PAHs and H_2 in the Ring Nebula

Nick Cox, Paolo Pilleri, Olivier Berné, Pepe Cernicharo, Christine Joblin

ArXiv:1511.08725 (Cox+2015)

Dual-dust chemistry – origin of PAHs in O-rich sources?

PAH formation mechanism(s) in O-rich and C-rich planetary nebulae?

Mixed-chemistry ubiquitously seen in Galactic Bulge PNe (Guzman-Ramirez et al. 2011, 2014).

Dense H₂ clumps in PNe

*H*₂ emission from PDRs associated with dense knots in ionized region

Dumbbell Nebula (NGC6853) Matsuura et al. (APN V)

Helix Nebula (NGC7293) Matsuura et al. 2009

Spitzer-IRS SH Map observations of O-rich PNe

Mid-infrared spectroscopy of O-rich PNe

Spitzer IRS-SH 10 – 19 μm.

Spitzer IRS-SH 10 – 19 μm.

Mid-infrared PAH spectrum of NGC6720

Hot CSPN $T_* \sim 120.000 \text{ K}$ \rightarrow rich gas spectrum of ionized species

Mid-infrared PAH spectrum of NGC6720

Mid-infrared PAH spectrum of NGC6720

11.3-12.0-12.7 PAH complex clearly revealed; but no PAH 6.2 & 7.7

→ Resembles closely PAH spectrum of Horsehead HII region.

Physical conditions: densities & radiation field

Density and temperature of H_2 v=1

 $n_{H} > 10^{4} \text{ cm}^{-3}$ (pressure equilibrium at the ionization front)

PAH and H₂ at the PDR interface

- \rightarrow Stronger <u>*H*</u>² due to <u>attenuation of UV</u> photons
- \rightarrow Increasing <u>PAH</u> intensity due to <u>density</u> gradient

UV photons attenuated by $A_v \sim 0.5 \text{ mag}$ over distance 0.07 pc \rightarrow *mean* $n_{H} > 10^4 \text{ cm}^{-3}$

Hydrocarbon photochemistry \rightarrow PAHs?

Ring Nebula

- * N(C) > 10 x N(CO).
- * Moderate radiation field ($G_0 \sim 200$)
- * C, CO and H_2 have clumpy distribution.
- * Knots with $n_{H} > 10^4 \text{ cm}^{-3}$

Carbon chemistry reactions such as:

 $\begin{array}{c} \mathrm{C_2} + \mathrm{H_2} \rightarrow \mathrm{C_2H} \ + \mathrm{H} \\ \mathrm{C_2H} + \mathrm{H_2} \rightarrow \mathrm{C_2H_2} + \mathrm{H} \\ \mathrm{C^+} + \mathrm{H_2} \rightarrow \mathrm{CH^+} + \mathrm{H} \end{array}$

have moderate activation energies, thus slow in cold ISM, but can become rapid enough to control C-bearing species at high T and n_{H_2} prevailing in PDRs of (P)PN.

? How to get from small hydrocarbons to larger PAH molecules ?

? Impact of grains? Carbonaceous or silicates ?

[Bachiller+1994, Sahai+2012, this work]

Perspectives – exploring new grounds

Millimeter.

SMA Map CO and tracers of both oxygen-rich (SiO) and carbon-rich (HCN, CCH,SiC₂) chemistry in knots of NGC6720.

IRAM-30m zero-baselines for global view on chemistry.

Mid-infrared. :

JWST/NIRCam map distribution of H_2 and PAHs/eVSGs in extended PNe \rightarrow Field-of-view is 130" x 130".

JWST/MIRI mid-infrared spectroscopy of PAHs/hydrocarbons in <u>micro-PDRs</u> associated with dense knots in HII regions of PNe. \rightarrow IFU (4"x8") spectroscopy at R~1550-3250.

Theory:

Chemical modeling of knots \rightarrow bottom-up formation of C-chains and PAHs?

Spitzer/IRS archive:

Other interesting sources to be analyzed E.g NGC40 (C-rich PN).