, take additional credits not exceeding 6 credits in each semester, and/or further credits during the summer semester, accumulating up to a maximum of 72 credits in one academic year. With the special permission of the Board of the Faculty, candidates may exceed the annual study load of 72 credits in a given academic year provided that the total number of credits taken does not exceed the maximum curriculum study load for the normative period of study specified in the curriculum regulations, save as provided for under UG4(c).

(c) Where candidates are required to make up for failed credits, the Board of the Faculty may give permission for candidates to exceed the annual study load of 72 credits provided that the total number of credits taken does not exceed the maximum curriculum study load for the maximum period of registration specified in the curriculum regulations.
Candidates may, with the approval of the Board of the Faculty, transfer credits for courses completed at other institutions at any time during their candidature. The number of transferred credits may be recorded in the transcript of the candidate, but the results of courses completed at other institutions shall not be included in the calculation of the GPA. The number of credits to be transferred shall not exceed half of the total credits normally required under the degree curricula of the candidates during their candidature at the University.

Unless otherwise permitted by the Board of the Faculty, candidates shall be recommended for discontinuation of their studies if they have:

(i) failed to complete successfully 36 or more credits in two consecutive semesters (not including the summer semester), except where they are not required to take such a number of credits in the two given semesters, or

(ii) failed to achieve an average Semester GPA of 1.0 or higher for two consecutive semesters (not including the summer semester), or

(iii) exceeded the maximum period of registration specified in the regulations of the degree.

UG 5 Requirements for graduation:

To be eligible for admission to the degree, candidates shall fulfill the following requirements in addition to the requirements prescribed in the regulations and syllabuses governing the degree curriculum within the maximum period of registration:

(a) successful completion of 12 credits in English language enhancement, including 6 credits in Core University English and 6 credits in an English in the Discipline course;

(b) successful completion of 6 credits in Chinese language enhancement;

(c) successful completion of 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits; and

(d) successful completion of a capstone experience as specified in the syllabuses of the degree curriculum.

2 Candidates who have achieved Level 5** in English Language in the Hong Kong Diploma of Secondary Education Examination, or equivalent, may at the discretion of the Faculty be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.

3 (a) To satisfy the English in the Discipline (ED) requirement, candidates who have passed the ED course for a Major but subsequently change that Major are required to pass the ED course for the new Major, or either of the double Majors finally declared upon graduation irrespective of whether the second Major is offered within or outside of the candidates' home Faculty.

(b) Candidates declaring double Majors can, if they fail in the ED course for one of the Majors, either (i) re-take and successfully complete that failed ED course, or (ii) successfully complete the ED course for the other Major, irrespective of whether the Major is offered within or outside of the candidates' home Faculty.

(c) Candidates who undertake studies in double Majors or double degrees are not required to take a second ED course but may be advised by the Faculty to do so.

4 Candidates who have not studied Chinese language during their secondary education may be exempted from this requirement and should take an elective course in lieu, see Regulation UG6.

5 Candidates registered for double degree studies are required to successfully complete 24 credits of courses in the Common Core Curriculum, selecting one course from each Area of Inquiry, within the curriculum of the first degree, as appropriate.
UG 6 Exemption:

Candidates may be exempted, with or without special conditions attached, from any of the requirements in UG 5 by the Senate in exceptional circumstances. Candidates who are so exempted must replace the number of exempted credits with courses of the same credit value.

UG 7 Assessment:

(a) Candidates shall be assessed for each of the courses for which they have registered, and assessment may be conducted in any combination of continuous assessment of coursework, written examinations and/or any other assessable activities. Only passed courses will earn credits.

(b) Candidates who are unable, because of illness, to be present at the written examination of any course may apply for permission to present themselves at a supplementary examination of the same course to be held before the beginning of the First Semester of the following academic year. Any such application shall be made on the form prescribed within two weeks of the first day of the candidate’s absence from any examination. Any supplementary examination shall be part of that academic year’s examinations, and the provisions made in the regulations for failure at the first attempt shall apply accordingly.

(c) Candidates shall not be permitted to repeat a course for which they have received a D grade or above for the purpose of upgrading.

(d) Candidates are required to make up for failed courses in the following manner as prescribed in the curriculum regulations:
 (i) undergoing re-assessment/re-examination in the failed course to be held no later than the end of the following semester (not including the summer semester); or
 (ii) re-submitting failed coursework, without having to repeat the same course of instruction; or
 (iii) repeating the failed course by undergoing instruction and satisfying the assessments; or
 (iv) for elective courses, taking another course in lieu and satisfying the assessment requirements.

(e) There shall be no appeal against the results of examinations and all other forms of assessment.

UG 8 Grading system:

(a) The grades, their standards and the grade points for assessment shall be as follows:

<table>
<thead>
<tr>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>A-</td>
</tr>
<tr>
<td>B+</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>B-</td>
</tr>
<tr>
<td>C+</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>C-</td>
</tr>
<tr>
<td>D+</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>4.0</td>
</tr>
<tr>
<td>Good</td>
<td>3.0</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>2.0</td>
</tr>
<tr>
<td>Pass</td>
<td>1.0</td>
</tr>
<tr>
<td>Fail</td>
<td>0</td>
</tr>
</tbody>
</table>

6 UG 8 is not applicable to the respective Professional Core of the BDS and MBBS curricula.
(b) Special permission may be given by Senate for courses in individual curricula to be graded as ‘Pass’, ‘Fail’ or ‘Distinction’. Such courses will not be included in the calculation of the GPA.

