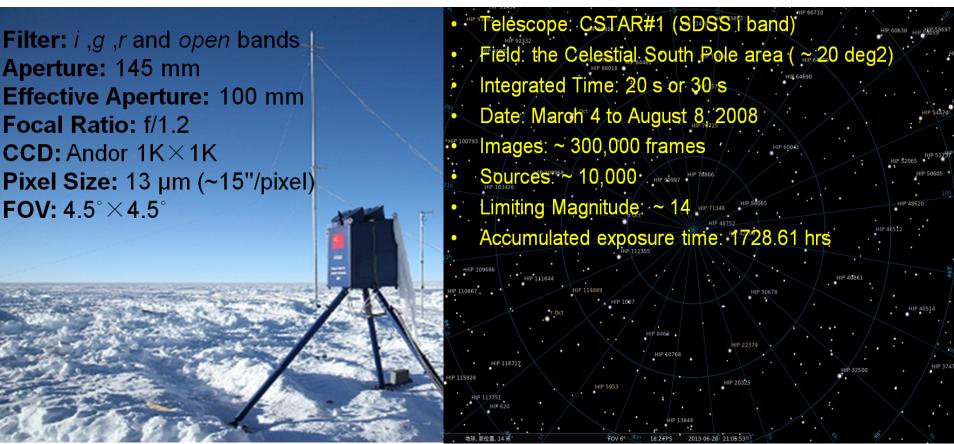


CSTAR Survey Results of Transiting Events

Nanjing University School of Astronomy and Space Science

Exoplanet Group:

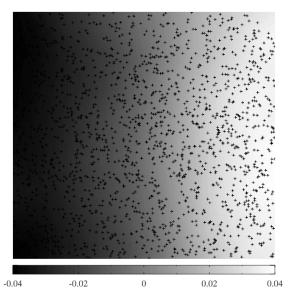
Zhou Ji-Lin, Zhang Hui, Liu Hui-Gen, Wang Songhu, Yang Ming, Meng Zeyang, Liang Ensi, Yu Zhouyi


HongKong University, May,9, 2015

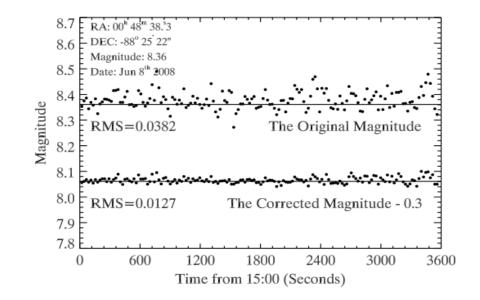
CSTAR Survey


Instrument

Observational Data



Systematic Error Corrections


Yang et al. 2009

PHOTOMETRY OF SEVERAL SOURCES IN THREE DIFFERENT APERTURES: CATALOG HEADER: -59 2008 JUNE 02 22:50:42.20 20 i 10398 154.954086 R.A. Declination M1M2M3Number (J2000) (J2000) (r = 3 pixel)(r = 4 pixels)(r = 5 pixels) $\sigma 1$ σ^2 $\sigma 3$ 23:23:46.274 -89:25:17.8111.095 0.022 11.011 0.022 10.838 0.025 277 278 10:43:24.023 -88:42:00.7811.099 0.026 11.048 0.022 11.013 0.022 279 16:13:39.187 -87:44:30.1111.100 0.026 11.030 0.022 11.014 0.022 280 14:09:08.706 -89:07:12.6311.100 0.026 11.035 0.022 10.987 0.022 281 13:46:15.127 -88:26:01.9411.100 0.026 11.013 0.022 10.885 0.025 282 17:54:27.175 -89:42:21.7011.103 0.026 11.065 0.022 11.032 0.022

NOTE.—Catalog header parameters are decoded as: CCD temperature (°C), date, exposure time (in seconds), the number of sources detected in the image, day of the year during 2008. The catalogs can be downloaded from National Astronomical Observatories Science Data Center, Chinese Academy of Science at http://archive.bao.ac.cn/en/cstar.

