

The preliminary analysis of stray light for AST3-3 Near-infared Camera

Haiping Lu , Xiangyan Yuan, Kaiyuan Zhang

NIAOT

- > Stray light issues
- > The ghost analysis
- > The issue of suppressing the lunar light
- The self-radiation analysis

> Stray light issues

- > The ghost analysis
- > The issue of suppressing the lunar light
- > The self-radiation analysis

Stray light issues

➤ what?

The "unwanted" radiation on focal plane

➤ which?

Sky background, moon, bright stars in/out field of view, self-radiation (for the infared system)

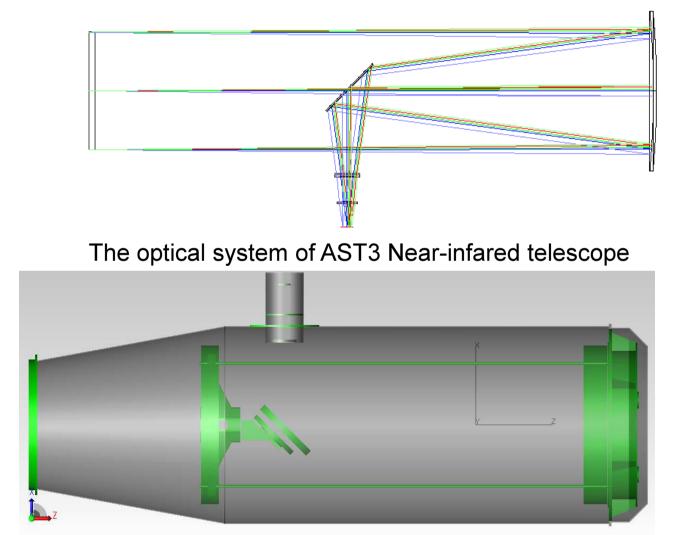
➤ why?

a)The reflection or scattering from the surfaces of non-optical components

b)Contamination or roughness of optical elements

c)The reflection or scattering from the surfaces of lens

d)Self-radiation(only for infared system)

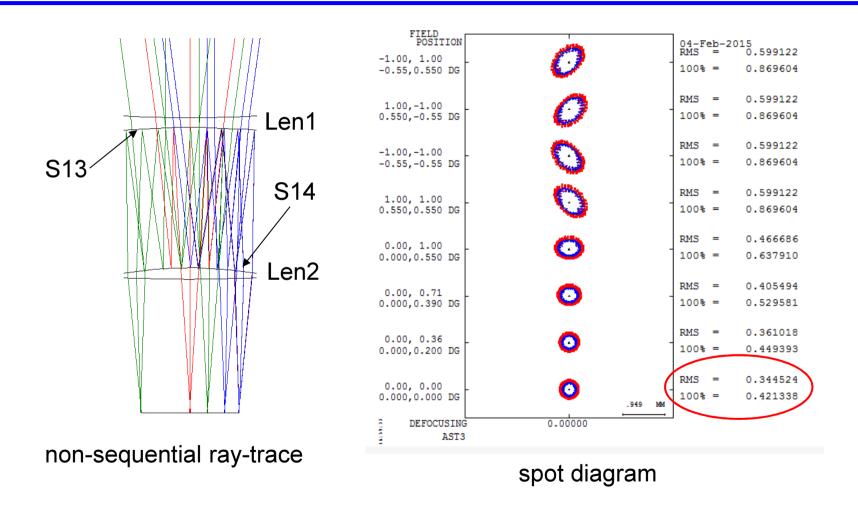

> Stray light issues

The ghost analysis

- > The issue of suppressing the lunar light
- > The self-radiation analysis

The model of AST3-3

The model of the whole system in the software Tracepro



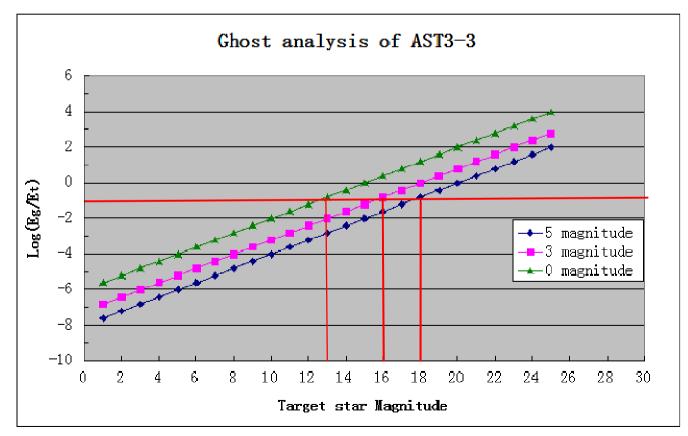
- DBFL Delta Back Focal Length the distance from the primary image plane (not the paraxial focal plane) to the reflected image.
- EFL Effective Focal Length the focal length of the system including the two extraneous reflections
- DISC the semi-diameter of the reflected beam (from an on-axis object point) at the primary image plane
- PUPIL RATIO the maximum ratio of the first order reflected ray heights at the stop surface to the stop semidiameter
- MAGNIFICATION the size of the reflected image at the image plane indicated by DBFL relative to the size of the primary image

