Explosive Events in the Multipolar Pre-Planetary Nebula (PPN) CRL 618

Chin-Fei Lee (ASIAA=Academia Sinica Inst. of Astronomy and Astrophysics)

P.-S. Huang (ASIAA), R. Sahai (JPL), C. Sanchez-Contreras (CSIC-INTA), C.-H. Yang (ASIAA)

Dec 15, 2015
Evolutionary Track of a 2 Ms star

CRL618 (Carbon-rich)

Herwig 2005
About 40 yrs ago, H II region detected at the center at cm (Wynn-Williams 1977) ➔ Entered PN phase about 40 yrs ago

SMA 0.85mm cont. (Lee et al 2013)

The Ionized region (wind?) is bipolar but not spherically symmetric!

Dusty core confines the (isotropic?) ionized region (wind?) to be bipolar?
Larger-scale Expanding Components

BIMA CO J=1-0 map, Meixner et al. 1998

Extended expanding AGB halo

[OI] 6300 + Hα + 0.55μm cont. ➔ Multipolar PPN lobes (Trammell et al. 2002, Sahai)

dense HC$_3$N toroidal core (Sanchez-Contreras et al. 2004). It confines the multipolar PPN to be in East-West direction?
Fast CO outflows

OVRO CO 2-1
(Sanchez-Contreras et al. 2004)

Fast, bipolar outflow

SMA CO J=3-2 (Lee et al. 2013)

Fast outflows are actually multipolar and collimated like bullets!!
Dynamical ages: about 45 yrs for inner ones and 100 yrs near the end of the optical lobes (see also Balick et al. 2013).

INTERESTINGLY: The inner outflows were ejected right before/at the same time when the PN phase started!
Two-Epoch Multi-Directional Bullet Model For the East-side

What mechanism ejected these bullets?

See Poster by Huang, Lee et al. (Poster Number: P2.05)
Equatorial molecular outflows? They have opposite velocity sense and thus are unlikely to trace the expanding halo material in the equatorial plane. Their velocity is too high to be due to rotation around the central star. Hence, they likely trace outflows in the equator!?
Explosion driven by a rotating, magnetized, gravitating sphere?

So, two episodes of this kind of explosion?
But wait!

Matt et al. 2003

Fig. 2.—Gray-scale image of log density (black is highest density) far from the core, shown after 4.5 rotations of the core. The data are from the fourth simulation grid. The core is indicated by a white circle at the center. Vectors represent the flow velocity, with the maximum vector length corresponding to $4.1v_{rot}$.

Fig. 3.—Three-dimensional rendering revealing the explosion mechanism, viewed from $\sim30^\circ$ above the magnetic equator. The two blue surfaces are contours of constant density, each at the same density value. The dense shell of swept-up envelope material (see Fig. 2) exists between the two surfaces. Gold wires trace the magnetic field lines and illustrate that the field is most highly twisted in the low-density region interior to the shell.
SMA molecular line spectra of the dense core

Frequency in rest frame (i.e., corrected for the systemic velocity) (GHz)
SMA HC$_3$N maps of the dense core in the order of increasing upper energy level

T increases toward the central star
Model the H II region and dusty core

Observation results:
1. Velocity increases linearly with the distance.
2. Temperature increases toward the center.
Assumption: Constant mass-loss rate

<table>
<thead>
<tr>
<th>Species</th>
<th>Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC$_3$N</td>
<td>2 ± 0.4 x 10$^{-7}$</td>
</tr>
<tr>
<td>H$_{13}$CCN</td>
<td></td>
</tr>
<tr>
<td>HC$_{15}$CN</td>
<td>2 ± 0.4 x 10$^{-8}$</td>
</tr>
<tr>
<td>HCC$_{13}$CN</td>
<td></td>
</tr>
<tr>
<td>H${13}$C${13}$CCN</td>
<td>2 ± 0.4 x 10$^{-9}$</td>
</tr>
<tr>
<td>HCC${13}$C${13}$N</td>
<td></td>
</tr>
<tr>
<td>CH$_2$CHC$_3$</td>
<td>3 ± 0.5 x 10$^{-8}$</td>
</tr>
<tr>
<td>HCN</td>
<td>1.4 ± 0.3 x 10$^{-7}$</td>
</tr>
<tr>
<td>H$_{13}$CN</td>
<td>1.8 ± 0.4 x 10$^{-8}$</td>
</tr>
<tr>
<td>HC$_{15}$N</td>
<td>1.1 ± 0.3 x 10$^{-9}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_{e,0}$</td>
<td>6.4 ± 1.3 x 106 cm$^{-3}$</td>
</tr>
<tr>
<td>r_{0}</td>
<td>0.22 ± 0.04</td>
</tr>
<tr>
<td>T_{0}</td>
<td>440 ± 90 K</td>
</tr>
<tr>
<td>p_{i}</td>
<td>0.8 ± 0.2</td>
</tr>
<tr>
<td>p_{o}</td>
<td>1.8 ± 0.4</td>
</tr>
<tr>
<td>n_{0}</td>
<td>4.0 ± 0.8 x 108 cm$^{-3}$</td>
</tr>
<tr>
<td>v_{0}</td>
<td>4.9 ± 0.3 km s$^{-1}$</td>
</tr>
<tr>
<td>κ_v</td>
<td>0.022 ± 0.004 cm2 g$^{-1}$</td>
</tr>
</tbody>
</table>

Note: The uncertainties are assumed to be 20% for all parameters.

Lee et al. 2013
SMA molecular line spectra of the dusty core

Frequency in rest frame (i.e., corrected for the systemic velocity) (GHz)
Physical Properties of the dense core

- The dense core is expanding, with the velocity increasing roughly linearly from 3 to 16 km/s at 630 AU.
- The dense core has a mass of ~ 0.47 Ms and a dynamical age of 400 yrs.
- The mass-loss rate in the dense core is extremely high with a value of 1.15×10^{-3} Ms/yr.
- It could result from a recent enhanced heavy mass-loss episode that ends the AGB phase.
- Interestingly, $^{12}C/^{13}C \sim 10$, $^{14}N/^{15}N \sim 150$, both lower than expected.
Comparing our $^{12}\text{C}/^{13}\text{C}$ ratio to previous Single-dish Study

$^{12}\text{C}/^{13}\text{C}$ decreases toward the star after the star has become C-rich

Additional CNO cycle needed?

Single-Dish (large-scale) $^{12}\text{CO}/^{13}\text{CO}$ results of supergiants (gray circles), AGB stars (black circles) and PPNs (gray squares) by Milam et al. 2009
Our Model Results

Isotope ratio: $^{14}\text{N}/^{15}\text{N} \sim 150,$
much lower than those found in C-rich AGBs, PPN (Wannier et al. 1991)

Cold CNO cycle tends to destroy ^{15}N, producing $^{14}\text{N}/^{15}\text{N} > 2000$. So, may need a hot CNO cycle as in novae to produce our value?
Nova-like Explosions?

Credit: NASA
Speculations?

About 100 yrs ago, an explosion took place, shooting bullets into the AGB envelope, producing the collimated multipolar outflow lobes.

About 45 yrs ago, a 2nd explosion(?) took place, producing the heavy fast molecular bullets/outflows near the central star.

Right after that, the exposed stellar core photoionizes the surrounding, driving a radiation-driven ionized wind, collimated (bounded) by the dense toroidal core (envelope)?