UG 9 Honours classifications:

(a) Honours classifications shall be awarded in five divisions: First Class Honours, Second Class Honours Division One, Second Class Honours Division Two, Third Class Honours, and Pass. The classification of honours shall be determined by the Board of Examiners for the degree in accordance with the following Cumulative GPA scores, with all courses taken (including failed courses) carrying equal weighting:

<table>
<thead>
<tr>
<th>Class of honours</th>
<th>CGPA range</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class Honours</td>
<td>3.60 – 4.30</td>
</tr>
<tr>
<td>Second Class Honours</td>
<td>(2.40 – 3.59)</td>
</tr>
<tr>
<td>Division One</td>
<td>3.00 – 3.59</td>
</tr>
<tr>
<td>Division Two</td>
<td>2.40 – 2.99</td>
</tr>
<tr>
<td>Third Class Honours</td>
<td>1.70 – 2.39</td>
</tr>
<tr>
<td>Pass</td>
<td>1.00 – 1.69</td>
</tr>
</tbody>
</table>

(b) Honours classification may not be determined solely on the basis of a candidate’s Cumulative GPA and the Board of Examiners for the degree may, at its absolute discretion and with justification, award a higher class of honours to a candidate deemed to have demonstrated meritorious academic achievement but whose Cumulative GPA falls below the range stipulated in UG9(a) of the higher classification by not more than 0.1 Grade Point.

(c) A list of candidates who have successfully completed all degree requirements shall be posted on Faculty noticeboards.

7 UG 9 is not applicable to the BChinMed, BDS and MBBS curricula.
<table>
<thead>
<tr>
<th>SUN</th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THUR</th>
<th>FRI</th>
<th>SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>[25]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>[17]</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOV-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>[20]</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td>(31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAN-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>[5]</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>[20]</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APR-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>[19]</td>
<td>[20]</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>[5]</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>[20]</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>[7]</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIRST SEMESTER: SEP 3 - DEC 22, 2018

- **First Day of Teaching:** Sep 3, 2018
- **Reading/ Field Trip Week:** Oct 15 - 20, 2018
- **Last Day of Teaching:** Dec 1, 2018
- **Revision Period:** Dec 3 - 7, 2018
- **Assessment Period:** Dec 8 - 22, 2018
- **Revision Period:** Apr 29 - May 4, 2019
- **Assessment Period:** May 6 - 25, 2019
- **Optional Summer Semester:** Jun 24 - Aug 17, 2019

SECOND SEMESTER: JAN 14 - MAY 25, 2019

- **First Day of Teaching:** Jan 14, 2019
- **Class Suspension Period for the Lunar New Year:** Feb 5 - 11, 2019
- **Revision Period:** Apr 29 - May 4, 2019
- **Assessment Period:** May 6 - 25, 2019

NOTES:

- First Semester: 11 Mondays and Tuesdays, 12 Wednesdays, Thursdays, Fridays and Saturdays
- Second Semester: 11.5 Mondays, 13 Tuesdays, Wednesdays and Thursdays, 11 Fridays and Saturdays

SECTION XI Teaching Weeks

Teaching Weeks 2018-19 for Undergraduate and Taught Postgraduate Students

- **Start Date:** Sep 3, 2018
- **End Date:** Dec 22, 2018
- **Reading/ Field Trip Week:** Oct 15 - 20, 2018
- **Last Day of Teaching:** Dec 1, 2018
- **Revision Period:** Apr 29 - May 4, 2019
- **Assessment Period:** May 6 - 25, 2019
- **Optional Summer Semester:** Jun 24 - Aug 17, 2019
Useful contacts and websites
Useful contacts and websites

<table>
<thead>
<tr>
<th>Faculty of Science</th>
<th>Office Location</th>
<th>Ground Floor, Chong Yuet Ming Physics Building</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tel</td>
<td>3917 2683</td>
</tr>
<tr>
<td></td>
<td>Fax</td>
<td>2858 4620</td>
</tr>
<tr>
<td></td>
<td>Email</td>
<td>science@hku.hk</td>
</tr>
<tr>
<td></td>
<td>Website</td>
<td>https://www.scifac.hku.hk/</td>
</tr>
</tbody>
</table>

(Please visit https://www.scifac.hku.hk/ for the latest updates of BSc courses, timetables, notices and forms)

<table>
<thead>
<tr>
<th>Departments/Schools</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences</td>
<td>https://www.biosch.hku.hk/</td>
</tr>
<tr>
<td>Biomedical Sciences</td>
<td>http://www.sbms.hku.hk</td>
</tr>
<tr>
<td>Chemistry</td>
<td>https://www.chemistry.hku.hk/</td>
</tr>
<tr>
<td>Earth Sciences</td>
<td>https://www.earthsciences.hku.hk/</td>
</tr>
<tr>
<td>Statistics and Actuarial Science</td>
<td>https://saasweb.hku.hk/</td>
</tr>
</tbody>
</table>

| **Academic Advising Office** | Tel | 3917 0128 |
| | Website | http://aao.hku.hk |

Academic Services Office	Office Location	G04, Run Run Shaw Building
	Tel	2859 2433
	Fax	2540 1405
	Email	asoffice@hku.hk
	Website	http://www.ase.hku.hk

<table>
<thead>
<tr>
<th>Common Core courses</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>https://commoncore.hku.hk/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HKU Worldwide Undergraduate Exchange Programme</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>https://aal.hku.hk/studyabroad/</td>
</tr>
</tbody>
</table>

| **Centre of Development and Resources for Students (CEDARS)** | Tel | 3917 2305 |
| | Website | http://cedars.hku.hk |

University Health Service	Tel	
	3917 2501 (General enquiries)	
	2549 4686 (Medical appointments only)	
	Website	http://www.uhs.hku.hk

| **Plagiarism** | Website |
| | http://www.hku.hk/plagiarism |