REFL 1	REFL :	2 DBFL	EFL	DISC	PUPIL RATIO	MAGNIFICATION
3	2	-57.088191	2028.397361	-7.036120	1.000000	1.061362
7	2	821.383725	-812.326306	-252.787494	1.000000	-0.425051
9	2	477.863139	-805.844588	-148.249162	1.159241	-0.421660
12	2	245.222540	-988.836813	-61.997727	1.425718	-0.517411
13	2	728.305543	-6895.114416	-26.406579	1.000000	-3.607880
14	2	670.480026	-12779.417647	-13.116404	1.000000	-6.686852
15	2	133.407746	-1150.955136	-28.977616	1.423520	-0.602239
7	3	828.618634	-813.228041	-254.731327	1.000000	-0.425523
9	3	492.553789	-787.480453	-156.370163	1.000000	-0.412050
12	3	273.929982	-950.928978	-72.016415	1.000000	-0.497575
13	3	735.947771	-6857.328610	-26.830702	1.000000	-3.588109
14	3	678.987244	-12657.620259	-13.410642	1.000000	-6.623121
15	3	171.308593	-1098.432967	-38.989314	1.000000	-0.574757
9	7	1623.068191	-1618.348437	-250.729100	1.000000	-0.846804
12	7	1207.042589	-880.518404	-342.707939	1.000000	-0.460733
13	7	-1251.572167	39409.088716	-7.939616	1.000000	20.620873
14	7	-18119.833597	652239.279028	-6.945240	1.000000	341.285314
15	7	1137.095204	-808.568459	-351.576663	1.000000	-0.423085
12	9	-2895.841006	5190.130288	-139.487876	1.000000	2.715745
13	9	885.861967	10283.797139	21.535381	1.000000	5.381014
14	9	745.176663	20846.264736	8.936573	1.000000	10.907844
15	9	-10284.507176	14490.105114	-177.440175	1.000000	7.581972
13	12	-3416.935068	-25234.449035	33.851889	1.000000	-13.203968
14	12	-4601.857459	-71553.206061	16.078446	1.000000	-37.440337
15	12	-308.521079	1643.245833	-46.937755	1.000000	0.859831
14	13	-4.826883	3861.863120	-0.312471	1.000000	2.020726
15	13	-308.519429	2153.644304	-35.813647	1.000000	1.126898
15	14	-62.813964	900.363703	-17.441275	1.000000	0.471117

The ghost analysis in Code V software

The ratio of ghost intensity to scene image intensity is

$$\frac{E_{Ghost}}{E_{T\,\text{arg}\,et}} = R_1 \times R_2 \times \left\{ \frac{1}{\pi} \times \left(\frac{A \times F}{R \times D} \right)^2 \right\} \times \frac{H}{B} \qquad \qquad \frac{H}{B} = 10^{\frac{m_T - m_g}{2.5}}$$


- A = Lens entrance pupil diameter (lens units)
- F = F-number of lens
- B = Brightness of extended object (energy/unit area)
- R = PUPIL RATIO from ghost analysis
- D = DISC semi-diameter from ghost analysis (lens units)
- H = Irradiance on pupil from point object (energy/unit area)
- R_1 = Reflectivity of the first surface of the ghost pair
- R_2 = Reflectivity of the second surface of the ghost pair

 m_{T} : the magnitude of target star m_{g} : the magnitude of the bright star

The semi_diameter of the ghost is 0.3mm

The semi_diameter of the target star on focus plane is 18 um (1 pixel)

- > Stray light issues
- > The ghost analysis
- > The issue of suppressing the lunar light
- > The self-radiation analysis

- For the infared system, Two parts from the moon: 1) the self-radiation of the moon; 2) reflected solar energy
- At daytime ,the temperatur of the lunar surface is 127 degrees centigrade ,but at nighttime that is minus-183 degrees centigrade
- The self-radiation of the moon

Plank's formula:

