

The Discovery and Characterisation of Binary Central Stars of PNe

David Jones (djones@iac.es)

drdjones.net/bCSPN for a full (regularly updated) list

Miszalski et al. (2009a,b)

- More than doubled the sample
- i-band survey of the Galactic bulge
- Close-binary fraction of ~20%
- Clear confirmation of a binary pathway for PN formation

RVs are difficult!

- Need good spectral resolution
- Big telescope? Lots of time for "fishing"
- Nebular contamination is a problem
- On some level everything is variable!

Jones et al. (2015, A&A, 580, 19)

... but very important!

van Winckel et al. (2014, A&A, 563,10)

REPORTS

- Some systems won't be photometrically variable
 - Long periods
 - Double degenerates

An Interacting Binary System Powers Precessing Outflows of an Evolved Star

Boffin et al. (2012, Science, 338, 773)

Nebular Contamination

- i-band (and Stry) • quite effective (see OGLE)
- Some need narrowband $(H\beta$ -continuum)
- Image subtraction very good but not "on-the-fly"

Jones et al. (2015, A&A, 580, 19)

Recent efforts have focused on pre-selected "good" candidates

Filaments

Knots Rings Jets

Very successful, but statistics are difficult

- Biased?
 - Spectral types
 - Period range
 - Age
 - ?
- Need for rigourous survey
- 8 DD 7 6 5 Number 4 3 2 1 0 -0.5 0.5 -1 0 1 Log P(day)
- 2 kpc volume-limited sample (Todd Hillwig, David Frew, myself)
- Will be best measure of binary fraction to-date

Characterisation really needs RVs

(and eclipses and photoionisation modelling of host PN) Hen 2-11 Jones et al. (2014, A&A, 562, 89)

Characterisation is hard!

Nebula	Period	M_{CS}	R_{CS}	T_{CS}	\mathbf{M}_{S}	\mathbf{R}_{S}	T_S
	(day)	(M _☉)	(R _☉)	(kK)	(M _☉)	(R_{\odot})	(kK)
Abell 46	0.47	0.51 ± 0.05	0.15 ± 0.02	49.5 ± 4.5	0.15 ± 0.02	0.46 ± 0.02	3.9±0.4
Abell 63	0.47	0.63 ± 0.05	0.35 ± 0.01	78±3	0.29 ± 0.03	0.56 ± 0.02	6.1 ± 0.2
Abell 65	1.00	0.56 ± 0.04	0.056 ± 0.008	110 ± 10	0.22 ± 0.04	0.41 ± 0.05	5.0 ± 1.0
BE Uma	2.29	0.70 ± 0.07	0.08 ± 0.01	105 ± 5	0.36 ± 0.07	0.72 ± 0.05	5.8 ± 0.3
Ds 1	0.36	0.63 ± 0.03	0.16 ± 0.01	77±3	0.23 ± 0.01	0.40 ± 0.01	3.4 ± 1
Hen 2-155	0.15	0.61 ± 0.06	0.31 ± 0.02	90±5	0.14 ± 0.06	0.30 ± 0.03	3.5 ± 0.5
Hen 2-428	0.18	0.88 ± 0.13	0.68 ± 0.04	32.4 ± 5.2	0.88 ± 0.13	0.68 ± 0.04	30.9 ± 5.2
NGC 6026	0.53	0.57 ± 0.05	1.06 ± 0.05	38±3	0.57 ± 0.05	0.05 ± 0.01	146±15

Only 8 systems properly constrained

But quite a few others have good estimates of (at least) the orbital inclination...

Jones et al. (2015, A&A, 580, 19) and references therein Jones et al. (2014, APNVI)

Binaries definitely shape PNe

Orbital planes are *ALWAYS* perpendicular to nebular symmetry axes

Inflated Secondaries!

Nebula	Period	M_{CS}	R _{CS}	T_{CS}	\mathbf{M}_{S}	\mathbf{R}_{S}	T_S
	(day)	(M _☉)	(R _☉)	(kK)	(M _☉)	(R_{\odot})	(kK)
Abell 46	0.47	0.51 ± 0.05	0.15 ± 0.02	49.5 ± 4.5	0.15 ± 0.02	0.46 ± 0.02	3.9±0.4
Abell 63	0.47	0.63 ± 0.05	0.35 ± 0.01	78±3	0.29 ± 0.03	0.56 ± 0.02	6.1 ± 0.2
Abell 65	1.00	0.56 ± 0.04	0.056 ± 0.008	110 ± 10	0.22 ± 0.04	0.41 ± 0.05	5.0 ± 1.0
BE Uma	2.29	0.70 ± 0.07	0.08 ± 0.01	105 ± 5	0.36 ± 0.07	0.72 ± 0.05	5.8 ± 0.3
Ds 1	0.36	0.63 ± 0.03	0.16 ± 0.01	77±3	0.23 ± 0.01	0.40 ± 0.01	3.4 ± 1
Hen 2-155	0.15	0.61 ± 0.06	0.31 ± 0.02	90±5	0.14 ± 0.06	0.30 ± 0.03	3.5 ± 0.5
Hen 2-428	0.18	0.88 ± 0.13	0.68 ± 0.04	32.4 ± 5.2	0.88 ± 0.13	0.68 ± 0.04	30.9 ± 5.2
NGC 6026	0.53	0.57 ± 0.05	1.06 ± 0.05	38±3	0.57 ± 0.05	0.05 ± 0.01	146±15

Only 8 systems properly constrained

2 Double-degenerates (incl. best SN Ia candidate to-date) 6 Main sequence companions - all inflated w.r.t. ZAMS

Jones et al. (2015, A&A, 580, 19) and references therein

Evidence of Mass Transfer

Evidence of Mass Transfer

Jets forming before CE

PN	Neb. age (yrs)	Jet age (yrs)
Fg 1	2000	2500-7000
Necklace	1100	2400
ETHOS 1	900	1800
Abell 63	3500	5200
	Jones (2014, APNVI)	

Summary

- Discovery and characterisation of bCSPNe is a painstaking and time-consuming process
 - but worth doing!
- (Some) PNe are definitely shaped by binary stars
- bCSPNe are key to understanding close binary evolution (and other phenomena - see Romano's talk)
 - Too many double-degenerates? (Too many short period binaries?)
 - Pre-common-envelope mass transfer