ELVIRE DE BECK - ONSALA SPACE OBSERVATORY, SWEDEN

TITANIUM DIOXIDE AROUND THE RED SUPERGIANT VY CMA

W. Vlemmings, E. O'Gorman, S. Muller, J. H. Black, M. Maercker (OSO)

A. Richards (Jodrell Bank),A. Baudry (CNRS, LAB),L. Decin (KULeuven),E. Humphreys (ESO)

EVOLVED STARS

- Gas & dust
- Driving mechanism?
 - Shocks
 - Radiation pressure / scattering on dust
 - Convection
 - Magnetic fields
 - ... ?
- Dust around <u>oxygen-rich stars</u>
 - size
 - chemical composition

EVOLVED STARS

- Gas & dust
- Driving mechanism?
 - Shocks
 - Radiation pressure / scattering on dust
 - Convection
 - Magnetic fields
 - ... ?
- Dust around <u>oxygen-rich stars</u>
 - size
 - chemical composition

- 25 M_{sun}
- 300,000 L_{sun}
- 1420 R_{sun}
- Mass-loss rate ~ $2 \times 10^{-4} M_{sun}/yr$
- Outflows, arcs, knots ... VERY complex!

HST

Kaminski et al. (2013)

SMA

SPHERE/ZIMPOL

VY CANIS MAJORIS THE ALMA OBSERVATIONS

• ALMA = Atacama Large Millimetre/sub-millimetre Array

- CSV observations
 - 20 antennas
 - 14m ... 2.7 km baselines
 - Angular resolution ~0.13" at 320 GHz, ~0.06" at 658 GHz (0.13" ~ 25 stellar radii)
 - Primary goal: H₂O masers
 - Other results:
 - continuum structure
 - > 80 emission features: H₂O, TiO₂, NaCl, SO₂, MgCl, SiS, SiO, ... (+ vibrational states & isotopologues)

Before ALMA

offset between continuum and molecular emission e.g. Muller et al. (2007), Kaminski et al. (2013)

Before ALMA

offset between continuum and molecular emission e.g. Muller et al. (2007), Kaminski et al. (2013)

- H₂O masers at 321, 325, 658 GHz
 - centre of expansion = star (VY)
- Peak of continuum = "blob" C
 - $2.5 \times 10^{-4} M_{sun} (= 1/2 M_{Jupiter})$
 - < 100 K
 - no molecular emission

- Dust composition \implies molecular gas content: TiO₂
 - refractory species: efficient condensation?
 - 15 emission lines
 - E ~ 50 K 675K

De Beck et al. (2015)

- spatially resolved for the first time
- complex

De Beck et al. (2015)

De Beck et al. (2015)

- Radiative excitation of TiO₂
 - very high dipole moment
 - collisional versus radiative transition rates
 - correspondence with scattered light observations: stellar radiation field less attenuated
- Derived abundance $TiO_2/H_2 \sim 4 \times 10^{-8}$
 - small role in dust formation
 - freed up from dust, e.g. through shocks?
 - inefficient depletion of TiO₂ supported by Gobrecht et al. (2015)
 - implications for dust around AGB stars?

- 15 emission lines of TiO_2 in ALMA observations
- spatially resolved for the first time
- clumpy, anisotropic outflow
- accelerating bipolar-like structure, runs into "blob" C
- south-west
 - tail towards observer
 - clump in TiO₂, NaCl
 & previously H₂S, CS, SiS, NS
- radiative excitation
- significant amount of TiO₂ beyond dust-formation zone
- inefficiently depleted from gas phase $\implies \underline{\text{minor role in dust formation}}$