Physical Properties of Fullerene C60-Containing PN Lin49 in the SMC; Explanations of Strong Near-IR Excess

Masaaki Otsuka, F. Kemper (ASIAA), M.L Leal-Ferreira, I. Aleman (Leiden Obs), J. Bernard-Salas (The Open Univ), J. Cami, E. Peeters(UWO/SETI), B. Ochsendorf (STScI/Leiden Obs)

New detection of the C60 bands in Lin49

Known Properties of "Galactic" C60 PNe

- Cool central star and metal deficient nebula, about MC metallicity
- The origin (i.e., initial/current mass) of C60 PNe is unclear due to
 - **1. Surface gravity** (Log g)
 - **2. Distance**
- Study on MC C60 PNe can overcome these problems
- useful for Galactic C60 PNe as well as MC C60 PNe

We investigate properties of Lin49

Objects	<teff></teff>	<log g=""></log>	<[Ar/H]>
Galactic C60 PNe (11 objects)	38600	3.80	-0.60
C60 SMC PNe (7 objects)	37600	?	-0.97
Lin49 in the SMC	30500	3.29	-1.07

Ref. Garcia-Hernandez et al. 2010, 2011, 2012; Otsuka et al. 2013, 2014, this work

Outline

With VLT X-SHOOTER and Spitzer IRS spectra, we derive

- Nebula abundances
 - compare with AGB model predicted abundances and estimate the initial mass
- Central star's Teff and log g
 - Through absorption line fitting using O-Star2002 grid of TLUSTY (Lanz & Hubeny 2003)
 - Dust and gas mass & core mass of the central star
 - Through CLOUDY (Ferland 1998) SED fitting. Use the synthesized spec by TLUSTY. Obtain L*, then core-mass M*

 $M^* = g L^* / 4\pi G \sigma Teff^4$

Nebular Abundances

The abundances could be explained by the initially 1.25 Msun with Z = 0.06 Zsun AGB models of Fishlock et al. (2014)

 $\epsilon(X/H) = Log n(X)/n(H)+12$

X	ε(X/H)	[X/H]	AGB model
He	10.99	+0.06	11.01
С	8.67	+0.28	8.56
Ν	6.93	-0.93	7.26
0	8.11	-0.62	7.68
Ne	7.18	-0.89	7.37
S	6.02	-1.15	6.00
Cl	4.03	-1.22	4.08
Ar	5.48	-1.02	5.28
Fe	4.55	-2.91	6.38

Outline

With VLT X-SHOOTER and Spitzer IRS spectra, we derive

- Nebula abundances
 - compared with AGB model predicted abundances and estimated the initial mass of ~1.25 Msun

Central star's Teff and log g

- Through absorption line fitting using O-Star2002 grid of TLUSTY (Lanz & Hubeny 2003)
- Dust and gas mass & core mass of the central star
 - Through CLOUDY (Ferland 1998) SED fitting. Use the synthesized spec by TLUSTY. Obtain L*, then core-mass M*

 $M^* = g L^* / 4\pi G \sigma Teff^4$

Stellar absorption fitting with TLUSTY Teff=30500 K and Log g = 3.29 cm s⁻²

Normalized Flux Density

Outline

With VLT X-SHOOTER and Spitzer IRS spectra, we derive

- Nebula abundances
 - compare with AGB model predicted abundances and estimate the initial mass
- Central star's Teff and log g
 - Through absorption line fitting using O-Star2002 grid of TLUSTY (Lanz & Hubeny 2003).
 - Dust and gas mass & core mass of the central star
 - Through CLOUDY (Ferland 1998) SED fitting. Use the synthesized spec by TLUSTY. Obtain L*, then core-mass M*

 $M^* = g L^* / 4\pi G \sigma Teff^4$

SED model with CLOUDY

Central Star TLUSTY synthesized spectrum Teff = 30500 KLog = 3.29 cm s^{-2}

Dusty Nebula Rin = 0.0004 pcRout = 0.069 pcnH = 4770 cm^{-3} $0.005-0.1\mu\text{m}$ graphite

The NIR-IR data cannot be fitted with a normal ISM grain size

Near-IR Excess; Stochastic heating by small particles?

For extremely small grains, a photon energy Eph produces the difference between the max and min temperatures ΔT written by

 $\Delta T = Eph/3Nk$ (N: the number of the atoms in a molecule)

(Sellgren 1984; Whittet 2003)

the radiation peak energy of the central star is \sim 13.05 eV, N is \sim 40-60

Near-IR Excess; High density component nearby the central star?

Central Star TLUSTY synthesized spectrum Teff = 30500 K Log = 3.29 cm s⁻² Low density nebula Rin = 0.0004 pc Rout = 0.069 pc $nH = 4770 \text{ cm}^{-3}$ $0.005-0.1\mu\text{m}$ graphite

High density nebula Rin = 0.0002 pcRout = 0.0004 pcnH = 47800 cm^{-3} $0.005-0.1 \mu\text{m}$ graphite

Near-IR Excess; two component model can fit the observation

Core-mass: 0.58 Msun Luminosity: 6320 Lsun

Gas mass: 0.11 Msun Dust mass: $4.14x10^{-5}$ Msun Dust temp: 80-1420 K

Summary

Near-IR excess

- Stochastic heating by small particles?
 - What's type of particle? C60 precursors? smaller fullerene? (e.g., C36; Piskoti et al. 1998, Nature)
- High-dens. component nearby the central star?
 - Shell? flatten envelope? How did a ~1.25M sun star create?
- Is there a connection to C60 formation?
 - Near-IR excess is seen in C60 PNe