The first results of photometry catalogues Zhou Xu et al. 2010

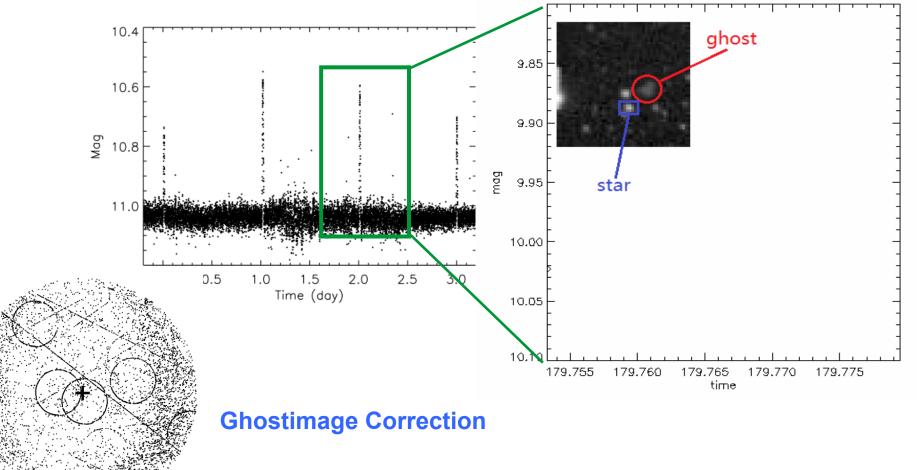
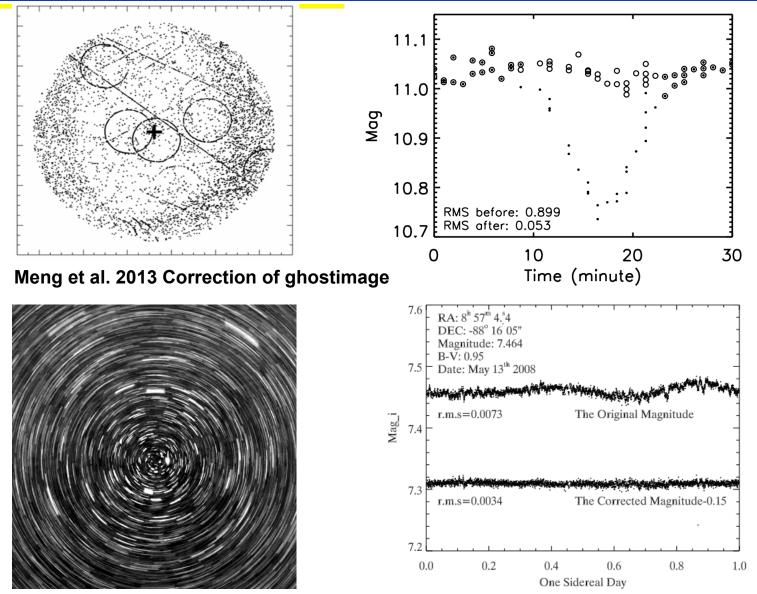
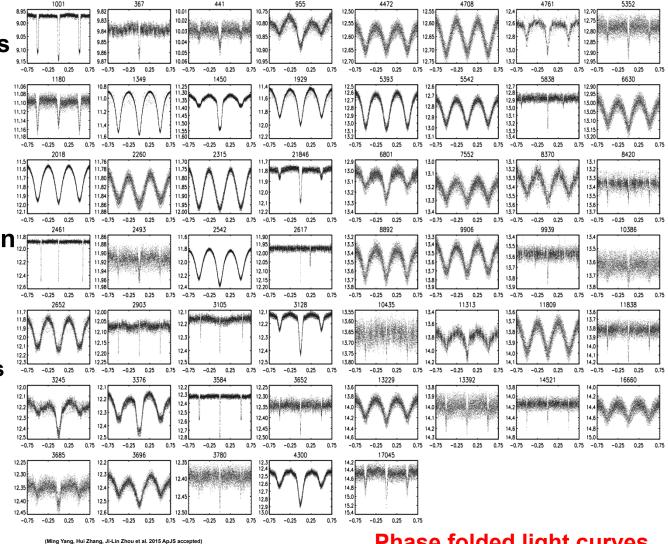

