Cyanopolyynes are species commonly encountered both in galactic and extragalactic environments. To analyse their abundances and isotopic fractionation offers us relevant clues about polymerization processes in space. We present results on the systematic search of HC$_3$N and HC$_5$N towards the intermediate-mass protostar Cep E. The spectral line identification was performed through an unbiased molecular survey, covering a broadband between 80 and 350 GHz, acquired with the IRAM 30 m telescope.

We have identified several unblended lines of HC$_3$N and HC$_5$N, including their 13C and D isotopologues. The bulk of the molecular emissions arises from the cold part of the protostellar envelope, as indicated by a simple rotational diagram analysis. Large deuterium fractionation is measured: [HC$_3$N]:[DC$_3$N] ≈ 9:1 and [HC$_5$N]:[DC$_5$N] ≈ 4:1. We find an anomalous isotopic ratio between the 13C isotopologues of cyanoacetylene: [H13CCCN]:[HC13CCN]:[HCC13CN] ≈ 1:3:1. We discuss possible mechanism responsible for such a ratio. We propose that it is actually related to the formation pathway of HC$_3$N via C$_2$H$_2$ + CN → HC$_3$N + H.