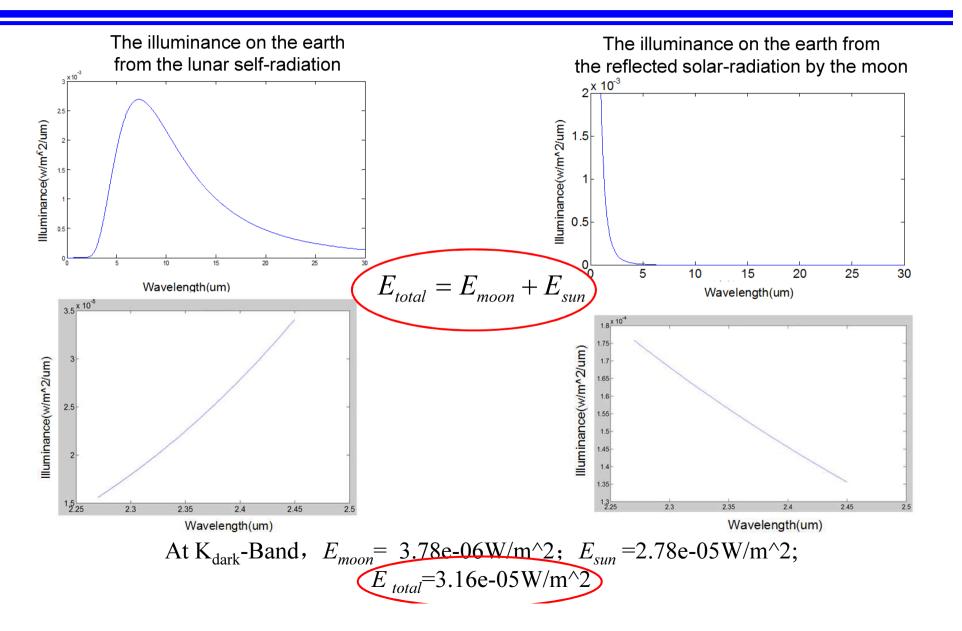
$$M_{m} = \varepsilon \times \int_{\lambda_{1}}^{\lambda_{2}} \frac{c_{1}}{\lambda^{5}} \times \frac{1}{\exp\left(\frac{c_{2}}{\lambda T_{m}}\right) - 1} d\lambda \qquad W/m^{2}$$

$$c_{1} = 2*pi*h*c^{2}; \quad c_{2} = hc/k$$

The illuminance on the earth'surface:

$$E_{m-e} = \frac{M_m}{\left(\frac{D_{m-e}}{R_m}\right)^2}$$

Reflected solar energy by the moon surface the reflectance of the moon surface: 0.12 (infared-band)


$$M_{sun} = \int_{\lambda_1}^{\lambda_2} \frac{c_1}{\lambda^5} \bullet \frac{1}{\exp\left(\frac{c_2}{\lambda T_{sun}}\right) - 1} d\lambda$$

$$E_{sun-m} = \frac{M_{sun}}{\left(\begin{array}{c} R_{sun-m} \\ R_{sun} \end{array}\right)^2}$$

$$E_{e-sun-m} = \rho \times \frac{E_{sun-m}}{\left(\frac{R_{m-e}}{R_m}\right)^2}$$

Suppressing the external sorce: Moon

Point Source Transmission(PST)

Defining the system stray light performance as a function of off-axis angle. It is a standard for the stray light rejection .

$$PST(\theta) = \frac{E_{\rm i}(\theta)}{E_{\rm e}(\theta)}$$

 $E_{e}(\theta)$: the energy of the radiation entering the entrance of the telescope $E_{i}(\theta)$: the energy of the radiation on focal plane

moon is

Suppressing the external sorce: Moon

The sky spectral brightness in the near infrared K_{dark} window at the South Pole has been determined from analysis of data collected by the Near Infrared Sky Monitor over the 2001 winter. It is found that the average winter-time sky flux is ~ 220 μ Jy.arcsec⁻². This falls to 80 μ Jy.arcsec⁻² for the best 25% of conditions. These values compare well with those

Observations of the Antarctic infrared sky spectral brightness

Jon S. Lawrence*, Michael C. B. Ashley, Michael G. Burton, and John W.V. Storey School of Physics, University of New South Wales

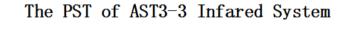
- According to the brightness of the sky background at K_{dark}-band at South Pole(9.1×10-7w/m²/sr) ,the illuminance on the focus plane of the telecope is 3.4e-8w/m² (if the efficiency of the system is 0.7)
- If the requirement of suppressing the moon is that the illuminance of lunar light on the focus plane is supposed to be about 5 times lower than that of the sky background, then the requirement of the PST for the

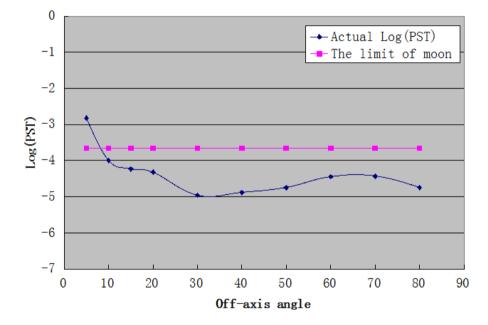
$$PST \le \frac{1}{5} \times \frac{E_{B_{i}}}{E_{total}}$$