Wang et al. 2012, Correction: the *inhomogeneous* effect of cloud on CSTAR Photometry

TABLE 1


Highlight:

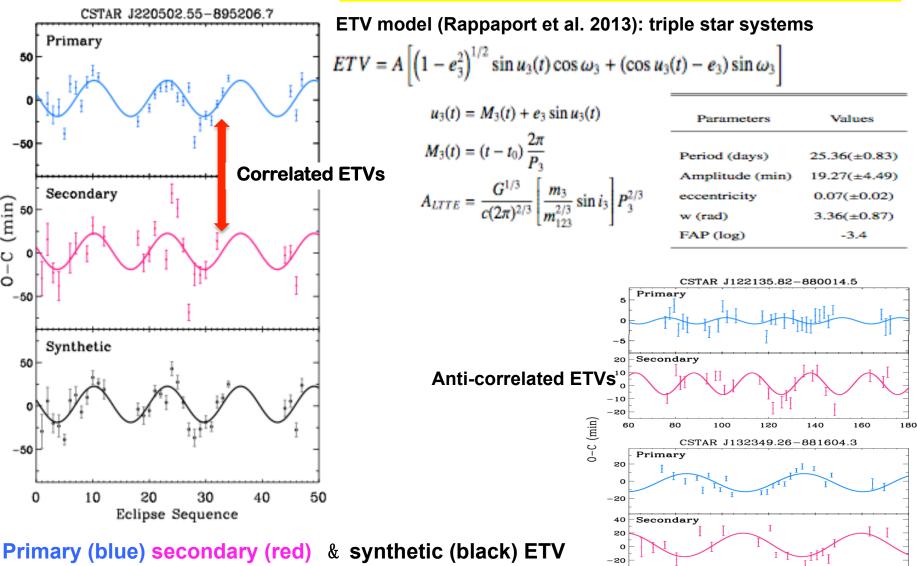
We develop a standard ghost correction procedure and formulate the impact parameter as a function of star-ghost separation

Systematic Error Corrections



Wang et al. 2014 Correction of diurnal effects on CSTAR photometry

Eclipsing binaries from the CSTAR project


自京大学 NANJING UNIVERSITY

- Search: 53 binaries
- Classification
 - 24 detached
 - 8 semi-detached
 - 18 contact
 - 3 ellipsoidal
- **Parameters Solution**
- Analysis
 - **ETV** (Eclipse timing variation)
 - **Eccentric systems** ٠
 - **O'Connell effect**

Phase folded light curves

Eclipse Timing Variations (ETV) analysis

-40 60

80

100

120

time (JD-2,454,500)

140

160

180

自京大学

NANJING UNIVERSITY

Synthetic ETV is the half of the sum of primary and second

(min)

ပု Ó

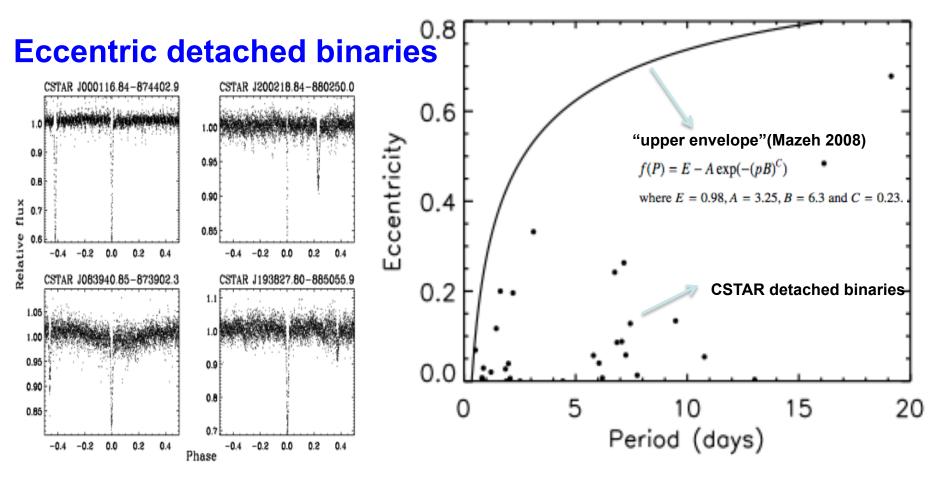
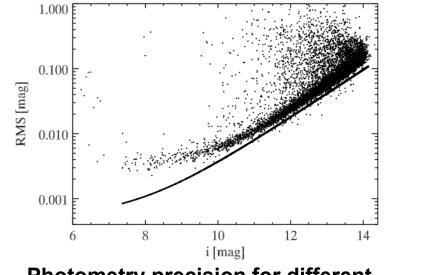
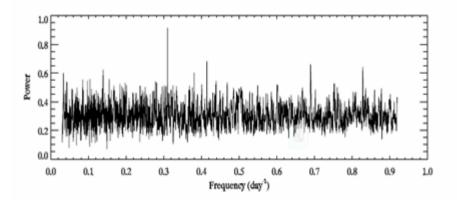


