

AST3 Exoplanets - How we can help.

Professor Chris Tinney Exoplanetary Science at UNSW, UNSW Australia

Never Stand Still

Science

Exoplanetary Science at UNSW

Exoplanetary Science at UNSW

- Doppler "Wobble" Planet Searches
 - -Anglo-Australian Planet Search, Pan-Pacific Planet Search, Habitable-zone Mdwarf Planet Search + Kepler K2 Host-star Charaterisation
- Transit Planet Follow-up
 - -Confirmation for HATSouth, KELT, AST3, CSTAR
 - -Spin-Orbit Alignment by Rossiter-McLaughlin Doppler Anomaly
 - -Secondary Transit Detection in the infrared
- Y-type 300K brown dwarfs from NASA WISE. Dust and Debris disks with ESA Herschel. Direct Imaging with Gemini NICI, GPI, VLT Sphere New Facilities : Veloce and FunnelWeb

AST3

- 0.5m robotic telescope
- Optical CCD detector at 1"/pixel with 1.5° × 2.9° field

- This is not a unique capability.
- Its advantage for new science comes from its site.

Antarctic Advantages

- Exoplanets AST3 Continuous diurnal coverage for I-3 months \checkmark • Continuous diurnal availability for $\delta < -30$ (i.e. fast overrides) Lew water vapeur and lew infrared background
 - Images 0.25" in some periods when boundary layer drops.
- $\sqrt{4} \cdot \sqrt{4}$ Low scintillation & stable (i.e. absent) water vapour > high precision photometry

Exoplanet Science

- "In principle" Dome A should be one of the best places in the world to do exoplanetary transit detection because.
 - No diurnal window function potential to find very short (P<Id) and long (P>4d) planets.
 - Photometric "state of the art" from ground is ~1 mmag, and is limited by the atmosphere.
 - Low scintillation, low water vapour absorption and excellent seeing should mean better photometry at Dome A than the state of the art at temperate sites.

Why is precision important?

- Fractional flux for transit dips
 - $1\% = 10 \text{mmag} \rightarrow \text{Jupiter (IIR}_{\text{Earth}}),$ $0.5\% = 5 \text{mmag} \rightarrow \text{Neptune (4R}_{\text{Earth}}),$ $0.1\% = \text{Immag} \rightarrow \text{Super-Earth (2R}_{\text{Earth}})$

 AST3 can do ground-breaking science, <u>if the detector is stable enough</u> to do better than Immag precision.

"If you cheat on the calibration you get all the trouble you deserve."

Jeremy Mould (circa 1990)

"If you cheat on the <u>commissioning</u> you get all the trouble you deserve."

Chris Tinney (circa 2000)

Exoplanet Science with AST3

- Is hard ! Much harder than SNe, variable stars, or EBs
- You need a stable, calibrated and quantified detector system -i.e. you must know
 - gain, linearity, cross-talk, CTE, dark current, etc as a fn of the detector's temperature (because it is not stable, or at least not necessarily at the temp you did a single test at)
- And know this before you ship.
- These things are all *infinitely* harder with an infrared system!

Why do you need all this?

- BPST = CSTAR-II tests during Northern Winter at
- Data binned to 2 min (blue)
- Decorrelated against airmass sky, zero-point (green)
- Aperture mag uncertainty as fn of brightness (red)
- This system has so much "red noise" it can't reach photon-counting limit even for bright targets.

Binaries. Planets?

What we can do for you ...

- Ground-based transit searches <u>rely</u> on follow-up observations to confirm candidates.
- "Chaff" outnumbers "seeds" by much more than 10:1.
 - Transit Recovery: I-2m telescope to recover transit at higher S/N.
 - Low-res spectra : ANU 2.3m+WiFeS to reject giants, obvious SB2s and >10km/s velocity variation.
 - High-res spectra (one-shot) : AAT+CYCLOPS2+UCLES to reject more SB2s, rapid rotators
 - High-res spectra (4-to-6-shots) : AAT+CYCLOPS2+UCLES

What we can do for you ... now

- We have been doing similar work for some time now with targets from HATSouth and KELT, so we are "ready to roll" with AST3 or CSTAR-II planet candidates.
- <u>10-20m/s</u> precision for V<13 targets

What we can do for you ... soon

Replacing UCLES with a \$1.65m purpose-built Veloce Doppler spectrograph at AAT which will deliver higher stability and precision (late 2016)

What we can do for you ... soon

Provide a spectrum of every star brighter than 12th magnitude at $\delta < +30$ from the <u>FunnelWeb Survey</u> (starting mid-2016 and running for 3 years)

Table 1 – Galaxia model (Sharma et al. 2011)star counts in FunnelWeb				
Class	Number of objects in Survey			
Class	I<12		I<14	
All Stars	2,130,000		9,840,000	
<100Myr	9,700		17,500	
<10Myr	800		1,200	
Sp Туре	Dwarfs	Giants	Dwarfs	Giants
В	8,500	0	8,600	0
A	76,100	300	121,000	2,800
F	548,000	500	2,800,000	5,300
G	281,000	61,400	2,380,000	404,000
К	67,100	1,030,000	779,000	3,260,000
М	2,800	52,000	24,500	60,100