PST≤2.2e-4

The surface property

		Surface Properties											
		Abbreviation	Absorptance	Specular reflectance	Integrated BRDF	BRDF A	BRDF B	BRDF g	Specular transmission	Integrated BTDF	BTDF A	BTDF B	BTDF g
	Surface Type	Ab	ЧÞ	Sp6 ref	Int	BR	BR	BR	Spe	Int	BT	\mathbf{BT}	BT
	Perfect Absorber	PA	1	0	0	0	0.1	0	0	0	0	0.1	0
	Perfect Mirror	PM	0	1	0	0	0.1	0	0	0	0	0.1	0
	Perfect Transmitter	PT	0	0	0	0	0.1	0	1	0	0	0.1	0
Lens —	Anti Reflect	AR	0.001	0.015	.0001324	.00001	0.015	2	0.984	7.53e-5	.00001	0.1	2
	Dusty AR	DAR	0.01	0.015	0.0132	0.001	0.015	2	0.962	0	0	0.1	0
Mirror—→	Aluminium	Al	0.03	0.956	0.0145	0.001	0.01	2	0	0	0	0.1	0
Dlask	Dusty Aluminium	DAl	0.04	0.946	0.0145	0.001	0.01	2	0	0	0	0.1	0
Black	Nextel	N	0.95	.00001	0.0500	.031825	1	0	0	0	0	0.1	0
paint													

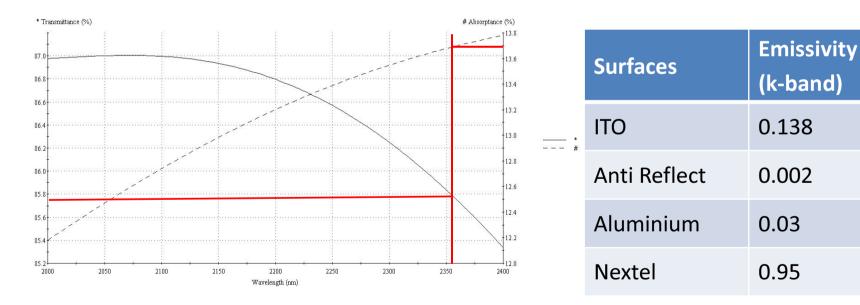

Analysis of Scattered Light for VISTA


B A Patterson^{*} and M Wells^{**} UK Astronomy Technology Centre Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, Scotland UK

PST of the AST3-3

off-axis angle(+Y)	PST
5	1.5e-3
10	1.0e-4
15	5.8e-5
20	4.8e-5
30	1.1e-5
40	1.3e-5
50	1.8e-5
60	3.6e-5
70	3.7E-5
80	1.8E-5

The telescope can suppress the moon above 10 degree.


- > Stray light issues
- > The ghost analysis
- > The issue of suppressing the lunar light
- The self-radiation analysis

Self-radiation of the infared system

The emissivity is a important parameter in self-radiation analysis

Kirchhoff's law: the emissivity is equal to the absorptance

ITO 'contrivable transmittance curve

Self-radiation of the infared system

- The condition: the ambient temperature is -50 °C, the tempreture in the dewar is -100°C. the wavelength range of Kdark-band is 2.27~2.45µm
- The illuminance of the self-radiation of the whole system on the imaging plane is 4.08e-8w/m².

Objects	Temperature			
Window	-47°C			
Dewar	-100°C			
Others	-50°C			
Lens in dewar				

If the telescope will work at minus 50 degrees centigrade ,the selfradiation dominates over the sky background,according to the illuminance of the sky background on the imaging plane (3.4e-8w/m^2)

Self-radiation of the infared system

- The condition: the ambient temperature is minus 60 degrees centigrade, the tempreture in the dewar is -100°C. the wavelength range of Kdark-band is 2.27~2.45µm
- The illuminance of the self-radiation of the whole system on the imaging plane is 1.2e-8w/m². it is three times lower than the background

Objects	Temperature
Window	-57°C
Dewar	-100°C
Others	-60°C

The Near-infared camera can play the best performance when the ambient tempreture is below minus 60 degrees centigrade

The next steps

- Verify some parameters(the brightness of sky background at dome A, the temperature in dewar, the actual optical property ,Etc)
- Design the structure of the baffles in dewar
- Compute PST in the other direction
- Analysis the self-radiation in detail
- Analysis the limit of magnitude of the AST3-3 Near-infared camera
- Design the relay-lens, compare the stray-light suppressing ability of the telescope with cold stop and that of the system without the cold stop

The end

Thank you for your attention and advice!