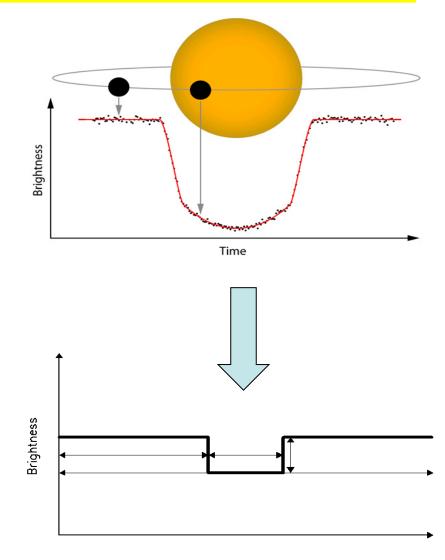
Table 7. Contact and semi-detached systems with O'Connell effect


O'Connell effect different maximum in brightness $\bigwedge m = m2 - m1$

m1: peak magnitude after primary minimumm2: peak magnitude after secondary minimum

	CSTAR ID	Δm (mag)	Туре	CSTAR ID	Δm (mag)	Туре
	CSTAR J031348.84-891511.7	0.015	EC	CSTAR J061954.94-872047.5	0.036	EC
	CSTAR J071652.61-872856.4	-0.016	EC	CSTAR J073412.18-874037.3	0.015	EC
	CSTAR J084612.64-883342.9	-0.022	EC	CSTAR J124916.22-881117.6	0.015	EC
	CSTAR J135318.49-885414.6	0.023	EC	CSTAR J142901.63-873816.2	0.024	EC
m	CSTAR J181735.42-870602.2	-0.019	EC	CSTAR J223707.30-872849.9	0.017	EC
	CSTAR J110803.52-870114.0	0.030	ESD	CSTAR J132349.26-881604.3	0.037	ESD
	CSTAR J220502.55-895206.7	0.022	ESD			

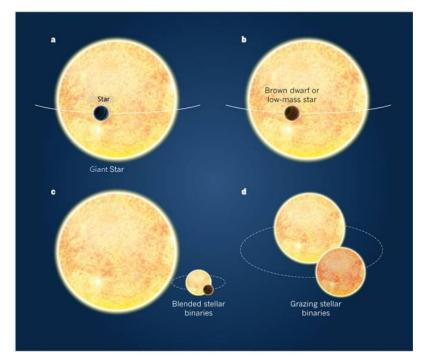

Transiting planets



Time

Box-Fitting Least Square Algorithm, searching transiting events

Because of

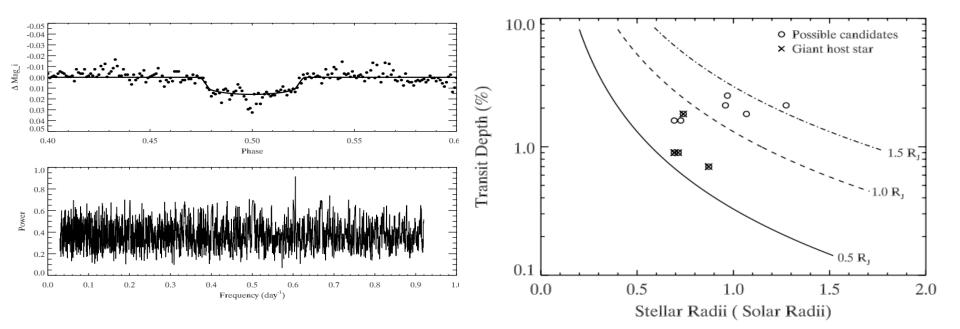

1.Systematic error

- low SNR
- fake period
- incomplete phase folded
- polluted from nearby variable stars

2.Physical events

- (Binary eclipse in the background)
- ellipsoidal binary
- spectrum observation for giant star
- RV follow-up

...



Most FAP detections are due to Binary Eclipse

	CSTAR ID CSTAR J+	Epoch (2454500.0 +)	f (mag)	Period (d)	Duration (h)	-	<i>R</i> ∗ (R _☉)	Rp (RJup)	B-V (mag)		T _{eff} K	log(g)	S_p	$\Delta x^2 / \Delta x^2$	$S/N_{\rm ellip}$	Sr	η	$P_{\delta} \mid P_{1}$	k
	183056.78-884317.0	53.69665	9.84	9.924	10.004	0.021	1.214	1.531	0.48	0.31	_	_	F5	4.23	5.87	22.32	2.03	0.42 0.	.38
	001238.65-871811.0	48.80221	10.59	5.371	2.269	0.021	0.959	1.356	0.69	0.43	5900	4.9	G5	3.53	0.28	8.78	0.65	0.66 0.	.74
	014026.01-873057.1	46.69858	10.26	4.164	1.847	0.009	0.714	0.519	1.54	0.67	4800	0.6	Giant	1.48	0.26	10.37	0.71	0.15 0.	.44
	021535.71-871122.5	46.50898	10.69	1.438	1.360	0.018	0.740	0.862	1.65	0.80	4600	3.3	Giant	2.69	0.45	12.10	0.71	0.48 0.	.23
	022810.02-871521.3	50.90359	10.62	2.586	2.048	0.021	1.274	1.547	0.44	0.36	6100	3.5	F5	2.63	0.65	7.11	0.61	0.64 0.	.11
Giant	075108.62-871131.3	47.59870	10.41	2.630	2.298	0.016	0.693	0.742	1.24	0.95	4800	4.5	K7	1.52	0.75	8.60	1.02	0.17 0.	.42
	110005.67-871200.4	47.11239	10.84	3.228	1.633	0.025	0.969	1.335	0.68	0.33	6300	3.9	G5	2.02	1.19	10.60	0.55	0.07 0.	.62
Hosts	113310.22-865758.3	47.14206	9.97	1.652	2.045	0.016	0.727	0.794	1.06	0.60	4900	5.0	K4	1.63	1.72	6.96	1.03	0.45 0.	.40
	132821.71-870903.3	46.53672	10.41	4.273	1.797	0.018	1.068	1.255	0.59	0.41	6000	4.5	G0	1.62	2.17	7.05	0.53	0.01 0.	.20
	203905.43-872328.2	47.21003	10.35	2.216	2.691	0.007	0.872	0.636	0.79	0.68	4800	1.5	Giant	1.64	0.53	7.68	1.15	0.22 0.	.91
	231620.78-871626.8	46.99121	10.76	1.408	1.676	0.009	0.693	0.569	1.39	0.81	4300	2.4	Giant	2.86	0.36	6.68	0.94	0.02 0.	.82

Table 1. Summary of CSTAR exoplanet transit candidates

Six candidates around bright stars with *i_mag*=9.84-10.84 (Wang et al. 2014 ApJS)

1. Corrections of Systematic Errors

- the inhomogeneous effect of cloud (Wang Songhu et al)
- ghost image (Meng Zeyang et al.)
- diurnal effects (Wang, Meng et al.)
- 2. Eclipsing Binaries (Yang Ming, Zhang Hui et al.)
 - Detached/ semi-detached/contact/ellipsoidal binaries
 - ETV
 - O'Connell effect

3. Transiting Planets (Wang Songhu, Zhang Hui et al.)

- Checking the FAP
- 6 Candidates